
1 Introduction
This application note focuses on handwritten digit recognition on embedded
systems through deep learning. It explains the process of creating an
embedded machine learning application that can classify handwritten
digits and presents an example solution based on NXP’s SDK and the
eIQTM technology.

Handwritten digit recognition with models trained on the MNIST data set is
a popular “Hello World” project for deep learning as it is simple to build a
network that achieves over 90% accuracy for it. There are also many existing
open source implementations of MNIST models on the Internet, making it a
well-documented starting point for machine learning beginners.

The MNIST eIQ example consists of several parts. The digit recognition is
performed by a TensorFlow Lite model, with an architecture similar to LeNet-5 (LeCun, LeNet-5, convolutional neural networks,
2019), which was converted from the TensorFlow implementation released by Google. The GUI was created in Embedded Wizard
Studio and uses the Embedded Wizard library. The model allocation, input, and output processing and inference are handled by
the SDK and custom code written specifically for the example.
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2 MNIST data set

Figure 1. MNIST dataset example (Steppan, 2017)

The dataset contains centered grayscale 28x28 images of handwritten digits like in Figure 1. It consists of 60000 training examples
and 10000 testing examples. It was collected from high school students and Census Bureau employees and is a subset of a larger
set available from NIST. The dataset was selected and published by Yann LeCun, Corinna Cortes, and Christopher J.C. Burges
and is open source (LeCun, The Mnist Database, 2019) . The dataset has been used to benchmark different machine learning
algorithms and while convolutional neural networks typically give the best results, there are other viable approaches as well.
Among them are support vector machines (SVM), k-nearest neighbors algorithms (K-NN) and various types of neural networks. A
survey of the different results was published in the Applied Sciences journal by MDPI in August 2019 (Baldominos, Saez, & Isasi,
2019). Even simple convolutional neural networks can achieve an accuracy of around 99%. Therefore, TensorFlow Lite was a
suitable option for this task.

3 TensorFlow
TensorFlow is an open source cross-platform deep learning library developed at Google Brain. It is the most popular deep learning
framework and is widely used in production both at Google and other large organizations. It is available through a low-level python
API, which is useful for skilled and experienced developers or through other, higher-level libraries, like Keras. Keras is simpler,
beginner friendly, and enables anyone to try and learn about machine learning. TensorFlow is supported by a very large user
community and by official documentation, guides, and examples from Google.

To enable TensorFlow on mobile and embedded devices, Google developed the TensorFlow Lite framework. It gives these
computationally restricted devices the ability to run inference on pre-trained TensorFlow models that were converted to
TensorFlow Lite. These converted models cannot be trained any further but can be optimized through techniques like quantization
and pruning. However, TensorFlow Lite does not support all the original TensorFlow’s operations and developers must keep that
in mind when creating models.
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The next evolution of TensorFlow is the TensorFlow Lite Micro, which is focused on microcontrollers. TensorFlow Lite Micro is a
subset of TensorFlow Lite and is being developed by Google in tight collaboration with Arm. The library is further optimized by NXP
with device specific optimizations to achieve even better performance. Since TensorFlow Lite Micro supports only TensorFlow Lite
models, the process of training a model and then converting it remains the same. The differences are in the more optimized library
and a slightly more limited list of supported operations. However, this list is growing over time and there should be no issues with
running any models useful for embedded applications.

4 MNIST model
The model implementation chosen for this example is available on GitHub as one of the official TensorFlow models under the
Apache 2.0 license. It is written in python and uses the built-in Keras library. The script builds a convolutional neural network
that can achieve over 99% accuracy on the test set examples from the MNIST dataset. The TensorFlow Lite graph can be seen
in Figure 2. This graph was generated with Netron (Roeder, 2021), which is a visualizer for neural networks, deep learning and
machine learning models. It supports many formats from different frameworks, including TensorFlow Lite, Caffe, Keras, and
ONNX. For example, it can be used to display a neural network topology in a web browser and inspect the individual layers,
operations and connections used in the model.
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Figure 2. Model visualization in netron (TensorFlow Lite)
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See the below code for the Keras model definition:

def create_model():
image = tf.keras.layers.Input(shape=(28, 28, 1))
            
y = tf.keras.layers.Conv2D(filters=32,
kernel_size=5,
padding='same',
activation='relu')(image)
y = tf.keras.layers.MaxPooling2D(pool_size=(2, 2),
strides=(2, 2),
padding='same')(y)
y = tf.keras.layers.Conv2D(filters=32,
kernel_size=5,
padding='same',
activation='relu')(y)
y = tf.keras.layers.MaxPooling2D(pool_size=(2, 2),
strides=(2, 2),
padding='same')(y)
y = tf.keras.layers.Flatten()(y)
y = tf.keras.layers.Dense(1024, activation='relu')(y)
y = tf.keras.layers.Dropout(0.4)(y)
            
probs = tf.keras.layers.Dense(10, activation='softmax')(y)
            
model = tf.keras.models.Model(image, probs, name='mnist')
return model

The trained model was converted to TensorFlow Lite using the TensorFlow converter API. For details, see https://
www.tensorflow.org/api_docs/python/tf/lite/TFLiteConverter. An example script for this purpose can be found in the AN12603
software package available in the documentation tab for eIQ and the relevant RT devices at NXP website. The script is called
model_converter.py. For compatibility purposes with the current (August 2021) version (2.4.1) of the TensorFlow Lite Micro library
used in NXP’s SDK, the 2.4.1 version of TensorFlow was used for training and converting the model.

Lastly, the xxd utility was used to convert the TensorFlow Lite model into a binary array that could be loaded by the SDK
application. The conversion process is described in more detail in the eIQ User Guides.

xxd -i converted_model.tflite converted_model.h

After converting the model, the output header file needs a few changes before it is ready for use.

Figure 3. Model header (beginning)
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Figure 4. Model header (end)

xxd is a hexdump utility (Weigert, Nugent, & Moolenaar, 2019) that can be used to convert back and forth between the hex dump
and binary form of a file. In this case, the utility is used to convert the tflite binary into a C/C++ header file that can be added to an
eIQ project.

5 Embedded wizard studio
Embedded Wizard Studio (TARA Systems GmbH, 2021) is an IDE for developing graphical user interfaces for embedded devices.
It is offered in three tiers with different levels of support and pricing. One of them is the free tier, which can be used for evaluation
and prototyping purposes, limits the project complexity and adds a watermark over the GUI. The free tier was more than enough
for the MNIST demo, as the created graphics reached only 10% of the maximum complexity allowed. One of the advantages
of the IDE is its ability to generate MCUXpresso projects based on NXP’s SDK. It means that after creating the GUI in the IDE,
the developer can immediately test it on their device. All of the projects created for this application note are part of the AN12603
software package.

The IDE offers a wide variety of GUI objects and tools, including buttons, touch input areas, shapes, graphics, triggers that
can react to button presses or screen touches and many more. Placing them on a canvas and setting their properties to fit the
developers needs is intuitive and user-friendly and largely speeds up the GUI development process.

Several steps had to be performed to merge the GUI project with the eIQ application project. Since the generated project is written
in C and the eIQ examples are in C/C++, the ewmain.h header file needs to have its contents surrounded by:

#ifdef __cplusplus
extern "C" {
#endif
/* C code */
#ifdef __cplusplus
}
#endif

A new embedded wizard folder had to be created in the base eIQ project for the generated source files. Several additional drivers
had to be added to the base project, the pin_mux files had to be replaced with the Embedded Wizard generated ones and some
additional differences had to be merged in the board files and timer files. Lastly, the references, include paths, symbol definitions,
and memory configurations had to be adjusted, so that everything could be compiled together.
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6 Application functionality

Figure 5. Example inference test

The application is controlled through a GUI displayed on a touch sensitive LCD. The GUI, as shown in Figure 5, includes a
touch-based input area for writing digits, an output area for displaying the results of inference and two buttons, one for running the
inference and the other for clearing the input and output areas. It also outputs the result and the confidence of the prediction to
standard output, which can be read by using programs like PuTTY and listening on the associated COM port while the board is
connected to the PC.

7 Accuracy

Figure 6. USA style numbers (Wagner, 2011)

As the MNIST dataset is written by people from the USA, the application correctly recognizes single digits written in the USA
style of handwritten numbers shown in Figure 6. However, mainland European countries, for example, tend to write several of the
numbers differently, as apparent in Figure 7, and these styles can lead to wrong predictions.

Figure 7. Mainland Europe style numbers (Wagner, 2011)

Some countries write the 1 with the left line shorter, about half or third the length of the straight line. These differences can confuse
the machine leaning model and make it classify a European 1 as a USA 7, since they are so similar in shape. Another important
aspect influencing accuracy is the difference between how the application gets its input and how the images in data sets are
taken. Even though the model can achieve over 99% accuracy on the training and testing data sets, it is not as accurate when
used in the application. This is because digits written on an LCD with a finger are never same as digits written on a paper with a
pen. Finally, the application input is read as white and black pixels without any distortions caused by compression. On the other
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hand, the MNIST data set contains images that are gray scale and do suffer from compression. It highlights the importance of
training production models on real production data. In order to achieve better results, a new data set composed of digits written
by people from all over the world would have to be collected. Additionally, the means of input would have to be the same as in
the digit recognition application. The current application could be adjusted to save the input numbers instead of sending them
to the model for recognition. To retrain the model afterward, transfer learning could be applied. The goal of this technique is
to take a pretrained model, disable changes in some or even all the layers except the final ones and train it on a similar but
different data set. Transfer learning produces very accurate models that are trained faster and require smaller data sets than
regular training would need. The NXP Community website contains a walk-through of using TensorFlow Lite for Microcontrollers
including the transfer learning technique (https://community.nxp.com/t5/eIQ-Machine-Learning-Software/Getting-Started-with-
TensorFlow-Lite-for-Microcontrollers-on-i/ta-p/1124103) to retrain a model from classifying general categories of images to
recognizing a small set of flowers.

It is recommended to also go through a follow-up the application note AN12892 (https://community.nxp.com/t5/eIQ-Machine-
Learning-Software/Transfer-Learning-and-the-Importance-of-Datasets/ta-p/1109248), which focuses on transfer learning and
data sets. This application note describes the process of collecting a new data set at one of the NXP sites and using this data set
to retrain the model used here, while the original model achieves about 67% on the custom NXP validation data set, the retrained
model achieves over 96% accuracy instead. Both the original and the retrained models are also included in the software package
for AN12603 for readers to try and compare.

8 Implementation details
Embedded Wizard uses the so-called slots as triggers that react to GUI interactions. In the example, one of these slots is
connected to the touch sensitive input area as an “on drag” trigger. When a user drags their finger over the area, the slot continually
draws a single-pixel wide line under the finger. The drawing uses the color defined by the main color constant and is constrained
to the input area.

The buttons also have slots assigned to them. The Clear button’s slot simply sets the color of pixels inside both the input and result
areas to the background color. The Run Inference button’s slot saves references to the input area, the underlying bitmap, and the
width and height of the area, and then passes them to a native C code, which processes the input image.

To make using the application more comfortable, the input area was created as a 112x112 square for RT1060 and 224x224 for
RT1170. However, the actual input image for the machine learning model must be 28x28 pixels large. Since the line used for
drawing is only one pixel wide and cannot be made any wider due to the technique used to draw it, additional preprocessing is
necessary, otherwise scaling the image down would distort the input too much.
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Figure 8. Preprocessed input logging representation (white pixels printed as “1”, black pixels as “0”)

To skip grayscale conversions, pixels of the main color, regardless of what it is, are considered white and everything else black.
First, an array of 8-bit integers with the width and height of the input area is created and filled with zeroes. Afterwards, the
image and array are iterated over, and every white pixel in the image is stored as 0xFF in the array. Additionally, each pixel is
expanded into a "plus sign" with several pixel long lines, based on configuration, thickening the line in the process. Doing so makes
downscaling the image much safer. When iterating over the input image, the loops must skip the irrelevant pixels outside the input
area. The amount of this is always the same, since the pixels are stored continuously by row from left to right. Once the input is
extracted, the drawing is cropped and centered to resemble the format of the MNIST images a bit more and then scaled to the
28x28 resolution. Additionally, the input needs to be rotated on RT1170 due to the whole GUI being rotated in the vertical display.
Figure 8 shows an interpretation of the result, where the white pixels are represented by “1”s and black pixels by “0”s.

When the application starts, the machine learning model is allocated, loaded, and prepared for inference. Every time inference
is requested, the model’s input tensor is loaded with the preprocessed input and passed to the model. Since the model expects
float values and the functions used for image-processing work with 8-bit integers, the input must be copied into the tensor pixel
by pixel and converted in the process. The inference result is written out both to standard output and the output area in the GUI.

The preprocessing is performed partially in “embeddedwizard/Application.c” and then finished in “source/model/input_proc.cpp”.
The inference and results are handled in “source/mnist.cpp” as well. In “embeddedwizard/CustomConstant.c”, the main and
background color constants are defined.
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9 Extending the application example

Figure 9. Wrong pin

Figure 10. Correct pin

The simple example can be extended in several ways. For this application note, a simple digital lock with a 4-digit pin code as
shown in Figure 9 and Figure 10 was implemented.

To achieve this, the whole input area is cloned three times and the processing was adjusted to include all four windows and run
inference on each of the inputs one by one. In this extended version, inference gets triggered every time the lock is locked and the
Unlock button is pressed or whenever the Set Password button is pressed. Functionality of the Clear button is similarly extended
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to clean all four inputs and the text output in the bottom right corner. The Set Password button simply stores the current inputs as
the pin for the lock in an integer array.

10 Conclusion
This application note introduced the problem of recognizing handwritten digits using machine learning algorithms and presented
a viable solution on embedded platforms using TensorFlow Lite. The solution is developed as an application for the RT1060-EVK
and RT1170-EVK. The document also shows how the achieved machine learning capabilities can be used for more complex
scenarios, like a digital lock.

While the showcased application is simple in nature, it can serve as an introduction into machine learning on embedded devices.
The potential of machine learning and AI on NXP embedded platforms is continuously improving as eIQ keeps getting even more
advanced and optimized.

In the future, the digit recognition application and this application note will be extended to new releases in the i.MX RT Series.
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