
1 Introduction

1.1 LPC5500 series introduction
The LPC55S00 is a family of Arm® Cortex® -M33-based MCUs for embedded
applications. It features a rich peripheral set leveraging the new ARMv8M
architecture. This document focuses on LPC5500’s series flash operation.

Compared with legacy LPC parts, LPC4300, LPC54000, LPC1800, LPC800,
the LPC5500 uses new flash IP and is enabled with ROM API driver. Lots of
new features have been introduced into this new series. At the same time, it
might be a little complicated for new users to operate LPC5500 series’ flash.
This document aimes to removing those barriers and giving some useful tips
for users.

If you have already used LPC5500 series and met some issues with operating
internal flash, go to Summary first to check if you follow all the rules and tips
mentioned in this document.

1.2 Related UM chapters
1. Chapter 2: LPC55S6x/LPC55S2x/LPC552x Memory Map

2. Chapter 5: LPC55S6x/LPC55S2x/LPC552x Flash

3. Chapter 9: LPC55S6x/LPC55S2x/LPC552x Flash API

4. Chapter 10: LPC55S6x/LPC55S2x/LPC552x Protected Flash Region

5. UM attached file: LPC55S6x_LPC55S2x_LPC552x Protected Flash Region v1.1.xls

2 Implementation

2.1 Flash memory layout
LPC5500 series have three flash configurations:

• 640 KB FLASH/320 KB RAM

• 512 KB FLASH/256 KB RAM

• 256 KB FLASH/144 KB RAM

In some configurations, users cannot use all flash memory to store code and data. Because LPC5500 series use last few pages
as Protected Flash Region (PFR) to store important information and some internal manufacture settings.

2.1.1 Page size and sector size
The sector size of the LPC5500 series internal flash memory is 32 KB and the page size is 512 bytes.
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The minimum programming size is the page size, 512 bytes.

The minimum erase size is page size, 512 bytes.

2.1.2 PFR region in last pages of flash memory
Unlike legacy LPC parts, all LPC5500 series use last few pages of flash memory as PFR. PFR is used to store some important
user and manufacture configuration information. PFR cannot be used as normal flash to store data and code. Programming PFR
needs special cautions, or the chip might be malfunctioned. Figure 1 shows the flash memory layout.

Figure 1. LPC5500 series flash memory layout

As shown in Figure 1:

The PFR size of LPC55S6x/LPC55S2x is 10 KB, located in 0x0009_D800 – 0x0009_FFFF.

The PFR size of LPC55S1x is 12 KB, located in 0x0003_D000 – 0x0003_FFFF.

• For LPC55S6x/LPC55S2x 256/512 KB part, the total flash size can be used by customer is 256/512 KB.

• For LPC55S6x/LPC55S2x 640 KB part, the total flash size can be used by customer is 630 KB.

• For LPC55S1x 64/128 KB part, the total flash size can be used by customer is 64/128 KB.

• For LPC55S1x 256 KB part, the total flash size can be used by customer is 244 KB.

2.2 Flash operation
LPC5500 series’ flash implement internal ECC management, including single bit correction and error correction logging. This
makes flash more secure and robust than others. But this feature also brings an issue: when performing AHB read, memcpy, of
an erased or corrupted flash memory, a HardFault will occur. This may happen when users try to read, AHB read, an erased while
not programmed flash page.
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See Notes in Block diagram in LPC55S6x/LPC55S2x/LPC552x User manual (document UM11126).

 
When performing AHB reads of the flash memory contents, a hardware fault will occur if an unrecoverable error
is detected. Read operations performed using flash controller commands (see Command listing) will not cause a
hard fault.

  NOTE  

The following section will discuss how to work around this issue.

Also, PFR region resides the last pages of flash, making it vulnerable to be erased accidently. To avoid this, we recommend using
ROM API to operate flash instead of manipulating flash register directly. ROM API provide internal protection to avoid user erase
PFR accidently. While the flash register gives you free access to all flash data, it is a little "dangerous".

We suggest using ROM API to access data flash and PFR. The flash register operation is not recommended.

Finally, flash erase and program can only be done when core clock <=100 MHz. if the CPU running at higher than 100 Mhz, user
must lower CPU frequency first than erase and program flash.

2.2.1 Flash ROM API
The BootROM of LPC5500 series provides a set of Flash APIs for users. ROM API table is located at the address of 0x130010f0.

Figure 2 shows the ROM API address layout.

Figure 2. LPC5500 flash API layout

SDK provides full examples of how to use flash driver to operate internal flash. The example is located at:

\boards\lpcxpresso55s28\driver_examples\flashiap

We suggest using ROM API to access data flash and PFR. The flash register operation is not recommended.
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2.2.2 Flash Init
To use Flash ROM API to operate flash, you need first initialized flash instance. The FLASH_Init API in SDK needs to pass
a flash_config_t structure. When calling this API, the structure returns some flash parameters, such as, FLashSecterSize,
TotalFlashSize, PageSize, etc. Users should check and confirm that the parameters are correct.

Figure 3. Flash Init code

2.2.3 Flash erase
The flash erase API is easy to use. The start and lengthInBytes filed need to be 512 bytes aligned.

Figure 4. Flash erase

2.2.4 Flash program
Same as Flash Erase API, the start and lengthInBytes filed need to be 512 bytes aligned.

Figure 5. Flash program

2.2.5 Flash read
Accessing or reading blank flash area will hit hardfault, so before performing the access/read, check whether the flash region is
blank or not.

SDK provides an API named FLASH_VerifyErase for blank checking. Before accessing or reading a flash page that we don't know
blank or not, use FLASH_VerifyErase to confirm. If the page is blank, the content in this page is all 0xFF, and reading or accessing
it directly will hit hardfault. If the page is not blank, it can be read/access as usual.
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Figure 6. Flash read

3 Summary

3.1 Make sure core clock under 100 MHz when operating flash
All flash operations must be done when the core clock is under 100 MHz.

3.2 Caution on PFR region
Special caution needs to be taken when you operate last few pages near PFR. Do not perform a sector erase (erase 32 KB) of
the last flash sector.

3.3 Using ROM API to erase/program flash
Use ROM API to access data flash and PFR. The flash register operation is not recommended because it’s easy to erase
PFR accidently.

3.4 Using ROM API: FLASH_VerifyErase before read flash data to void Hardfault issue
Call FLASH_VerifyErase before reading flash content. To make sure it’s not an erased/empty page. Otherwise, it might
trigger HardFault.

3.5 Align
ROM API: The start and lengthInBytes fileds of Flash_Program and Flash_Erase need to be page aligned.
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