
Power Architecture e200z4 and e200z7 Core

Memory Protection Unit (CMPU)

by: NXP Semiconductors

1. Introduction

This application note describes the function,

configuration and use of the Core Memory Protection

Unit (MPU) contained in the e200z4 and e200z7 device

cores. Each of these cores (with the exception of safety

checker lock-step cores) incorporates an MPU which

functions to protect user configured regions of memory

from unwanted instruction and/or data accesses, and

also regulates the caching and guarding of accesses.

Since the MPU’s present in both core types are largely

the same this application note will consider them

equivalent, however where the implementation of the

MPU between the e200z4 and e200z7 cores differs in

any area discussed, it will be highlighted.

The Core MPU is separate to the System MPU (SMPU)

which also exists on the device, and provides extra

protection coverage to ensure that all activity within the

device is protected. Full SMPU configuration is not

included in the scope of this application note, but details

can be found in the device reference manual.

The implementation of the MPU for each specific core

variant used in different products can vary slightly, but

the overall principal of operation can be considered the

same. For this reason and to simplify the explanations

this application note will focus on the S32R274 MCU,

which contains three Power Architecture® cores

arranged as two independent e200z7260 for general

NXP Semiconductors Document Number: AN12177

Application Notes Rev. 0 , 04/2018

Contents

1. Introduction .. 1

2. MPU Overview .. 2

3. Access Protection Operation .. 3

4. Region Descriptor Table and Region Descriptors 3

5. Access Monitoring, Matching and Masking 5

5.1. Instruction Accesses ... 5

5.2. Data Accesses ... 5

5.3. Access Bypass and Masks 5

5.4. Permissions ... 6

6. Protection Flow .. 7

6.1. Memory Attributes (G, I) .. 9

6.2. Region Descriptor Invalidation and Write-Once

Protection .. 10

7. MPU Configuration ... 10

7.1. Configuration steps ... 10

8. Fault Handling ... 14

8.1. Data Storage Interrupt ... 14

8.2. Instruction Storage Interrupt 15

9. Configuration Lessons Learnt .. 15

https://www.nxp.com/products/processors-and-microcontrollers/power-architecture/mpc5xxx-microcontrollers:POWER_ARCH_5XXX?utm_medium=AN-2021

MPU overview

Power Architecture e200z4 and e200z7 Core Memory Protection Unit (CMPU), Rev. 0, 04/2018

2 NXP Semiconductors

computation and an e200z420 core with an e200z419 checker core running in delayed lockstep

configuration for safety-critical and housekeeping tasks. Therefore, the reader should ensure that they

confirm the exact core type used in their product, as the implementation may have a different amount of

region descriptors and address ranges than those detailed in this application note. The main described

operation and use of the core MPU’s however can still be considered valid.

Any MPU programming syntax used in this application note has been simplified to show the value to be

programmed in one line, but for correct compilation would require the 32-bit value to be written first to

a general purpose register (GPR). E.g.

Disable and Invalidate core MPU

mtspr 1014, 0x00000002 # set MPUFI in MPU0CSR0 to trigger MPU invalidation

Should be implemented as:

Disable and Invalidate core MPU

e_li r4, 0x0000

e_or2i r4, 0x0002

mtspr 1014, r4 # set MPUFI in MPU0CSR0 to trigger MPU invalidation

2. MPU overview

The MPU’s present on the S32R274 device provide the capability of protecting regions of memory, with

the following feature set:

• 24-entry region1 descriptor table with support for -

o Six arbitrary-sized instruction memory regions

o 12 arbitrary-sized data memory regions

o Six additional arbitrary-sized instruction or data memory regions

• Ability to set access permissions and memory attributes on a per-region basis

• Process ID aware, with per-bit masking of Task ID values

• Capability for masking upper address bits in the range comparison

• Capability of bypassing permissions checking for selected access types

• Per-entry write-once logic for entry protection

• Hardware flash invalidation support and per-entry invalidation protection controls

• Ability to optionally utilize region descriptors for generating debug events and watchpoints

• Software managed by mpure and mpuwe instructions

1 Check specific core implementation for exact number of region descriptors present for other devices

Region descriptor table and region descriptors

Power Architecture e200z4 and e200z7 Core Memory Protection Unit (CMPU), Rev. 0, 04/2018

NXP Semiconductors 3

3. Access protection operation

The MPU provides access protection to memory regions using a set of region descriptors contained in a

table structure. Each region descriptor defines an address range and a set of access protections and

memory attributes. Individual region descriptors monitor either instruction accesses or data accesses.

Independent access protection may be configured for supervisor-mode and user-mode reads, writes, and

instruction accesses. In addition, any subset of these access types can bypass the protection system and

instead rely on the external SMPU for enforcing access protections. This allows for an increased number

of regions to be supported in an SoC, without requiring excessive processor resources. Access addresses

which fall within the address range(s) of one or more enabled region descriptors (a match) are allowed

to proceed if the access permissions for any matching descriptor are set to allow the access. If no

matching region descriptor is found, the access will not be allowed, and an Instruction Storage Interrupt

(ISI) or Data Storage Interrupt (DSI) will be generated. If more than one matching descriptor is found,

the access permissions enforced are the least restrictive access permissions defined by the matching

entries.

Allowed accesses are based only on an address compare of the first byte of data being accessed; no

checking is performed that the data associated with a single access is entirely contained in an allowed

region.

4. Region descriptor table and region descriptors

The e200z420 and both e200z7260 cores on the S32R274 device support one MPU implementation

dedicated to that core. Each MPU contains a 24-entry region descriptor table with support for:

• Six arbitrary-sized instruction memory regions

• 12 arbitrary-sized data memory regions

• Six additional arbitrary-sized instruction or data memory region

Region descriptor table and region descriptors

Power Architecture e200z4 and e200z7 Core Memory Protection Unit (CMPU), Rev. 0, 04/2018

4 NXP Semiconductors

Figure 1. Region descriptor table shows a high-level diagram of the region descriptor table structure

Each Region Descriptor contains an Upper and Lower Bound value that defines the size (range) of the

region, as well as additional information such as the Region ID, which is compared with the current

process ID in the PID register to determine if a match occurs, a Valid bit indicating the region descriptor

is valid and should participate in the lookup process, masks for masking upper address bits as well as

portions of the region ID, protection information, access attributes, and various control fields. The table

below shows the information contained in a region descriptor. The various fields are described further in

subsequent sections.

Table 1. Region descriptor entry bit definitions

Field Comments

VALID Valid bit for entry

UPPER_BOUND Upper address bound (compared against effective address)

LOWER_BOUND Lower address bound (compared against effective address)

TID[0:7] Region ID (compared against PID value or ‘0’)

TIDMSK[0:7] Region ID Mask

UAMSK Upper Address Mask control

INST Instruction or Data Access entry (1=INST)

DEBUG Entry set for debug event generation

SX, SW, SR Supervisor execute, write, and read permission bits

UX, UW, UR User execute, write, and read permission bits

I Cache-Inhibited region attribute

IOVR Cache-Inhibited region attribute override

Access monitoring, matching and masking

Power Architecture e200z4 and e200z7 Core Memory Protection Unit (CMPU), Rev. 0, 04/2018

NXP Semiconductors 5

Field Comments

G Guarded region attribute (not present in dedicated INST entries)

GOVR Guarded region attribute override (not present in dedicated INST entries)

IPROT Invalidation protect

RO Read-only control for entry updates

5. Access monitoring, matching and masking

When the MPU is enabled, access monitoring and matching is performed by comparing the effective

address (EA) for the access, and the process ID (PID) value (if) used for the access with values stored in

the region descriptors.

The effective address for an instruction fetch access is the address calculated using the current value of

the program counter and optionally an absolute or relative displacement value. For a data load or store

access the effective address is calculated using GPR contents and optionally a displacement value.

5.1. Instruction accesses

Instruction accesses are generated by sequential instruction fetches or due to a change in program flow

(branches and interrupts). Instruction accesses are monitored by the dedicated instruction region

descriptors (0-5), as well as by any of the shared region descriptors where their INST bit is set to ‘1’.

For instruction accesses, only the effective address bits 0:28 are compared to the values in the region

descriptor when the region descriptor is configured for access protections; this corresponds to a

doubleword granularity. Range descriptors being used for debug breakpoint/watchpoint functions

compare address bits 0:29 for a match, and then mark each halfword within the doubleword at that

address with an in-range indicator, allowing halfword granularity for debug purposes.

5.2. Data accesses

Data accesses are generated by load and store instructions, and certain cache management instructions.

Data accesses are monitored by the dedicated region descriptors (0-11) in the data portion of the region

descriptor table, as well as by those region descriptors in the shared portion of the region descriptor table

which have their INST bit set to ‘0’. These region descriptors do not monitor instruction access

addresses for matching.

When the MPU is enabled, for data accesses, all 32 bits of the access effective address are checked for a

match for both normal protection usage as well as debug breakpoint/watchpoint usage.

5.3. Access bypass and masks

5.3.1. Access bypass

Access bypass of the MPU can be enabled for specific access types in both user and supervisor modes

via control information located in the MPU0 Control and Status Register 0 (MPU0CSR0). When a

specific access type is configured to bypass the MPU then no access protection checking is performed

Access monitoring, matching and masking

Power Architecture e200z4 and e200z7 Core Memory Protection Unit (CMPU), Rev. 0, 04/2018

6 NXP Semiconductors

for that access type, and in addition no access attributes are supplied, unless a region descriptor match

occurs.

Accesses to the Local Data memory (DMEM) may also bypass MPU protections when configured in the

DMEMCTL1 register. These controls override any MPU-based settings unless configured to use the

MPU protections. See the ‘Local Memories’ chapter in the device Reference Manual for more detail of

DMEM MPU bypass functionality.

5.3.2. Address masking (UAMSK)

The MPU provides the capability of per-entry masking up to five MSB’s of the upper effective address

bits to zero prior to performing the address range comparison. When using upper-address bit masking,

the UPPER_BOUND and LOWER_BOUND are not masked, thus should typically be programmed with

‘0’ in the masked bit positions.

5.3.3. Process ID masking (TIDMSK)

The MPU provides the capability of per-entry masking of a subset of the TID/PID bits via the entry

TIDMSK field when performing the TID portion of the address range comparison for the entry. This

allows for efficient use of a minimum number of region descriptors when a portion of the address space

is shared between multiple processes, but not shared across all processes (where a TID value of 0b0 can

be used).

5.3.4. Process ID masking in supervisor mode (TIDCTL)

The MPU provides the capability of global masking of the TID bits in all region descriptors to 0b0 when

performing the PID/TID portion of the address range comparison for the entry while in supervisor mode.

This masking is controlled by the TIDCTL bit in the MPU0 control and status register (MPU0CSR0).

This allows supervisor code to utilize region descriptors loaded for user tasks regardless of the

programmed TID value in those descriptors. This capability can be used in certain situations to minimize

the number of supervisor region descriptors required to be active, and thus improve efficiency. The

actual contents of the descriptors is not changed, the TID values are only masked to 0b0 at the

comparison logic.

5.4. Permissions

It is possible to restrict access to address ranges by selectively granting permissions for user and

supervisor mode read, write and execute accesses on a per-region basis. These selective permissions are

controlled via the UX, SX, UW, SW, UR and SR access control bits:

• SR—Supervisor read permission. Allows loads and load-type cache management instructions to

access the region while in supervisor mode.

• SW—Supervisor write permission. Allows stores and store-type cache management instructions

to access the region while in supervisor mode.

Protection flow

Power Architecture e200z4 and e200z7 Core Memory Protection Unit (CMPU), Rev. 0, 04/2018

NXP Semiconductors 7

• SX—Supervisor execute permission. Allows instruction fetches to access the page and

instructions to be executed from the region while in supervisor mode.

• UR—User read permission. Allows loads and load-type cache management instructions to access

the region while in user mode.

• UW—User write permission. Allows stores and store-type cache management instructions to

access the region while in user mode.

• UX—User execute permission. Allows instruction fetches to access the page and instructions to

be executed from the region while in user mode.

Note that the permissions checks are generally based on the address of the first byte of the operand or

instruction which is accessed. Therefore an access which crosses a region boundary may possibly be

allowed regardless of whether the second portion of the access falls within a more restrictive region, or

falls outside of a defined region. If an access is misaligned across a doubleword boundary, the

permissions checks will be repeated for the second portion of the access.

6. Protection flow

A high-level protection flow is shown in the figure below.

Protection flow

Power Architecture e200z4 and e200z7 Core Memory Protection Unit (CMPU), Rev. 0, 04/2018

8 NXP Semiconductors

Figure 2. High-level protection flow

When an access occurs, the effective address is compared to the appropriate number of bits (depending

on UAMSK and type of access) of the UPPER_BOUND and LOWER_BOUND address fields of the

region descriptor of each MPU entry appropriate for the access type (instruction/data).

For the UPPER_BOUND comparison, the EA must be <= UPPER_BOUND for the check to pass. For

the LOWER_BOUND comparison, the EA must be >=LOWER_BOUND. The comparisons are

performed as unsigned compares.

Protection flow

Power Architecture e200z4 and e200z7 Core Memory Protection Unit (CMPU), Rev. 0, 04/2018

NXP Semiconductors 9

If the effective address value falls within the EA range of the MPU entry, that MPU entry is a candidate

for a possible match. In addition to a match in the EA range, a matching MPU entry must match the

(possibly masked) stored entry TID value with the current Process ID of the access (current PID register

values), or have a (possibly masked) TID value of ‘0’, indicating the entry is globally shared among all

processes.

Matching entries are then evaluated for permissions to see if any matching descriptor’s permissions

allow the access.

If no matching region descriptor is found, or if no region descriptor which matches has permissions

which allow the access type, then the access is denied, and an ISI or DSI exception (as appropriate) will

be generated.

6.1. Memory attributes (G, I)

Each descriptor contains memory attribute information for the corresponding memory address range

covered by the descriptor. The G and I bits are provided to indicate whether a matching data access

should be treated as guarded and/or cache-inhibited. It is not present in dedicated instruction entries, and

is ignored in shared entries with INST=1. Instruction accesses will use the I bit to determine if a

matching instruction fetch access should be treated as cache-inhibited, and to determine the AHB bus

attributes for the instruction fetch on a cache miss.

Note that cacheability is checked only for the initial fetch of a cache linefill, thus if a cache line spans

more than one region, the initial access address will determine cacheability of the entire line.

For data accesses, the initial address will also determine the guarded attribute for the access, regardless

of whether it spans more than one region, unless the access spans a doubleword boundary. In this case

both accesses of this misaligned access will perform MPU lookups and will utilize the corresponding

attribute, unless the first portion of the access corresponds to a cacheable non-guarded region, in which

case the second portion of the access may possibly be treated as non-guarded.

If more than one descriptor attempts to supply memory attributes, the most restrictive attribute settings

are used for the Guarded attribute (ORing of G bits), and the least restrictive access settings are used for

cacheability (ANDing of I bits), unless override control is enabled in one of the matching descriptors.

6.1.1. Memory attribute overrides (GOVR, IOVR)

Each descriptor also contains memory attribute override controls, which can be used to override the

setting(s) of other matching descriptor(s). The GOVR (dedicated data and INST=0 shared entries only)

and IOVR bits are provided to indicate whether a matching access uses the G and I settings of a

descriptor regardless of the settings of any other matching descriptor or of the state of the guarded

address or cache-inhibited address ports.

Only a single matching descriptor is allowed to have GOVR or IOVR set, although it is allowable for

two different matching descriptors to each have one of these set which is not set in another matching

descriptor. If multiple GOVR or IOVR bits are set, the result is boundedly-undefined. No detection

mechanism is provided for this case.

MPU configuration

Power Architecture e200z4 and e200z7 Core Memory Protection Unit (CMPU), Rev. 0, 04/2018

10 NXP Semiconductors

6.2. Region descriptor invalidation and write-once protection

In order to provide an efficient mechanism for reloading the region descriptor table entries on a user task

switch, and avoid the need for examining each entry to see if it belongs to the old task, the MPU

supports hardware flash-invalidation of the table entries. This is controlled via the MPUFI bit in the

MPU0CSR0 register. Supervisor entries can be protected as needed by setting the entry’s IPROT

(Invalidation protect) bit. This will prevent the entry from being cleared when a hardware flash-

invalidation is performed.

In addition, each entry supports a write-once feature via the entry’s RO control bit. Setting of the RO

control bit prevents a subsequent write access from being performed while the entry remains valid. Only

a flash-invalidation or a processor reset will clear the RO bit. If the entry needs to remain unmodified on

a flash-invalidation, the entry’s IPROT bit can be set concurrently with the RO bit. With IPROT and RO

set, a region descriptor may not be changed until the next processor reset occurs which clears these bits.

7. MPU configuration

In order to configure the region descriptors as desired the MPU can be accessed and configured by

system software by reading/writing the contents of a number of configuration SPR’s (special purpose

registers). The MPU is not memory mapped in the device peripheral map since it is part of the device

cores.

The MPU entries are indirectly accessed through several MPU Assist (MAS) registers, which contain

each of the configurations previously discussed in this document. There are four MAS registers (MAS0-

MAS3), software can write and read the MAS registers with ‘mtspr’ and ‘mfspr’ instructions. Data is

read from the MPU into the MAS registers with an ‘mpure’ (MPU read entry) instruction. Data is

written to the MPU from the MAS registers with an ‘mpuwe’ (MPU write entry) instruction.

The device reference manual Core MPU chapters contain full bit descriptions of each register, and

should be read in conjunction with this section which will give general advice and examples of the

configuration steps.

7.1. Configuration steps

This section will describe the steps required to configure and enable the MPU. It should be known to the

user which regions of memory require protection and therefore what configuration is required. When the

MPU is enabled it operates on the principal that no match in the region descriptor table means the access

is not allowed, therefore it is critical that all potential memory locations that could be accessed during

the application are covered to ensure no unwanted access violations occur.

For illustration purposes this example will configure the region descriptors to cover all of the available

memory map for the S32R274 device, this will ensure that any access outside of these areas results in an

access violation and an ISI or DSI will occur depending on the type of access.

To avoid an unhandled exception being generated it is important to ensure that interrupts are enabled

and that a relevant interrupt service routine (ISR) is configured to handle the DSI or ISI interrupt before

the MPU is configured and enabled.

MPU configuration

Power Architecture e200z4 and e200z7 Core Memory Protection Unit (CMPU), Rev. 0, 04/2018

NXP Semiconductors 11

Data storage interrupts correspond to IVOR2 (Interrupt Vector 2), and Instruction Storage Interrupt

corresponds to IVOR3 as defined by the Power Architecture standard.

7.1.1. Disable and invalidate MPU configuration

First the user should ensure the MPU is disabled and invalidate any previous MPU configuration by

setting the MPUFI bit in the MPU0CSR0. This triggers the hardware flash-invalidation mechanism. The

MPU0CSR0 register spr number is 0d1014, and can be written as follows:

Disable and Invalidate core MPU

mtspr 1014, 0x00000002 # set MPUFI in MPU0CSR0 to trigger MPU invalidation

The invalidation process typically takes three core clock cycles, and once complete the MPUFI bit is

automatically reset to 0b0. It is recommended to wait for this to complete before performing any

subsequent steps.

7.1.2. Configure MAS0-3

Once the MPU has been disabled and invalidated, the next step is to program the MAS0-3 registers for

each of the required descriptors, depending on the level of protection required in the application. In this

example the following configuration will be maintained across each region:

Table 2. MAS Example Common Bit Settings

Register Bit Setting Comment

MAS0[VALID] 0b1 MPU entry is valid

MAS0[IPROT] 0b1 Entry is protected from invalidation

MAS0[SEL] 0b10 Select MPU2

MAS0[UAMSK] 0b000 No upper address bits are masked during range
comparison

MAS0[UW] 0b1 User mode has write permission

MAS0[SW] 0b1 Supervisor mode has write permission

MAS0[UX/UR] 0b1 User mode has execute/read permission

MAS0[SX/SR] 0b1 Supervisor mode has execute/read permission

MAS0[IOVR] 0b0 No override of I attribute by entry

MAS0[GOVR] 0b0 No override of G attribute by entry

MAS0[I] 0b0 Region is considered cacheable

MAS0[G] 0b0 Accesses are not guarded

MAS1[TID] 0x00 Entry is global, matches any PID value

MAS1[TIDMSK] 0x00 No region ID masking (TID=0 so any PID value is a
match)

2 This is required even though only one MPU instance is present in each core

MPU configuration

Power Architecture e200z4 and e200z7 Core Memory Protection Unit (CMPU), Rev. 0, 04/2018

12 NXP Semiconductors

The MAS2 and MAS3 registers then are used for the UPPER_BOUND and LOWER_BOUND values

for the effective address comparison respectively, as described in Section 6.

In this example since the above bits of the MAS0 and MAS1 registers will not change, it is only required

to set the MAS0[INST], MAS0[SHD] and MAS0[ESEL] bits for the required range covered by that

region descriptor.

To cover the full range of memories of the RRU device for both instruction and data accesses and ensure

any access outside of these will generate an ISI or DSI, the following ranges need to be considered.

Table 3. S32R274 Memory Regions

Area Address Range Type Region Descriptor

Flash 0x00F98000 -- 0x0117FFFF Data AND Instruction 0 (Data AND Instruction)

SRAM 0x40000000 -- 0x4017FFFF Data Data 1

PBRIDGE 0xF8000000 -- 0xFFFFFFFF Data Data 2

UTEST 0x00400000 -- 0x00403FFF Data Data 3

DFLASH 0x00800000 -- 0x0080FFFF Data Data 4

DMEM 0x50800000 -- 0x5080FFFF Data Data 5

These can be configured by first programming each of the MAS registers with the data required:

 # Set z4 Code Range (Entire Flash) - Instruction Region 0

 mtspr 624, 0xE1000F30 #Write MAS0 – ESEL = 0, INST = 1, SHD = 0

 mtspr 625, 0x00000000 #Write MAS1 – TID = 0, TIDMSK = 0

 mtspr 626, 0x0117FFFF #Write MAS2 – UPPER_BOUND

 mtspr 627, 0x00F98000 #Write MAS3 – LOWER_BOUND

Once these have been programmed it is then required to write the data to the MPU, which is done as

follows:

 #Write Entry

 mpuwe

 mpusync

This process can then be repeated to program the rest of the region descriptors:

 # Set z4 Data Range (Entire Flash) - Data Region 0

 mtspr 624, 0xE0000F30 #Write MAS0 – ESEL = 0, INST = 0, SHD = 0

 mtspr 625, 0x00000000 #Write MAS1 – TID = 0, TIDMSK = 0

 mtspr 626, 0x0117FFFF #Write MAS2 – UPPER_BOUND

 mtspr 627, 0x00F98000 #Write MAS3 – LOWER_BOUND

 #Write Entry

 mpuwe

 mpusync

 # Set z4 Data Range (SRAM) - Data Region 1

 mtspr 624, 0xE0010F30 #Write MAS0 – ESEL = 1, INST = 0, SHD = 0

MPU configuration

Power Architecture e200z4 and e200z7 Core Memory Protection Unit (CMPU), Rev. 0, 04/2018

NXP Semiconductors 13

 mtspr 625, 0x00000000 #Write MAS1 – TID = 0, TIDMSK = 0

 mtspr 626, 0x4017FFFF #Write MAS2 – UPPER_BOUND

 mtspr 627, 0x40000000 #Write MAS3 – LOWER_BOUND

 #Write Entry

 mpuwe

 mpusync

 # Set z4 Data Range (PBRIDGE) - Data Region 2

 mtspr 624, 0xE0020F30 #Write MAS0 – ESEL = 2, INST = 0, SHD = 0

 mtspr 625, 0x00000000 #Write MAS1 – TID = 0, TIDMSK = 0

 mtspr 626, 0xFFFFFFFF #Write MAS2 – UPPER_BOUND

 mtspr 627, 0xF8000000 #Write MAS3 – LOWER_BOUND

 #Write Entry

 mpuwe

 mpusync

 # Set z4 Data Range (UTEST) - Data Region 3

 mtspr 624, 0xE0030F30 #Write MAS0 – ESEL = 3, INST = 0, SHD = 0

 mtspr 625, 0x00000000 #Write MAS1 – TID = 0, TIDMSK = 0

 mtspr 626, 0x00403FFF #Write MAS2 – UPPER_BOUND

 mtspr 627, 0x00400000 #Write MAS3 – LOWER_BOUND

 #Write Entry

 mpuwe

 mpusync

 # Set z4 Data Range (DFLASH) - Data Region 4

 mtspr 624, 0xE0040F30 #Write MAS0 – ESEL = 4, INST = 0, SHD = 0

 mtspr 625, 0x00000000 #Write MAS1 – TID = 0, TIDMSK = 0

 mtspr 626, 0x0080FFFF #Write MAS2 – UPPER_BOUND

 mtspr 627, 0x00800000 #Write MAS3 – LOWER_BOUND

 #Write Entry

 mpuwe

 mpusync

 # Set z4 Data Range (DMEM) - Data Region 5

Fault handling

Power Architecture e200z4 and e200z7 Core Memory Protection Unit (CMPU), Rev. 0, 04/2018

14 NXP Semiconductors

 mtspr 624, 0xE0050F30 #Write MAS0 – ESEL = 5, INST = 0, SHD = 0

 mtspr 625, 0x00000000 #Write MAS1 – TID = 0, TIDMSK = 0

 mtspr 626, 0x5080FFFF #Write MAS2 – UPPER_BOUND

 mtspr 627, 0x50800000 #Write MAS3 – LOWER_BOUND

 #Write Entry

 mpuwe

 mpusync

7.1.3. Enable the MPU

Now that all regions available on the device are covered the MPU is fully configured and ready to be

enabled. To enable the MPU write 0b1 to MPU0CSR0[MPUEN]. From this point onwards all address

accesses will be monitored by the MPU. As previously mentioned it is critical to ensure that the relevant

interrupt routines are configured and enabled before this step is completed.

#Enable core MPU

mtspr 1014, 0x0001

8. Fault handling

Once the MPU is enabled the system is protected against illegal accesses based on the configuration

applied. In the event of an illegal access the relevant interrupt (DSI or ISI) will be raised to the core. The

handling of this interrupt is application dependant and can be tailored to provide the desired reaction to

this specific type of fault. To aid this, information can be read from the CPU registers at the time of the

illegal access to determine the cause of the fault. These registers are detailed in the following sections

but consult the device reference manual ‘Core Description’ section for more details on the specific bit

fields shown.

8.1. Data Storage Interrupt

Table 4 - DSI CPU register settings

Configuration lessons learnt

Power Architecture e200z4 and e200z7 Core Memory Protection Unit (CMPU), Rev. 0, 04/2018

NXP Semiconductors 15

8.2. Instruction Storage Interrupt

Table 5 - ISI CPU register settings

9. Configuration lessons learnt

It is important that both the Core MPU and SMPU are configured correctly to avoid scenarios where

accesses to illegal address locations can cause undesired or unforeseen system behaviour.

E.g if the Core MPU is not correctly configured and the core prefetch unit attempts a prefetch from an

address outside of the device memory map, then no core exception would be raised unless this unknown

instruction was executed. The System MPU would detect such a violation when the read occurs on the

XBAR, this would be reported to the FCCU but any fault reaction routine would not see a core violation

reported, since the unknown instruction was not executed. Hence the core cannot resolve this violation.

It is therefore recommended that both the SMPU and the Core MPU are configured to cover the same

memory regions for instruction and data accesses, to ensure that both system and core level accesses are

fully protected.

Document Number: AN12177
Rev. 0

04/2018

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software

implementers to use NXP products. There are no express or implied copyright licenses

granted hereunder to design or fabricate any integrated circuits based on the

information in this document. NXP reserves the right to make changes without further

notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its

products for any particular purpose, nor does NXP assume any liability arising out of the

application or use of any product or circuit, and specifically disclaims any and all

liability, including without limitation consequential or incidental damages. “Typical”

parameters that may be provided in NXP data sheets and/or specifications can and do

vary in different applications, and actual performance may vary over time. All operating

parameters, including “typicals,” must be validated for each customer application by

customer’s technical experts. NXP does not convey any license under its patent rights

nor the rights of others. NXP sells products pursuant to standard terms and conditions

of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,

COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES,

MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,

MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK,

SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the

Freescale logo, AltiVec, C 5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C Ware,

the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,

PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the

SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack,

CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names

are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan,

Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are registered

trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7,

ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, mbed, NEON,

POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its

subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are

registered trademarks of Oracle and/or its affiliates. The Power Architecture and

Power.org word marks and the Power and Power.org logos and related marks are

trademarks and service marks licensed by Power.org.

© 2018 NXP B.V.

http://www.freescale.com/
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	1. Introduction
	2. MPU overview
	3. Access protection operation
	4. Region descriptor table and region descriptors
	5. Access monitoring, matching and masking
	5.1. Instruction accesses
	5.2. Data accesses
	5.3. Access bypass and masks
	5.3.1. Access bypass
	5.3.2. Address masking (UAMSK)
	5.3.3. Process ID masking (TIDMSK)
	5.3.4. Process ID masking in supervisor mode (TIDCTL)

	5.4. Permissions

	6. Protection flow
	6.1. Memory attributes (G, I)
	6.1.1. Memory attribute overrides (GOVR, IOVR)

	6.2. Region descriptor invalidation and write-once protection

	7. MPU configuration
	7.1. Configuration steps
	7.1.1. Disable and invalidate MPU configuration
	7.1.2. Configure MAS0-3
	7.1.3. Enable the MPU

	8. Fault handling
	8.1. Data Storage Interrupt
	8.2. Instruction Storage Interrupt

	9. Configuration lessons learnt

