AN12284
LPC55xx CoreMark on Cortex-M33 Porting Guide

Rev. 1 — December 2019 Application Note
. Contents
1 Introduction 1 Introduction.........cceemrvernrnniennseeniaenans 1
CoreMark, developed by EEMBC, is a simple, yet sophisticated benchmark 2 Integration of CoreMark library to
that is designed specifically to test the functionality of an embedded processor SDK2.0 framework........cccuceerrssenrsnnas 1
core. Running CoreMark produces a single-number score allowing users to 2.1 Porting CoreMark library
make quick comparisons between processors. into CoreMark framework........ 2
2.2 Optimizing the CoreMark
LPC55xx is an Arm® Cortex® -M33 based microcontroller for embedded framework....o 18
applications. These devices include: .
3 Measuring CoreMark on board......... 25
¢ An Arm Cortex-M33 coprocessor 3.1 LPC55S69Xpresso board..... 25
. . 3.2 Board Setup.......ccoeeeviveernen. 25
CASPER Crypto/FFT engine 3.3 Run CoreMark code.............. 28
* PowerQuad hardware accelerator for DSP functions 4 ReSUlL.......eeriececerr e 29
* Up to 320 KB of on-chip SRAM, up to 640 KB on-chip flash 5 ConClUSION......covereerereerecerereeereeans 32
* PRINCE module for on-the-fly flash encryption/decryption 6 Reference.......cccccoecerereercrsesscesannsceas 32
* High-speed and full-speed USB host and device interface with crystal- 7 ReViSion iStOry.......oweeeeeesseesseessees 32

less operation for full-speed, SDIO/MMC
* Five general-purpose timers, one SCTimer/PWM, one RTC/alarm timer
* One 24-bit Multi-Rate Timer (MRT)
¢ A Windowed Watchdog Timer (WWDT)

* Nine flexible serial communication peripherals (which can be configured as a USART, SPI, high-speed SPI, 12C, or 12S
interface)

¢ Programmable Logic Unit (PLU)
¢ One 16-bit 1.0 Msamples/sec ADC, comparator, and temperature sensor

The Cortex-M33 offers 18.2 % performance increase in the same process technology compared to the high-embedded
performance bars established by Cortex-M4 processors, while improving power efficiency. Cortex-M33 official CoreMark is 4.02
CoreMark/MHz, Cortex-M4 official CoreMark is 3.40 CoreMark/MHz.

This application note describes how to port CoreMark code to LPC55xx, which involves setting up software and hardware including
memory partitioning, compiler setting, and board setup. It also describes how to measure CoreMark scores on the Cortex-M33
and the result including CoreMark scores and power consumption in uA/MHz. Separate CoreMark projects for different software
development tools (Keil MDK, IAR EWARM, and MCUXpresso IDE) are also included herewith for reference.

2 Integration of CoreMark library to SDK2.0 framework

The software package associated with this application note contains SDK2.0 based project framework. It allows developers to
drop in the CoreMark library sources and quickly get up and running with benchmarking the LPC55xx. To get started, go to: https://
www.eembc.org/coremark, Click the Download link as shown in Fig. 1 and follow the instructions on the page.

h
P

https://www.eembc.org/coremark
https://www.eembc.org/coremark

NXP Semiconductors

Integration of CoreMark library to SDK2.0 framework

C & htps//www.eembc.org/coremark k<4
Bc EMBEDDED MICROPROCESSCR
BENCHMARK CONSORTIUM

Member & Licensee Request Members Licensees + Benchmarks Newsletter Press Library » About

CoreMark®

An EEMBC Benchmark

Download gecores - Submit Score - Google Group

About - FAG

About

EEMBC's CoreMark® is a benchmark that measures the performance of microcontrollers (MCUs) and central processing units (CPUs) used in embedded

Figure 1. EEMBC CoreMark download link webpage

After reviewing the license terms, go through the readme and documentation file. The readme provides step-by-step instructions
on unpacking and building the distribution. It also helps in getting familiar with the CoreMark terminology used throughout the
application note.

2.1 Porting CoreMark library into CoreMark framework

There are two variants of CoreMark projects for each IDE. One executes the CoreMark application from internal flash and other
executes the CoreMark application from internal SRAMX

The CoreMark projects are:

1. run_in_flash_xxmhz — Cortex-M33 executes CoreMark application from internal flash.

2. run_in_ramx_xxmhz — Cortex-M33 executes CoreMark application from internal RAM.

The locations of CoreMark projects are:

Keil MDK IDE :

- Ipc5500_coremark_mdk\coremark.uvprojx.eww

IAR Workbench IDE:

- Ipc5500_coremark_iar\coremark.eww

Each of executes settings have four frequency settings : 12 MHz, 48 MHz, 96 MHz and 150 MHz.

Depending on the toolchain, the workspace should look as shown in below figures. The CoreMark framework requires the addition
of the CoreMark files from EEMBC.

2.1.1 CoreMark framework for Keil MDK / IAR EWARM / MCUXpresso IDE

The run_in_xxxx_xxmhz project must be set as active before the CoreMark files can be added.

LPC55xx CoreMark on Cortex-M33 Porting Guide, Rev. 1, December 2019
Application Note 2/33

NXP Semiconductors

Integration of CoreMark library to SDK2.0 framework

R

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

N 4@ 4 a@d|2c|es|dRrAR

iEE .-".-"é|] 5tartup_|pc55569_cn|:|

Project

run_in_ramx_12mhz E
run_in_ramz_48mhz

) fad run_in_fla run_in_flash_12mhz

run_in_flash_48mhz

run_in_flash_96mhz
]

Figure 2. Keil MDK CoreMark framework

i e | ¥ | |run_'|n_ﬂash_12mhza £§| dh o Y

< Nas)

\ar =d Workbench
File Edit

View Project CMSIS-DAP Tools Window Help

rur_in_ramx_12mhz
run_in_rarmx_48mhz
rur_in_rarmx_96mhz
rur_in_flash_12mzh
rur_in_flash_48mzh
rur_in_flash_96mhz
clock_config.c
F— B clock_config.h
pin_mux.c
I— n II [Tl

B companent
M device

B doc

M drivers

Figure 3. IAR EWARM workspace

LPC55xx CoreMark on Cortex-M33 Porting Guide, Rev. 1, December 2019

Application Note

3/33

NXP Semiconductors

Integration of CoreMark library to SDK2.0 framework

k.4 |pco500_coremark_mcux - Welcome page - MCUXpresso IDE

Fle Edit Navigate Search Project ConfigTools Run

FreeRTOS Window Help

Anlh | B~ R~ @ @~viBiw| ' 2. 2 R Bl Ex DRSSP
5 Proj... 22 2 Peri.. {ilfReqgi.. 3¢ Faults £ sy... = O readme. b @ Welcome 32
oG @% @~ ~ & [file:///C:/nxp/MCUXpressoIDE_10.3.0_2187_prc3/ide/|
E‘L’_i:' an ; AL BALY a
- Project 5S¢ New ¢ :
-5 Includes Go Into ‘ '
E-@8 CMSIS QOpen in New Window ‘ k
@ board Show in Local Terminal v
-2 componer 2 T iy g
#-2 device |5 Copy Ctrl+C T .
E-(2 drivers | [[3 Paste Ctri+V -:3'|' —
-2 libs 3¢ Delete Delete
-2 source Source 3
B startup Mawe,,, 1
B2 utiities Rename... F2
#i= RUN_IN_F Welcome t
= RUN_IN_F = Import...
B-E= RUN_IN_F w2 Export... MCUXpresso IDE provides an easy-to-use Eclips
B-E= RUN_IN_S . Cortex®-M cores, including LPC and Kinetis micn
0= RUN_IN_§ Buid PFOJ?Ct editing, compiling, and debugging features with th
B RUN_IN_€ Clean Project multicore debugging, and integrated configuration
= UAMHz_IN Refresh F5 Your installation of MCUXpresso IDE is ready to t
-0 UAMHZ_IN Close Project required.
B UAMHzZ_IN Close Unrelated Projects Documentation
BRI Buid Configurations v 1 RUN_IN_FLASH_12MHz MCUX;
i UAMHZ N g i Targets » Manage... 2 RUN_IN_FLASH_48MHz 5 IDE Us
EE UAMHZ N 1y 3 RUN_IN_FLASH_96MHz e
B dee EL 4 RUN_IN_SRAMX_12MHz N
Validate Clean Al 5 RUN_IN_ SRAMX_48MHz bd within
J Quic... Glob. | RUNAS N & RUN_IN_SRAMX_96MHz
Earlies ' » 7 uAMHz_IN_FLASH_12MHz)
Profile As C stalled 5 g emo
5 8 uAMHz_IN_FLASH_48MHz
. MCUXp Restore from Local History... I
=€ | Project: lpc Launch Configurations » b consoles to display at o uAMH; Iﬁ SRAM_X e
~ Create or imp« . ggﬁanagement : 11 uAMHz_IN_SRAMX_48MHz
- . New prc Took . 12 uAMHz_IN_SRAMX_96MHz
B8 1mport : [mMCuXpresso Config Tools v
® Import | 4% Run C/C++ Code Analysis
~ Build your pro Team ’
Compare With +
el A, Buid Configure 3
& Clean e v
~ Debua vour pi properties Alt+Enter
4 T ==l

L lnrEEAn ~Aaramard

Figure 4. MCUXpresso project configuration select

Copy the following files from the CoreMark package downloaded from EEMBC:

- core_list_join.c

LPC55xx CoreMark on Cortex-M33 Porting Guide, Rev. 1, December 2019

Application Note 4/33

NXP Semiconductors

Integration of CoreMark library to SDK2.0 framework

- core_main.c
- core_matrix.c

- core_state.c

- core_util.c

- coremark.h
= barebones 2018/9/28 17:17 File folder
2. cygwin 2018/9/28 1717 File folder
2. docs 2018/9/28 17:17 File folder
2. linux 2018/9/28 1717 File folder
2 linuxgd 2018/9/28 17:17 File folder
@ . simple 2018/9/28 1717 File folder
&4 core_list_join.c 2018/5/31 10:42
= core_main.c 2018/5/31 10:42
= core_matrix.c 2018/5/31 10:42
= core_state.c 2018/5/31 10:42
= core_util.c 2018/5/31 10:42 ile

2 caremark.h 2018/5/31 10:42 C Header Source F...

E LICENSE.md 2018/5/31 10:42 Markdown Source ... 19 KB
2 | Makefile 2018/5/31 10:42 File 4 KB
E README.md 2018/5/31 10:42 Markdown Source ... 19 KB

Figure 5. CoreMark files to copy

-For Keil MDK place these files in the project directory

Ipc5500_coremark_mdk\source

-For IAR Embedded Workbench place these files in the project directory

Ipc5500_coremark_iar\source

-For MCUXpresso place these files in the project directory.

Ipc5500_coremark_mcux\source

The files ee_printf.c, core_portme.c and core_portme.h(under port_lpc5500 folder)need to be copied to the following folder
locations.

-For Keil IDE place the files in “lpc5500_coremark_mdk\source”

Add the files into the Keil MDK project framework to the respective groups source by double clicking on the groups.

LPC55xx CoreMark on Cortex-M33 Porting Guide, Rev. 1, December 2019
Application Note 5/33

NXP Semiconductors

Integration of CoreMark library to SDK2.0 framework

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

i
i
nil

N d@| & @]9 e co|® i B R

E JE .f.-";‘_:| o 5tartup_|pc55569_cn|:|) Qﬁ| @| o Oy

=k i e | 5&” run_Tn_ﬁash_12mhz|T| §;\| e Y@

Eﬁ' run_in_flash_12mhz

7 poard

g CMSIS

71 component/lists

-3 component/serial_manager

7 device
50 doc

oL drivers
=5 source

E
B
E
B
@3 component/uart
B
E
B

Figure 6. Adding files in Keil MDK

Look in: I | source j & B cf B
| Name - ‘ Date modified Type
| docs 2018/9/29 11:46 File folder
| port_Ipc5500 2018/9/29 17:30 File folder
@ core_list_join.c 2018/5/31 10:42 C File
24 @ core_mainc 2018/9/19 11:28 CFile
= [@ core_matrixc 2018/9/18 15:58 CFile
@ core_state.c 2018/5/31 1042 C File
@ core_util.c 2018/5/31 10:42 C File

-For IAR Embedded workbench place the files in “lpc5500_coremark_ian\source”

Add the files into the IAR project framework to the respective groups source by double clicking on the groups.

LPC55xx CoreMark on Cortex-M33 Porting Guide, Rev. 1, December 2019

Application Note

6/33

NXP Semiconductors

Integration of CoreMark library to SDK2.0 framework

Figure 7. Adding files in IAR EWARM workspace

Workspace v+ 31X
[run_in_ﬂashj Zmzh -
Files E+ S o
B @ coremark - run_in_flash_12mzh b
B board
o CHSIS
B component
M device
B doc
M drivers
M libs
B linkcfy
m=l |=0urce L [
i - 3
@ Add Files - source
@Ov‘ }. « SW » |pcS5Sxx_coremark_iar b source
.
Organize - Mew folder
— Fa
Name Date modified
[
= & | docs 2018/9/29 11:46
.
I. port_lpc3500 2018/9/29 15:27
— (@ core_list_join.c 2018/9/29 14:46
__m |j| core_main.c 2018/9/29 14:.09
I Corems |j| core_matrix.c 2018/9/29 15:04
Build |_'1| core_state.c 2018/5/31 10:42
|9 core_util.c 2018/5/31 10:42
kes
‘ s @ coremark.h 2018/9/29 11.50

-For MCUXpresso place the files in “Ipc5500_coremark_mcux\source”

Add the files into the MCUXpresso project framework to the respective groups source by click the “refresh” selection.

LPC55xx CoreMark on Cortex-M33 Porting Guide, Rev. 1, December 2019

Application Note

7133

NXP Semiconductors

Integration of CoreMark library to SDK2.0 framework

k4 Ipc5500_coremark_mcux - Welcome page - MCUXpresso IDE
Fle Edit MNavigate Search Project ConfigTools Run FreeRTOS Window Help

iu R E-RA NA-¥ ®~viBin|puExe e FTR|H
&5 Proj... 22 2 Peri... i Regi... %F Faults Xs5y.. = O readme. b & Welcome 2
Gl s% @ ~ & [file:///C:/nxp/MCUXp
B8 Ipc5500_coremark <RUN_IN_FLASH_12MHz= A
& Project Settings
#-) Includes
-2 CMSIS
&3 board
-2 component
-2 device
-2 drivers
B3 libs
o _IDE
Beg dg NeW '
5o p Golto
® 12 € Open in New Window B
#18 € ghowin Local Terminal ’
=g o MCUXpresso Il
=g o [E Copy Ctri+C Cortex®-M cort
=-[g o Paste Oy editiljg. compili
multicore debuy
% [o 3 Dekete Delete -
#=-[g %€ Source v Your installation
..... 20U Move.. required.
""" Lo M Rename... F2 Documentation
..... I:El R
) For information
Eg i?rge 2 gﬁ: please consult
I % Help -> MCI
«| Rl & Refresh FS IJ .
urther produc
D Quic... Index ’ & Help -> Hel|
Build Targets r
Resource Configurations a8 Installed S Properties B G
EYAa Ml J

Figure 8. Adding files in MCUXpresso project

Use the core_portme.c and core_portme.h files provided with the application note and not the one from the EEMBC CoreMark
package. For convenience these files have the required porting changes ready for use.

Copy these files to the source folder for all three tool chains and add the core_portme.c file in the project framework under the
source group.

Once all the files have been added, the workspace should look as shown below:

LPC55xx CoreMark on Cortex-M33 Porting Guide, Rev. 1, December 2019
Application Note 8/33

NXP Semiconductors

Integration of CoreMark library to SDK2.0 framework

File Edit Wiew Project Flash Debug Peripherals Tools SVCS Window Help
ﬁﬁﬂﬂ|%—dﬁ$|4f"|<“>|?ﬂﬂ'&| S JE | B star
Project ﬂﬁ

iy
"
g
“m

EI---@ run_ln_ﬂash_l2mhz

w3 poard

w0 cMsIs

m- component/lists

= component/serial_manager
m- component/uart

- device

@8 doc

: drivers

source

core_list_join.c
core_main.c
core_matrix.c
core_state.c
core_util.c
core_portme.c

ee_printf.c
03 startup
FH- ytilities

Project Books | 1} Functions | (] Templates,
Y

Figure 9. Keil MDK project workspace after adding CoreMark files

LPC55xx CoreMark on Cortex-M33 Porting Guide, Rev. 1, December 2019
Application Note 9/33

NXP Semiconductors

Integration of CoreMark library to SDK2.0 framework

File Edit View Project CMSIS-DAP Tools Window Help
MR = XKL OC < Q> &= < 0>

Workspace - 0 X

’run_in_ﬂash_12mzh v]

Files O e
2 @ coremark - run_in_flash_12mzh o

M board

o CHSIS

B component

M device
B doc

M drivers
M libs

B linkcfy
=N |s0urce
— [core_list_join.c
— [l care_main.c
— [&] care_matrix.c
— [l core_porme.c
— &l core_porme.h
— [l care_state.c
— [care_util.c

— [l caremark.h
— Elee_printf.c

B startup

M utilities

I coremark

Figure 10. IAR EWARM workspace after adding CoreMark files

LPC55xx CoreMark on Cortex-M33 Porting Guide, Rev. 1, December 2019
Application Note 10/33

NXP Semiconductors

Integration of CoreMark library to SDK2.0 framework

el e B B

El---[:__£. Ipc5500_coremark <RUN_IN_FLASH_12MHz= (B
- Project Settings

ERES] source

1= docs

(== port_lpcs500
/- [g] core_list_join.c
/- [€ core_main.c

7 [£ core_matrix.c
7€ core_state.c
|
|
|

-[€] core_uti.c

-[n] coremark.h

€ semihost_hardfault.c
----- |2 LICENSE.md

----- | & Makefie

----- |2 README.md

-2 startup

-2 utilities

|[II---|$:'; RUN IN FLASH 12MHz | _lj
4 4

Figure 11. MCUXpresso project after adding CoreMark files

e OO N o OO e OO s IO e OO o OO o OO o

A few files need to be modified to support CoreMark and are described below. In the project scatter file change the stack size as
0x2000.

define symbol size cstack = 0x2000;

To support ‘printf’ statements to a PC terminal, the ‘core_portme.h’ file needs to be modified. Add the following line of code for
ee_printf function.

#if HAS PRINTF

#else

#ifdef COREMARK_ SCORE_TEST

#define ee printf printf

#else

extern int ee printf template(const char *fmt, ...);
#define ee_printf ee printf template

#endif

#endif

#endif

In ‘eeprintf.c’ file, add #ifdef COREMARK_SCORE_TEST and the function ee_printf(const char *fmt,...).

#ifndef COREMARK SCORE TEST
int ee printf template(const char *fmt, ...)

{

return 0;

LPC55xx CoreMark on Cortex-M33 Porting Guide, Rev. 1, December 2019
Application Note 11/33

NXP Semiconductors

Integration of CoreMark library to SDK2.0 framework

}
#endif

This is added so that the printf code is optimized when running the yA/MHz test. In ‘core_portme.h’ there is a #define
COREMARK_SCORE_TEST that dictates whether or not the application is executing the CoreMark score test.

In order to add the path to the header files used in the project, in Keil MDK under Project->Options-> C/C++(ACB) tab, click ‘Include
path’ and add the following paths that contain the header files.

E Options for Target 'run_in_flash_12mhz' |_Z§

Devicel Targetl Outputl Listingl User C/C++(ACE) |Asm | Linkerl Debugl Utilitiesl

— Preproces’
. Folder Setup

Defing

Setup Compiler Include Paths:
Undefing ([o5rg

source -

— Languagd ||CMSIS |
component/lists

[Executq component/serial_manager

componentuart

device

[Link-Tir||doc

drivers

[SplitLo|||src

[+ OneEL|||startup
utilities |
source\port_|lpc5500

e

Optimizati

Include
Paths

Misc
Controls
Compiler
control
ST 0K | Cancel |

oK Cancel | Defautis | Help

Figure 12. Keil MDK compiler include paths

In IAR under Project->Options-> C/C++ Compiler, click “Preprocessor” and add the following paths that contains the header files.

LPC55xx CoreMark on Cortex-M33 Porting Guide, Rev. 1, December 2019
Application Note 12/33

NXP Semiconductors

Integration of CoreMark library to SDK2.0 framework

{ Options for node "coremark” P _
Category: [Factary Settings I
hulti-file C ilati
General Options D LIS -ompraen
Static Analysis Discard Unused Publics
Runtime Chedking Diagnostics | MISRA-C2004 | MISRA-C:1998 | Encodings | Extra Options |
Language 1 | Language 2 | Code | Optimizations | Output | List | Preprocessor
Assembler
Output Converter ["|ignore standard include directories
Custom Build
u_s " _m Additional include directories: (one per ling)
Build Actions
inke $PROJ_DIR$/src o~ E]
Linker $PROJ_DIRS/startup
Debugger = S T TR N =3
I Simulatar $PROJ_DIRS%/source =
CADI $PROJ_DIRS/sourcefport_Ipc5500 -
i CMSLS DAP Preinclude file:
" GFJB Serve-r E]
I4jet/ITAGjet
Hink/1-Trace Defined symbols: (one per ling)
11 stellaris DEBUG o~ []Preprocessor outputto file i
Nu-Link CPU_LPCSSSGB.JBD1GG_cm33_C|EI Preserve comments -
PE micro RUN_IN_12MHZ Generate #line directives
RUN_IN_FLASH -
ST-LINK E
Third-Party Driver
TI MSP-FET
TIXDS
(0]] ’ Cancel

.

Figure 13. IAR EWARM compiler include paths

The CoreMark files have now been successfully ported into the CoreMark project framework

In MCUXpresso under “ Properties for xxxx”->C/C++ Build-> Settings->, click “Includes” and add the following paths that contains

the header files.

LPC55xx CoreMark on Cortex-M33 Porting Guide, Rev. 1, December 2019

Application Note

13/33

NXP Semiconductors

Integration of CoreMark library to SDK2.0 framework

el e B B

EH=S |pc5500_coremark <RUN_IN_FLASH_12MHz= (B
@ Project Settings
,ﬂ] Includes
-2 CMSIS
-2 board
-2 component
-2 device
-2 drivers
-2 libs
g& source|
= docs
H-= port_lpc5500
- €] core_list_join.c =
- [€] core_main.c
- €] core_matrix.c
E
E
E
E

7€ core_state.c

7€ core_util.c

/- [n] coremark.h

7€ semihost_hardfault.c
----- |2 LICENSE.md

----- | & Makefie

----- |2 README.md

-2 startup

B-(2 utilities

|[II---|$:'; RUN IN FLASH 12MHz | _lj
4 4

Figure 14. MCUXpresso compiler include paths

The CoreMark files have now been successfully ported into the CoreMark project framework.

2.1.2 CoreMark framework to execute from Internal SRAM
The project run_in_ram_xxmhz executes the CoreMark application from 32 KB SRAMX memory region.

The files core_list_join.c, core_main.c, core_matrix.c, core_state.c and core_util.c are relocated to execute from SRAMX using
the linker scripts.

For Keil MDK the linker script is located at:
Npc5500_coremark_mdk\LPC55S69_cm33_core0_ramx.scf

The linker script setting for run_in_ramx_xxmhz project is shown in Fig 15

LPC55xx CoreMark on Cortex-M33 Porting Guide, Rev. 1, December 2019
Application Note 14/33

NXP Semiconductors

Integration of CoreMark library to SDK2.0 framework

E Options for Target 'run_in_ramx_12mhz’ el

Devicel Targetl Outputl Listingl User | CjC++ {ACG}' Asm Linker |Debug| Utilitiesl

[~ Use Memory Layoutfrom Target Dialog ¥/O Base: I

[Make RW Sections Position Independent R/O Base: IDxﬂ-D-I}D-I}Dﬂ-D

Make RO Sections Position Independent
r P R/W Base |moﬂ4mm
[~ Don'tSearch Standard Libraries

[v Report'mightfail' Conditions as Errars disable Wamings: I

| LPCE5569_cm33_corel_ramx.scf

Misc Ebsfkeil_lib_power.lib -
controls remove L
Linker |-cpu=Cortex-M33".0 -
control |~library_type=microlib —-strict —scatter "LPC55569_cm33_corel_ramx scf'
string |libs/keil_lib_power lib ~-remove —-summary_stderr —-info summarysizes --map --load_addr_map_info -xref--ca ¥

OK Cancel Defaults Help

|

Figure 15. Linker script in Keil IDE

For IAR EWARM IDE to execute CoreMark in Internal SRAM, a line of code needs to be added to the files core_main.c, core_util,c,
core_state.c, core_matrix.c and core_list_join.c, as Fig 18 shows, above #include in all five files.

These CoreMark files are labeled as their own IAR EWARM linker “section” The provided .icf linker file in .\|pc5500_coremark_iar
\LPC55S69_cm33_core0_ramx.icf

then places this section, which is called “critical_text” into SRAMX. To do this, add the following line of code in icf file, as shown
in Fig 16.

LPC55xx CoreMark on Cortex-M33 Porting Guide, Rev. 1, December 2019

Application Note 15/33

NXP Semiconductors

Integration of CoreMark library to SDK2.0 framework

initialize by copy [readwrite,
do not initialize

if (isdefinedsymbol{ USE_DLIE PERTHREAD))

f

section .textrw };
{ secticn .ncinit };

/* Bequired in a multi-threaded applicaticn */
initialize by copy with packing = none [section _ DIL.IE PERTHRELD };

}

place
place
place
place
place

place in XCODE_region

at
in
in
in
in

address mem:

TEXT_ region
[DATE region
DATA region
[DATE region

initialize by copy

place in XCODE_region

initialize by copy

m interrupts_start

IH

{

}

readonly secticn .intwvec };
readonly };

block BW }»

block ZI };

last klock HERP }:

section .critical code };

section .critical code }:
object core portme.o,
cbject core_main.o,
object core_liat_join.o,
cbject core matrix.o,
object core state.o,
cbject core_util.o,

cbject core_ portme.o,
object core main.o,
cbject core_list join.o,
object core matrix.o,
cbject core_ state.o,
object core_util.o,

Figure 16. IAR EWARM allocate Code to SRAM area

LPC55xx CoreMark on Cortex-M33 Porting Guide, Rev. 1, December 2019

Application Note

16/33

NXP Semiconductors

Integration of CoreMark library to SDK2.0 framework

(5%

Options for node "coremark”

Category: [Factory Settings I
General Options
Static Analysis
Runtime Checking #define | Diagnostics Checksum | Encodings | Extra Options
C/C++ Compiler Config | Library | Input Optimizations | Advanced | Output | List
Aszembler . .

Linker configuration file
Qutput Conwverter
Custom Build Override default
Build Actions $PRO.J_DIR$/LPCE5S69 cm33_corel_flash.icf

Simulator

CALT Configuration file symbol definitions: (one per ling)
CMSIS DAP
GDE Server
I-et/ITAGjet
Jink/1-Trace
TI Stellaris
Mu-Link
PE micro
ST-LINK
Third-Party Driver
TI MSP-FET
TI¥DE

J

(8]:8 Cancel

%,

Figure 17. Linker script in IAR EWARM

Add»:—:;d below code in the files header area.

#if RUN_IN_RAMX
#pragma default_function_attributes = @ ".critical_code"
#endif

Added below code in the files end-

#1f RUN_IN RAMX
#pragma default_function_attributes =
gendif

Figure 18. IAR EWARM #pragma command

For MCUXpresso to execute CoreMark in Internal SRAM, just selected the linker file as “Ilpc5500_coremark_RUN_IN_SRAMX.Id”
in “Managed Linker Script;as shown in Fig 19..

LPC55xx CoreMark on Cortex-M33 Porting Guide, Rev. 1, December 2019
Application Note 17/33

NXP Semiconductors

Integration of CoreMark library to SDK2.0 framework

.1 Properties for Ipc5500_coremark — | O |i|

[type fiter text Settings S
- Resource
- Builders

& C/C++ Buid Configuration: |RUN_IN_SRAMX_48MHz [Active] v | mManage Configuratiors...

i Tool Settings | # Buid stepsl Build Amfactl Binary Parsers| & Error Parsersl

=8 MCU C Compier [~ Manage linker script
@ Dialect

#- C/C++ General - Preprocessor ;
- MCUXpresso Config Tot (2 Includes Scrpt path !
- Project References -2 Optimization Library IRedIib (nohost) j
- Refactoring History %: Debugging [~ Emable printf float

-~ Run/Debug Settings % Warnlngs [” Enable scanf float

- Task Tags & Miscellaneous
= Validation (% Architecture I™ | Lirik application o R
- TrustZone

=5 MCU Assembler

(& General

(¥ Architecture & Headers
=8 MCU Linker Stack offset IEI
(% General

- Libraries

(2 Miscelaneous

-(# Shared Library Settings
(% Architecture

(% Managed Linker Script
-2 Multicore

-2 TrustZone

=8 MCU Debugger Extra linker script input sections += X
“(# Debug

Linker script | lpc5500_coremark_RUN_IN_SRAMX.Id

I~ | Plair load image [sramx =]

Heap and Stack placememt IP-‘ICU)(presso Style j

| Region | Location Size |
Heap Default Post Data Default
Stack Default End Default

Global data placement IDefault j

Input section description | Region Section Type |

<| | ﬂ Restore Defaurtsl Apphy |

® Apply and Cloael Cancel |

Figure 19. MCUXpresso allocate Code to SRAM area

2.2 Optimizing the CoreMark framework

There are many factors that affect the CoreMark and pyA/MHz score that can be optimized. Some of these factors are IDE
dependent optimizations, while others leverage the MCU architecture for better performance. The goal is to be able to produce
the best scores from all three IDEs. It is important to understand that these IDEs are constantly changing and a different version
of a given IDE may add or remove features that may make these optimizations obsolete or ineffective. The following are the IDE
versions that are applicable to this application note:

Keil MDK v5.28
IAR EWARM 8.40.2
MCUXpresso 11.0.1_2563

LPC55xx CoreMark on Cortex-M33 Porting Guide, Rev. 1, December 2019

Application Note 18/33

NXP Semiconductors

Integration of CoreMark library to SDK2.0 framework

2.2.1 Memory considerations

Due to the inherent architecture of SRAM and flash, CoreMark executes faster when running out of SRAM. The LPC55xx internal
memory uses a multilayer AHB matrix system that provides a separate instruction and data bus for Cortex-M33 and SRAMX bank.
See Fig 20. SRAMO to SRAM4 are on System bus. Placing the CoreMark code and data in different SRAM, banks minimizes bus
contention and improves instruction and data parallelism.

Itis important to minimize the flash wait states according to the MCU frequency to optimize the CoreMark score. In contrast, when
performing the yA/MHz test, it is possible to save power by disabling the prefetch ability of flash. The LPC55xx user manual
contains more information on configuring the flash memory, such as the minimum number of wait states allowed at a given core
frequency.

The provided CoreMark framework projects include separate SRAM and flash based projects that implement various memory
optimizations.

o JTAG SDIO FSUSB HS USB
Serial Wire boundary scan interface bus bus CRYSTAL CLKINCLKOUTVDD RSTn
e y t (I SR I N R S i B
Y | h 4 | h 4 h 4
FPUIMPU! | | J v 3 Cods, PoR
§3 ower control,
e | |2 3| | Micro- vasn| [UsBFS| [usBHs| b Converter, BoD
ARM 25| Teal | |DMAO) JOMAT| ISDIO] |'AES Host/ Host/ LDOs, FRO
Cortex-M33 37| M) Device | | Device | system functions PLL
g 5 Sl |8
e Bt S EECEEEEEE = L B B Il IREEEEE R i i Flash | Flash
@ <@ A\ A PRINCE] jnterface | 640 KB

— ROM

A A 5 SRAMX
L E t ! 32 KB
; SRAM B
: S1KE SRAMC
: SRAMD 6418
: S KB SRAM E
[B t : 16 KB
i USBSRAM | oo r s oo
W R ——— . Interface JSRAM 16 KB
i USB-FS D DMAD
regislersev registers —I HS GPIO |<—
1

H SCTimer /PWM |

useHs Dev || ISP-AP | | SDIO CRC | Flexcomm 04y |
registers || registers | | registers| | engine
] 1 1 1

II Flexcomm 5-7 [1] |1—
{ P | g | g [p— ||—| HS | SPI f—

mmmmmemmememmemmmmmmmmmmmm—mmmm—mmm—m——m————————

1
1
1
|
T
I
]
1
1
1
'
|
T
I
|

Multilayer
AHB Matrix

YY OV oV v

: ;

Figure 20. LPC55Sxx AHB matrix

In both the SRAM and flash projects, there is a COREMARK_SCORE_TEST macro defined in core_portme.h, that indicates
whether the project is configured to execute the CoreMark benchmark or the yA/MHz test. If this macro is defined, the CoreMark
score test runs. If this macro is commented out, the yA/MHz test runs. Use this macro to switch between the two benchmarks.

2.2.2 IDE Optimization Setting

The following optimizations are compiler based and therefore IDE dependent. These optimizations apply to both the SRAM and
flash based projects.

2.2.2.1 Keil optimizations

LPC55xx CoreMark on Cortex-M33 Porting Guide, Rev. 1, December 2019
Application Note 19/33

NXP Semiconductors

Integration of CoreMark library to SDK2.0 framework

There are two compiler optimizations that can be done to improve the CoreMark score. In Project->Options and under the C/C+
+(ACB) tab, the optimization level needs to be set as “-mcpu=Cortex-m33 --target=arm-arm-none-eabi -Omax -g -mthumb -

mfpu=fpv5-sp-d16 -mfloat-abi=hard -fno-common -ffp-mode=fast” in Misc Ctonrols.

E Options for Target ‘run_in_flash_12mhz’

[2

Devicel Targetl Outputl Listingl User C/C++(ACE) |Asm | Linkerl Debugl Utilitiesl

— Preprocessor Symbols

Define: I)EBUG, CPU_LPC55569JBD100_cm33_corel, RUN_IN_12MHZ, RUN_IN_FLASH COREMARK_SCORE_TEST

Undefine: I

— Language [Code Generation

[~ Execute-only Code Warnings: IAIIWarnings LI Language C: ICS‘B

=

Optimization: |-03 LI [~ Turn Wamings inta Errors Language C++: IC.._..11
[¥ Link-Time Qptimization [Plain Charis Signed [v Shortenums/wchar

[~ splitLoad and Store Multiple [~ Read-Only Position Independent [useRTTI
[¥ One ELF Section per Function [~ Read-Write Position Independent [~ Mo Auto Includes

=

Paths

Include Iboard;source;CIVISIS;componentflists;componem',.fserial_manager;comp0nem',.fuart;device;doc;drivers;src;ste |

Misc I—xc —target=arm-arm-none-eabi -mfpu=fpv5-sp-d16 -mfloat-abi=hard -Wno-pedantic -Wno-padded -Wno-unus:

Controls
Compiler |-xc -std=c99 —target=arm-arm-none-eabi -mcpu=corntex-m33 -mfpu=fov5-sp-d16 -mfoat-abi=hard -¢ -
control |-fno-rti -fito -funsigned-char fshort-enums fshort-wchar
sting -0 MICROLIB -mitle-endian -03 function-sections -Weverything -Wno-packed -Wno-reserved-id-macra ™
0K Cancel Defaults Help

S

Figure 21. Keil MDK CoreMark score optimization

When benchmarking the power consumption of the MCU, the optimization setting must be set to Level 0 (-O0) and “Optimized

for time” must be unchecked.

LPC55xx CoreMark on Cortex-M33 Porting Guide, Rev. 1, December 2019

Application Note

20/33

NXP Semiconductors

Integration of CoreMark library to SDK2.0 framework

E Options for Target 'run_in_ramx_96mhz’ | X
Devicel Targetl Outputl Listingl User C/C++(ACE) |Asm | Linkerl Debugl Utilitiesl
— Preprocessor Symbols
Define: IDEBUG. CPU_LPC55569JBD100_cm33_corel, RUN_IN_S6MHZ, RUN_IN_RAMX
Undefine: I
— Language | Code Generation
[~ Execute-only Code Warnings: IAIIWamings LI Language C: ICS‘& LI
Optimization: I—OD Turn Warnings into Errors Language C++ IC-I—O—11 LI
[~ Link-Time Optimization [Plain Charis Signed [+ Short enums/jwchar
[~ SplitLoad and Store Multiple [~ Read-Only Position Independent [useRTTI
[¥' One ELF Section per Function [~ Read-Write Position Independent [™ No Auto Includes
|”;|U$19 Iboard:source:CMSIS:componentflists:component,.fserial_manager:component,.fuartde\rice:doc:drivers:src:stzJ
aths
c Tsic I-xc —-target=arm-arm-none-eabi -mfpu=fpv5-sp-d16 -mfloat-abi=hard -Wno-pedantic -Wno-padded -Wno-unus:
ontrols
Compiler |-xc -std=c99 —target=arm-arm-none-eabi -mcpu=cortex-m33 -mfpu=fovs-sp-d16 -mfloat-abi=hard -c -
control |-fng-riti -funsigned-char -fshort-enums -fshort-wehar
string -D__MICROLIB -mlittle-endian -gdwarf-3 -00 -ffunction-sections -Wewverything -Wno-packed -Wno-reserved- 7
OK Cancel Defaults Help

|

Figure 22. Keil MDK pA/MHz optimization

2.2.2.2 |AR Optimization

There are two compiler optimizations that can be done to improve CoreMark score. Set the optimization level to “High’ select

“Speed” from the drop down menu and check the “No size constraints” checkbox

LPC55xx CoreMark on Cortex-M33 Porting Guide, Rev. 1, December 2019

Application Note

21/33

NXP Semiconductors

Integration of CoreMark library to SDK2.0 framework

Options for node "coremark”

Category

General Options
Static Analysis
Runtime Cheddng

Ourtpit Convyarber
Custom Buld
Build Actions

Siruilator
CADT

CMSIS Dar
DB Server
T-jet/TTAGt
Jink/)-Trace
I Stellaris

Third-Party Driver
T MSP-FET
TI XDS

2

[Multi-fle Compilation

Digcard Unused Publics

Factory Seftings

Diagnostics | MISRA-C:2004 | MISRA-C:1998 | Encodings | Extra Options |

Level

(") None

I low

" Medium

@) High

V| Mo size constraints

Enabled transformations:

Language 1 | Language2 | Code | Opiimizations | Qutput | List | Preprocessor

[|Common subexpression elimination -

|v|Loop unrolling
|+ |Function inlining
|| Code mation

|| Type-based alias analysis

|| Static clustenng
| |Instruction scheduling
I | Vectonzation

0K

Figure 23. IAR EWARM CoreMark score optimization

When benchmarking the power consumption of the MCU, the optimization level should be set to “None”

LPC55xx CoreMark on Cortex-M33 Porting Guide, Rev. 1, December 2019

Application Note

22/33

NXP Semiconductors

Integration of CoreMark library to SDK2.0 framework

-

Options for node "coremark”

=

Category:

[T Muttifile Compilation
Dizcard Unused Publics

General Options
Static Analysis

[Factory Settings I

Runtime Checking

Diagnostics | MISRA-C:2004

Aszembler
Qutput Conwverter
Custom Build
Build Actions
Linker

Debugger

Language 1

Language 2 | Code

Level
@ None

() Low

(") Medium
Simulator () High
CADI

CMSIS DAP
GDB Server
I§et/ITAGjet
Jink/1-Trace
TI Stellaris
Mu-Link

Speed -

Mo size constraints

PE micro
ST-LINK

MISRA-C:1998 | Encodings | Exira Options

Optimizations |Output | List

| Preprocessaor

nabled transformations:

" |Loop unrolling
| |Function inlining
" |Code motion

| Static clustering
" |Instruction scheduling
| Vectorization

|| Common subexpression elimination -

| Type-based alias analysis

1

Third-Party Driver
TI MSP-FET
TI¥DS

Ok

Cancel

|

Figure 24. IAR EWARM pA/MHz optimization

2.2.2.3 MCUXpresso Optimization

There are two compiler optimizations that can be done to improve CoreMark score. Set the optimization level to “-O3” so please

select “Optimize most(-O3)” from the drop down menu.

LPC55xx CoreMark on Cortex-M33 Porting Guide, Rev. 1, December 2019

Application Note

23/33

NXP Semiconductors

Integration of CoreMark library to SDK2.0 framework

Properties for Ipc5500_coremark — |EI |_Z
|eype fiter text Settings L= A
#- Resource
- Builders
- C/C++ Buid Configuration: |RUN_IN_SRAMX_48MHz [Active] v | Manage Configurations...

i Tool Settings |.ﬁ' Build stepsl Build Arl]factl Binary Parsers| & Error Parsersl

=8 MCU C Compiler Optimization Level IOptim'lze most (-03) j
= D
[f: Dialect Other optimization flags | -fno-common
- C/C++ General (22 Preprocessor - =
-~ MCUXpresso Config Toc (% Includes [Enable Link-time optimization (-fito)
- Project References -(# Optimization [¥ | Fati o obijects (-fat-lio-objects)
- Refactoring History - Debugging
- Run/Debug Settings -2 Warnings
- Task Tags -2 Miscelaneous
& Validation - Architecture
- TrustZone
Bl MCU Assembler
(& General
(2 Architecture & Headers
£l MCU Linker
- General
(2 Libraries
- Miscelaneous
(¥ Shared Library Settings
- Architecture
(¥ Managed Linker Script
-2 Multicore
- TrustZone
B8 MCU Debugger
@ Debug

C | | _'I Restore Defaultsl Apply
? Apply and Gosel Cancel

Figure 25. MCUXpresso CoreMark score optimization

When benchmarking the power consumption of the MCU, the optimization level should be set to “None(-O0)”

LPC55xx CoreMark on Cortex-M33 Porting Guide, Rev. 1, December 2019

Application Note 24/33

NXP Semiconductors

Measuring CoreMark on board

. Properties for lpc5500_coremark

type fitter text

=1of:

Settings TRYY

- Resource
- Builders
- CfC++ Buid

- Buid Variables
-Environment
-Logging
-MCU settings
-Settings
‘- Tool Chain Editor

Configuration: |RUN_IN_SRAMX_48MHz [Active] v | Manage Configurations...

i Tool Settings |.ﬁ' Build stepsl Build Amfactl Binary Parsers| & Error Parsersl

B8 MCU C Compiler
@ Dialect

Optimization Level

INone (-00) ﬂ

- CfC++ General

- Project References

- Task Tags

- MCUXpressa Config Tot

- Refactoring History
- Run/Debug Settings

- Preprocessor
- Includes
- Optimization
- Debugging
-2 Warnings
(2 Miscellaneous

Other optimization flags | -fno-common
[~ Enable Link-time optimization (-fito)
[¥ | Fati o obijects (-fat-lio-objects)

& Validation - Architecture
- TrustZone
-8 MCU Assembler
- General
(% Architecture & Headers
=& MCU Linker
(% General
(2 Libraries
(2 Miscelaneous
~(# sShared Library Settings
(2 Architecture
~(# Managed Linker Script
(2 Multicore
-(# TrustZone
E-§ MCU Debugger
@ Debug

Restore Defaultsl Apply

@ Apphy and Cbsel

Figure 26. MCUXpresso pA/MHz optimization

Cancel

3 Measuring CoreMark on board

3.1 LPC55S69Xpresso board

The LPC55S69Xpresso board supports a VCOM serial port connection via P6. To observe debug messages from the board set

the terminal program to the appropriate COM port and use the setting ‘115200-8-N-1-none. To make the debug messages easier
to read, the new line receive setting should be set to auto.

3.2 Board Setup
The LPC55S69 Rev A1 development board is used for benchmarking

LPC55xx CoreMark on Cortex-M33 Porting Guide, Rev. 1, December 2019

Application Note 25/33

NXP Semiconductors

Measuring CoreMark on board

| Audic

| Line J
ol E

Figure 27. LPC55S69Xpresso board

The board ships with CMSIS-DAP debug firmware programmed. Visit the following FAQ for more information on CMSIS_DAP
debug firmware: hitps://www.nxp.com/downloads/en/software/lpc_driver_setup.exe For debugging and terminal debug
messages, connect a USB cable to P6 USB connector. Board schematics are available on www.nxp.com.

3.2.1 pA/MHz measurement setup

To measure the LPC5500 power consumption, remove R92, install header at P13, and connect ammeter across P13 as shown
in Figure 28.

NOTE
The current data on EVK maybe little higher than datasheet, due to the EVK have more other components may
cost more power.

LPC55xx CoreMark on Cortex-M33 Porting Guide, Rev. 1, December 2019
Application Note 26/33

NXP Semiconductors

Measuring CoreMark on board

Figure 28. pA/MHz measurement setup

If we need measurement the MCU core current, we need rework the board by removing the R92. Then we can measure the
current through P13 by multimeter.

While performing the yA/MHz benchmark, use P6 USB connector to provide power to the board. After the yA/MHz benchmark
project has been downloaded, power cycling the board by removing the USB cable, and reinsert to make sure that the debug
probe is not connected.

The baud rate setting for debug messages is 115200. It can be changed in core_potme.c file.
Line209 config.baudRate_Bps = 115200;

Similarly, by selecting different configuration projects in workspace window, the core clock frequency can be changed. Each of
the configuration may enable below defined project configuration settings:

RUN_IN_12MHZ
RUN_IN_48MHZ
RUN_IN_96MHZ

LPC55xx CoreMark on Cortex-M33 Porting Guide, Rev. 1, December 2019
Application Note 271/33

NXP Semiconductors

Measuring CoreMark on board

RUN_IN_150MHZ

3.3 Run CoreMark code

The first step to get CoreMark result is to connect the connector P6 of the board with PC. Then the PC recognizes the LPC-Link2
debugger with a Simulate Serial Port as shown in Fig 29 .

If PC cannot find the serial port driver, download the LPCScrypt from below link, and install on your PC.

https://www.nxp.com/support/developer-resources/software-development-tools/lpc-developer-resources-/Ipc-microcontroller-
utilities/Ipcscrypt-v2.0.0:LPCSCRYPT ?tab=Design_Tools_Tab

=4 Device Manager . ' — |l= B X

File Action View Help
e | T E HE & E %o

> -Bal Monitors I
4 IE¥F Network adapters

------ '_-'." Bluetooth Device (Personal Area Network) #2

------ L¥ Bluetooth Device (RFCOMM Protocol TDI) #2

------ L¥ Intel(R) Dual Band Wireless-AC 8260

------ ¥ Intel(R) Ethernet Connection [219-LM

------ L¥ Juniper Networks Virtual Adapter Manager
------ '-_:_'; Microsoft Virtual WiFi Miniport Adapter

------ '_-'." VirtualBox Host-Only Ethernet Adapter

------ L¥ VirtualBox Host-Only Ethernet Adapter #2
4 "% ports (COM & LPT)

------ Y3 ECP Printer Port (LPT1)

------ = £l AR TR TS T i T T =

| "5 LPC-Linkll UCom Port (COM241)

:> E Proximity Devices

> - Smart card readers

> f_:‘:ﬁ" Sound, video and game controllers
> -\l System devices

b - H Universal Serial Bus controllers

m

Figure 29. LPC-Linkll UCom Port

Open a UART debug terminal (like Tera Term, putty, etc.), and configure as 115200, 8 data bits, no parity, 1 stop bit, refer Fig 30.

LPC55xx CoreMark on Cortex-M33 Porting Guide, Rev. 1, December 2019
Application Note 28/33

https://www.nxp.com/support/developer-resources/software-development-tools/lpc-developer-resources-/lpc-microcontroller-utilities/lpcscrypt-v2.0.0:LPCSCRYPT?tab=Design_Tools_Tab
https://www.nxp.com/support/developer-resources/software-development-tools/lpc-developer-resources-/lpc-microcontroller-utilities/lpcscrypt-v2.0.0:LPCSCRYPT?tab=Design_Tools_Tab

NXP Semiconductors

Result

C 8 Tera . [di;——mme dem?__|g|ﬁp|ﬂ

File Edit Setup Control Window Help

1l »

Port: COM241 >

Baud rate: 115200 -

Data: 8 bit -

Parity: |n0ne > ‘

Stop: 1 bit -

Flow control: none -

Transmit delay

0 msecfchar mseciline

Figure 30. UART debug terminal configuration

Once the CoreMark necessary files are added into the project (by following Chapter 2.1 instructions), compile the project and
download to the LPC5500Xpresso board.

Click reset button, the CoreMark benchmark prints on the terminal after a few seconds, like Fig 31 in Chapter 4.

4 Result

Figure 31 shows the CoreMark benchmark result when running LPC5500 at 96 MHz core frequency in IAR. The CoreMark
benchmark score is the number of iterations per second. The CoreMark/MHz score executing from internal flash for this run is
372.786580/96 MHz = 3.883 CoreMark/MHz .

LPC55xx CoreMark on Cortex-M33 Porting Guide, Rev. 1, December 2019
Application Note 29/33

NXP Semiconductors

Result

File Edit Setup Cont

erformance run
CoreMark Size
Total ticks
Total time (sec
Iterations/Sec
Tterations
Compiler version
Compiler flags
Memory location
seedcrc
[@]crclist
[@]crcmatrix
[@]crcstate
[@]crcfinal

S

COMS - Tera Term VT

ol Window

parameterg for coremark.

: bb66

: :‘-?2 . 7bb Jh@.
: 4000

d, No size constraints

: STACK
: Oxe9fs
: Bxe714
: Ox1fd7
: Bx8e3a
. Bx65cS
Correct operation validated. See
CoreMark 1.0 : 372.

readme.txt for

786580 / IAR 8.30@.1 High, Speed,

= = X

1l »

run and reporting rules.
No size constraints / S

Figure 31. CoreMark result

Table 1 shows typical CoreMark score when benchmarked on Keil MDK, IAR EWARM and MCUXpresso IDE when running from

internal flash and SRAM at 96 MHz

core frequency.

Table 1. LPC55S69Xpresso board CoreMark/MHz Score

IDE CoreMark/MHz Score(SRAMX) CoreMark/MHz Score(Flash)
KEIL MDK 4.021 2.333
IAR EWARM 3.887 2.435
MCUXpresso 2.843 2.016

NOTE
Test under 96 MHz

For pA/MHz, following tables show typical results when running on the LPCXpresso55S69 board with VDD = 3.3 V at room
temperature. Fig 24 compares the three IDEs in terms of power consumption.

NOTE

The current data on EVK maybe little higher than datasheet, due to the EVK have more other components may

cost more power.

NOTE

The average current in 150MHz will higher than other modes, the reason is 150Mhz will enable PLL, the PLL cost

more power.

LPC55xx CoreMark on Cortex-M33 Porting Guide, Rev. 1, December 2019

Application Note

30/33

NXP Semiconductors

Result
Table 2. Keil MDK pA/MHz score
Frequency Avg. Power pA/MHz Avg. Power pA/MHz
Consumption (mA, Score Consumption (mA, Score
SRAM X) (SRAM X) Flash) (Flash)
12 MHz 1.34 111.67 1.35 112.50
48 MHz 2.68 55.84 2.72 56.67
96 MHz 3.89 40.53 3.95 4114
150 MHz 724 48.27 6.30 42.00
Table 3. IAR EWARM pA/MHz score
Frequency Avg. Power HA/MHz Avg. Power HA/MHz
Consumption (mA, Score Consumption (mA, Score
SRAM X) (SRAM X) Flash) (Flash)
12 MHz 148 123.34 1.29 10750
48 MHz 2.63 54.80 3.32 69.17
96 MHz 3.96 41.25 4.28 44.59
150 MHz 7.63 50.87 7.56 50.40
Table 4. MCUXpresso yA/MHz score
Frequency Avg. Power pA/MHz Avg. Power pA/MHz
Consumption (mA, Score Consumption (mA, Score
SRAM X) (SRAM X) Flash) (Flash)
12 MHz 1.33 110.84 1.19 115.84
48 MHz 2.40 50.00 2.41 50.03
96 MHz 3.64 37.92 3.58 37.30
150 MHz 719 4794 6.57 43.80
LPC55xx CoreMark on Cortex-M33 Porting Guide, Rev. 1, December 2019
Application Note 31/33

NXP Semiconductors

Conclusion

HA/MHz

24 36

LPC5500 CoreMark Power Consumption

48 60 72 84 9 108
Frequency(MHz)

I -8~ |AR EWARM(SRAMX) == IAR EWARM(Flash) -8 KEIL MDK(SRAMX) =k KEIL MDK{Flash) =¥ MCUXpresso(SRAMX) -8~ MCUXpresso(Flash)

Figure 32. yA/MHz IDE comparison

5 Conclusion

Three types of CoreMark benchmarking on the LPC55xx are presented in this document with different IDEs (Keil, IAR,

MCUXpresso):

CoreMark score, power consumption, and pA/MHz.

It also describes how to optimize the benchmark results when running the benchmark out of internal SRAM and flash.

The CoreMark results are measured on LPCXpresso55S69. The best CoreMark number is 4.021, achieved by using KEIL
MDK(Arm Compiler 6.12) and running CoreMark from SRAM X. The best CoreMark power consumption in yA/MHz is 37.30,
achieved by running CoreMark from flash when core frequency is 96 MHz.

6 Reference

1. CoreMark Benchmarking for ARM Cortex Processors, ARM
2. AN11811 LPC5411x CoreMark Cortex-M4 Porting Guide,NXP
3. UM11126_LPC55xx/LPC55Sxx User Manual ,NXP

7 Revision history

Revision history

Rev.

Date

Substantial changes

0

25 January, 2019

Initial reversion

1

December, 2019

Updated CoreMark scores on silicon ‘1B’ with SDK2.6.3 and adc
MHz CoreMark

LPC55xx CoreMark on Cortex-M33 Porting Guide, Rev. 1, December 2019

Application Note

32/33

http://infocenter.arm.com/help/topic/com.arm.doc.dai0350a/DAI0350A_coremark_benchmarking.pdf

How To Reach Us
Home Page:
nxp.com

Web Support:

nxp.com/support

arm

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, 12C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, UMEMS, EdgeScale, EdgeLock, elQ, and Immersive3D are trademarks of NXP B.V.
All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,
Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex,
DesignStart, DynamlQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView,
SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro,
pVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered
trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and
the Power and Power.org logos and related marks are trademarks and service marks licensed
by Power.org.

© NXP B.V. 2019. All rights reserved.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses @ nxp.com

Date of release: December 2019
Document identifier: AN12284

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	AN12284
	Contents
	1 Introduction
	2 Integration of CoreMark library to SDK2.0 framework
	2.1 Porting CoreMark library into CoreMark framework
	2.1.1 CoreMark framework for Keil MDK / IAR EWARM / MCUXpresso IDE
	2.1.2 CoreMark framework to execute from Internal SRAM

	2.2 Optimizing the CoreMark framework
	2.2.1 Memory considerations
	2.2.2 IDE Optimization Setting
	2.2.2.1 Keil optimizations
	2.2.2.2 IAR Optimization
	2.2.2.3 MCUXpresso Optimization

	3 Measuring CoreMark on board
	3.1 LPC55S69Xpresso board
	3.2 Board Setup
	3.2.1 μA/MHz measurement setup

	3.3 Run CoreMark code

	4 Result
	5 Conclusion
	6 Reference
	7 Revision history

