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less operation for full-speed, SDIO/MMC
* Five general-purpose timers, one SCTimer/PWM, one RTC/alarm timer
* One 24-bit Multi-Rate Timer (MRT)
¢ A Windowed Watchdog Timer (WWDT)

* Nine flexible serial communication peripherals (which can be configured as a USART, SPI, high-speed SPI, 12C, or 12S
interface)

¢ Programmable Logic Unit (PLU)
¢ One 16-bit 1.0 Msamples/sec ADC, comparator, and temperature sensor

The Cortex-M33 offers 18.2 % performance increase in the same process technology compared to the high-embedded
performance bars established by Cortex-M4 processors, while improving power efficiency. Cortex-M33 official CoreMark is 4.02
CoreMark/MHz, Cortex-M4 official CoreMark is 3.40 CoreMark/MHz.

This application note describes how to port CoreMark code to LPC55xx, which involves setting up software and hardware including
memory partitioning, compiler setting, and board setup. It also describes how to measure CoreMark scores on the Cortex-M33
and the result including CoreMark scores and power consumption in uA/MHz. Separate CoreMark projects for different software
development tools (Keil MDK, IAR EWARM, and MCUXpresso IDE) are also included herewith for reference.

2 Integration of CoreMark library to SDK2.0 framework

The software package associated with this application note contains SDK2.0 based project framework. It allows developers to
drop in the CoreMark library sources and quickly get up and running with benchmarking the LPC55xx. To get started, go to: https://
www.eembc.org/coremark, Click the Download link as shown in Fig. 1 and follow the instructions on the page.
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Figure 1. EEMBC CoreMark download link webpage

After reviewing the license terms, go through the readme and documentation file. The readme provides step-by-step instructions
on unpacking and building the distribution. It also helps in getting familiar with the CoreMark terminology used throughout the
application note.

2.1 Porting CoreMark library into CoreMark framework

There are two variants of CoreMark projects for each IDE. One executes the CoreMark application from internal flash and other
executes the CoreMark application from internal SRAMX

The CoreMark projects are:

1. run_in_flash_xxmhz — Cortex-M33 executes CoreMark application from internal flash.

2. run_in_ramx_xxmhz — Cortex-M33 executes CoreMark application from internal RAM.

The locations of CoreMark projects are:

Keil MDK IDE :

- Ipc5500_coremark_mdk\coremark.uvprojx.eww

IAR Workbench IDE:

- Ipc5500_coremark_iar\coremark.eww

Each of executes settings have four frequency settings : 12 MHz, 48 MHz, 96 MHz and 150 MHz.

Depending on the toolchain, the workspace should look as shown in below figures. The CoreMark framework requires the addition
of the CoreMark files from EEMBC.

2.1.1 CoreMark framework for Keil MDK / IAR EWARM / MCUXpresso IDE

The run_in_xxxx_xxmhz project must be set as active before the CoreMark files can be added.
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Figure 2. Keil MDK CoreMark framework
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Figure 4. MCUXpresso project configuration select

Copy the following files from the CoreMark package downloaded from EEMBC:

- core_list_join.c
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- core_main.c
- core_matrix.c

- core_state.c

- core_util.c

- coremark.h
= barebones 2018/9/28 17:17 File folder
2. cygwin 2018/9/28 1717 File folder
2. docs 2018/9/28 17:17 File folder
2. linux 2018/9/28 1717 File folder
2  linuxgd 2018/9/28 17:17 File folder
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&4 core_list_join.c 2018/5/31 10:42
= core_main.c 2018/5/31 10:42
= core_matrix.c 2018/5/31 10:42
= core_state.c 2018/5/31 10:42
= core_util.c 2018/5/31 10:42 ile

2 caremark.h 2018/5/31 10:42 C Header Source F...

E LICENSE.md 2018/5/31 10:42 Markdown Source ... 19 KB
2 | Makefile 2018/5/31 10:42 File 4 KB
E README.md 2018/5/31 10:42 Markdown Source ... 19 KB

Figure 5. CoreMark files to copy

-For Keil MDK place these files in the project directory

Ipc5500_coremark_mdk\source

-For IAR Embedded Workbench place these files in the project directory

Ipc5500_coremark_iar\source

-For MCUXpresso place these files in the project directory.

Ipc5500_coremark_mcux\source

The files ee_printf.c, core_portme.c and core_portme.h(under port_lpc5500 folder)need to be copied to the following folder
locations.

-For Keil IDE place the files in “lpc5500_coremark_mdk\source”

Add the files into the Keil MDK project framework to the respective groups source by double clicking on the groups.
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Figure 6. Adding files in Keil MDK

Look in: I | source j & B cf B
| Name - ‘ Date modified Type
| docs 2018/9/29 11:46 File folder
| port_Ipc5500 2018/9/29 17:30 File folder
@ core_list_join.c 2018/5/31 10:42 C File
24 @ core_mainc 2018/9/19 11:28 CFile
= [@ core_matrixc 2018/9/18 15:58 CFile
@ core_state.c 2018/5/31 1042 C File
@ core_util.c 2018/5/31 10:42 C File

-For IAR Embedded workbench place the files in “lpc5500_coremark_ian\source”

Add the files into the IAR project framework to the respective groups source by double clicking on the groups.
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Figure 7. Adding files in IAR EWARM workspace
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-For MCUXpresso place the files in “Ipc5500_coremark_mcux\source”

Add the files into the MCUXpresso project framework to the respective groups source by click the “refresh” selection.
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Figure 8. Adding files in MCUXpresso project

Use the core_portme.c and core_portme.h files provided with the application note and not the one from the EEMBC CoreMark
package. For convenience these files have the required porting changes ready for use.

Copy these files to the source folder for all three tool chains and add the core_portme.c file in the project framework under the
source group.

Once all the files have been added, the workspace should look as shown below:
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Figure 9. Keil MDK project workspace after adding CoreMark files
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Figure 10. IAR EWARM workspace after adding CoreMark files
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Figure 11. MCUXpresso project after adding CoreMark files
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A few files need to be modified to support CoreMark and are described below. In the project scatter file change the stack size as
0x2000.

define symbol  size cstack = 0x2000;

To support ‘printf’ statements to a PC terminal, the ‘core_portme.h’ file needs to be modified. Add the following line of code for
ee_printf function.

#if HAS PRINTF

#else

#ifdef COREMARK_ SCORE_TEST

#define ee printf printf

#else

extern int ee printf template(const char *fmt, ...);
#define ee_printf ee printf template

#endif

#endif

#endif

In ‘eeprintf.c’ file, add #ifdef COREMARK_SCORE_TEST and the function ee_printf(const char *fmt,...).

#ifndef COREMARK SCORE TEST
int ee printf template(const char *fmt, ...)

{

return 0;
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}
#endif

This is added so that the printf code is optimized when running the yA/MHz test. In ‘core_portme.h’ there is a #define
COREMARK_SCORE_TEST that dictates whether or not the application is executing the CoreMark score test.

In order to add the path to the header files used in the project, in Keil MDK under Project->Options-> C/C++(ACB) tab, click ‘Include
path’ and add the following paths that contain the header files.

E Options for Target 'run_in_flash_12mhz' |_Z§

Devicel Targetl Outputl Listingl User C/C++(ACE) |Asm | Linkerl Debugl Utilitiesl

— Preproces’
. Folder Setup

Defing

Setup Compiler Include Paths:
Undefing ([ o5rg

source -

— Languagd ||CMSIS |
component/lists

[ Executq component/serial_manager

componentuart

device

[ Link-Tir||doc

drivers

[ SplitLo|||src

[+ OneEL|||startup
utilities |
source\port_|lpc5500

e

Optimizati

Include
Paths

Misc
Controls
Compiler
control
ST 0K | Cancel |

oK Cancel | Defautis | Help

Figure 12. Keil MDK compiler include paths

In IAR under Project->Options-> C/C++ Compiler, click “Preprocessor” and add the following paths that contains the header files.
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Figure 13. IAR EWARM compiler include paths

The CoreMark files have now been successfully ported into the CoreMark project framework

In MCUXpresso under “ Properties for xxxx”->C/C++ Build-> Settings->, click “Includes” and add the following paths that contains

the header files.
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Figure 14. MCUXpresso compiler include paths

The CoreMark files have now been successfully ported into the CoreMark project framework.

2.1.2 CoreMark framework to execute from Internal SRAM
The project run_in_ram_xxmhz executes the CoreMark application from 32 KB SRAMX memory region.

The files core_list_join.c, core_main.c, core_matrix.c, core_state.c and core_util.c are relocated to execute from SRAMX using
the linker scripts.

For Keil MDK the linker script is located at:
Npc5500_coremark_mdk\LPC55S69_cm33_core0_ramx.scf

The linker script setting for run_in_ramx_xxmhz project is shown in Fig 15
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Figure 15. Linker script in Keil IDE

For IAR EWARM IDE to execute CoreMark in Internal SRAM, a line of code needs to be added to the files core_main.c, core_util,c,
core_state.c, core_matrix.c and core_list_join.c, as Fig 18 shows, above #include in all five files.

These CoreMark files are labeled as their own IAR EWARM linker “section” The provided .icf linker file in .\|pc5500_coremark_iar
\LPC55S69_cm33_core0_ramx.icf

then places this section, which is called “critical_text” into SRAMX. To do this, add the following line of code in icf file, as shown
in Fig 16.
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initialize by copy [ readwrite,
do not initialize

if (isdefinedsymbol{ USE_DLIE PERTHREAD))

f

section .textrw };
{ secticn .ncinit };

/* Bequired in a multi-threaded applicaticn */
initialize by copy with packing = none [ section _ DIL.IE PERTHRELD };

}

place
place
place
place
place

place in XCODE_region

at
in
in
in
in

address mem:

TEXT_ region
[DATE region
DATA region
[DATE region

initialize by copy

place in XCODE_region

initialize by copy

m interrupts_start

IH

{

}

readonly secticn .intwvec };
readonly };

block BW }»

block ZI };

last klock HERP }:

section .critical code };

section .critical code }:
object core portme.o,
cbject core_main.o,
object core_liat_join.o,
cbject core matrix.o,
object core state.o,
cbject core_util.o,

cbject core_ portme.o,
object core main.o,
cbject core_list join.o,
object core matrix.o,
cbject core_ state.o,
object core_util.o,

Figure 16. IAR EWARM allocate Code to SRAM area
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Figure 17. Linker script in IAR EWARM

Add»:—:;d below code in the files header area.

#if RUN_IN_RAMX
#pragma default_function_attributes = @ ".critical_code"
#endif

Added below code in the files end-

#1f RUN_IN RAMX
#pragma default_function_attributes =
gendif

Figure 18. IAR EWARM #pragma command

For MCUXpresso to execute CoreMark in Internal SRAM, just selected the linker file as “Ilpc5500_coremark_RUN_IN_SRAMX.Id”
in “Managed Linker Script;as shown in Fig 19..
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Figure 19. MCUXpresso allocate Code to SRAM area

2.2 Optimizing the CoreMark framework

There are many factors that affect the CoreMark and pyA/MHz score that can be optimized. Some of these factors are IDE
dependent optimizations, while others leverage the MCU architecture for better performance. The goal is to be able to produce
the best scores from all three IDEs. It is important to understand that these IDEs are constantly changing and a different version
of a given IDE may add or remove features that may make these optimizations obsolete or ineffective. The following are the IDE
versions that are applicable to this application note:

Keil MDK v5.28
IAR EWARM 8.40.2
MCUXpresso 11.0.1_2563
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2.2.1 Memory considerations

Due to the inherent architecture of SRAM and flash, CoreMark executes faster when running out of SRAM. The LPC55xx internal
memory uses a multilayer AHB matrix system that provides a separate instruction and data bus for Cortex-M33 and SRAMX bank.
See Fig 20. SRAMO to SRAM4 are on System bus. Placing the CoreMark code and data in different SRAM, banks minimizes bus
contention and improves instruction and data parallelism.

Itis important to minimize the flash wait states according to the MCU frequency to optimize the CoreMark score. In contrast, when
performing the yA/MHz test, it is possible to save power by disabling the prefetch ability of flash. The LPC55xx user manual
contains more information on configuring the flash memory, such as the minimum number of wait states allowed at a given core
frequency.

The provided CoreMark framework projects include separate SRAM and flash based projects that implement various memory
optimizations.
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Figure 20. LPC55Sxx AHB matrix

In both the SRAM and flash projects, there is a COREMARK_SCORE_TEST macro defined in core_portme.h, that indicates
whether the project is configured to execute the CoreMark benchmark or the yA/MHz test. If this macro is defined, the CoreMark
score test runs. If this macro is commented out, the yA/MHz test runs. Use this macro to switch between the two benchmarks.

2.2.2 IDE Optimization Setting

The following optimizations are compiler based and therefore IDE dependent. These optimizations apply to both the SRAM and
flash based projects.

2.2.2.1 Keil optimizations
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There are two compiler optimizations that can be done to improve the CoreMark score. In Project->Options and under the C/C+
+(ACB) tab, the optimization level needs to be set as “-mcpu=Cortex-m33 --target=arm-arm-none-eabi -Omax -g -mthumb -

mfpu=fpv5-sp-d16 -mfloat-abi=hard -fno-common -ffp-mode=fast” in Misc Ctonrols.

E Options for Target ‘run_in_flash_12mhz’

[ 2
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Misc I—xc —target=arm-arm-none-eabi -mfpu=fpv5-sp-d16 -mfloat-abi=hard -Wno-pedantic -Wno-padded -Wno-unus:
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S

Figure 21. Keil MDK CoreMark score optimization

When benchmarking the power consumption of the MCU, the optimization setting must be set to Level 0 (-O0) and “Optimized

for time” must be unchecked.

LPC55xx CoreMark on Cortex-M33 Porting Guide, Rev. 1, December 2019

Application Note

20/33



NXP Semiconductors

Integration of CoreMark library to SDK2.0 framework

E Options for Target 'run_in_ramx_96mhz’ | X
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Figure 22. Keil MDK pA/MHz optimization

2.2.2.2 |AR Optimization

There are two compiler optimizations that can be done to improve CoreMark score. Set the optimization level to “High’ select

“Speed” from the drop down menu and check the “No size constraints” checkbox
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Options for node "coremark”
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Figure 23. IAR EWARM CoreMark score optimization

When benchmarking the power consumption of the MCU, the optimization level should be set to “None”
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Figure 24. IAR EWARM pA/MHz optimization

2.2.2.3 MCUXpresso Optimization

There are two compiler optimizations that can be done to improve CoreMark score. Set the optimization level to “-O3” so please

select “Optimize most(-O3)” from the drop down menu.
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Properties for Ipc5500_coremark — |EI |_Z
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Figure 25. MCUXpresso CoreMark score optimization

When benchmarking the power consumption of the MCU, the optimization level should be set to “None(-O0)”
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. Properties for lpc5500_coremark

type fitter text

=1of:

Settings TRYY

- Resource
- Builders
- CfC++ Buid

- Buid Variables
-Environment
-Logging
-MCU settings
-Settings
‘- Tool Chain Editor

Configuration: |RUN_IN_SRAMX_48MHz [ Active ] v | Manage Configurations...

i Tool Settings |.ﬁ' Build stepsl Build Amfactl Binary Parsers| & Error Parsersl

B8 MCU C Compiler
@ Dialect

Optimization Level

INone (-00) ﬂ

- CfC++ General

- Project References

- Task Tags

- MCUXpressa Config Tot

- Refactoring History
- Run/Debug Settings

- Preprocessor
- Includes
- Optimization
- Debugging
-2 Warnings
(2 Miscellaneous

Other optimization flags | -fno-common
[~ Enable Link-time optimization (-fito)
[¥ | Fati o obijects (-fat-lio-objects)

& Validation - Architecture
- TrustZone
-8 MCU Assembler
- General
(% Architecture & Headers
=& MCU Linker
(% General
(2 Libraries
(2 Miscelaneous
~(# sShared Library Settings
(2 Architecture
~(# Managed Linker Script
(2 Multicore
-(# TrustZone
E-§ MCU Debugger
@ Debug

Restore Defaultsl Apply

@ Apphy and Cbsel

Figure 26. MCUXpresso pA/MHz optimization

Cancel

3 Measuring CoreMark on board

3.1 LPC55S69Xpresso board

The LPC55S69Xpresso board supports a VCOM serial port connection via P6. To observe debug messages from the board set

the terminal program to the appropriate COM port and use the setting ‘115200-8-N-1-none. To make the debug messages easier
to read, the new line receive setting should be set to auto.

3.2 Board Setup
The LPC55S69 Rev A1 development board is used for benchmarking
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Figure 27. LPC55S69Xpresso board

The board ships with CMSIS-DAP debug firmware programmed. Visit the following FAQ for more information on CMSIS_DAP
debug firmware: hitps://www.nxp.com/downloads/en/software/lpc_driver_setup.exe For debugging and terminal debug
messages, connect a USB cable to P6 USB connector. Board schematics are available on www.nxp.com.

3.2.1 pA/MHz measurement setup

To measure the LPC5500 power consumption, remove R92, install header at P13, and connect ammeter across P13 as shown
in Figure 28.

NOTE
The current data on EVK maybe little higher than datasheet, due to the EVK have more other components may
cost more power.
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Figure 28. pA/MHz measurement setup

If we need measurement the MCU core current, we need rework the board by removing the R92. Then we can measure the
current through P13 by multimeter.

While performing the yA/MHz benchmark, use P6 USB connector to provide power to the board. After the yA/MHz benchmark
project has been downloaded, power cycling the board by removing the USB cable, and reinsert to make sure that the debug
probe is not connected.

The baud rate setting for debug messages is 115200. It can be changed in core_potme.c file.
Line209 config.baudRate_Bps = 115200;

Similarly, by selecting different configuration projects in workspace window, the core clock frequency can be changed. Each of
the configuration may enable below defined project configuration settings:

RUN_IN_12MHZ
RUN_IN_48MHZ
RUN_IN_96MHZ
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RUN_IN_150MHZ

3.3 Run CoreMark code

The first step to get CoreMark result is to connect the connector P6 of the board with PC. Then the PC recognizes the LPC-Link2
debugger with a Simulate Serial Port as shown in Fig 29 .

If PC cannot find the serial port driver, download the LPCScrypt from below link, and install on your PC.

https://www.nxp.com/support/developer-resources/software-development-tools/lpc-developer-resources-/Ipc-microcontroller-
utilities/Ipcscrypt-v2.0.0:LPCSCRYPT ?tab=Design_Tools_Tab

=4 Device Manager . ' — |l= B X

File Action View Help
e | T E HE & E %o

> -Bal Monitors I
4 IE¥F Network adapters
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> - Smart card readers
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> -\l System devices

b - H Universal Serial Bus controllers

m

Figure 29. LPC-Linkll UCom Port

Open a UART debug terminal (like Tera Term, putty, etc.), and configure as 115200, 8 data bits, no parity, 1 stop bit, refer Fig 30.
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Result

C 8 Tera . [di;——mme dem?__|g|ﬁp|ﬂ

File Edit Setup Control Window Help

1l »

Port: COM241 >

Baud rate: 115200 -

Data: 8 bit -

Parity: |n0ne > ‘

Stop: 1 bit -

Flow control: none -

Transmit delay

0 msecfchar mseciline

Figure 30. UART debug terminal configuration

Once the CoreMark necessary files are added into the project (by following Chapter 2.1 instructions), compile the project and
download to the LPC5500Xpresso board.

Click reset button, the CoreMark benchmark prints on the terminal after a few seconds, like Fig 31 in Chapter 4.

4 Result

Figure 31 shows the CoreMark benchmark result when running LPC5500 at 96 MHz core frequency in IAR. The CoreMark
benchmark score is the number of iterations per second. The CoreMark/MHz score executing from internal flash for this run is
372.786580/96 MHz = 3.883 CoreMark/MHz .
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Figure 31. CoreMark result

Table 1 shows typical CoreMark score when benchmarked on Keil MDK, IAR EWARM and MCUXpresso IDE when running from

internal flash and SRAM at 96 MHz

core frequency.

Table 1. LPC55S69Xpresso board CoreMark/MHz Score

IDE CoreMark/MHz Score(SRAMX) CoreMark/MHz Score(Flash)
KEIL MDK 4.021 2.333
IAR EWARM 3.887 2.435
MCUXpresso 2.843 2.016

NOTE
Test under 96 MHz

For pA/MHz, following tables show typical results when running on the LPCXpresso55S69 board with VDD = 3.3 V at room
temperature. Fig 24 compares the three IDEs in terms of power consumption.

NOTE

The current data on EVK maybe little higher than datasheet, due to the EVK have more other components may

cost more power.

NOTE

The average current in 150MHz will higher than other modes, the reason is 150Mhz will enable PLL, the PLL cost

more power.
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Result
Table 2. Keil MDK pA/MHz score
Frequency Avg. Power pA/MHz Avg. Power pA/MHz
Consumption (mA, Score Consumption (mA, Score
SRAM X) (SRAM X) Flash) (Flash)
12 MHz 1.34 111.67 1.35 112.50
48 MHz 2.68 55.84 2.72 56.67
96 MHz 3.89 40.53 3.95 4114
150 MHz 724 48.27 6.30 42.00
Table 3. IAR EWARM pA/MHz score
Frequency Avg. Power HA/MHz Avg. Power HA/MHz
Consumption (mA, Score Consumption (mA, Score
SRAM X) (SRAM X) Flash) (Flash)
12 MHz 148 123.34 1.29 10750
48 MHz 2.63 54.80 3.32 69.17
96 MHz 3.96 41.25 4.28 44.59
150 MHz 7.63 50.87 7.56 50.40
Table 4. MCUXpresso yA/MHz score
Frequency Avg. Power pA/MHz Avg. Power pA/MHz
Consumption (mA, Score Consumption (mA, Score
SRAM X) (SRAM X) Flash) (Flash)
12 MHz 1.33 110.84 1.19 115.84
48 MHz 2.40 50.00 2.41 50.03
96 MHz 3.64 37.92 3.58 37.30
150 MHz 719 4794 6.57 43.80
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Figure 32. yA/MHz IDE comparison

5 Conclusion

Three types of CoreMark benchmarking on the LPC55xx are presented in this document with different IDEs (Keil, IAR,

MCUXpresso):

CoreMark score, power consumption, and pA/MHz.

It also describes how to optimize the benchmark results when running the benchmark out of internal SRAM and flash.

The CoreMark results are measured on LPCXpresso55S69. The best CoreMark number is 4.021, achieved by using KEIL
MDK(Arm Compiler 6.12) and running CoreMark from SRAM X. The best CoreMark power consumption in yA/MHz is 37.30,
achieved by running CoreMark from flash when core frequency is 96 MHz.
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