

AN10462
SPI programming for Philips Bridge ICs
Rev. 01 — 1 June 2006 Application note

Document information
Info Content
Keywords P89LPC935 to SC16IS750, SPI to UART, SPI programming,

microcontroller, embedded processor

Abstract The programming of Philips Bridge ICs such as SC16IS750 through
SPI-bus is discussed in this application note. In addition, the source code
in C language, containing SPI communication routines between Philips
P89LPC935 microcontroller and the SC16IS750 Bridge IC is provided and
also discussed. This application note is also applicable to other Bridge ICs
such as SC16IS740, SC16IS760, SC16IS752 and SC16IS762.

Philips Semiconductors AN10462
SPI programming for Philips Bridge ICs

Revision history
Rev Date Description

01 20060601 application note; initial version
AN10462_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 1 June 2006 2 of 9

Contact information
For additional information, please visit: http://www.semiconductors.philips.com

For sales office addresses, please send an email to: sales.addresses@www.semiconductors.philips.com

Philips Semiconductors AN10462
SPI programming for Philips Bridge ICs
1. Introduction

The Philips Bridge ICs are a new generation of interface solutions for managing
high-speed serial data communication among various bus interfaces such as SPI,
I2C-bus, and UARTs including RS-232 and RS-485. The Bridge IC is commonly used to
overcome the limitation of the host bus interface to peripherals and provides an easy
method to interface with existing different serial bus interfaces.

The description of the hardware connection and firmware programming are described in
the next paragraphs for users to quickly understand the implementation of Philips
P89LPC935 microcontroller with SPI-bus interface to Philips Bridge IC serial interface for
RS-232 point-point communication, RS-485 multi-drop application, IrDA wireless links,
and GPIO interface. The source code in C language is provided to show how to write a
simple communication program between the microcontroller and the Bridge IC serial
interface. The goal is to help users to design the Bridge IC in their application and also
shorten their product development cycle.

2. Hardware connection

The block diagram depicted in Figure 1 shows the circuit connection of a Philips Bridge IC
such as SC16IS750 interfacing with Philips P89LPC935 microcontroller through the
SPI-bus. The Bridge IC offers simple, flexible, and minimal connection to the
microcontroller. The Bridge IC allows the microcontroller to easily control with few wires
connection through SPI-bus, which is a widely-used serial bus interface.

When the I2C/SPI pin is at logic 0, the SPI-bus interface is selected and the Bridge IC can
interface to the microcontroller with a 4-wire connection. The signals on the 4 wires are
MISO (Master Input Slave Output), MOSI (Master Output Slave Input), CS (active LOW
Chip Select), and SPICLK (SPI Clock).

The SPI-bus is a 4-wire full-duplex synchronous serial data link. Devices connected to the
SPI-bus are classified as master or slave devices. The master device initiates the data
transfer on the SPI-bus and also controls the slave devices with the chip select pins. The
slave devices are active only when selected. The interconnected devices share the same
VCC and GND.

After the microcontroller and Bridge IC are wired properly and their connection is
established, the microcontroller can send data to, and receive data from, UART devices
via the Bridge IC. The Bridge IC receives the SPI data from the microcontroller then sends
the data to the following devices: serial devices via RS-232 or RS-485 such as a modem,
wireless devices via IrDA such as a remote control, and general-purpose input/output
devices such as an LED and keypad. When the Bridge IC receives the data from the
devices, it will notify the microcontroller by generating an interrupt (IRQ) output signal,
then the microcontroller can access the data from the Bridge IC via the SPI-bus interface.
AN10462_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 1 June 2006 3 of 9

Philips Semiconductors AN10462
SPI programming for Philips Bridge ICs

3. Firmware programming

The firmware code for the P89LPC935 microcontroller is written in C language. It can be
compiled by using an embedded C compiler. The firmware code consists of three major
blocks, which are Main Loop program, Interrupt service routine, and Bus interface layer,
as described in Section 3.1, Section 3.2 and Section 3.3.

3.1 Main Loop
The Main Loop function is to program the microcontroller’s SPI port as a master by
initializing the SPI control register, interrupt handler, and chip select as shown in the
following sample code:

void mcu_spi_init (void) {
// Set port 2.0 for MOSI, MISO, /SS and SPICLK
P2M1 &= 0x42;
P2M2 &= 0x42;

SPCTL = 0x90; // Set LPC935 SPI port to Master
SPCTL &= ~0x08; // CPOL=0; SCK is low when idle – SPI mode 0
SPCTL &= ~0x04; // CPHA=0; shift triggered on leading edge of clock
SPCTL |= 0x11; // 00=clk/4, 01=clk/16, 10=clk/64, 11=clk/128

SPI_SS = 0; // Enable slave chip select for SC16IS7x0
SPI_SS = 1; // Disable slave chip select for SC16IS7x0

// Set SPI interrupt priority to 0
IP1 &= ~0x08;
IP1H &= ~0x08;

ESPI = 1; // SPI Interrupt
SPCTL |= 0xC0; // Enable SPI, ignore SS

}

Fig 1. SPI interface to Philips Bridge IC block diagram

SC16IS740
SC16IS750
SC16IS760
SC16IS752
SC16IS762

002aac364

transceivers
(optional)

TxD

RxD

RTS

CTS

Philips
microcontroller

P89LPC935

Philips
Bridge ICs

RS-232
RS-485

SPICLK

MOSI

MISO

CS

IRQ

I2C/SPI
AN10462_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 1 June 2006 4 of 9

Philips Semiconductors AN10462
SPI programming for Philips Bridge ICs
The next step is to initialize the Bridge IC by writing its internal control registers to
program, for example, UART baud rate, data line, and FIFO for transmitter and receiver.

void init_SC16IS750 (void) {
SPI_write (LCR, 0x80); // 0x80 to program baud rate
SPI_write (DLL, 0x30); // 0x30=19.2K, 0x08 =115.2K with X1=14.7456 MHz
SPI_write (DLM, 0x00); // divisor = 0x0008 for 115200 bps
SPI_write (LCR, 0xBF); // access EFR register
SPI_write (EFR, 0X10); // enable enhanced registers
SPI_write (LCR, 0x03); // 8 data bit, 1 stop bit, no parity
SPI_write (FCR, 0x06); // reset TXFIFO, reset RXFIFO, non FIFO mode
SPI_write (FCR, 0x01); // enable FIFO mode

}

Inside the Main Loop, the microcontroller can use one of the two methods for
communicating to the Bridge IC. The first method is polling the status register of the
Bridge IC regularly. It keeps checking the event flags such as data available in receiver,
and passes to the appropriate subroutine for further processing.

void spi_polling (void) {
char data, polling=1;
while (polling) {

if (SPI_read (LSR) && 0x01)) { // data in receiver
data = SPI_read (RHR);
if (data == 27) polling = 0; // receive ESC char to exit from polling mode

} }
}

The second method is using an interrupt handler in the Interrupt Service Routine until the
Bridge IC generates an interrupt output (IRQ) signal. If using the interrupt handler, the
microcontroller and the bus interrupt bits must be enabled and the IRQ pin of the
Bridge IC must be connected to an external interrupt pin of the microcontroller (for
example, the INT1 pin of the P89LPC935).

3.2 Interrupt Service Routine (ISR)
The microcontroller uses the Interrupt Service Routine to handle an interrupt generated by
the Bridge IC. As soon as the Bridge IC generates an interrupt output (IRQ) signal, the
ISR checks the interrupt status of the Bridge IC to determine the interrupt type and sets up
proper event flags to inform the Main Loop routine for processing the interrupt request.

void mcu_interrupt1(void) interrupt 2 { // external interrupt 1
char data;
switch (SPI_read (IIR) & 0x0f) { // check interrupt status register

case 0x06: // receiver line status (LSR)
if (SPI_read(LSR) && 0x01) // data in receiver

data = SPI_read(RHR);
break;

case 0x0C: // receiver time-out interrupt
case 0x04: // receive hold register (RHR) interrupt

data = SPI_read (RHR);
break;
AN10462_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 1 June 2006 5 of 9

Philips Semiconductors AN10462
SPI programming for Philips Bridge ICs
case 0x02: // transmit hold register (THR) interrupt
SPI_write(THR, data);

default: break;
}

}

3.3 Bus interface layer
The Bus Interface layer handles the SPI-bus interface between the microcontroller and
the Bridge IC for transmitting and receiving the SPI data. The three functions in the bus
interface layer are:

SPI_send — The microcontroller transmits data to the SPI-bus and waits until the end of
SPI data transmission.
SPI_read — The Bridge IC receives the data from peripherals, then the microcontroller
retrieves the data from the Bridge IC vial SPI-bus and stores the data for further
processing.
SPI_write — The microcontroller writes data to the Bridge IC via SPI-bus, then the
Bridge IC will transmit the data to peripherals.

char SPI_send (char byte) { // mcu sends a byte to spi bus
SPDAT = byte; // data is sent
while(!SPI_tx_completed); // wait end of transmission
SPSTAT &= ~0x80; // clear mcu spi interrupt flag (SPIF)
SPI_tx_completed = 0; // clear transmit spi interrupt flag
return SPDAT; // receive data on spi read

}

char SPI_read (char register) { // mcu reads a register from SC16IS750
SPI_SS = 0; // enable slave chip select
SPI_send((register<<3) | 0x80); // register address is sent
register = SPI_send(0); // dummy data is sent for spi read
SPI_SS = 1; // disable slave chip select
return register; // receive the read data

}

void SPI_write (char address, char data) { // mcu writes data to SC16IS750
SPI_SS = 0; // enable slave chip select
SPI_send (address<<3); // address is sent
SPI_send (data); // data is sent
SPI_SS = 1; // disable slave chip select

}

AN10462_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 1 June 2006 6 of 9

Philips Semiconductors AN10462
SPI programming for Philips Bridge ICs
4. Conclusion

Philips Bridge IC provides easy interface to a host controller such as Philips P89LPC935
microcontroller and enables seamless high-speed SPI to RS-232 or RS-485 protocols
convergence including GPIO for general-purpose input/output and IrDA for wireless links.
Also, the Bridge IC offers low voltage operation, low power consumption, and compact
design, which is suitable for battery-operated applications. In addition, the Bridge IC
reduces software overhead, frees up the host controller’s resources, increases design
flexibility, and improves overall system performance. For more details about Philips
Bridge ICs, please visit the Philips Semiconductors web site to download the data sheets.

5. Abbreviations

Table 1. Abbreviations
Acronym Description
SPI Serial Peripheral Interface

UART Universal Asynchronous Receiver/Transmitter

IrDA Infrared Data Association

IC Integrated Circuit

GPIO General Purpose Input/Output

LED Light Emitting Diode

FIFO First In, First Out
AN10462_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 1 June 2006 7 of 9

Philips Semiconductors AN10462
SPI programming for Philips Bridge ICs
6. Legal information

6.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. Philips Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences of
use of such information.

6.2 Disclaimers
General — Information in this document is believed to be accurate and
reliable. However, Philips Semiconductors does not give any representations
or warranties, expressed or implied, as to the accuracy or completeness of
such information and shall have no liability for the consequences of use of
such information.

Right to make changes — Philips Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — Philips Semiconductors products are not designed,
authorized or warranted to be suitable for use in medical, military, aircraft,
space or life support equipment, nor in applications where failure or
malfunction of a Philips Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. Philips Semiconductors accepts no liability for inclusion and/or use
of Philips Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is for the customer’s own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. Philips Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

6.3 Trademarks
Notice: All referenced brands, product names, service names and trademarks
are the property of their respective owners.

I2C-bus — logo is a trademark of Koninklijke Philips Electronics N.V.
AN10462_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.

Application note Rev. 01 — 1 June 2006 8 of 9

Philips Semiconductors AN10462
SPI programming for Philips Bridge ICs
7. Contents

1 Introduction . 3
2 Hardware connection . 3
3 Firmware programming. 4
3.1 Main Loop. 4
3.2 Interrupt Service Routine (ISR). 5
3.3 Bus interface layer . 6
4 Conclusion . 7
5 Abbreviations. 7
6 Legal information. 8
6.1 Definitions. 8
6.2 Disclaimers . 8
6.3 Trademarks. 8
7 Contents . 9
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.
For more information, please visit: http://www.semiconductors.philips.com.
For sales office addresses, email to: sales.addresses@www.semiconductors.philips.com.

Date of release: 1 June 2006
Document identifier: AN10462_1

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section ‘Legal information’.

	1. Introduction
	2. Hardware connection
	3. Firmware programming
	3.1 Main Loop
	3.2 Interrupt Service Routine (ISR)
	3.3 Bus interface layer

	4. Conclusion
	5. Abbreviations
	6. Legal information
	6.1 Definitions
	6.2 Disclaimers
	6.3 Trademarks

	7. Contents

