
Using the PASS module in MPC5748G to
implement password-based protection for
flash and debugger access
by: NXP Semiconductors

1 Introduction
Using the PASS Module in the MPC5748G or MPC5746C families to activate
the password-based protection features of the device (such as debugger
interface deactivation and locking flash array program-erase permissions) is a
process that involves several steps. These can be divided into two categories:

1. Programming values in UTEST flash memory during the development
phase. These include:

• Setting-up Device Configuration Format (DCF) records that define
the out-of-reset behavior of these protection mechanisms.

• Setting-up a DCF record that modifies the device censorship
status

• Programming values in UTEST flash to modify the device lifecycle
status

• Programming valid passwords in UTEST flash.

2. Writing to the PASS module lock registers to temporarily unlock and
reconfigure these settings during runtime, if desired.

This application note is intended to provide a summary of these steps, and
function as a practical reference for developers implementing this in code. For
the full-length description of all these mechanisms, the reader might want to
refer to the following chapters of the MPC5748G Reference manual:

• Chapter 11, Device Configuration Format (DCF) Records

• Chapter 80, Password and Device Security Module (PASS)

• Chapter 82, Flash Memory Programming and Configuration

2 About passwords

The MPC5748G allows developers to define 5 passwords: one JTAG password used for enabling/disabling the JTAG interface,
and four “multiple-purpose” passwords that can be used to unlock various features such as program and erase protection for flash
blocks.

Contents

1 Introduction..1

2 About passwords.................................1

3 About PASS module............................2

4 About unlocking
PASS_LOCKx_PGn registers...........4

5 About locking
PASS_LOCKx_PGn registers...........5

6 About Debugger interface lock.......... 6

7 About flash read protection
mechanism.. 6

8 About RESET values of lock
registers... 7

9 Further conditions for password-
based protections to be active........ 7

10 Modifying the lifecycle state of a
device... 7

11 Censorship state of the device......... 9

12 Working with DCF records.............. 10

13 Useful DCF command values..........11

14 Combination of different
protection configurations...............13

NXP Semiconductors Document Number: AN12092

Application Note Rev. 0, February, 2018

https://www.nxp.com/products/processors-and-microcontrollers/power-architecture/mpc5xxx-microcontrollers/ultra-reliable-mpc57xx-mcus/ultra-reliable-mcus-for-automotive-and-industrial-control-and-gateway:MPC574xB-C-G?utm_medium=AN-2021

These five passwords are to be programmed by the user in a specific area of UTEST flash, shown below. Each password is 256
bits long. When the device’s lifecycle is matured from customer_delivery state to a more advanced state, this password region in
UTEST flash becomes read protected.

Figure 1. UTEST memory map

These passwords allow to unlock, and therefore configure, a set of registers named PASS_LOCKx_PGn.

Precautions:

The user must be aware that the UTEST flash is a one-time-programmable (OTP) region. Once the passwords are programmed,
they cannot be modified.

3 About PASS module

It is essential to be familiar with the fields of these registers to understand how the PASS module functions. A detailed view of
these registers, and the mapping of flash blocks associated to each bit in the registers is provided in section 80.1.1
PASS_LOCKx_PGn register bit mapping of the MP5748G (or MPC5746C) Reference Manual.

Most of the bits inside the PASS_LOCKx_PGn registers control the write-erase protection of the internal flash array down to a
per-block granularity. There is one 1-bit field for every block of flash. If a flash block has its associated lock bit set inside a
PASS_LOCKx_PGn register, it will be protected against write or erase attempts.

There are 4 lock registers, PASS_LOCK0_PGn, PASS_LOCK1_PGn, PASS_LOCK2_PGn, PASS_LOCK3_PGn. The first three
registers are filled exclusively with bits that control the write-erase protection of individual flash blocks. See table below to see
how bits are mapped to flash addresses.

About PASS module

Using the PASS module in MPC5748G to implement password-based protection for flash and debugger access, Rev. 0, February,
2018

2 NXP Semiconductors

Figure 3. PASS_LOCKx_PGn flash block mapping

Note that these bits only control the possibility to reprogram specific flash blocks, but these flash blocks remain readable. The
last register (PASS_LOCK3_PGn) has in addition, miscellaneous fields that control the activation of the debugger interface (DBL
bit), and the “read protection” feature for different regions of flash (RLx bits).

These four PASS_LOCKx_PGn registers are then replicated 4 times (hence the suffix “n” in the name), to form a total of 16 registers.
We therefore speak of 4 identical groups, called “password groups”.

The purpose of having 4 groups of registers, where each group controls identical settings, is to provide flexibility and granularity
on what a password unlocks: The final state of protection will depend on the settings of its associated lock bit in all four of the
groups: It is a logical OR function.

For example, if a flash block is write-erase protected in one password group, this protection is activated irrespective of the state
of that bit in the other password groups. Various levels of protection can be implemented with this scheme: If a bit is locked in two
groups, two passwords are needed to unlock it. If a bit is locked in all password groups, all four passwords are needed to unlock
it.

About PASS module

Using the PASS module in MPC5748G to implement password-based protection for flash and debugger access, Rev. 0, February,
2018

NXP Semiconductors 3

Figure 4. Secure write protection

With this four-password approach, the flash memory space can be segmented in a way that allows various programmers different
flash access privileges. For example, the bootloader developer can program his application while lacking permission to erase/
program the MCAL drivers and the OS; the MCAL developer can program his code but cannot erase or program the code from
the bootloader and the OS vendor, and so on.

4 About unlocking PASS_LOCKx_PGn registers

Each group of PASS_LOCKx_PGn registers can be modified by providing the appropriate password to the PASS Module.

For example, PASS_LOCKx_PG1 registers can be modified by providing the PASS module with the 256-bit password pre-
programmed at address 0x00400160 in UTEST flash, which is the “PASS Password Group 1” location.

The steps needed to provide the password to the PASS module are the following:

1. Write the number of the password group (1 in this example) to the PASS_CHSEL register.

2. Immediately after, write the appropriate password to the PASS_CIN1 register.

PASS_CINn registers are 32-bit registers. The user will need to do 8 consecutive 32-bit writes to the PASS_CIN1 register
in order to enter all 256 bits of the password.

About unlocking PASS_LOCKx_PGn registers

Using the PASS module in MPC5748G to implement password-based protection for flash and debugger access, Rev. 0, February,
2018

4 NXP Semiconductors

Figure 5. PASS_CHSEL register

Figure 6. PASS_CINn register

5 About locking PASS_LOCKx_PGn registers

Locking or re-locking the PASS_LOCKx_PGn registers after they have been modified, can be done by setting the PGL (password
group lock) bit of the group’s PASS_LOCK3_PGn register.

Figure 7. PASS_LOCK_PGn register

About locking PASS_LOCKx_PGn registers

Using the PASS module in MPC5748G to implement password-based protection for flash and debugger access, Rev. 0, February,
2018

NXP Semiconductors 5

Figure 8. PASS_LOCK_PGn field description

6 About Debugger interface lock

To block JTAG access, set the DBL bit of the PASS_LOCK3_PGn register. This should be done in a DCF record to ensure this
protection is active as soon as the device comes out of reset. (see Working with DCF records on page 10 for details)

To re-activate the JTAG access two methods are possible:

• During the external debugger connection, have the debugger script provide the JTAG Password (matching the 256-bit
value stored in the JTAG password location in UTEST flash). This bypasses the effect of the DBL bit.

For example, if using the TRACE32 debugger interface, the sys.option.KEYCODE command will instruct the debugger probe
to provide the 32 bytes in argument as password when attempting connection:

sys.option.KEYCODE 0x11111111 0x22222222 0x33333333 0x44444444 0x55555555 0x66666666 0x77777777

0x88888888

• During runtime, unlock the PASS_LOCK3_PGn registers for all password groups where the DBL but is set by providing the
appropriate passwords, and clear the DBL bit.

7 About flash read protection mechanism

The PASS_LOCK3_PGn registers also contain five RLx bits that allow to activate the read protection mechanism for five flash
regions.

It is important to understand that this read protection mechanism is intended to protect flash from being read only when a
debugger is connected and activated. The flash read protection is not active when the application is running without a debugger
connected.

The five flash regions that can independently be read-protected are defined below:

• RL0 : UTEST read lock

• RL1: Code Flash read lock

• RL2: Not implemented in MPC5748G

• RL3: HSM Code Flash read lock *

• RL4: HSM Data Flash read lock *

* Additionally, these regions can also be protected by means of other mechanisms during HSM configuration.

Further details about exact addresses for these regions are provided in the table below or in Chapter 80.1.1 : PASS_LOCKx_PGn
Register bit mapping of the MPC5748G reference manual.

About Debugger interface lock

Using the PASS module in MPC5748G to implement password-based protection for flash and debugger access, Rev. 0, February,
2018

6 NXP Semiconductors

8 About RESET values of lock registers

To ensure that the desired protection is enabled as soon as the device comes out of reset, the reset value for all 16
PASS_LOCKx_PGn registers should be configured via DCF records stored in UTEST flash.

When the device is initially delivered to the customer, no DCF records that initialize lock registers exist in UTEST flash. In this
situation, if no DCF records to initialize PASS_LOCKx_PGn registers are found, all blocks of flash default to locked (blocked against
reprogramming).

The PASS Module provides therefore several DCF clients that allow to define the reset values of the lock registers. See section
Working with DCF records on page 10 for an example.

9 Further conditions for password-based
protections to be active

All protection mechanisms managed by the PASS module will only go into effect when the device has been placed in a life cycle
state beyond the initial “customer delivery” state that the device ships with. A device will need to be put at least in the “OEM
Production” state for these protections to take effect.

10 Modifying the lifecycle state of a device

The UTEST Flash region contains predefined locations that must be programmed with a value in order to place the device in a
specific life cycle. When the product is initially shipped to the customer, lifecycle slots “MCU_PROD” and “CUST_DEL” are factory
programmed, meaning the product has been matured to the “customer delivery” cycle, and lifecycle slots “OEM_PROD”,
“IN_FIELD” and “FA” are left in their erased states.

About RESET values of lock registers

Using the PASS module in MPC5748G to implement password-based protection for flash and debugger access, Rev. 0, February,
2018

NXP Semiconductors 7

Figure 9. UTEST memory map

Each lifecycle slot (16-bytes wide) is made of two fields:

• the valid field

• the invalid field

Depending on the values programmed into these fields, each lifecycle slot can have one of the 4 states shown below: erased,
active, inactive, or illegal:

Figure 10. LC slot status

• "Marked" refers to the value 0x55AA_50AF_55AA_50AF.

• “Erased” refers to the value 0x FFFF_FFFF_FFFF_FFFF.

The valid and invalid fields occupy the following positions inside each lifecycle slot:

Modifying the lifecycle state of a device

Using the PASS module in MPC5748G to implement password-based protection for flash and debugger access, Rev. 0, February,
2018

8 NXP Semiconductors

Figure 11. LC slots in memory

The lifecycle of the device is then determined per the following table:

Figure 12. LC slots

11 Censorship state of the device

Strictly speaking, moving the device to “OEM production” or “In Field” is still not enough for the Debugger interface to be blocked
or the flash read protection mechanism to be active. One last switch needs to be verified: The censorship status.

Note that we are speaking here only of JTAG disabling and flash read protection. The write-erase protection of flash blocks is not
affected by the censorship status.

Censorship is a DCF client that is not accessible by software, therefore the censorship state of a device can only be written via a
DCF records in UTEST flash. It is a flexible parameter because other than the size of UTEST flash, there is no limitation as to
how many times a DCF record can be added that modifies the value of the Censorship. The device is censored if the lower 16
bits of the Censorship DCF client are written to any value different than 0x55AA.

Censorship state of the device

Using the PASS module in MPC5748G to implement password-based protection for flash and debugger access, Rev. 0, February,
2018

NXP Semiconductors 9

Figure 13. DCF client structure

Figure 14. Censorship description

By default though, when no Censorship DCF record is present, the censorhip status of a device is active. Censorship is therefore
active when a device is delivered from the factory. A DCF record should be written to disable censorship one first time. If this has
been done, other DCFs records need to be appended to the DCF list to re-activate censorship if desired.

12 Working with DCF records

For a detailed description of how DCF records function please see Chapter 11, Device Configuration Format (DCF) Records of
the reference manual.

Data present in the upper 32-bits of a DCF record will be written to the 32-bit DCF client register identified by the address in the
lower 32-bits of the DCF record. DCF clients have different addresses than ordinary registers. A DCF client is identified with the
combination of a chip select value and an address field. The lower 32-bits of a DCF record contain these chip select and address
values, as well as a parity bit and a stop bit. In this case the parity bit can be left to 0 as it is not used. The stop bit should be 0
as well.

For the mechanisms discussed in this application note, the DCF clients that must be configured by inserting appropriate DCF
records in UTEST flash are summarized in the table below, along with the appropriate DCF command word needed to address
them.

Working with DCF records

Using the PASS module in MPC5748G to implement password-based protection for flash and debugger access, Rev. 0, February,
2018

10 NXP Semiconductors

Figure 15. DCF record structure

13 Useful DCF command values

The following figure shows the useful DCF command values:

Useful DCF command values

Using the PASS module in MPC5748G to implement password-based protection for flash and debugger access, Rev. 0, February,
2018

NXP Semiconductors 11

Figure 16. Useful DCF command values

Example 1: Censoring the device

To censor the device, a DCF record with value 0x00000000_001000B0 should be inserted in the DCF records list in UTEST flash.
The upper 4 bytes of this value (0x00000000) represent the data field, (written to a value different than 0x55AA to activate the
censorship). The lower 4 bytes (0x001000B0) represent the chip select, address fields, parity bit and stop bit of the DCF record,
which per the table above, correspond to the Censorhip DCF client.

To un-censor the device, a DCF record with value 0x000055AA_001000B0 should be inserted in the DCF records list in UTEST
flash, immediately after the last valid record. The upper 4 bytes of this value (0x000055AA) represent the data field, written to
value 0x55AA, which un-censors the device.

Example 2: Setting the reset value of register LOCK3_PG0

Similarly, programming a DCF record with value 0x40000000_0x0010010C in UTEST flash will write the upper 32-bits
(0x40000000) to the LOCK3_PG0 register (identified by the address word 0x0010010C in the table above). Value 0x40000000,
for the LOCK3_PG0 means the DBL bit is set and all lock bits are cleared (unlocked).

Useful DCF command values

Using the PASS module in MPC5748G to implement password-based protection for flash and debugger access, Rev. 0, February,
2018

12 NXP Semiconductors

14 Combination of different protection
configurations

The table below shows a summary of how the different protection mechanisms described here are combined to activate a
protection or unlock it.

Figure 17. Debug interface enable truth table

Figure 18. Flash memory read protection truth table

A - Source code example 1:

The example below will :

• Program the JTAG Password and all 4 group passwords

• Insert DCFs to determine the reset state of all 16 Lock registers. The reset state chosen is: All regions unlocked for read
write or erase (lock bits all cleared), debugger blocked (DBL bit set).

• Program the censorship DCF and place the device in censored state.

Combination of different protection configurations

Using the PASS module in MPC5748G to implement password-based protection for flash and debugger access, Rev. 0, February,
2018

NXP Semiconductors 13

• Advance life cycle from customer delivery to OEM production.

 /*************************/
 /* PROGRAM PASSWORDS */
 /*************************/

 /* Program JTAG password */
 flash_program(0x00400120, JTAG_PASSWORD_0, JTAG_PASSWORD_1);
 flash_program(0x00400128, JTAG_PASSWORD_2, JTAG_PASSWORD_3);
 flash_program(0x00400130, JTAG_PASSWORD_4, JTAG_PASSWORD_5);
 flash_program(0x00400138, JTAG_PASSWORD_6, JTAG_PASSWORD_7);

 /* Program PASS Group 0 password */
 flash_program(0x00400140, PASSWORD_PG0_0, PASSWORD_PG0_1);
 flash_program(0x00400148, PASSWORD_PG0_2, PASSWORD_PG0_3);
 flash_program(0x00400150, PASSWORD_PG0_4, PASSWORD_PG0_5);
 flash_program(0x00400158, PASSWORD_PG0_6, PASSWORD_PG0_7);

 /* Program PASS Group 1 password */
 flash_program(0x00400160, PASSWORD_PG1_0, PASSWORD_PG1_1);
 flash_program(0x00400168, PASSWORD_PG1_2, PASSWORD_PG1_3);
 flash_program(0x00400170, PASSWORD_PG1_4, PASSWORD_PG1_5);
 flash_program(0x00400178, PASSWORD_PG1_6, PASSWORD_PG1_7);

 /* Program PASS Group 2 password */
 flash_program(0x00400180, PASSWORD_PG2_0, PASSWORD_PG2_1);
 flash_program(0x00400188, PASSWORD_PG2_2, PASSWORD_PG2_3);
 flash_program(0x00400190, PASSWORD_PG2_4, PASSWORD_PG2_5);
 flash_program(0x00400198, PASSWORD_PG2_6, PASSWORD_PG2_7);
 /* Program PASS Group 3 password */

 flash_program(0x004001A0, PASSWORD_PG3_0, PASSWORD_PG3_1);
 flash_program(0x004001A8, PASSWORD_PG3_2, PASSWORD_PG3_3);
 flash_program(0x004001B0, PASSWORD_PG3_4, PASSWORD_PG3_5);
 flash_program(0x004001B8, PASSWORD_PG3_6, PASSWORD_PG3_7);

 /*************************/
 /* PROGRAM PASS DCFs */
 /*************************/

 /* Password Group 0 - program locks */
 DCF_program(0x00000000, 0x00100100); /* LOCK0_PG0 */
 DCF_program(0x00000000, 0x00100104); /* LOCK1_PG0 */
 DCF_program(0x00000000, 0x00100108); /* LOCK2_PG0 */
 DCF_program(0x40000000, 0x0010010C); /* LOCK3_PG0 [DBL=1] */

 /* Password Group 1 - program locks */
 DCF_program(0x00000000, 0x00100110); /* LOCK0_PG1 */
 DCF_program(0x00000000, 0x00100114); /* LOCK1_PG1 */
 DCF_program(0x00000000, 0x00100118); /* LOCK2_PG1 */
 DCF_program(0x00000000, 0x0010011C); /* LOCK3_PG1, [DBL=0] */

 /* Password Group 1 - program locks */
 DCF_program(0x00000000, 0x00100120); /* LOCK0_PG2 */
 DCF_program(0x00000000, 0x00100124); /* LOCK1_PG2 */
 DCF_program(0x00000000, 0x00100128); /* LOCK2_PG2 */
 DCF_program(0x00000000, 0x0010012C); /* LOCK3_PG2, [DBL=0] */

 /* Password Group 1 - program locks */
 DCF_program(0x00000000, 0x00100130); /* LOCK0_PG3 */
 DCF_program(0x00000000, 0x00100134); /* LOCK1_PG3 */
 DCF_program(0x00000000, 0x00100138); /* LOCK2_PG3 */
 DCF_program(0x00000000, 0x0010013C); /* LOCK3_PG3, [DBL=0] */

 /**************************/
 /* Program Censorship DCF */
 /**************************/

Combination of different protection configurations

Using the PASS module in MPC5748G to implement password-based protection for flash and debugger access, Rev. 0, February,
2018

14 NXP Semiconductors

 DCF_program(0x00000000, 0x001000B0); /* Censorship enabled for != 0x55AA */

 /*************************/
 /* PROGRAM LIFE CYCLE */
 /*************************/

 /* Advance Life Cycle from Customer Delivery to OEM Production */

flash_program(0x00400218, 0x55AA50AF, 0x55AA50AF);/* Invalidate CustomerDel*/
flash_program(0x00400220, 0x55AA50AF, 0x55AA50AF);/* Validate OEMProduction*/

Auxiliary functions:

void flash_program(uint32_t prog_addr, uint32_t data32_0, uint32_t data32_1)
{
 /* clear lock */
 C55FMC.LOCK0.R = 0;
 C55FMC.LOCK1.R = 0;
 C55FMC.LOCK2.R = 0;
 C55FMC.LOCK3.R = 0;

 C55FMC.MCR.B.PGM = 1;

 ((uint32_t) prog_addr) = data32_0;
 ((uint32_t) prog_addr+1) = data32_1;

 C55FMC.MCR.B.EHV = 1;
 while(C55FMC.MCR.B.DONE == 0);
 C55FMC.MCR.B.EHV = 0;
 C55FMC.MCR.B.PGM = 0;
 /* set lock */
 C55FMC.LOCK0.R = 0xFFFFFFFF;
 C55FMC.LOCK1.R = 0xFFFFFFFF;
 C55FMC.LOCK2.R = 0xFFFFFFFF;
 C55FMC.LOCK3.R = 0xFFFFFFFF;
}

void DCF_program(uint32_t data32_0, uint32_t data32_1)
{
 uint32_t utest_addr;
 utest_addr = find_1st_DCF_address();
 flash_program(utest_addr, data32_0, data32_1);
}

uint32_t find_1st_DCF_address(void)
{
 uint32_t *UTEST_ADDR;
 uint32_t address;
 UTEST_ADDR = 0x00400304;

 /* find first erased DCF record location after DCF stop */
 while(*UTEST_ADDR != 0xFFFFFFFF)

 UTEST_ADDR +=2; /* advance to next DCF record address */
 address = (uint32_t) (UTEST_ADDR - 1);

 return address;
}

Auxiliary #defines for this example:

#define JTAG_PASSWORD_0 0x11111111
#define JTAG_PASSWORD_1 0x22222222
#define JTAG_PASSWORD_2 0x33333333
#define JTAG_PASSWORD_3 0x44444444
#define JTAG_PASSWORD_4 0x55555555

Combination of different protection configurations

Using the PASS module in MPC5748G to implement password-based protection for flash and debugger access, Rev. 0, February,
2018

NXP Semiconductors 15

#define JTAG_PASSWORD_5 0x66666666
#define JTAG_PASSWORD_6 0x77777777
#define JTAG_PASSWORD_7 0x88888888

#define PASSWORD_PG0_0 0x22222222
#define PASSWORD_PG0_1 0x33333333
#define PASSWORD_PG0_2 0x44444444
#define PASSWORD_PG0_3 0x55555555
#define PASSWORD_PG0_4 0x66666666
#define PASSWORD_PG0_5 0x77777777
#define PASSWORD_PG0_6 0x88888888
#define PASSWORD_PG0_7 0x99999999

#define PASSWORD_PG1_0 0x33333333
#define PASSWORD_PG1_1 0x44444444
#define PASSWORD_PG1_2 0x55555555
#define PASSWORD_PG1_3 0x66666666
#define PASSWORD_PG1_4 0x77777777
#define PASSWORD_PG1_5 0x88888888
#define PASSWORD_PG1_6 0x99999999
#define PASSWORD_PG1_7 0xAAAAAAAA

#define PASSWORD_PG2_0 0x44444444
#define PASSWORD_PG2_1 0x55555555
#define PASSWORD_PG2_2 0x66666666
#define PASSWORD_PG2_3 0x77777777
#define PASSWORD_PG2_4 0x88888888
#define PASSWORD_PG2_5 0x99999999
#define PASSWORD_PG2_6 0xAAAAAAAA
#define PASSWORD_PG2_7 0xBBBBBBBB

#define PASSWORD_PG3_0 0x55555555
#define PASSWORD_PG3_1 0x66666666
#define PASSWORD_PG3_2 0x77777777
#define PASSWORD_PG3_3 0x88888888
#define PASSWORD_PG3_4 0x99999999
#define PASSWORD_PG3_5 0xAAAAAAAA
#define PASSWORD_PG3_6 0xBBBBBBBB
#define PASSWORD_PG3_7 0xCCCCCCCC

B- Source code example 2:

This example demonstrates how to unlock the lock registers from within the user application by providing a password. It is assumed
that only Password group 1 has been used to lock resources.

/* Select Password Challenge Group 1 */
 PASS.CHSEL.B.GRP = 1;

/* Enter Password - The most significant 32 bits of the password challenge must be written
to CIN0 */

 PASS.CIN[0].R = PASSWORD_PG1_7;
 PASS.CIN[1].R = PASSWORD_PG1_6;
 PASS.CIN[2].R = PASSWORD_PG1_5;
 PASS.CIN[3].R = PASSWORD_PG1_4;
 PASS.CIN[4].R = PASSWORD_PG1_3;
 PASS.CIN[5].R = PASSWORD_PG1_2;
 PASS.CIN[6].R = PASSWORD_PG1_1;
 PASS.CIN[7].R = PASSWORD_PG1_0;

 /* Clear Lock2 */
 PASS.PG[1].LOCK2.R = 0;
 if(PASS.PG[1].LOCK2.R != 0)
 while(1); /* ERROR- bits are not cleared, PASS not unlocked */

 flash_erase_0x01080000();

Combination of different protection configurations

Using the PASS module in MPC5748G to implement password-based protection for flash and debugger access, Rev. 0, February,
2018

16 NXP Semiconductors

 if(readmem(0x01080000)!= 0xFFFFFFFF)
 while(1); /*ERROR– location was not erased, erase protection was not unlocked */

Combination of different protection configurations

Using the PASS module in MPC5748G to implement password-based protection for flash and debugger access, Rev. 0, February,
2018

NXP Semiconductors 17

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to

use NXP products. There are no express or implied copyright licenses granted hereunder to

design or fabricate any integrated circuits based on the information in this document. NXP

reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for

any particular purpose, nor does NXP assume any liability arising out of the application or use

of any product or circuit, and specifically disclaims any and all liability, including without limitation

consequential or incidental damages. “Typical” parameters that may be provided in NXP data

sheets and/or specifications can and do vary in different applications, and actual performance

may vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer's technical experts. NXP does not convey any license under

its patent rights nor the rights of others. NXP sells products pursuant to standard terms and

conditions of sale, which can be found at the following address: nxp.com/

SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,

EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE

CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,

MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,

TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,

ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,

mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,

SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,

BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the

property of their respective owners. Arm, AMBA, Arm Powered, Artisan, Cortex, Jazelle, Keil,

SecurCore, Thumb, TrustZone, and μVision are registered trademarks of Arm Limited (or its

subsidiaries) in the EU and/or elsewhere. Arm7, Arm9, Arm11, big.LITTLE, CoreLink, CoreSight,

DesignStart, Mali, Mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks

of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and

Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and

Power.org word marks and the Power and Power.org logos and related marks are trademarks

and service marks licensed by Power.org.

Document Number: AN12092
Rev. 0, February, 2018

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 About passwords
	3 About PASS module
	4 About unlocking PASS_LOCKx_PGn registers
	5 About locking PASS_LOCKx_PGn registers
	6 About Debugger interface lock
	7 About flash read protection mechanism
	8 About RESET values of lock registers
	9 Further conditions for password-based protections to be active
	10 Modifying the lifecycle state of a device
	11 Censorship state of the device
	12 Working with DCF records
	13 Useful DCF command values
	14 Combination of different protection configurations

