

AN10902
Using the LPC32xx VFP

Rev. 01 — 9 February 2010 Application note

Document information
Info Content
Keywords Vector Floating Point (VFP) coprocessor, LPC32x0, LPC3180
Abstract This application note describes how to use LPC32x0 Vector

Floating Point (VFP) coprocessor.

NXP Semiconductors AN10902
 Using the LPC32xx VFP

 AN10902_1 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 01 — 9 February 2010 2 of 15

Contact information
For additional information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Revision history
Rev Date Description
01 20100209 Initial version.

NXP Semiconductors AN10902
 Using the LPC32xx VFP

1. Introduction
The ARM processor core does not contain floating-point hardware. In typical ARM
systems where floating point support is needed, software emulation is used to provide
the floating point capability. Although software emulation works well, it does offer good
CPU performance.

ARM offers a hardware based Vector Floating Point (VFP) coprocessor that accelerates
floating point operation. The ARM VFP supports single-precision and double-precision
add, subtract, multiply, divide, multiply-accumulate operations and divide/square root at
CPU clock speeds. The ARM VFP can be used to increase performance of imaging
applications such as scaling, 2D and 3D transforms, font generation, digital filters, or any
application that uses floating point operations. Because the ARM VFP is a coprocessor
developed and supported by ARM, it has support in various tool chains, RTOS’s, and
operating systems such as the Keil MDK development environment or Linux. The ARM
VFP complies with the IEEE 754 standard.

Many real-time control applications in the industrial and automotive fields benefit from the
dynamic range and precision of floating-point offered by the ARM VFP. Automotive
powertrain, anti-lock braking, traction control, and active suspension systems are all
mission-critical applications where precision and predictability are essential
requirements. The next generation of consumer products such as Internet appliances,
set-top boxes, and home gateways, can directly benefit from the ARM VFP.

The LPC3180 and LPC32x0 series devices from NXP offer an ARM926EJS core with the
ARM VFP coprocessor. Use of the ARM VFP instead of software emulated floating point
improves system performance by reducing CPU load for floating point operations. More
CPU work can be done in the same time reducing system power usage and allowing the
CPU to better handle other tasks.

The LPC32x0 can be used in the following example applications:
• Medical monitors
• Portable diagnostics
• Portable GPS
• Fingerprint/image identification
• Security systems
• Automotive control applications
• ABS, traction control, and active suspension
• 3D graphics

Fig 1 shows the connection of the VFP in the LPC32x0 CPU subsystem.

 AN10902_1 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 01 — 9 February 2010 3 of 15

NXP Semiconductors AN10902
 Using the LPC32xx VFP

Fig 1. LPC32x0 CPU subsystem block diagram

1.1 VFP architecture
The ARM VFP coprocessor uses coprocessor 10 for single-precision instructions and
coprocessor 11 for double-precision instructions. In some cases, such as mixed-
precision instructions, the coprocessor ID represents the destination precision. Fig 2
shows the internal connection between ARM926E core and VFP.

Fig 2. LPC32x0 VFP internal connection

The ARM VFP contains thirty-two 32-bit registers. Each register can store either a single-
precision floating-point number or an integer. Any consecutive pair of registers can store
a double-precision floating-point number. Because a load or store operation does not
modify the data, the registers can also be used as secondary data storage by another
application that does not use floating-point values. Fig 3 shows the overlapping of single-
precision and double precision. For example, D0 uses the same memory as S0/S1.

 AN10902_1 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 01 — 9 February 2010 4 of 15

NXP Semiconductors AN10902
 Using the LPC32xx VFP

Fig 3. LPC32x0 VFP data register

The VFP registers can be accessed through the ARM core instructions MRC (Move to
Register form Coprocessor), MCR (Move to Coprocessor from Register), MCRR (double
precision MRC), or MRCC (double precision MCR). ARM compilers offer a number of
assembly language instruction aliases that handle these operations such as FMSR
(Move from ARM register to VFP single precision register), FMRS (Move from VFP single
precision register to ARM register), etc. See the ARM VFP9-S Technical Reference
Manual for a complete list of instructions.

The VFP9-S coprocessor provides floating-point functionality through a combination of
hardware and software support. Normally, the ARM VFP hardware executes floating
point instructions completely in hardware. However, the ARM VFP can, under certain
circumstances, refuse to accept a floating point instruction, causing the ARM Undefined
Instruction exception. This is known as bouncing the instruction.

There are two main reasons for bouncing an instruction:
• potential floating point arithmetic exceptions
• illegal instructions.

When an instruction bounces, software installed on the ARM Undefined instruction vector
determines why the VFP9 coprocessor rejected the instruction and takes appropriate
remedial action. This software is called the VFP support code. The support code has two
components:
• a library of routines that perform floating-point arithmetic functions
• a set of exception handlers that process exceptional conditions.

See the Firmware Suite Reference Guide (AFS) for details of support code.

2. How to use VFP
Using VFP for floating point operations requires a compiler that supports ARM VFP
instructions, the implementation of a library to handle the bounced instruction trap,
initialization of the VFP, and VFP context switching support (if used in an OS).
Operating systems such as Linux and tool chains such as Keil MDK provide the support
necessary to seamlessly support VFP in software. Complete initialization of the library for
bounced instructions and VFP initialization is beyond the scope of this document. More
information about VFP can be found in the ARM VFP9-S Technical Reference Manual if
you need to develop new support for the ARM VFP.

 AN10902_1 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 01 — 9 February 2010 5 of 15

NXP Semiconductors AN10902
 Using the LPC32xx VFP

2.1 VFP support with various tool chains and operating systems
2.1.1 For Keil MDK

The Keil MDK development environment uses the ARM RealView compiler. More detail
can be found in the RealView Compiler User Guide. Table 1 contains a description of the
VFP compiler options available.

Table 1. MDK VFP compiler options
Option Description

--fpu=vfp This is a synonym for vfpv2.

--fpu=vfpv2 Selects a hardware vector floating-point unit conforming to
architecture VFPv2.

--fpu=softvfp Selects the software floating-point library fplib. This is the default
if you select a CPU that does not have a FPU.

--fpu=softvfp+vfpv2 Selects a floating-point library with software floating-point linkage
that can use VFPv2 instructions. Select this option if you are
interworking Thumb code with ARM code on a system that
implements a VFP unit.

More detailed information about floating-point linkage and computations for different
compiler options can be found in the RealView Compiler User Guide. To use the
LPC32x0 VFP, users can follow the setting as described in Fig 4 and Fig 5.

Fig 4. MDK setting

 AN10902_1 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 01 — 9 February 2010 6 of 15

NXP Semiconductors AN10902
 Using the LPC32xx VFP

 AN10902_1 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 01 — 9 February 2010 7 of 15

Fig 5. MDK setting

2.1.2 For IAR
More information on the IAR compiler can be found in the IAR C/C++ Development
Guide-Compiling and linking. The following is the VFP compiler option description.

Fig 6. IAR VFP compiler options

Use this option to generate code that carries out floating-point operations using a Vector

Floating Point (VFP) coprocessor. By selecting a VFP coprocessor, you will override the
use of the software floating-point library for all supported floating-point operations. To use
LPC3200 VFP, users can follow the setting as described in Fig 7.

NXP Semiconductors AN10902
 Using the LPC32xx VFP

Fig 7. IAR setting

2.1.3 For GNU compiler (GCC)
The GNU compiler and assembler have some ARM Dependent Features. The following
description of the VFP compiler option is from Using as, the GNU Assembler Version
2.18.50.

 -mfpu=floating-point-format

This option specifies the floating point format to assemble for. The assembler will issue
an error message if an attempt is made to assemble an instruction which will not execute
on the target floating point unit.

The floating-point-format options recognized are: softfpa, fpe, fpe2, fpe3, fpa, fpa10,
fpa11,arm7500fe, softvfp, softvfp+vfp, vfp, vfp10, vfp10-r0, vfp3 vfp9, vfpxd,vfpv2 vfpv3
vfpv3-d16 arm1020t, arm1020e, arm1136jf-s, maverick and neon.

In addition to determining which instructions are assembled, this option also affects the
way in which the .double assembler directive behaves when assembling little-endian
code.

The default is dependent on the processor selected. For Architecture 5 or later, the
default is to assembler for VFP instructions; for earlier architectures the default is to
assemble for FPA instructions.

2.1.4 Linux applications with VFP support
To use VFP with Linux, you need to use a version of GCC that has support for the ARM
VFP coprocessor. In addition to GCC, ARM VFP support will also need to be enabled in
the Linux kernel configuration.

GCC with VFP support will enable the floating point instructions in the assembled Linux
code. For floating point operations that cannot be handled by the VFP, a software floating

 AN10902_1 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 01 — 9 February 2010 8 of 15

NXP Semiconductors AN10902
 Using the LPC32xx VFP

point library and suitable software float ABI must also be supplied. The following compiler
options enable VFP support with software handled through the softfp ABI:

-mfpu=vfp –mfloat-abi=softfp

Under Linux, VFP performs about 5x to 6x faster in single precision operations when
compared to software emulated floating point. For double precision operations, VFP
performs about 11x to 12x faster than software emulated floating point. This benchmark
can vary based on selected kernel and system options, network load, and all types of
system factors.

2.1.5 WinCE applications with VFP support
Because the Platform Builder 6.0 compiler does not support VFP, users have to write
their own VFP software library. ARM VFPv2 Floating Point Support Library for Windows
Embedded CE 6.0 can be downloaded at http://www.nxp.com/redirect/arm.com. Based
on the library, VFP arithmetic can be implemented.

2.2 Enable VFP
There are 5 control and status registers associated with the VFP9-S

• Floating-point system ID register (FPSID)

• Floating-point status and control register (FPSID)

• Floating-point exception register (FPEXC).

• Floating-point instruction register (FPINST)

• Floating-point instruction register 2 (FPINST2)

More details about these registers can be found in the VFP9 Technical Reference
Manual.

On all systems, it is necessary to enable the VFP by setting the VFPEnable (EN) bit in
the VFP’s FPEXC register. Until this is done, the VFP coprocessor is disabled and any
other access to the VFP causes an undefined instruction exception. On pre-v7 cores, it is
necessary to reset the EX bit in this register to clear any pending exceptions. This
operation must be carried out in a privileged mode.

In the Keil/IAR startup source file, the code for VFP Enable is as follows:

VFPEnable EQU 0x40000000

Enable_VFP FUNCTION ; Enable VFP itself

 MOV r0,#VFPEnable

 FMXR FPEXC, r0 ; FPEXC = r0

 BX LR

ENDFUNC

Fig 8 shows the VFP enable function from Keil/IAR startup source code.

 AN10902_1 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 01 — 9 February 2010 9 of 15

NXP Semiconductors AN10902
 Using the LPC32xx VFP

Fig 8. VFP enable in startup

When debugging with VFP, take note of the state of the DEBUG_CTRL register. Bit4
(VFP9_CLKEN) of DEBUG_CTRL controls VFP9 GCLK. If VFP9_CLKEN =0, then VFP
clock is stopped. If VFP9_CLKEN =1, VFP clock is enabled. The default is enabled.

Fig 9. DEBUG_CTRL register

2.3 Programming hints
The following are some programming hints when using the LPC3200 VFP unit.

When using the VFP with an RTOS such as uCos-II or FreeRTOS, the RTOS must
preserve the VFP register states during the task or interrupt context switch. If the VFP
register states aren’t saved, only one task is allowed to use VFP. An OS such as Linux
will save the VFP states during a context switch as part of the task context block.

An interrupt route which uses VFP should save VFP registers on the stack if the VFP is
also used in normal mode or other interrupts.

A floating point operation that cannot be handled by the VFP will cause an undefined
instruction. A handler needs to be installed to process to floating point operation in
software when this happens. The Keil and Realview toolchains install the software
floating point handler as part of their library startup when VFP support is enabled.

The VFP can be powered off through a control register. With the clocks disabled, this unit
will consume zero dynamic power.

 AN10902_1 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 01 — 9 February 2010 10 of 15

NXP Semiconductors AN10902
 Using the LPC32xx VFP

Avoid cases where two consecutive floating-point instructions use the same floating-point
data registers.

3. VFP performance
VFP provides floating-point computation suitable for a wide spectrum of applications
such as voice compression and decompression, three-dimensional graphics and digital
audio, printers, set-top boxes, and automotive applications. The VFP architecture also
supports execution of short vector instructions allowing a single instruction to execute on
multiple data at the same time. This is useful in graphics and signal-processing
applications by reducing code size and increasing throughput.

John Walker’s Floating-point benchmark (Fbench) method is available on the website at
http://www.nxp.com/redirect/fourmilab.ch/fbench/fbench.html. The results in (1) are
based on that Fbench code running on the LPC3180 internal RAM. From the table, we
can see VFP increases performance by about 5x, reduces Code size by about 25 % and
also reduces power consumption.

(1) Fbench test results
Micro Frequency

(MHz)
I-Cache VFP9 Time

Normalized
Icore
mA

Code &
constants
kB

LPC3180 200 No No 48 77.66 35.2

LPC3180 200 Yes No 28 91.73 35.3

LPC3180 200 No Yes 8 76.81 26.8

LPC3180 200 Yes Yes 6 88.8 26.8

To characterize the microcontroller, we selected a set of performance tests from the
AutoBench suite of the Embedded Microprocessor Benchmark Consortium (EEMBC).

Fig 10 shows a diagram of the AutoBench/EnergyBench test setup. It consists of three
parts: the data acquisition system (DAC), the software development environment, and
the target under test. The DAC, from National Instruments, is connected to a PC running
the Energy-Bench power and energy measurement software. The software development
environment used the Keil™ Integrated Development tools to compile, download, and
run the AutoBench benchmarks. We isolated the three power supply voltages to the
microprocessor so EnergyBench could measure the power consumed during the
Autobench benchmark testing and calculate the total energy consumed during each test.

 AN10902_1 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 01 — 9 February 2010 11 of 15

NXP Semiconductors AN10902
 Using the LPC32xx VFP

Fig 10. Testing result based on EEMBC

The test results shown in Fig 11 are based on data from
http://www.nxp.com/redirect/eembc.org. The effect on performance and energy
consumption by using the VFP coprocessor is shown in Fig 10. This graph is quite
dramatic in demonstrating the performance effects of an integrated VFP coprocessor. At
208 MHz and with the Icache enabled, the microcontroller LPC3180 runs about 8500
iterations/sec using software floating point, but this value jumps to over 32500
iterations/sec using the VFP coprocessor – for a better than 280 % performance
improvement.

The power chart in Fig 11 shows that VFP could reduce power consumption by
approximately 15 %.

Fig 11. Testing result based on EEMBC

 AN10902_1 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 01 — 9 February 2010 12 of 15

NXP Semiconductors AN10902
 Using the LPC32xx VFP

AN10902_1 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 01 — 9 February 2010 13 of 15

4. Conclusion
From the above test results, it can be seen that the VFP provides improved floating point
performance and reduced power consumption and code size as compared to using
software only floating point operations.

5. Reference
[1] LPC32x0 User manual, Rev. 1.0

[2] VFP9 Technical Reference Manual, r0p2, ARM Limited

[3] AN_Using VFP with RVDS, ARM Limited

[4] RealView Compilation Tools Compiler Reference Guide, Version 4.0, ARM Limited

[5] AN_Getting Started Linux with LPC3250

NXP Semiconductors AN10902
 Using the LPC32xx VFP

 AN10902_1 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2010. All rights reserved.

Application note Rev. 01 — 9 February 2010 14 of 15

6. Legal information

6.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

6.2 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in medical, military, aircraft,

space or life support equipment, nor in applications where failure or
malfunction of a NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors accepts no liability for inclusion and/or use of
NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on a weakness or default in the
customer application/use or the application/use of customer’s third party
customer(s) (hereinafter both referred to as “Application”). It is customer’s
sole responsibility to check whether the NXP Semiconductors product is
suitable and fit for the Application planned. Customer has to do all necessary
testing for the Application in order to avoid a default of the Application and
the product. NXP Semiconductors does not accept any liability in this
respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from national authorities.

6.3 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

NXP Semiconductors AN10902
 Using the LPC32xx VFP

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2010. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an please send an email to:
salesaddresses@nxp.com

Date of release: 9 February 2010
Document identifier: AN10902_1

7. Contents

1. Introduction ...3
1.1 VFP architecture ..4
2. How to use VFP ...5
2.1 VFP support with various tool chains and

operating systems ..6
2.1.1 For Keil MDK..6
2.1.2 For IAR...7
2.1.3 For GNU compiler (GCC)8
2.1.4 Linux applications with VFP support8
2.1.5 WinCE applications with VFP support9
2.2 Enable VFP..9
2.3 Programming hints ...10
3. VFP performance...11
4. Conclusion...13
5. Reference...13
6. Legal information ..14
6.1 Definitions ..14
6.2 Disclaimers...14
6.3 Trademarks ..14
7. Contents...15

	1. Introduction
	1.1 VFP architecture

	2. How to use VFP
	2.1 VFP support with various tool chains and operating systems
	2.1.1 For Keil MDK
	2.1.2 For IAR
	2.1.3 For GNU compiler (GCC)
	2.1.4 Linux applications with VFP support
	2.1.5 WinCE applications with VFP support

	2.2 Enable VFP
	2.3 Programming hints

	3. VFP performance
	4. Conclusion
	5. Reference
	6. Legal information
	6.1 Definitions
	6.2 Disclaimers
	6.3 Trademarks

	7. Contents

