

 AN10438
 Philips LPC2000 CAN driver
 Rev. 01 — 02 March 2006 Application note

Document information

Info Content

Keywords CAN BUS, MCU, LPC2000, ARM7, SJA1000

Abstract This application note describes the CAN controller hardware application
programming interface driver routines for the CAN controller of Philips
LPC2000. Also provides the demo project developed under KEIL
uVision3 with ARM tools ADS1.2, using evaluation board MCB210. This
demo used UART0 for communication with PC, and print CAN
communication information with Hyper terminal.

Philips Semiconductors AN10438
 Philips LPC2000 CAN driver

Revision history

Rev Date Description

01 20060302 Initial version.

Contact information
For additional information, please visit: http://www.semiconductors.philips.com

For sales office addresses, please send an email to: sales.addresses@www.semiconductors.philips.com

 AN10438_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 02 March 2006 2 of 38

Philips Semiconductors AN10438
 Philips LPC2000 CAN driver

1. Introduction

1.1 Introduction
The LPC2292/LPC2294 each contain two/four CAN controllers. The CAN is a serial
communication protocol, which efficiently supports distributed real-time control with a
very high level of security. Its domain of application ranges from high-speed networks to
lower cost multiplex wiring.

Each CAN Controller has a register structure similar to the Philips SJA1000 and the
PeliCAN Library block, but the 8-bit registers of those devices have been combined in
32-bit words to allow simultaneous access in the ARM environment. The main
operational difference is that the recognition of received Identifiers, known in CAN
terminology as Acceptance Filtering, has been removed from the CAN controllers and
centralized in a global Acceptance Filter.

1.2 Main features
The main features for CAN controller of LPC2000:

• Data rates up to 1 Mbit/s on each bus
• 32-bit register and RAM access
• Compatible with CAN specification 2.0B, ISO 11898-1
• Global Acceptance Filter recognizes 11-bit and 29-bit RX identifiers for all CAN

buses
• Acceptance Filter can provide FullCAN-style automatic reception for selected

Standard identifiers

1.3 More useful features
You can also find the following useful features when you drive LPC2000 CAN controllers
in your applications:

• Error counters with read/write access
• Programmable error warning limit
• Error interrupted for each CAN-bus error
• Arbitration lost interrupted with detailed bit position
• Single-shot transmission (no re-transmission)
• Listen only mode (no acknowledge, no active error flags)
• Reception of ‘own’ messages (self reception request).

For detailed usage of the CAN controller, please reference the LPC2000 parts data sheet
and user manual.

1.4 CAN BUS timing setting
In this CAN driver, included are the pre-defined values for CAN Bit timing.

Bus Timing Register – CANBTR controls this function; it consists of the following bits:

 AN10438_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 02 March 2006 3 of 38

Philips Semiconductors AN10438
 Philips LPC2000 CAN driver

Bit 0:9 – BRP: Baud Rate Prescaler. The VPB clock is divided by (this value plus
one) to produce the CAN clock

Bit 14:15 – SJW: The Synchronization Jump Width is (this value plus one) CAN clocks

Bit 16:19 – TSEG1: The delay from the nominal Sync point to the sample point is (this
value plus one) CAN clocks

Bit 20:22 – TSEG2: The delay from the sample point to the next nominal sync point is
(this value plus one) CAN clocks. The nominal CAN bit time is (this
value plus the value in TSEG1 plus 3) CAN clocks

Bit 23 – SAM: 1: the bus is sampled 3 times (recommended for low to medium
speed buses)

 0: the bus is sampled once (recommended for high speed buses)

The definition of the CAN bit timing value is something flexible, but you can obey a
simple principle as follows:

Define:

Fvpb
1BRPTscl +

= as CAN clock;

Tseg1 = (TSEG1+1)*Tscl; Tseg2 = (TSEG2+1)*Tscl; Tsjw = (SJW+1)*Tscl

Then the principle as follows:

• Tseg2 >= 2Tscl
• Tseg2 >= Tsjw
• Tseg1 >= Tseg2

For example, in this CAN driver, the CAN bit rate can be set as 100 k @ 24 MHZ (VPB
clock)

Bus Timing Register – CANBTR can be set to: 0x001C000E

Meaning:

BRP = 14;

SJW = 0;

TSEG1 = 12;

TSEG2 = 1;

The CAN bit rate can be calculated by the following equation:

 AN10438_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 02 March 2006 4 of 38

Philips Semiconductors AN10438
 Philips LPC2000 CAN driver

1)(BRP*) 3TSEG2TSEG1 (
FvpbCANbps

+++
=

• CANbps: CAN bit rate
• Fvpb: VPB frequency

As shown in the equation, when Fvpb = 24 MHZ, the CANbps = 100 kbits/s

While:

Kbit/s106
1)(BRP*) 1)(SJW - 3TSEG2TSEG1 (

FvpbMaxCANbps =
++++

=

Kbit/s94
1)(BRP*) 1)(SJW 3TSEG2TSEG1 (

FvpbMinCANbps =
+++++

=

2. Introduction for CAN controller driver
This application note describes a project under KEIL uVision3, which is a live demo
based on the LPC2000 CAN driver routines supplied as “C” source code.

It is one project, but also can be regarded as two parts:

1. The CAN controller driver routines for LPC2000
2. A demo code based on KEIL MCB2100 evaluation board, using UART print CAN

BUS transmit and receive information with PC Hyper Terminal.

The CAN controller driver includes functions, which cover basically the handling of the
CAN controller. This Application Note will provide information about all functions made
available with the driver, and how the driver interacts with the device for each of these
function calls.

The demo tools, method, and operation steps will be described in a later chapter.

 AN10438_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 02 March 2006 5 of 38

Philips Semiconductors AN10438
 Philips LPC2000 CAN driver

3. General CAN controller driver description

3.1 Software development support
The CAN controller driver was tested with the following software development
environments:

• IDE – KEIL uVision3
• Emulator - ULINK
• ARM develop tool – ARM ADS, Version 1.2

3.2 CAN controller driver functionality overview
The CAN controller driver routines described in this Application Note are designed to
provide the application programmer with a higher-level interface for communication with
each CAN controller module, thus relieving the programmer from having to understand
the detailed operation of the CAN controller module. The application programmer can
design the application interface to the CAN controller driver routines with the knowledge
that the driver routines will take all necessary actions for transmitting and receiving CAN
messages on the CAN bus.

The CAN controller driver routines perform the following functions:

• Initialization of the CAN controller
• Configuration of the CAN controller for various baud rates
• Prepare transmission of data pool and CAN message
• Receiving and storing CAN messages in the appropriate receive data pool
• Providing pre-defined values for a set of bit-rates for various clock frequencies
• Mode switching of the CAN controller
• Easy read/write access to CAN controller registers
• Printing information about CAN BUS transmitted/received data by the UART.

 AN10438_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 02 March 2006 6 of 38

Philips Semiconductors AN10438
 Philips LPC2000 CAN driver

3.3 CAN controller driver files
The CAN controller driver consists of the following files:

Table 1: CAN controller driver files

CAN controller driver files description

Config.h This file contains typedef statements of the data types and macro
definitions. This file should be #included in the application source
file and must be added to the project. This file must not be
modified.

LPC2294.h This file contains #define statements of LPC2000 CAN controller,
configuring the SFR address. This file should be #included in the
application source file and must be added to the project. This file
must not be modified.

LPC2000_CAN.h This file contains function prototypes, typedef struct statements of
receive and transmit data buffers, #define statements of all function
error return codes and all pre-defined values for various baud
rates. This file should be #included in the application source file
and must be added to the project. This file must not be modified.

LPC2000_CAN_GAF.h This file contains typedef struct statements of Global Acceptance
Filter units. This file must be added to the project. This file must not
be modified.

LPC2000_CAN_Driver.c This file contains the LPC2000 CAN driver function description. It
includes sent data definition and an example for the Global
Acceptance Filter configuration. This file must be added to the
project. This file may be modified for sending needed data and
setting up needed Global Acceptance Filter.

 AN10438_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 02 March 2006 7 of 38

Philips Semiconductors AN10438
 Philips LPC2000 CAN driver

3.4 Used data types
Due to different implementations of data types of available C compilers, the following
data types from the CAN controller driver are defined in the header file “config.h”.

Table 2: CAN controller driver typedef statements

Mnemonic C type

UInt8 unsigned char 8 bit unsigned integer

pUInt8 unsigned char* 8 bit unsigned integer pointer

UInt32 unsigned long 32 bit unsigned integer

pUInt32 unsigned long* 32 bit unsigned integer pointer

CanStatusCode unsigned long Function status return code

3.5 CAN message buffers data structure
For transmission and reception of a CAN message, Message Buffers for transmitting and
receiving messages are used. Both buffers are defined as a structure and hold the
following data fields (see Table 3). Both structures are defined in the header file
LPC2000_CAN.h.

Table 3: Transmit and receive Message Buffer defined in LPC2000_CAN.h
Transmit buffer: lpc2000CANdriver_TXObj_t Receive buffer: lpc2000CANdriver_RXObj_t

typedef struct
{
 UInt32 TFI;
 UInt32 ID;
 UInt32 DataField[2];

} lpc2000CANdriver_TXObj_t;

typedef struct
{
 UInt32 RFS;
 UInt32 ID;
 UInt32 DataField[2];

} lpc2000CANdriver_RXObj_t;

Table 4 shows how the 32-bit wide array Data Field and the CAN Message Buffer data is
organized.

Table 4: Array DataField
 MSB LSB

DataField[0] Data Byte 4 Data Byte 3 Data Byte 2 Data Byte 1

DataField[1] Data Byte 8 Data Byte 7 Data Byte 6 Data Byte 5

 AN10438_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 02 March 2006 8 of 38

Philips Semiconductors AN10438
 Philips LPC2000 CAN driver

Table 5 and Table 6 are examples of how both Message Buffer structures are used in the
main Application Program.

Table 5: Example for preparing a transmit message
Example: Loading a Transmit Message into the CAN controllers Transmit Buffer

/* Transmit Object Structure and Function Call */

UInt8 Reture_Value =0; // variable to report CAN status
lpc2000CANdriver_TXObj_t CAN_Send_Data[] = // Tx Message Object
 { {0x00080000,0x00000000,0x04030201,0x08070605},
 {0x00080000,0x000001AC,0x14131211,0x18171615}
 };

main()
{
 UInt32 i=0;
 plpc2000CANdriver_TXObj_t pCAN_Send_Data;

 ……
 pCAN_Send_Data = CAN_Send_Data;
 for(i=0;i<2;i++)
 {
 Reture_Value =

lpc2000CANdriver_CertainTxBufTransmitMessage(LPC2000_CANCHANNEL_1,
 pCAN_Send_Data,LPC2000_TXB_1);

 pCAN_Send_Data++;
 }
 ……
}

 AN10438_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 02 March 2006 9 of 38

Philips Semiconductors AN10438
 Philips LPC2000 CAN driver

Table 6: Example for reading the Id, RFS and data bytes from received message
Example: Reading a CAN Message Data from the Receive Buffer

/* Receive Object Structure and Function Call */

UInt8 Reture_Value =0; // variable to report CAN status
lpc2000CANdriver_RXObj_t CAN_Rcv_Data[2]; // Rx Message Object
UInt32 CAN_Rcv_Data_Counter=0; // transmit value between main and IRQ

void __irq IRQ_CAN2Rx(void)
{
 plpc2000CANdriver_RXObj_t pCAN2_Rcv_Data_IRQ;

 ……
 pCAN2_Rcv_Data_IRQ = CAN_Rcv_Data + CAN_Rcv_Data_Counter;
 Reture_Value = lpc2000CANdriver_ReceiveMessageCh2 (pCAN2_Rcv_Data_IRQ);
 CAN_Rcv_Data_Counter++;
 ……
}

main()
{
 ……
 RFS = CAN_Rcv_Data[1] . RFS;
 ID = CAN_Rcv_Data[1] . ID;
 Data_1 = (CAN_Rcv_Data[1] . DataField[0] & 0x000000FF);
 Data_2 = (CAN_Rcv_Data[1] . DataField[0] & 0x0000FF00) >> 8;
 Data_3 = (CAN_Rcv_Data[1] . DataField[0] & 0x00FF0000) >> 16;
 Data_4 = (CAN_Rcv_Data[1] . DataField[0] & 0XFF000000) >> 24;
 Data_5 = (CAN_Rcv_Data[1] . DataField[1] & 0x000000FF);
 Data_6 = (CAN_Rcv_Data[1] . DataField[1] & 0x0000FF00) >> 8;
 Data_7 = (CAN_Rcv_Data[1] . DataField[1] & 0x00FF0000) >> 16;
 Data_8 = (CAN_Rcv_Data[1] . DataField[1] & 0xFF000000) >> 24;
 ……
}

 AN10438_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 02 March 2006 10 of 38

Philips Semiconductors AN10438
 Philips LPC2000 CAN driver

3.6 Global acceptance filter configuration
In this AN, the Global Acceptance Filter (GAF) configuration lists the initialization of four
Look-up table sections.

For the CAN controller driver the file LPC2000_CAN_Driver.c contains the four identifier
sections that can be configured.

Note: Commenting the according definition statements out can disable those sections.
This should be done if some sections are not used.

Table 7: ID look-up table definitions of the LPC2000_CAN_Driver.c
Section Definition : Section of the ID Look_up Table

Memory

#define LPC2000_CANDRIVER_STD_INDIVIDUAL Explicit Standard Frame Format ID Section

#define LPC2000_CANDRIVER_STD_GROUP Group of Standard Frame Format ID
Section

#define LPC2000_CANDRIVER_EXT_INDIVIDUAL Explicit Extended Frame Format ID Section

#define LPC2000_CANDRIVER_EXT_GROUP Group of Extended Frame Format ID
Section

Furthermore, the LPC2000_CAN_Driver.c contains lists of example CAN identifiers with
their associated Source CAN Channel (SCC) separated for each section. The following
tables, Table 8 to Table 11, are extracted from the LPC2000_CAN_Driver.c file and show
all pre-defined CAN identifiers and their SCC for all sections. The user can change the
list in each section to suit each application’s needs.

Table 8: Example of explicit standard frame format identifier section
const lpc2000CANdriver_ACFilter_t gklpc2000CANdriver_StdIndividualSection[] =
 {
 /* Channel(1-4) , 11-bit Identifier */
 {LPC2000_CANDRIVER_SCC_2, 0x0010},
 {LPC2000_CANDRIVER_SCC_2, 0x01AC},
 {LPC2000_CANDRIVER_SCC_2, 0x0245},
 {LPC2000_CANDRIVER_SCC_2, 0x025F}
 };

 AN10438_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 02 March 2006 11 of 38

Philips Semiconductors AN10438
 Philips LPC2000 CAN driver

Table 9: Example group of standard frame format identifier section
const lpc2000CANdriver_ACFilter_t gklpc2000CANdriver_StdGroupSection[] =
 {
 /* Channel 11-bit Identifier */
 {LPC2000_CANDRIVER_SCC_2, 0x0300}, // lower bound, Group 1
 {LPC2000_CANDRIVER_SCC_2, 0x037F}, // upper bound, Group 1
 {LPC2000_CANDRIVER_SCC_2, 0x0400}, // lower bound, Group 2
 {LPC2000_CANDRIVER_SCC_2, 0x047F} // upper bound, Group 1
 };

Table 10: Example of explicit extended frame format identifier section
const lpc2000CANdriver_ACFilterx_t gklpc2000CANdriver_ExtIndividualSection[] =
 {
 /* Channel 29-bit Identifier (=< 0x1FFFFFFF) */
 {LPC2000_CANDRIVER_SCC_2, 0x00002288},
 {LPC2000_CANDRIVER_SCC_2, 0x00003377},
 {LPC2000_CANDRIVER_SCC_2, 0x00005566},
 {LPC2000_CANDRIVER_SCC_2, 0x00006677}
 };

Table 11: Example group of extended frame format identifier section
const lpc2000CANdriver_ACFilterx_t gklpc2000CANdriver_ExtGroupSection[] =
 {
 /* Channel 29-bit Identifier (=< 0x1FFFFFFF) */
 {LPC2000_CANDRIVER_SCC_2, 0x00007700}, // lower bound, Group 1
 {LPC2000_CANDRIVER_SCC_2, 0x000077FF}, // upper bound, Group 1
 {LPC2000_CANDRIVER_SCC_2, 0x000085F7}, // lower bound, Group 2
 {LPC2000_CANDRIVER_SCC_2, 0x00008802} // upper bound, Group 2

 };

 AN10438_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 02 March 2006 12 of 38

Philips Semiconductors AN10438
 Philips LPC2000 CAN driver

3.6.1 Guidelines for setting ID look-up table
All identifier sections of the ID Look-up Table have to be programmed in such a way that
each active section is organized as a sorted list or table with an increasing order of the
SCC. Entries with the same SCC have to provide an increasing order of the CAN
identifier. Additionally, for entries in each section, the following rules apply:

Table 12: General rules of section entries
Explicit Standard Frame Format ID Section
Explicit Extended Frame Format ID Section

Even or odd number of entries is allowed

Group of Standard Frame Format ID Section
Group of Extended Frame Format ID Section

Lower and upper bound has to be defined for
each group. Even or odd numbers of ground
are allowed

The following function-call loads all pre-defined CAN identifier entries into the ID Look-up
Table Memory and configures the section start address registers according to the pre-
defined CAN identifiers in the enabled sections.

Table 13: GAF function call configuration
{
 UInt8 Reture_Value =0; // variable to report CAN status

 ……
 Reture_Value = lpc2000CANdriver_SetACFMode(LPC2000_ACC_BYPASS);
 Reture_Value = lpc2000CANdriver_LoadAcceptanceFilter ();
 ……
}

 AN10438_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 02 March 2006 13 of 38

Philips Semiconductors AN10438
 Philips LPC2000 CAN driver

3.7 Function return values
All functions that may cause an error condition will return an error code. The error codes
are defined in the Header File LPC2000_CAN.h

Table 14: CAN controller driver function return values
Return_Value Description

LPC2000_CANDRIVER_INITIAL Start up status

LPC2000_CANDRIVER_OK No error occurred

LPC2000_CANDRIVER_ERR General error

LPC2000_CANDRIVER_ERR_WRONG_CAN_CHANNEL_NUMBER Channel number is out
of range

LPC2000_CANDRIVER_ERR_WRONG_CAN_TxBUFFER_NUMBER Wrong CAN transmit
buffer number

LPC2000_CANDRIVER_ERR_TRANSMIT_BUFFER1_NOT_FREE CAN transmit buffer 1 is
not free

LPC2000_CANDRIVER_ERR_TRANSMIT_BUFFER2_NOT_FREE CAN transmit buffer 2 is
not free

LPC2000_CANDRIVER_ERR_TRANSMIT_BUFFER3_NOT_FREE CAN transmit buffer 3 is
not free

LPC2000_CANDRIVER_ERR_TABLE_ERROR_IN_STD_INDIVIDUAL_SECTION A look-up table error was
detected in the Std
Individual Section

LPC2000_CANDRIVER_ERR_TABLE_ERROR_IN_STD_GROUP_SECTION A look-up table error was
detected in the Std
Group Section

LPC2000_CANDRIVER_ERR_TABLE_ERROR_IN_EXT_INDIVIDUAL_SECTION A look-up table error was
detected in the Ext
Individual Section

LPC2000_CANDRIVER_ERR_TABLE_ERROR_IN_EXT_GROUP_SECTION A look-up table error was
detected in the Ext
Group Section

LPC2000_CANDRIVER_ERR_NOT_ENOUGH_MEMORY_SPACE The available memory
space is not sufficient for
the configured CAN
identifiers

 AN10438_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 02 March 2006 14 of 38

Philips Semiconductors AN10438
 Philips LPC2000 CAN driver

3.8 Pre-defined CAN bit timing values
According the principle for calculating CAN BUS Timing illustrated in Chapter 1.4, you
can use the following Pre-defined value.

Table 15: Pre-defined values for the CAN Bit Timing
Defined CAN Bit Timing Values Description

LPC2000_CANDRIVER_CANBITRATE100K16MHZ 100 kbit/s for Fvpb = 16 MHz clock frequency

LPC2000_CANDRIVER_CANBITRATE125K16MHZ 125 kbit/s for Fvpb = 16 MHz clock frequency

LPC2000_CANDRIVER_CANBITRATE250K16MHZ 250 kbit/s for Fvpb = 16 MHz clock frequency

LPC2000_CANDRIVER_CANBITRATE500K16MHZ 500 kbit/s for Fvpb = 16 MHz clock frequency

LPC2000_CANDRIVER_CANBITRATE1000K16MHZ 1000 kbit/s for Fvpb = 16 MHz clock frequency

LPC2000_CANDRIVER_CANBITRATE100K20MHZ 100 kbit/s for Fvpb = 20 MHz clock frequency

LPC2000_CANDRIVER_CANBITRATE125K20MHZ 125 kbit/s for Fvpb = 20 MHz clock frequency

LPC2000_CANDRIVER_CANBITRATE250K20MHZ 250 kbit/s for Fvpb = 20 MHz clock frequency

LPC2000_CANDRIVER_CANBITRATE500K20MHZ 500 kbit/s for Fvpb = 20 MHz clock frequency

LPC2000_CANDRIVER_CANBITRATE1000K20MHZ 1000 kbit/s for Fvpb = 20 MHz clock frequency

LPC2000_CANDRIVER_CANBITRATE100K24MHZ 100 kbit/s for Fvpb = 24 MHz clock frequency

LPC2000_CANDRIVER_CANBITRATE125K24MHZ 125 kbit/s for Fvpb = 24 MHz clock frequency

LPC2000_CANDRIVER_CANBITRATE250K24MHZ 250 kbit/s for Fvpb = 24 MHz clock frequency

LPC2000_CANDRIVER_CANBITRATE500K24MHZ 500 kbit/s for Fvpb = 24 MHz clock frequency

LPC2000_CANDRIVER_CANBITRATE1000K24MHZ 1000 kbit/s for Fvpb = 24 MHz clock frequency

LPC2000_CANDRIVER_CANBITRATE100K48MHZ 100 kbit/s for Fvpb = 48 MHz clock frequency

LPC2000_CANDRIVER_CANBITRATE125K48MHZ 125 kbit/s for Fvpb = 48 MHz clock frequency

LPC2000_CANDRIVER_CANBITRATE250K48MHZ 250 kbit/s for Fvpb = 48 MHz clock frequency

LPC2000_CANDRIVER_CANBITRATE500K48MHZ 500 kbit/s for Fvpb = 48 MHz clock frequency

LPC2000_CANDRIVER_CANBITRATE1000K48MHZ 1000 kbit/s for Fvpb = 48 MHz clock frequency

LPC2000_CANDRIVER_CANBITRATE100K60MHZ 100 kbit/s for Fvpb = 60 MHz clock frequency

LPC2000_CANDRIVER_CANBITRATE125K60MHZ 125 kbit/s for Fvpb = 60 MHz clock frequency

LPC2000_CANDRIVER_CANBITRATE250K60MHZ 250 kbit/s for Fvpb = 60 MHz clock frequency

LPC2000_CANDRIVER_CANBITRATE500K60MHZ 500 kbit/s for Fvpb = 60 MHz clock frequency

LPC2000_CANDRIVER_CANBITRATE1000K60MHZ 1000 kbit/s for Fvpb = 60 MHz clock frequency

 AN10438_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 02 March 2006 15 of 38

Philips Semiconductors AN10438
 Philips LPC2000 CAN driver

3.9 Pre-defined function arguments
When calling functions, several parameters have to be passed. Instead of using bare
numbers it is more concise to use pre-defined function arguments. The following
arguments are already defined in the header file LPC2000_CAN.h and can be utilized by
the user.

Table 16: Pre-defined function arguments in file LPC2000_CAN.h
Defined Function Arguments Description

LPC2000_CANCHANNEL_1 Handle of CAN Channel 1

LPC2000_CANCHANNEL_2 Handle of CAN Channel 2

LPC2000_CANCHANNEL_3 Handle of CAN Channel 3

LPC2000_CANCHANNEL_4 Handle of CAN Channel 4

LPC2000_TXB_1 Handle of Transmit Buffer 1

LPC2000_TXB_2 Handle of Transmit Buffer 2

LPC2000_TXB_3 Handle of Transmit Buffer 3

LPC2000_ACC_ON Global Acceptance Filter ON mode

LPC2000_ACC_OFF Global Acceptance Filter OFF mode

LPC2000_ACC_BYPASS Global Acceptance Filter BYPASS mode

CAN_OPERATING_MODE CAN Controller Operating Mode

CAN_RESET_MODE CAN Controller Reset Mode

CAN_LISTENONLY_MODE CAN Controller Listen-Only Mode

CAN_SELFTEST_MODE CAN Controller Selftest Mode

 AN10438_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 02 March 2006 16 of 38

Philips Semiconductors AN10438
 Philips LPC2000 CAN driver

4. CAN driver functional description
The following sub-chapters describe the CAN controller driver functions in detail.

Table 17: CAN controller driver function summary
Name Description

lpc2000CANdriver_CANInit Initialize a CAN controller

lpc2000CANdriver_SetCANMode Set or change the CAN controller mode

lpc2000CANdriver_SetACFMode Set or change the Global Acceptance Filter
mode

lpc2000CANdriver_CertainTxBufTransmitMessage Load a certain Transmit Buffer and force a
message transmission

lpc2000CANdriver_LoadAcceptanceFilter Load the Global Acceptance Filter Look-up
Table RAM with pre-defined CAN identifiers

lpc2000CANdriver_ReceiveMessageCh1 Copy a received message from CAN
controller 1 into a certain location within the
User RAM

lpc2000CANdriver_ReceiveMessageCh2 Copy a received message from CAN
controller 2 into a certain location within the
User RAM

lpc2000CANdriver_ReceiveMessageCh3 Copy a received message from CAN
controller 3 into a certain location within the
User RAM

lpc2000CANdriver_ReceiveMessageCh4 Copy a received message from CAN
controller 4 into a certain location within the
User RAM

Rcv_Data_Output_to_Screen Print a received message to PC by UART0

Print_Chars_to_Screen Print a sect of characters to PC by UART0

Print_4bits_to_Screen Print 4bits of one 8 bits byte separately to
PC by UART0

The last three functions are used for demo.

 AN10438_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 02 March 2006 17 of 38

Philips Semiconductors AN10438
 Philips LPC2000 CAN driver

4.1 Interface description of CAN driver functions
4.1.1 lpc2000CANdriver_CANInit

Table 18: Interface description of lpc2000CANdriver_CANInit
Name lpc2000CANdriver_CANInit

CanStatusCode

lpc2000CANdriver_CANInit (UInt32 canChannel,

UInt32 canBitrate);

canChannel

Channel number of CAN controller: 1,2,3, or 4

CanBitrate

Pre-defined CAN Bit Timing value

Return values (see also Chapter 3.7)

LPC2000_CANDRIVER_OK
LPC2000_CANDRIVER_ERR_WRONG_CAN_CHANNEL_NUMBER

Calling this function initializes the selected CAN controller with the specified
Bit Timing and sets the CAN controller into Operating Mode.

None

SYNOPSIS

IN

RETURN VALUE

POSSIBLE
RETURN VALUE

DESCRIPTION

NOTES

EXAMPLE

Return_Value = lpc2000CANdriver_CANInit(LPC2000_CANCHANNEL_1,
LPC2000_CANDRIVER_CANBITRATE100K24MHZ);

 AN10438_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 02 March 2006 18 of 38

Philips Semiconductors AN10438
 Philips LPC2000 CAN driver

4.1.2 lpc2000CANdriver_SetCANMode

Table 19: Interface description of lpc2000CANdriver_SetCANMode
Name lpc2000CANdriver_SetCANMode

CanStatusCode

lpc2000CANdriver_SetCANMode (UInt32 canChannel,

 UInt8 CANMode);

canChannel

Channel number of CAN controller: 1,2,3, or 4

CANMode

 CAN_OPERATING_MODE: Operation Mode

CAN_RESET_MODE: Reset Mode
CAN_LISTENONLY_MODE: Listen Only Mode
CAN_SELFTEST_MODE: Self Test Mode

Return values (see also Chapter 3.7)

LPC2000_CANDRIVER_OK
LPC2000_CANDRIVER_ERR

Calling this function changes the CAN controller mode.

None

SYNOPSIS

IN

RETURN VALUE

POSSIBLE
RETUEN VALUE

DESCRIPTION

NOTES

EXAMPLE

Return_Value = lpc2000CANdriver_SetCANMode (
LPC2000_CANCHANNEL_1, CAN_OPERATING_MODE);

 AN10438_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 02 March 2006 19 of 38

Philips Semiconductors AN10438
 Philips LPC2000 CAN driver

4.1.3 lpc2000CANdriver_SetACFMode

Table 20: Interface description of lpc2000CANdriver_SetACFMode
Name lpc2000CANdriver_SetACFMode

CanStatusCode

lpc2000CANdriver_SetACFMode(UInt8 ACFMode);

ACFMode

 LPC2000_ACC_ON: Global Acceptance Filter On
 LPC2000_ACC_OFF: Global Acceptance Filter On
 LPC2000_ACC_BYPASS: Global Acceptance Filter On

Return values (see also Chapter 3.7)

LPC2000_CANDRIVER_OK
LPC2000_CANDRIVER_ERR

Calling this function changes the CAN Global Acceptance Filter mode.

None

SYNOPSIS

IN

RETURN VALUE

POSSIBLE
RETUEN VALUE

DESCRIPTION

NOTES

EXAMPLE

Return_Value = lpc2000CANdriver_SetACFMode
(LPC2000_ACC_BYPASS);

 AN10438_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 02 March 2006 20 of 38

Philips Semiconductors AN10438
 Philips LPC2000 CAN driver

4.1.4 lpc2000CANdriver _CertainTxBufTransmitMessage

Table 21: Interface description of lpc2000CANdriver_ CertainTxBufTransmitMessage
Name lpc2000CANdriver_CertainTxBufTransmitMessage

CanStatusCode

lpc2000CANdriver_CertainTxBufTransmitMessage (UInt32 canChannel,
 plpc2000CANdriver_TXObj_t pTransmitBuf,
 UInt32 txbuffer);

canChannel

Channel number of CAN controller: 1,2,3, or 4

plpc2000CANdriver_TXObj_t

Pointer to a Transmit Buffer in User RAM

txbuffer

 Transmit Buffer number: 1,2,or 3

Return values (see also Chapter 3.7)

LPC2000_CANDRIVER_OK
LPC2000_CANDRIVER_ERR
LPC2000_CANDRIVER_ERR_WRONG_CAN_TxBUFFER_NUMBER
LPC2000_CANDRIVER_ERR_TRANSMIT_BUFFER1_NOT_FREE
LPC2000_CANDRIVER_ERR_TRANSMIT_BUFFER2_NOT_FREE
LPC2000_CANDRIVER_ERR_TRANSMIT_BUFFER3_NOT_FREE

Calling this function forces the LPC2000 to copy transmit data from User
RAM into a certain transmit buffer. A “buffer not free” return value is given if a
certain transmit buffer is occupied.

None

SYNOPSIS

IN

RETURN VALUE

POSSIBLE
RETUEN VALUE

DESCRIPTION

NOTES

EXAMPLE

Return_Value = lpc2000CANdriver_CertainTxBufTransmitMessage
(LPC2000_CANCHANNEL_1, pCAN_Send_Data, LPC2000_TXB_1);

 AN10438_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 02 March 2006 21 of 38

Philips Semiconductors AN10438
 Philips LPC2000 CAN driver

4.1.5 lpc2000CANdriver_ReceiveMessageChx

Table 22: Interface description of lpc2000CANdriver_ ReceiveMessageChx
Name lpc2000CANdriver_ReceiveMessageCh1

lpc2000CANdriver_ReceiveMessageCh2
lpc2000CANdriver_ReceiveMessageCh3
lpc2000CANdriver_ReceiveMessageCh4

CanStatusCode

lpc2000CANdriver_ ReceiveMessageCh1 (
 plpc2000CANdriver_RXObj_t pReceiveBuf);

pReceiveBuf

Pointer to Receive Buffer in User RAM

1

Calling this function copies the current Receive Buffer contents into the
specified Receive Buffer in User RAM. After copying the message data the
CAN controller receive buffer is released.

None

SYNOPSIS

IN

RETURN VALUE

DESCRIPTION

NOTES

EXAMPLE

Return_Value = lpc2000CANdriver_ReceiveMessageCh2
(pCAN2_Rcv_Data_IRQ);

 AN10438_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 02 March 2006 22 of 38

Philips Semiconductors AN10438
 Philips LPC2000 CAN driver

4.1.6 lpc2000CANdriver_LoadAcceptanceFilter

Table 23: Interface description of lpc2000CANdriver_ LoadAcceptanceFilter
Name lpc2000CANdriver_LoadAcceptanceFilter

CanStatusCode

lpc2000CANdriver_ LoadAcceptanceFilter(void);

None

Return values (see also Chapter 3.7)

LPC2000_CANDRIVER_ERR_TABLE_ERROR_IN_STD_INDIVIDUAL_SECTION
LPC2000_CANDRIVER_ERR_TABLE_ERROR_IN_STD_GROUP_SECTION
LPC2000_CANDRIVER_ERR_TABLE_ERROR_IN_EXT_INDIVIDUAL_SECTION
LPC2000_CANDRIVER_ERR_TABLE_ERROR_IN_EXT_GROUP_SECTION
LPC2000_CANDRIVER_ERR_NOT_ENOUGH_MEMORY_SPACE

Calling this function loads the Global Acceptance Filter Look_up Table RAM
with pre-defined values stored in LPC2000_CAN_Driver.c. Depending on the
number of pre-defined identifiers the register start addresses for the Global
Acceptance Filter RAM are calculated and initialized automatically.

None

SYNOPSIS

IN

RETURN VALUE

POSSIBLE
RETUEN VALUE

DESCRIPTION

NOTES

EXAMPLE

Return_Value = lpc2000CANdriver_LoadAcceptanceFilter ();

 AN10438_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 02 March 2006 23 of 38

Philips Semiconductors AN10438
 Philips LPC2000 CAN driver

4.1.7 Rcv_Data_Output_to_Screen

Table 24: Interface description of Rcv_Data_Output_to_Screen
Name Rcv_Data_Output_to_Screen

CanStatusCode

Rcv_Data_Output_to_Screen (plpc2000CANdriver_RXObj_t pReceiveBuf);

pReceiveBuf

 Pointer to Receive Buffer in User RAM

0

Calling this function display one CAN frame of Received Data information
stored in User RAM to PC Screen by Uart0

None

SYNOPSIS

IN

RETURN VALUE

DESCRIPTION

NOTES

EXAMPLE

Rcv_Data_Output_to_Screen(pCAN_Rcv_Data);

4.1.8 Print_Chars_to_Screen

Table 25: Interface description of Print_Chars_to_Screen
Name Print_Chars_to_Screen

CanStatusCode

Print_Chars_to_Screen (UInt8 const * pscreen_print);

pscreen_print

Pointer to the head of one sect of Chars that be prepared to printed

0

Calling this function display one sect of chars to PC Screen by Uart0

None

SYNOPSIS

IN

RETURN VALUE

DESCRIPTION

NOTES

EXAMPLE

Print_Chars_to_Screen(Demo_Sent_Choice);

 AN10438_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 02 March 2006 24 of 38

Philips Semiconductors AN10438
 Philips LPC2000 CAN driver

4.1.9 Print_4bits_to_Screen

Table 26: Interface description of Print_4bits_to_Screen
Name Print_4bits_to_Screen

CanStatusCode

Print_4bits_to_Screen(UInt32 Value_Hex_4bits);

Value_Hex_4bits

4bits HEX value that be prepared to printed

0

Calling this function display 4bits HEX value to PC Screen by Uart0

None

SYNOPSIS

IN

RETURN VALUE

DESCRIPTION

NOTES

EXAMPLE

Print_4bits_to_Screen((Temp_Data_Output[0] & 0x0000000F));

 AN10438_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 02 March 2006 25 of 38

Philips Semiconductors AN10438
 Philips LPC2000 CAN driver

5. Demo description

5.1 Demo tools
IDE: KEIL uVision3

Demo board: One KEIL MCB2100 Evaluation Board

Info display: Hyper Terminal

Please visit Keil’s website for detailed MCB2100 board information.

5.2 Demo function description
CAN communication uses one MCB2100 board for demo. The electrical diagram for the
CAN part is shown in Fig 1.

Fig 1. CAN demo electrical diagram

The LPC2129 CAN1 transmits data to the CAN BUS, by UART0 print CAN1 transmit
message and Global Acceptance Filter Look-up Table to PC screen.

LPC2129 CAN2 receives data from the CAN BUS, by UART0 print CAN2 received
message.

This demo demonstrates two kinds of CAN communication methods:

1. Simple CAN BUS communication without GAF (Global Acceptance Filter) enabled
2. CAN BUS communication with GAF enabled.

5.2.1 Simple CAN BUS communication demo
When you open the demo project and start debug in uVision3, on Hyper Terminal, it will
display the following demo start information:

 AN10438_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 02 March 2006 26 of 38

Philips Semiconductors AN10438
 Philips LPC2000 CAN driver

Fig 2. Welcome page for the demo

 AN10438_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 02 March 2006 27 of 38

Philips Semiconductors AN10438
 Philips LPC2000 CAN driver

Choosing the first function will demo simple CAN BUS communication, with GAF (Global
Acceptance Filter) set to Bypass mode.

The demo will display the CAN message that will be prepared to be transmitted.

Fig 3. CAN message prepared to be sent demo page

 AN10438_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 02 March 2006 28 of 38

Philips Semiconductors AN10438
 Philips LPC2000 CAN driver

When you confirm transmission, demo code will start transmit.

In this mode, every data transmitted will be received if CAN BUS works normally.

If received successfully, then demo code will display the received data.

Fig 4. CAN message received successfully demo page

You will notice that the BP-Bit (ACC Bypass indicator) is set, and in this case, the ID-
Index is meaningless.

 AN10438_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 02 March 2006 29 of 38

Philips Semiconductors AN10438
 Philips LPC2000 CAN driver

If a CAN BUS error occurs, the demo code will display an error message.

There are two kinds of errors that will be demonstrated in this demo:

One kind of error(s) are CAN BUS status error(s). These errors are reported by function
return value. You can simulate this error by disconnecting the wire between two CAN
ports.

Error reported as shown in Fig 5:

Fig 5. CAN BUS Error-1 demo page

 AN10438_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 02 March 2006 30 of 38

Philips Semiconductors AN10438
 Philips LPC2000 CAN driver

Another kind of error(s) are CAN BUS communicating error(s). These errors are reported
by CAN2 interrupt.

You can simulate this error by edit line258-259 in LPC2000_CAN_SYS.c.

Forbidding Line258, enable Line259.

Setting:

PINSEL1 |= 0x00004000; // P0.23-RD2, only enable receive for CAN2

Thus no ACK info will be sent by CAN2. That will result in an error.

Error reported as shown in Fig 6:

Fig 6. CAN BUS Error-2 demo page

Note: in ACC ON mode, this error will not be reported, because the ID of the first CAN
message does not match the defined ID in the Global Acceptance Filter Look-up table.

 AN10438_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 02 March 2006 31 of 38

Philips Semiconductors AN10438
 Philips LPC2000 CAN driver

5.2.2 CAN BUS communicate with GAF enable
In this demo function, you need to choose the second function in Welcome Page.

It will demo CAN BUS communication with enabled GAF; GAF is set to ACC ON mode.

The CAN message send page not only displays sent messages, but also displays the
Global Acceptance Filter Look-up table pre-defined in LPC2000_CAN_Driver.c.

Fig 7. CAN message prepared to be sent with ACC ON demo page

 AN10438_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 02 March 2006 32 of 38

Philips Semiconductors AN10438
 Philips LPC2000 CAN driver

When you confirm transmission, Demo code will start transmit.

In this mode, only the data fitted with ID and SCC# in GAF Look-up table will be received
if the CAN BUS works normally.

If received successfully, the demo code will display the received data as shown in Fig 8:

Fig 8. CAN message received ok with ACC ON demo page

You will notice the BP-Bit (ACC Bypass indicator) is clear, and in this case, the ID-Index
value is the zero-based number of the Look-up table RAM entry in which the Global
Acceptance Filter matches the received Identifier.

 AN10438_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 02 March 2006 33 of 38

Philips Semiconductors AN10438
 Philips LPC2000 CAN driver

5.3 Demo operation step
Operation step:

1. Setting MCB2100 jumpers, J1, J10, and J8 - OFF, Others - ON.
2. Connect both Pin-2 between CAN1 port and CAN2 port; Connect the two Pin-7

between CAN1 port and CAN2 port, or you can find one UART cable with both
female header and connect pin-to-pin.

1

9876

5432 1

9876

5432

CAN2 CAN1

Fig 9. CAN1 and CAN2 port pins and connection description

3. Connect UART0 of MCB2100 to PC UART port you used, with UART cable.
4. Connect MCB2100 JTAG port to PC USB port with ULINK.
5. Connect DC power (above 6 V, the center hole provides positive voltage) to

MCB2100.
6. Copy the folder <LPC2000_CAN_Driver_Demo> to your PC. Make sure that ADS1.2

is installed in your C:\Program Files\ARM\ADSV1_2
7. Open uVision3 in your PC (Note: don't double click to open demo project, otherwise

it will open uVision2, if you have installed uVision2 on your PC).
8. Open demo project: LPC2000_CAN.Uv2.
9. Open one connection of Hyper Terminal on your PC. The UART port connection

needs to be set as: Baud rate – 9600; Data bits – 8; Parity – None; Stop bit – 1; Flow
control – None; For easy observation, in ASCII SETUP, check the Echo typed
characters locally function for ASCII Sending.

10. Power On. Press Reset key on MCB2100, it will enable ULINK in uVision3.
11. Enter debug mode in uVision3.
12. Run the demo.

6. References
[1] CAN Controller HwAPI Driver for the SJA2020
[2] LPC2294 Data Sheet – Version 03
[3] LPC2294 User Manual – Version 02

 AN10438_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 02 March 2006 34 of 38

Philips Semiconductors AN10438
 Philips LPC2000 CAN driver

Appendix A Including dependence graph

Config.h

LPC2000_CAN_GAF.h

LPC2000_CAN.h

LPC2000_CAN_Driver.c

LPC2294.h

 AN10438_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 02 March 2006 35 of 38

Philips Semiconductors AN10438
 Philips LPC2000 CAN driver

Appendix B Software flowchart for demo
START

SYS INI
CAN INI, define GAF table in RAM

ACC Bypass

SS = 0

Define: SS = System_Status

Flash LED

SS = ?
SS Value be controlled

both in main & CAN2 IRQ

SS = 0 SS = 1

Print CAN
message prepared

to be sent

Set ACC Bypass

SS = 2

Print CAN
message prepared

to be sent

Print GAF Look-up
Table

SS = 3

Y or y be pressed?
(CAN2 IRQ)

SS = 5
(CAN2 IRQ)

SS = 5

SS = 3

Set ACC ON

Transmit CAN
message from

CAN1 to CAN BUS

SS = 7

SS = 0

Print demo
choice info

N or n be pressed?
(CAN2 IRQ)

SS = 7
(CAN2 IRQ)

SS = 0

CAN2 received
CAN message ok?

Print received CAN message

Is CAN2Rcv
Interrupt occur?

Print error info from CAN2Rcv
IRQ (when do have errors)

SS = 3

N

Y

Y

N

N

N

Y

Y

Is error status reported
from function return value

Print error info from
function return value

N

Y

 AN10438_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 02 March 2006 36 of 38

Philips Semiconductors AN10438
 Philips LPC2000 CAN driver

7. Disclaimers
Life support — These products are not designed for use in life support
appliances, devices, or systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips Semiconductors
customers using or selling these products for use in such applications do so
at their own risk and agree to fully indemnify Philips Semiconductors for any
damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to
make changes in the products - including circuits, standard cells, and/or
software - described or contained herein in order to improve design and/or
performance. When the product is in full production (status ‘Production’),
relevant changes will be communicated via a Customer Product/Process
Change Notification (CPCN). Philips Semiconductors assumes no
responsibility or liability for the use of any of these products, conveys no
license or title under any patent, copyright, or mask work right to these

products, and makes no representations or warranties that these products
are free from patent, copyright, or mask work right infringement, unless
otherwise specified.

Application information — Applications that are described herein for any of
these products are for illustrative purposes only. Philips Semiconductors
make no representation or warranty that such applications will be suitable for
the specified use without further testing or modification.

8. Trademarks
Notice — All referenced brands, product names, service names and
trademarks are the property of the respective owners.

 AN10438_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 02 March 2006 37 of 38

Philips Semiconductors AN10438
 Philips LPC2000 CAN driver

9. Contents
1. Introduction ...3
1.1 Introduction ...3
1.2 Main features ..3
1.3 More useful features ...3
1.4 CAN BUS timing setting3
2. Introduction for CAN controller driver...............5
3. General CAN controller driver description........6
3.1 Software development support6
3.2 CAN controller driver functionality overview........6
3.3 CAN controller driver files7
3.4 Used data types ..8
3.5 CAN Message Buffers data structure..................8
3.6 Global Acceptance Filter configuration11
3.6.1 Guidelines for setting ID Look-up Table............13
3.7 Function return values14
3.8 Pre-defined CAN Bit Timing values...................15
3.9 Pre-defined function arguments16
4. CAN driver functional description17
4.1 Interface description of CAN driver functions....18
4.1.1 lpc2000CANdriver_CANInit...............................18
4.1.2 lpc2000CANdriver_SetCANMode19
4.1.3 lpc2000CANdriver_SetACFMode20
4.1.4 lpc2000CANdriver
_CertainTxBufTransmitMessage21
4.1.5 lpc2000CANdriver_ReceiveMessageChx22
4.1.6 lpc2000CANdriver_LoadAcceptanceFilter23
4.1.7 Rcv_Data_Output_to_Screen24
4.1.8 Print_Chars_to_Screen.....................................24
4.1.9 Print_4bits_to_Screen.......................................25
5. Demo description ..26
5.1 Demo Tools...26
5.2 Demo function description.................................26
5.2.1 Simple CAN BUS communication demo26
5.2.2 CAN BUS communicate with GAF enable32
5.3 Demo operation step...34
6. References...34
Appendix A Including dependence graph35
Appendix B Software flowchart for demo..................36
7. Disclaimers ..37
8. Trademarks ..37
9. Contents...38

Document number: AN10438_1
Published in The Netherlands

 © Koninklijke Philips Electronics N.V. 2006
All rights are reserved. Reproduction in whole or in part is prohibited without the prior
written consent of the copyright owner. The information presented in this document does
not form part of any quotation or contract, is believed to be accurate and reliable and may
be changed without notice. No liability will be accepted by the publisher for any
consequence of its use. Publication thereof does not convey nor imply any license under
patent- or other industrial or intellectual property rights.

Date of release: 02 March 2006

	Introduction
	Introduction
	Main features
	More useful features
	CAN BUS timing setting

	Introduction for CAN controller driver
	General CAN controller driver description
	Software development support
	CAN controller driver functionality overview
	CAN controller driver files
	Used data types
	CAN message buffers data structure
	Global acceptance filter configuration
	Function return values
	Pre-defined CAN bit timing values
	Pre-defined function arguments

	CAN driver functional description
	Interface description of CAN driver functions

	Demo description
	Demo tools
	Demo function description
	Demo operation step

	References
	Appendix A Including dependence graph
	Appendix B Software flowchart for demo
	Contents

