AN12979

KW38 - Integrating the OTAP Client Service into a Bluetooth LE

Peripheral Device

Rev. 0 — 11/2020

1 Introduction

The Over The Air Programming (OTAP) NXP’s custom Bluetooth LE service
provides the developers a solution to upgrade the software that the MCU

contains. It removes the need of cables between the device to be upgraded
(OTAP client) and the device that contains the new software (OTAP server).

The best way to take advantage of the OTAP service is to integrate it into the
Bluetooth LE application. In that way, you can reprogram the device as many
times as required.

This document is intended for developers who want to be familiar with the
OTAP software.

2 OTARP client software

OTAP memory management during the update process describes the actual
implementation of the OTAP client software included in the SDK package
for FRDM-KW38. Advantages of the OTAP service integration explains the
importance of integrating OTAP client software into your application and the
expected results.

2.1 OTAP memory management during the update
process

1. By default, the KW38 flash memory is partitioned in three main regions:

* One 256 KB Program Flash array (P-Flash) divided into 2
KB sectors with a flash address range from 0x0000_ 0000 to
0x0003 FFFF.

Application Note

Contents
1 Introduction..........ccceeeeeiieceeesiieennnns 1
2 OTAP client software...........ccccuernuee. 1
21 OTAP memory management
during the update process........... 1
2.2 Advantages of the OTAP service
integration............ccooeceiiiiieenn, 6
3 Prerequisites.......ccccvecviiienriciineennn. 7
3.1 Downloading and installing the
software development kit............. 7
4 Customizing a based Bluetooth LE
demo to integrate the OTAP service
.. 9
41 Importing the OTAP Bluetooth LE
service and framework software
into the HRS project..................... 9
4.2 Main modifications in the source
1= 16
4.3 Modifications in project settings
and storage configurations........ 26
5 Testing the HRS-OTAP demo....... 27
5.1 Preparing the OTAP client SDK
software.......cccooceveeeiiiieeee 27
5.2 Creating an HRS-OTAP S-record
image to update the software.... 31
5.3 Creating an HRS S-record image to
update the software................... 33
5.4 Testing the HRS-OTAP software
... 36

+ One 256 KB FlexNVM array divided in 2 KB sectors with address range from 0x1000 0000 to 0x1003 FFFF.

+ Alias memory with address range from 0x0004 0000 to 0x0007_FFFF. Writing or reading at the Alias range address

modifies or returns the FlexNVM content respectively.

h
P

NXP Semiconductors

OTARP client software

0x1003_FFFF

256 KB FlexNVM

0x1000_0000
0x0007_FFFF

256 KB Alias FlexNVM

0x0004_0000
0x0003_FFFF

256 KB P-Flash

0x0000_0000

Figure 1. MCU on-chip memory

2. The OTAP application splits the P-Flash into two independent parts, the OTAP bootloader and the OTAP client.
« The OTAP bootloader verifies if there is a new image available in the OTAP client to reprogram the device.

» The OTAP client software provides the Bluetooth LE custom service needed to communicate the OTAP client
device with the OTAP server that contains the new image file.

Therefore, the OTAP client device needs to be programmed twice, first with the OTAP bootloader, and then with the
Bluetooth LE application supporting OTAP client. The mechanism is created to have two different software coexisting in the
same device and store each one in different memory regions. This is implemented by the linker file. In the KW38 device,
the bootloader application has reserved an 8 KB slot of memory from 0x0000 0000 to 0x0000_1FFF, thus the rest of the
memory is reserved, among other things, by the OTAP client application.

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020
Application Note 2/42

NXP Semiconductors

OTAP client software

OTAP Client Device

This address range is used by
the OTAP Client software to
store NVM application data

and for OTAP Internal storage

if it is enabled.

0x0007_ FFFF

Alias FlexNVM

0x0004 0000

OTAP Client Software

Application

0x0003_FFFF

P-Flash

0x0000_2000

Bootloader Software

0x0000_1FFF
P-Flash
0x0000_0000

Figure 2. OTAP client software

3. When generating a new image file for the OTAP client device, the developer needs to specify that the code will be stored
with an offset of 8 KB since the first addresses must be reserved for the bootloader, making use of the linker script. The

new application should contain the Bootloader Flags at the corresponding address to work properly.

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020

Application Note

3/42

NXP Semiconductors

OTARP client software

0x0003_FFFF

0x0000_2000
Ox0000_1FFF

void

0x0000_0000

Figure 3. Software update

4. Atthe connection state, the OTAP server sends the image packets, known as chunks, to the OTAP client via Bluetooth LE.
The OTAP client can store these chunks in the external SPI flash (only available on FRDM-KW38 board), or in the on-chip
FlexNVM region. The destination of the code is selectable in the OTAP client software.

FRDM-KW38
OTAP Client Device MKW38x512xxx4
0x1003_FFFF

The Software Update can be

FlexNVM
stored at the FlexNVM
0x1000_0000 The Software Update can be
= External Flash
0x0003_FFFF stored at the External Flash
QOTAP Client Software P-Flash

0x0000_2000
0x0000_1FFF
Bootloader Software P-Flash

0x0000_0000

Figure 4. Storage of the software update

5. When the transfer of the image has finished and all chunks were sent from the OTAP server to the OTAP client, the
OTAP client software writes information, such as the source of the image update, external flash or FlexNVM, in a portion
of memory known as Bootloader Flags, and then resets the MCU to execute the OTAP bootloader code. The OTAP
bootloader reads the Bootloader Flags to get the information needed to program the device and triggers a command to
reprogram the MCU with the new application. This is shown in the figure below.

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020
Application Note 4/42

NXP Semiconductors

OTARP client software

QOTAP Bootloader OTAP Client

Application Start

OTAP Bootloader Init OTAP Client Init

v

Check Bootloader Flags

Wait for New Image

Is New Image Flag set?

Donwload Image

Yes

v

Reprogram the MCU with the new image

i Set New Image Flag at
Bootloader Flags region

Clear New Image Flag at Bootloader Flags region

l

Reset MCU
(Software Reset)

MNo

Figure 5. Simplified flow diagram of OTAP software

6. As the new application was built with an offset of 8 KB, the OTAP bootloader programs the device starting from the
0x0000_2000 address and the OTAP client application is overwritten by the new image. Then the OTAP bootloader triggers
a command to start the execution of the new image. If the new image does not contain the OTAP service included, the
device is not able to be programmed again due to the lack of OTAP functionality. For more description, see Advantages of
the OTAP service integration.

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020
Application Note 5/42

NXP Semiconductors

OTARP client software

OTAP Client Device

0x0003 FFFF

P-Flash

0x0000 2000
0x0000_1FFF
Bootloader Software P-Flash

0x0000_0000

Figure 6. Memory content at the end of the software update process

NOTE
In practice, the boundary created between the OTAP client software and the software update addresses when the
internal storage is enabled, is not placed exactly in the boundary of the P-Flash and FlexNVM memory regions.
These values might change with linker settings. You can inspect the effective memory addresses in your project.

2.2 Advantages of the OTAP service integration

As explained in OTAP memory management during the update process, the OTAP client software can reprogram the device only
once, because it is overwritten by the new application.

Suppose that an OTAP client device is programmed with the OTAP client software and this device requests an update, for
example, a Heart Rate Sensor (HRS). The image that the OTAP server sends to the OTAP client must be the HRS. After

the reprogramming process, the device that was the OTAP client, now, has turned into an HRS. The HRS does not have the
capabilities to communicate with the OTAP server and request for another update. But if the HRS image had included the OTAP
client service as well, the device would have the possibility to request another software update, for example, a modified Glucose
Sensor with OTAP Service.

As the Glucose Sensor software includes the OTAP client, the device can request another software update from the OTAP server.
That way, the developer can continue upgrading the software as many times as needed. In other words, to be able to upgrade the
software on the OTAP client device in the future, the application sent over the air should include OTAP service support.

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020
Application Note 6/42

NXP Semiconductors

Prerequisites

First
Update

OTAP Client

OTAP Client Software

OTAP Server

Software Update for Client

OTAP Client Software

Second
Update

OTAP Client

OTAP Client Software

QOTAP Server
Software Update for Client

OTAP Client Software

Third
Update

OTAP Client

OTAP Client Software

OTAP Server
Software Update for Client

OTAP Client Software

Figure 7. OTAP integration functionality example

This application note is intended as guidance to add the OTAP service to a Bluetooth LE application.

3 Prerequisites

This document is provided together with a functional demo of the OTAP service integration. The example is based on the HRS
project, available in the FRDM-KW38 SDK package and developed on the MCUXpresso IDE platform. The following are required

to complete the implementation of the HRS-OTAP integration demo:

* MCUXpresso IDE v11.0.0 or later

FRDM-KW38 SDK

HRS — OTAP demo package

FRDM-KW38 board
A smartphone with loT Toolbox NXP app, available for Android and iOS.

3.1 Downloading and installing the software development kit

This chapter provides all the steps needed to download the SDK for the FRDM-KW38 used as a starting point.
1.
2.
3.

Navigate to the MCUXpresso website.
Click Select Development Board. Log in with your registered account.

In the Search by Name field, search for FRDM-KW38. Then click the suggested board and click Build MCUXpresso
SDK.

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020

Application Note

7/42

https://play.google.com/store/apps/details?id=com.freescale.kinetisbletoolbox&hl=en_US
https://apps.apple.com/us/app/iot-toolbox/id1362450908
https://mcuxpresso.nxp.com/en/welcome

NXP Semiconductors

Prerequisites

Search by Name

Select a Board, Kit, or Processor

~ Boards

« Kits
» Processors

» Others

Name your SDK

SDK_2.6.5_FRDM-KW38

Select Development Board

Search for your board or kit to get started.

FRDM-KW38 (MKW38A512xxx4)

Figure 8. Building the FRDM-KW38 SDK package

Hardware Details
Board
Device

Core Type / Max
Freq
Device Memory Size

FRDM-KW38
MKW38A4
Cortex-MOP / 48MHz

512 KB Flash
64 KB RAM

Actions

Build MCUXpresso SDK

Explore selection with Pins tool

@ Explore selection with Clocks tool

4. Select MCUXpresso IDE in the Toolchain/IDE combo box. Select the supported OS and provide the name to identify the

package in your MCUXpresso Dashboard.

SDK Builder

Developer Environment Settings

SDK Version

Filter by Name, Category, or Description...

$ Name s
CMSIS DSP Library
LIN Stack
mcu-boot
Wireless BLE stack
Wireless GENFSK

Amazon-FreeRTOS

267 2020-08-10 REL_26.0_KW37A_MR1_QPATCH

Category

Middleware

Middleware

Middleware

IMiddleware

Operating System

Generate a downloadable SDK archive for use with desktop MCUXpresso Tools.

Selections here will impact files and exampies projects included in the SDK and Generated Projects

Toolchain / IDE
MCUXpresso IDE

Host OS5

Windows

Select All Unselect All

Description

CMSIS DSP Software Library

LIN Stack middleware

mcu-boot

BLE

GENFSK

Amazon-FreeRTOS

Dependencies

CMsIs DSP Library

CMSIS DSP Library

Download SDK

This MCUXpresso SDK configuration is available for direct download

Archive Name

Don't use

Figure 9. Customizing the installation settings

SDK_2.6.7_FRDM-KW38

in the name of your SDK|

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020

Application Note

8/42

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

5. Click Download SDK and it will take a few minutes until the system gets the package into your account on the
MCUXpresso web page. Read and accept the license agreement. The SDK download starts automatically on your PC.

6. Open MCUXpresso IDE. Drag and drop the FRDM-KW36 SDK zip in the Installed SDK’s list.

@ Installed SDKs

To install an SDK, simply drag and drop an SDK (zip file/folder) into the ‘Installed SDKs' view. [C
Installed SDKs . Available Boards Available Devices

MName SDK Version Manifest Version

[#SDK_2 x FRDM-KW38 2.6.5 (Stage 837 2020-0. 3.5.0

Figure 10. Importing SDK package to MCUXpresso IDE

Now, you have downloaded and installed the SDK package for the FRDM-KW38 board.

4 Customizing a based Bluetooth LE demo to integrate the OTAP service

The following steps describe the process of customizing a Bluetooth LE demo imported from the SDK to integrate the OTAP

service. This guide uses a Heart Rate Sensor project (HRS) as a starting point, so some steps may differ for another Bluetooth
LE SDK example.

4.1 Importing the OTAP Bluetooth LE service and framework software into the HRS project

To integrate the OTAP client service in your application, you will need to import additional software that is not included in other
SDK examples by default. Hence, the first step consists in to make a comparison between your project and the OTAP client SDK
project to locate which files you will need to merge in your project to support this service in your application. A comparison between
the HRS (left) and the OTAP client (right) is shown in Figure 11. Files and folders highlighted in red are part of the OTAP client
software, but not in the HRS. Consequently, we need to incorporate these files in our HRS example to add the OTAP feature in
this project. If you are interested in adding OTAP to other Bluetooth LE SDK projects or in your custom Bluetooth LE project, you
need to look for the missing files and incorporate them following the same methodology described in this example.

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020
Application Note 9/42

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

& bluetooth
h controller
[iﬁ host
= profiles
battery
= device_info
& heart_rate

© board

& CMSIS

= device

&= doc

drivers

&= framework
= Common
‘5 DCDC

& Flash

Flash_Adapter.c
“u Flash_Adapter.h

-5 Functionlib

-2 GPIO

" Keyboard

& LED

-= Lists

-5 Panic

-5 Reset

-5 RNG

5 Seclib

= SerialManager
E interface
b source

SerialManager.c

UART_Serial_Adapter.c
~u JART_Serial_Adapter.h

-3 TimersManager

‘B XCVR

= libs

& linkscripts

-nend_text.|dt

-amain_text.|dt

-usymbols.|dt

E source

-5 common
- gatt.db

Figure 11. Source tree comparison

& bluetooth
ﬁ controller
ﬁ host
oo profiles

- battery

-3 device_info

E=]

i board
= CMSIS
= device
= doc

= drivers

& framework

& Common

-3 DCDC

& Flash

[--E External

~u Flash_Adapter.c
~u Flash_Adapter.h
- Functionlib

@ GPIO

-5 Keyboard

-@ LED

-3 Lists

-8 OtaSupportI

-5 Panic

-5 Reset

-3 RNG

-3 Seclib

& SerialManager

E interface
Er source
& SPI_Adapter
~uSerialManager.c
-8 JART_Serial_Adapter.c
- |JART_Serial_Adapter.h
- TimersManager

“@ XCVR
5 libs
& linkscripts

-nend_textIdt
-nmain_text.Idt
-amain_text_section.ldt I
~usymbols.Idt

& source
- common
B gatt_db

[--E otap_client I

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020

Application Note

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

The folders and files that are in OTAP but not in HRS, must be imported in your HRS project. For instance, in Figure 11, the
followings are required to be imported:

* bluetooth -> profiles -> otap
+ framework -> Flash -> External
« framework ->OtaSupport
+ framework ->SerialManager ->source ->SPI_Adapter
 source -> common -> otap_client
« linkscripts -> main_text_section.ldt
To include these folders and source files in your project, perform the following steps.

1. Expand the bluetooth and framework folders in your workspace. Select the folder needed for updates and click the right
mouse button. Select New -> Folder. The Folder window appears to provide the same name as the missing folder in the
source directory, as shown in Figure 12.

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020
Application Note 11/42

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

B8 New Folder I

X
Folder @

Create a new folder resource.

Enter or select the parent folder:

frdmkw38_heart_rate_sensor_freertos/bluetooth/profiles
rat =
¥ = bluetooth ~
& controller
& host
v = profiles
& battery
& device_info
= heart_rate
= board
= CMSIS
= device
= doc
& drivers

= framework

Folder name: | otap

Advanced >>

@) Finish Cancel

Figure 12. Creating the Bluetooth and Framework folders

2. Repeat Step 1 for the left folders. The result look similar as Figure 13.

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020
Application Note 12/42

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

v & frdmkw38_heart_rate_sensor_freertos <Debug>

© Project Settings
& Includes
£ CMSIS
& amazon-freertos
2 bluetooth
& controller
& host
v = profiles
= battery
= device_info
= heart _rate
& board
2 device
2 drivers
2 framework
= Common
= DCDC
¥ = Flash
v = External

= interface

& source
lg Flash_Adapter.c
% Flash_Adapter.h
= FunctionlLib

v = OtaSupport
= interface
= source

¥ [source

Figure 13. HRS directory updated

& Panic
= Reset
= RNG
&= Seclib
v = SerialManager
&= interface
¥ (= source
I = SPI_AdapterI

¥ = common
= gatt_db
| > = otap_client |

3. Copy the files inside all the recently created folders from the OTAP client and save it into your project. Ensure that all the
files are in the same folder from the HRS side. For this example, these files are listed as below.

* otap interface.h and otap_service.c in the bluetooth -> profiles -> otap folder.

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020

Application Note

13/42

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

* Eeprom.h in the framework -> Flash -> External -> Interface folder.

» Eeprom source files in the framework -> Flash -> External -> Source folder.
* OtaSupport.h in the framework -> OtaSupport -> Interface folder.

* OtaSupport.c in the framework -> OtaSupport -> Source folder.

* SPI Serial Adapter.hand sPI_Serial Adapter.c in the framework -> SerialManager -> source-> ;SPI_Adapter
folder.

* main text section.ldt in linkscripts folder.

* otap client.handotap client.c in the source -> common -> otap_client folder.

v (2 bluetooth
&= controller
= host
v (= profiles

= battery
= device info

¥ = otap

otap_interface.h

i<l otap_service.c

Figure 14. OTAP files integrated into the HRS project

4. Navigate to Project -> Properties in MCUXpresso IDE. Go to C/C++ Build -> Settings -> Tool Settings -> MCU C Compiler
-> Includes. Click the icon next to the Include paths textbox, as shown in Figure 15. In the new window that appears, click
the Workspace button.

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020
Application Note 14 /42

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

. Properties for frdmkw38_heart_rate_sensor_freertos O X

type filter text Settings
Resource
Builders
v C/C++ Build
Build Variables
Environment
Logging
MCU settings
Settings
Tool Chain Editor

Configuration: Debug [Active | ¥ || Manage Configurations...

% Tool Settings # Build steps Build Artifact Binary Parsers @ Error Parsers

Include paths (-1) :D & &l
"${workspace_loc:/${ProjName}/board}" ~
"${workspace_loc/${ProjName}/source}"

~ & MCU C Compiler
(Dialect
(2 Preprocessor

C/C++ General
MCUXpresso Config Toc

% Includes
\a

Optimization

{workspace_loc/${ProjName}/}"
{workspace_loc;/${ProjName}/amazon-freertos/freertos/portable

$
$
$4workspace_loc:/${ProjName}/amazon-freertos/include}”
$4workspace _loc:/${ProjName}/framework/OSAbstraction/interfac
$fworkspace_loc:/${ProjName}/framework/Flash}"
$4workspace_loc:/${ProjName}/framework/GPIO/interface}"

$

$

$

$

$

Project Natures Debugging .
Project References 2 Warnings
Run/Debug Settings Miscellaneous u
Task Tags & Architecture "

Validation ~ & MCU Assembler "

{workspace_loc:/${ProjName}/framework/Keyboard/interface}"
{workspace_loc/${ProjName}/framework/LED/interface}"
{workspace_loc/${ProjName}/framework/Reset/interface}"
{workspace_loc;/${ProjName}/framework/Common}”

Architecture & Headers "
"${workspace_loc:;/${ProjName}/framework/MemManager/interfac

~ & MCU Linker
"Charnrlbernacn lac /8 Drailamal Hrammmunrk INMAccanina fintarfasal"
2 General < >

2 Libraries
Miscellaneous
& Shared Library Settings
2 Architecture
Managed Linker Script
2 Multicore
~ & MCU Debugger
2 Debug
(2 Miscellaneous v

@ Apply and Close

2 General

Include files (-include) &

Cancel

Figure 15. Include paths perspective

5. Deploy your directory tree in the folder selection window. Select the following folders and click OK to save the changes.
* bluetooth -> profiles -> otap
« framework -> Flash -> External -> Interface
» framework -> OtaSupport -> Interface
+ framework -> SerialManager -> source -> SP|_Adapter
+ source -> common -> otap_client

Ensure that these paths were imported onto the Include paths view.

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020

Application Note 15/42

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

. Properties for frdmkw38_heart_rate_sensor_freertos

type filter text

Resource
Builders
~v C/C++ Build
Build Variables
Environment
Logging
MCU settings
Settings
Tool Chain Editor
C/C++ General
MCUXpresso Config Toc
Project Natures
Project References
Run/Debug Settings
Task Tags
Validation

Settings

Configuration: Debug [Active]

¥ Tool Settings # Build steps

~ Manage Configurations...

Build Artifact [=¢ Binary Parsers @ Error Parsers

v & MCU C Compiler
2 Dialect
(% Preprocessor
i Includes
% Optimization
2 Debugging
% Warnings
2 Miscellaneous
& Architecture
v & MCU Assembler
& General
2 Architecture & Headers
v & MCU Linker
2 General
& Libraries
2 Miscellaneous
& Shared Library Settings
& Architecture
2 Managed Linker Script
& Multicore
v & MCU Debugger
% Debug
2 Miscellaneous

Include paths (-1) &8 8 5 &

ProjName}/bluetooth/profiles/device_info}" ~
ProjName}/bluetooth/profiles/heart_rate}"
ProjName}/drivers}"

ProjName}/device}"

ProjName}/CMSIS}"

ProjName}/framework/DCDC/interface}”
ProjName}/framework/XCVR/MKW38Z4}"
ProjName}/framework/XCVR/MKW38Z4/nb2pdghz/configs}”
ProjName}/framework/XCVR/MKW3874/nb2pdghz}”
ProjName}/bluetooth/profiles/otap}”
ProjName}/framework/Flash/External/interface}”
ProjName}/framework/OtaSupport/interface}”
ProjName}/framework/SerialManager/source/SPI_Adapter}”
ProjName}/source/common/otap_client}”

"${workspace_loc:/$
"${workspace_loc;/$:
"${workspace_loc/$
"${workspace_loc:/$
"${workspace_loc;/$:
"${workspace loc:/$
"${workspace_loc:/$
"${workspace_loc/$
"${workspace loc;/$:
'S{workspace_loc/$
'${workspace_loc:/$
'${workspace loc;/$
'${workspace_loc/$
'${workspace_loc:/$

Include files (-include)]

Cancel

Apply and Close

Figure 16. Including the OTAP folders in the project paths

At this point, you have included the OTAP client Bluetooth and Framework services in the HRS project.

4.2 Main modifications in the source files

Once you have included the OTAP client folders and files in your custom project, the next step is to inspect the differences between
the source files of the OTAP client and your Bluetooth LE application and add the code needed to integrate the OTAP Service.
The following sections explain the main aspects that you should focus on.

4.2.1 pin_mux.h and pin_mux.c

These files contain the pin initialization routines. You can find pin_mux.cand pin_mux.hfiles at the board folder in your project. As
the OTAP Client makes use of the SPI protocol to download the software update on the external flash, when the external storage
method is selected, you must add the following codes, which are the initialization of the pins for this module.

* pin mux.h

void BOARD InitSPI (void);

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020

Application Note

16 /42

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service
* pin_mux.c

void BOARD InitSPI (void)

{
/* Port C Clock Gate Control: Clock enabled */
CLOCK_ EnableClock (kCLOCK PortC) ;
/* PORTC16 (pin 45) is configured as SPIO_SCK */
PORT_SetPinMuX (PORTC, 16T, kPORT_MuXZ—\lt2) g
/* PORTC17 (pin 46) is configured as SPIO SOUT */
PORT_SetPinMuX (PORTC, 17U, kPORT_MuXAltZ) o
/* PORTC18 (pin 47) is configured as SPIO SIN */
PORTisetPinMuX (PORTC, 18U, kPORTiMuXAltZ) 2
/* PORTC19 (pin 48) is configured as SPIO_PCSO */
PORT_SetPinMuX (PORTC, 19U, kPORT_MuXZ—\lt2) g

4.2.2 app_preinclude.h

The app_preinclude.h file contains many preprocessor directives that configure some functionalities of the project, such as low
power enablement, DCDC configuration, Bluetooth LE security definitions, and the hardware configuration macros. The OTAP
client software requires some definitions that are not included for other Bluetooth LE SDK projects. The following definitions must
be included in your software update.

* gEepromType d
* gEepromParams WriteAlignment c
* gOtapClientAtt d
The OTAP HRS demo, sets the following values:

1. gEepromType_d: Defines the storage method between the AT45DB041E external flash on the FRDM-KW38 board (default
value) or the FlexNVM on-chip memory. You can also select among other memory devices for custom boards, by referring
to the list of EEPROM devices in the Eeprom.h header file at framework/Flash/External/Interface).

/* Specifies the type of EEPROM available on the target board */
#define gEepromType d gEepromDevice AT45DB041E c

2. gEepromParams_WriteAlignment: Defines the offset of the software update for programming. Do not modify the
default value.

/* Eeprom Write alignment for Bootloader flags. */
#define gEepromParams WriteAlignment c 8

3. gotapClientAtt d: It sets the ATT transference method for OTA updates. It must be set to 1 for own purpose.

#define gOtapClientAtt d 1

4.2.3 app_config.c

The app_config.c source file contains some structures that configure the advertising and scanning parameters and data. It also
contains the access security requirements for each service in the device.

The advertising data announces the list of services that the Bluetooth LE advertiser device (HRS — OTAP) contains. This
information is used by the Bluetooth LE scanner, to filter out the advertiser devices that do not contain the services required.
Hence, you must include the OTAP client service in the advertising data, to announce to the OTAP server, the availability of
this service.

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020
Application Note 17 /42

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

This is done at the scan response data as shown in the code below.

static const gapAdStructure t scanResponseStruct[l] = {
{
.length = NumberOfElements (uuid service otap) + 1,
.adType = gAdIncompletel28bitServicelist c,
.aData = (uint8 t *)uuid service otap

}i
gapScanResponseData t gAppScanRspData =
{

NumberOfElements (scanResponseStruct),
(void *)scanResponseStruct

NOTE
As the OTAP client service is announced in the scan response, you must ensure that the OTAP server device is
configured to perform active scanning. This is already done by the lIoT Toolbox App, but the OTAP sever SDK
example does not. You can change the scanning settings of the OTAP server SDK example at the app_config.c
file in the gScanParams struct.

Additionally, you need to include the access security requirements for the OTAP service. This is done at the
gapServiceSecurityRequirements_t struct. You can customize these parameters for your purpose. The HRS — OTAP demo
sets the following parameters, focus on the OTAP service handle:

static const gapServiceSecurityRequirements t serviceSecurity[4] = {
{
.requirements = {
.securityModeLevel = gSecurityMode 1 Level 3 c,
.authorization = FALSE,

.minimumEncryptionKeySize = gDefaultEncryptionKeySize d
by
.serviceHandle = service heart rate
by
{
.requirements = ({

.securityModelLevel = gSecurityMode 1 Level 3 c,
.authorization = FALSE,

.minimumEncryptionKeySize = gDefaultEncryptionKeySize d
Hy
.serviceHandle = service otap
b
{
.requirements = {

.securityModeLevel = gSecurityMode 1 Level 3 c,

.authorization = FALSE,

.minimumEncryptionKeySize = gDefaultEncryptionKeySize d
}7

.serviceHandle = service battery

.requirements = {
.securityModeLevel = gSecurityMode 1 Level 3 c,
.authorization = FALSE,
.minimumEncryptionKeySize = gDefaultEncryptionKeySize d
by

.serviceHandle = service device info

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020
Application Note 18/42

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

bi

Last modification requires as well, to increase the index of the number of services in the deviceSecurityRequirements struct.

gapDeviceSecurityRequirements t deviceSecurityRequirements = {
.pMasterSecurityRequirements = (void*)&masterSecurity,
.cNumServices = 4,
.aServiceSecurityRequirements = (void*)serviceSecurity

}i

4.2.4 gatt_db.h and gatt_uuid128.h

The gatt_db.h header file contains the list of attributes that, together, shapes the profile of the GATT server (HRS-OTAP client
device). The most important step of this guide is to include the list of the OTAP client attributes into the device’s database. It is

recommended to open the OTAP client SDK example, and your Bluetooth LE demo in order to compare both GATT databases.
Figure 17 shows the OTAP client portion of the database that defines the OTAP client service.

PRIMARY_SERVICE_UUID128(service_otap, uuid_service_otap)

CHARACTERISTIC_UUID128(char_otap_control_point, uuid_char_otap_control_point, (gGattCharPropWrite_c | gGattCharPropIndicate_c))
VALUE_UUID128_ VARLEN{value_otap_control_point, uuid_char_otap_control_point, (gPermissionFlaghiritable_c), 16, 16, 8x0@)
CCCD{cccd_otap_control_point)

CHARACTERISTIC_UUID128(char_otap_data, uuid_char_otap_data, (gGattCharPropWriteWithoutRsp_c))

VALUE_UUID128 VARLEN{value_otap_data, uuid_char_otap_data, (gPermissionFlagWritable_c), gAttMaxMtu_c - 3, gAttMaxMtu_c - 3, 9x00)

Figure 17. OTAP client service

The profile built within the gatt db.h database for the HRS — OTAP demo has the architecture depicted in Figure 18.

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020

Application Note 19/42

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

Heart Rate Measurement Manufacturer Software
Name Revision

Model Number

Serial Number
Body Sensor Location
Harware
Revision
Heart Rate Control Point Firmware
Revision

Battery Level OTAP Control Point

Profile Service Characteristic Descriptor

Figure 18. HRS — OTAP profile

The gatt uuid128.hheader file contains all the custom UUID definitions and its assignation. The gaft uuid728.h does not contain
definitions in the original HRS SDK project because the heart rate and the battery services are adopted by the Bluetooth SIG.
However, the OTAP service and its characteristics need to be specified by the developer as a 128 — UUID. Figure 19 shows how
to implement the 128 — UUID assignation for the OTAP service.

/% BLE Over The Air Programming - Firmware Update */

UUID128(uuid_service_otap, OxEQ, ex1C, Ox4B, @x5E, Ox1E, BxEB, @xAl, @x5C, OxEE, OxF4, Ox5E, OxBA, x50, ©x55, OxFF, 0x01)
UUID128(uuid_char_otap_control_point, @xE@, ex1C, Ox4B, @x5E, ©x1E, @xEB, @xAl, @x5C, @xEE, @xF4, @x5E, OxBA, @x51, ©8x55, OxFF, 0xel)
UUID128(uuid_char_otap_data, AxE@, ex1C, Ox4B, 8x5E, Ox1E, 8xEB, @xAl, @x5C, @xEE, @xF4, @x5E, OxBA, 8x52, B8x55, OxFF, 0x81)

Figure 19. HRS - OTAP 128 — UUID definitions

4.2.5 heart_rate_sensor.c

The heart_rate_sensor.cis the main source file at the application level. Here are managed all the procedures that the device
performs, before, during and after to create a connection. The following steps are the main changes to integrate the OTAP service.

1. Merge the missing #include preprocessor directives to reference the OTAP files on your project, except ofap_client_att.h.
Figure 20 shows a comparison between HRS (left) and OTAP client (right) application files. This step will depend on your

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020
Application Note 20/42

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

software since it might share different files than this example. The results are similar as depicted in Figure 21, before (HRS

left), after (HRS-OTAP right).

/
* Include * Include
’
T #include "EmbeddedTypes.h”

* Framework / Drivers */ /* Framework / Drivers */
#include "RNG_Interface.h” #include "RNG_Interface.h™
#include "Keyhoard.h" #include "Keyboard.h"

#include "LED.h" #include "LED.h"
#include "TimersManager.h” #include "TimersManager.h"
#include "FunctionLib.h” #include "FunctionLib.h”
#include "MemManager.h” 4.
#include “"Panic.h” #include “"Panic.h”

o

L
#if (cPWR_UsePowerDownMode) #if (cPWR_UsePowerDownMode)
#include "PWR_Interface.h” #include "PWR_Interface.h”
#include "PWR_Configuration.h” 4=
#endif #endif

<3 #include "OtaSupport.h”
/* BLE Host Stack */ /* BLE Host Stack */

¢ #include "gatt_interface.h”
#include "gatt server interface.h” #include "gatt server interface.h”
#include "gatt_client_interface.h” #include "gatt_client_interface.h™

<3 #include "gatt database.h”
#include "gap_interface.h” #include "gap_interface.h™

&
#if MULTICORE_APPLICATION_CORE
#include "dynamic_gatt_database.h” #include "gatt_db_app_interface.h”
#else #if ldefined (MULTICORE_APPLICATION_CORE) || (!MULTICORE APPLICATION CORE)
#include "gatt db_handles.h” #include “gatt db handles.h”
#endif #endif

* Profile / Services */ /* Profile / Services */

#include "battery_interface.h” #include "battery_interface.h”
#include "device_info_interface.h” #include "device_info_interface.h™
#include “heart_rate_interface.h” @ #include "otap_interface.h"

* Connection Manager */ /* Connection Manager */

#include "ble_conn_manager.h” #include "ble_conn_manager.h”

#include "board.h” #include "beard.h”

#include “ApplMain.h” #include “Appl¥ain.h”

#include “heart_rate_sensar.h” @ #include "otap_client_att.h"
| #include “otap client.h"

Figure 20. Comparison between HRS (left) and OTAP (right) includes

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020

Application Note

21/42

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

/* Framework / Drivers */ /* Framework / Drivers */
#include "RNG_Interface.h” #include "RNG_Interface.h”
#include "Keyboard.h" #tinclude "Keyboard.h"
#include "LED.h" #include "LED.h"

#include "TimersManager.h" #tinclude "TimersManager.h"
#include "FunctionLib.h™ #tinclude "FunctionLib.h"
#include "MemManager.h" #tinclude "MemManager.h"
#include "Panic.h™ #tinclude "Panic.h”

#if (cPWR_UsePowerDownMode) #if (cPWR_UsePowerDownMode)
#tinclude "PWR_Interface.h” t#tinclude "PWR_Interface.h”
#include “PWR_Configuration.h" #include “PWR_Configuration.h™
#endif #endif

A #include “OtaSupport.h™

/* BLE Host Stack */ /* BLE Host Stack */
A #include "gatt_interface.h”
#include "gatt_server_interface.h” #include “gatt server_interface.h™
#include "gatt_client_interface.h” #include "gatt_client_interface.h™
#include "gatt_database.h”
#include "gap_interface.h” #include "gap_interface.h”

#include “gatt_db_app_interface.h™

#if MULTICORE_APPLICATION_CORE #if MULTICORE_APPLICATION_CORE
#include "dynamic_gatt_database.h” #tinclude “dynamic_gatt_database.h™
#else f#else

#include "gatt_db_handles.h” t#tinclude "gatt_db_handles.h"
#endif #endif

/* Profile / Services */ /* Profile / Services */

#tinclude "battery_interface.h” t#tinclude "battery_interface.h™
#include “device_info_interface.h” #include “device_info_interface.h”
#include “heart_rate_interface.h™ #include “heart_rate_interface.h”

A #include “otap_interface.h"

/* Connection Manager */ /* Connection Manager */
#include "ble conn_manager.h” #include "ble conn_manager.h”
#include "board.h" #include "board.h"

#include "ApplMain.h” #include "ApplMain.h"
#include "heart_rate_sensor.h” #include “heart_rate_sensor.h”

A #include "otap_client.h”

Figure 21. Merging the OTAP files into the project, before (HRS left) and after (HRS-OTAP right)

2. Add the function prototypes and global variables that are used by the OTAP client software. See the comparison in Figure
22 between HRS (left) and OTAP (right). As mentioned in the last step, this might depend on your application. For this
example, you can skip merging the appTimer1d variable in your Temperature Collector project, since this is used in the
OTAP client to create an instance of a timer that will not implement in this example. The results should be similar as depicted
in Figure 23.

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020
Application Note 22/42

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

Private memory declarations Private memory decla

o & static deviceld t mPeerDeviceld = glnvalidDeviceld c;
/* Adv state *+/ /* Adv Parmeters */
static advStats_t mAdvState; static advState_t mAdvState;

o static bool t nRestartady; @
static uint32_t maAdvTimeout; static tmrTimerID t appTimerId;

static deviceId_t mPeerDeviceld = gInvalidDeviceld c;

© /= Service Data*/ @ /* service pata %/
static bool t basValidClientList[gAppMaxConnections_c] = { FALSE }; static bool t basValidClientList[gAppMaxConnections_c] = { FALSE };
static basConfig_t basserviceCon {service_battery, @, basvalidClientlist, gAppMaxConnections_c}s static basConfig_t basServiceConfig = {(uint16_t)service_battery, @, basvalidClientlist, gAppMaxConnections_c};
static hrsUserData_t hrsUserData; static disConfig t disServiceConfig - {(uint16_t)service device info};

static hrsConfig_t hrsServiceConfig = {service_heart_rate, TRUE, TRUE, TRUE, gHrs_BodySensorlocChest_c, &hrsuserData};
static uint16_t cpHandles[1] = { value_hr_ctrl point };

& /* Application specific data®™/ & /* Application Data */
static bool_t mTogglel6BitHeartRate = FALSE;
static bool_t mContactStatus = TRUE;
static tmrTimerID_t madvTimerId;
static tmrTimerID_t measurementTinerId;
static tmrTimerID_t mBatteryMeasurementTimerId; static tmrTimerID t mBatteryMeasurementTimerId;

Private functions prototypes

/* Gatt and Att callbacks */ and Att callbacks
static void BleApp_AdvertisingCallback (gapAdvertisingevent t* pAdvertisinggvent); static void BleApp_AdvertisingCallback (gapAdvertisingEvent t* pAdvertisinggvent);
static void BleApp_ConnectionCallback (deviceld_t peerDeviceld, gapConnectionEvent_t* pConnectionEvent)s static void BleApp_ConnectionCallback (deviceld_t peerDeviceld, gapConnectionEvent t* pConnectionEvent);
static void BleApp_GattServerCallback (deviceld t deviceld, gattServerEvent t* pservertvent); static void BleApp_GattServerCallback (deviceld_t deviceld, gattServerEvent t* pServertvent);
= &
static void BleApp_Config(void); static void BleApp_Config(void);
= &
/= Timer Callbacks */
static void AdvertisingTimerCallback (void *);
static void TimerMeasurementCallback (void *);
static void BatteryMeasurementTinerCallback (void *);
static void BleApp_Advertise(void); static void BleApp_Advertise (void);

static void BatteryMeasurementTimerCallback (void *pParam);

Figure 22. Comparison between HRS (left) and OTAP (right) prototypes

Private memory declarations * Private memory declara

/= Adv State =/ Adv State
static advstate_t madvstates static advState_t madvState;
static bool_t mRestartAdy; static bool _t mRestartady;
static uintiz_t madvTimeout; static uint32_t madvTimeout;
static deviceld t mPeerDeviceld = gInvalidbeviceld_c; static deviceld t mPeerDeviceld = glnvalidDeviceld c;
/= Service Data*/ Service Data
static bool_t basvalidClientList[gappMaxConnections_c] = { FALSE }; static bool_t basvalidClientList[gAppMaxConnections_c] = { FALSE };
static basConfig_t basServiceConfig = {service_battery, 4, basvalidClientlist, gAppMaxConnections_c}; static basConfig_t basServiceConfig = {service_battery, @, basValidClientlist, gAppMaxConnections_c};
static hrsUserData_t hrsUserDatas static hrsUserData_t hrsUserData;
static disConfig_t disServiceConfig = {(uint16_t)service device info};
static hrsConfig t hrsserviceConfig = {service_heart_rate, TRUE, TRUE, TRUE, gHrs_BodySensorlocChest_c, ShrsUserData); static hrsConfig_t hrsServiceConfig = {service_heart_rate, TRUE, TRUE, TRUE, ghrs_BodySensorLocChest_c, &hrsUserData};
static uint16_t cpHandles[1] = { value_hr_ctr] point }; static uint16_t cpHandles[1] = { value_hr_ctrl point };
/= Application specific data*/ App specific data®/
static bool_t mTogglelBitHeartRate = FALSE} static bool_t mTogglel6BitHeartRate = FALSE;
static bool_t mContactStatus = TRUE; static bool_t mContactStatus = TRUE;
static tmrTinerID_t mAdvTimerId; static tmrTimerID_t mAdvTimerId;
static tmrTinerID_t mieasurementTinerld; static tnrTimerID_t mMeasurementTinerld;
static tmrTinerID t mBatteryMeasurementTimerIdy static tnrTimerID_t mBatteryMeasurementTimerld;

Private functions prototypes Private
/* Gatt and Att callbacks */ /* G and Att callbacks
static void Blefpp_AdvertisingCallback (gapAdvertisingEvent_t* pAdvertisingEvent); static void BleApp_AdvertisingCallback (gapAdvertisingEvent t* pAdvertisingEvent);
static void BleApp_ConnectionCallback (deviceId t peerDeviceld, gapConnectionEvent_t* pConnectionEvent); static void BleApp_ConnectionCallback (deviceld_t peerDeviceld, gapConnectionEvent_t* pConnectionEvent);
static void BleApp_GattServerCallback (deviceld_t deviceld, gattServerEvent_t* pServerfvent); static void BleApp_GattServerCallback (deviceId t deviceld, gattServerfvent t* pServerEvent);
static void BleApp_Config(void); static void BleApp_Config(void);
/* Timer Callbacks */ 7% Timer C ks */
static void AdvertisingTimerCallback (void *); static void AdvertisingTimerCallback (void *);
static void TimerMeasurementCallback (void *); static void TimerteasurementCallback (void *);
static void BatteryMeasurementTimerCallback (void *); static void BatteryMeasurementTinerCallback (void *);
static void BleApp_Advertise(void); static void BleApp_Advertise(void);

Figure 23. Merging the OTAP prototypes into the project, before (HRS left) and after (HRS-OTAP right)

3. Locate the BleApp_Config function. The BleApp_Config function configures the GAP role of the device (HRS — OTAP is
a peripheral device), registers the notifiable attributes, prepares the services built on the database and allocates some
application timers. Add the OtapClient_Configand Dis_Startfunctions to initialize these services. See the following portion
of the code.

/* Start services */

hrsServiceConfig.sensorContactDetected = mContactStatus;
#if gHrs EnableRRIntervalMeasurements d

hrsServiceConfig.pUserData->pStoredRrIntervals = MEM BufferAlloc(sizeof (uintl6 t) *
gHrs NumOfRRIntervalsRecorded c);
#endif

Hrs Start (&hrsServiceConfig);

basServiceConfig.batteryLevel = BOARD GetBatterylLevel () ;

Bas_Start (&basServiceConfig);

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020
Application Note 23/42

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

(void)Dis_Start (&disServiceConfig) ;

if (OtapClient Config() == FALSE)

{
/* An error occured in configuring the OTAP Client */
panic(0,0,0,0);

4. Locate the Blerpp ConnectionCallback. The connection callback is triggered whenever a connection event happens,
such as a connection or disconnection.

a. Go to the connection case. Include the OtapCS_Subscribe and OtapClient HandleConnectionEventfunctions. This
is implemented in the following portion of the code.

case gConnEvtConnected c:
{
/* Subscribe client*/
Bas_ Subscribe (&basServiceConfig, peerDeviceld);
Hrs_ Subscribe (peerDeviceld) ;
(void) OtapCS Subscribe (peerDevicelId) ;
mPeerDeviceld = peerDeviceld;
/* Stop Advertising Timer*/
mAdvState.advOn = FALSE;
TMR StopTimer (mAdvTimerId) ;
/* Start measurements */
TMR StartLowPowerTimer (mMeasurementTimerId, gTmrLowPowerIntervalMillisTimer c,
TmrSeconds (mHeartRateReportInterval c), TimerMeasurementCallback, NULL);
/* Start battery measurements */
TMR StartLowPowerTimer (mBatteryMeasurementTimerId,
gTmrLowPowerIntervalMillisTimer c,
TmrSeconds (mBatteryLevelReportInterval c), BatteryMeasurementTimerCallback, NULL);
/* Handle OTAP connection event */
OtapClient HandleConnectionEvent (peerDeviceld);
#if (cPWR_UsePowerDownMode)

#ifdef MULTICORE APPLICATION CORE

#if gErpcLowPowerApiServiceIncluded c

PWR ChangeBlackBoxDeepSleepMode (gAppDeepSleepMode c);
PWR AllowBlackBoxToSleep () ;

#endif
#else

PWR ChangeDeepSleepMode (gAppDeepSleepMode c) ;

PWR AllowDeviceToSleep();

#endif
#else
/% WL =/
LED StopFlashingAllLeds () ;
LedlOn () ;
#endif
}
break;

b. Go to the disconnection case. Include the OtapCS_Unsubscribe and OtapClient HandleDisconnectionEvent
functions. The implementation is shown in the following portion of the code.

case gConnEvtDisconnected c:
{
/* Unsubscribe client */
Bas_Unsubscribe (&basServiceConfig, peerDeviceId) ;
Hrs_ Unsubscribe () ;
(void) OtapCS_Unsubscribe () ;
mPeerDevicelId = gInvalidDeviceld c;

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020
Application Note 24 /42

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

/* Stop Timers*/

TMR_StopTimer (mMeasurementTimerId) ;

TMR StopTimer (mBatteryMeasurementTimerId) ;

OtapClient HandleDisconnectionEvent (peerDeviceld) ;
#if (cPWR UsePowerDownMode)

/% WL */

LedlOff();

/* Go to sleep */
#ifdef MULTICORE APPLICATION CORE
#if gErpcLowPowerApiServiceIncluded c
PWR ChangeBlackBoxDeepSleepMode (cCPWR DeepSleepMode) ;

#endif
#else
PWR ChangeDeepSleepMode (cCPWR DeepSleepMode) ;
#endif
#else
/* Restart advertising */
BleApp Start();
#endif

}
break;

5. Locate the Bleapp GattServerCallback. It manages all the incoming communications from the client devices. Add
the GATT events that need to be handled by the OTAP client software, gevtAttributeWritten c, gEvtMtuChanged,
gEvtCharacteristicCccdWritten c, gEvtAttributeWrittenWithoutResponse c, gEvtHandleValueConfirmation c,
and gEvtError. Your Bluetooth LE project might share some common GATT events. If it is the case, you will need to add a
conditional structure per each attribute handle. Focus on the gevtattributewritten c case and observe the conditional
structure that was included for the HRS control point and the oTAP control point handling.

case gEvtAttributeWritten c:
{
handle = pServerEvent->eventData.attributeWrittenEvent.handle;
status = gAttErrCodeNoError c;
if (handle == value hr ctrl point)
{

status = Hrs ControlPointHandler (&¢hrsUserData,
pServerEvent->eventData.attributeWrittenEvent.aValue[0]) ;

GattServer SendAttributeWrittenStatus (deviceld, handle, status);

}
else
{

OtapClient AttributeWritten (devicelId,
pServerEvent->eventData.attributeWrittenEvent.handle,
pServerEvent->eventData.attributeWrittenEvent.cValueLength,
pServerEvent->eventData.attributeWrittenEvent.aValue) ;

}
break;
case gEvtMtuChanged c:
{
OtapClient AttMtuChanged (devicelId,
pServerEvent->eventData.mtuChangedEvent.newMtu) ;
}
break;
case gEvtCharacteristicCccdWritten c:
{
OtapClient CccdWritten (deviceld,
pServerEvent->eventData.charCccdWrittenEvent.handle,

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020
Application Note 25/42

NXP Semiconductors

Customizing a based Bluetooth LE demo to integrate the OTAP service

pServerEvent->eventData.charCccdWrittenEvent.newCccd) ;
}
break;
case gEvtAttributeWrittenWithoutResponse c:
{

OtapClient AttributeWrittenWithoutResponse (deviceld,
pServerEvent->eventData.attributeWrittenEvent.handle,
pServerEvent->eventData.attributeWrittenEvent.cValueLength,
pServerEvent->eventData.attributeWrittenEvent.aValue);

}
break;
case gEvtHandleValueConfirmation c:
{
OtapClient HandleValueConfirmation (deviceld) ;
}
break;
case gEvtError c:

{

attErrorCode t attError = (attErrorCode t) (pServerEvent->eventData.procedureError.error &
0xFF) ;
if (attError == gAttErrCodeInsufficientEncryption c ||
attError == gAttErrCodeInsufficientAuthorization c ||
attError == gAttErrCodeInsufficientAuthentication c)

{
#if gAppUsePairing d
#if gAppUseBonding d
bool t isBonded = FALSE;
/* Check if the devices are bonded and if this is true than the bond may have
* been lost on the peer device or the security properties may not be sufficient.
* In this case try to restart pairing and bonding. */
if (gBleSuccess c == Gap_CheckIfBonded(deviceld, &isBonded) && TRUE == isBonded)
#endif /* gAppUseBonding d */
{
(void) Gap_SendSlaveSecurityRequest (deviceld, &gPairingParameters);

}
#endif /* gAppUsePairing d */
}
}
break;
default:
break;

Now, you have integrated the OTAP Client code into the HRS.

4.3 Modifications in project settings and storage configurations

The OTAP client software included in the SDK package contains some linker configurations to generate the application offset
needed for the OTAP Bootloader software and split the flash memory in accord of the storage method desired. Such configurations
are not part of the HRS demo, so it should be included to integrate the OTAP on the application. Follow the next steps to set the
project settings and the storage configurations.

1. Open the app_preinclude.h file located in the source folder of the project.

« If you want to configure the software for external flash storage method, set the gEepromType defination to
gEepromDevice AT45DBO41E c.

+ If you decided use the internal flash storage method instead, set the gEepromType defination to

gEepromDevice InternalFlash c.

For more details about storage methods, see OTAP memory management during the update process.

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020
Application Note 26/42

NXP Semiconductors

Testing the HRS-OTAP demo

/* Specifies the type of EEPROM available on the target board */
#define gEepromType_d gEepromDevice AT4SDBE41E ¢

Figure 24. Configuring the storage method at the preinclude file

2. Click on the HRS-OTAP demo in the MCUXpresso workspace.
3. Navigate to Project -> Properties in MCUXpresso IDE. Go to C/C++ Build -> MCU settings.

a. To select external flash storage method, as shown in Figure 25, configure the fields in the Memory details pane. This
is the default stoarage method in the attached HRS-OTAP software.

Flash PROGRAM_FLASH Flash (2000 (79800 FTFE_2K_PD.cfx
Flash NVM_region Flash2 Ox7b 800 04000 FTFE_2K_PD.cfx
Flash FREESCALE_PROD_DATA Flash3 07800 0x800 FTFE_2K_PD.cfx

Figure 25. Configuring external storage method

b. To select internal flash storage method, as shwon in Figure 26, configure the fields in the Memory details pane.

Type Name Alias Location Size Driver

Flash PROGRAM_FLASH Flash 02000 0x3c800 FTFE_2K_PD.cfx
: Flash INT STORAGE Flash2 (32800 (he3d000

Flash NVM_region Flash3 0x7bB00 04000 FTFE_2K_PD.cfx
Flash FREESCALE_PROD_DATA Flashd 0x7FB00 0300 FTFE_2K_PD.cfx

Figure 26. Configuring internal storage method

4. Clean and build the project.

Now, you have finally integrated the OTAP service on the Bluetooth LE based application.

5 Testing the HRS-OTAP demo

The test case example, designed to demonstrate the OTAP integration in Testing the HRS-OTAP software, makes use of the
listed software:

» OTAP Client SDK software, programmed in the FRDM-KW38 board.
* An SREC software update of the HRS-OTAP example.
* An SREC software update of the HRS SDK example.

The following sections explain how to build the software required for the testing case proposed by this document.

5.1 Preparing the OTAP client SDK software
1. Attach your FRDM-KW38 board on the PC.
2. Open MCUXpresso IDE. In the Quickstart Panel view, click Import SDK example(s).

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020
Application Note 27 /42

NXP Semiconductors

Testing the HRS-OTAP demo

MCUXpresso IDE - Quickstart Panel
ice | Mo project selected

+ Create or import a project

= . Mew project...
-5-
. Import 5SDK example(s)...
% Import project(s) from file system...

Figure 27. Quickstart panel perspective

3. Click twice on the frdmkw38 icon.

. SDK Import Wizard

O X
© Pplease select a board

. Board and/or Device selection page
- SDK MCUs

MCUs from installed SDKs. Please
click above or visit

B Available boards B %] &
Please select an available board for your project.

‘ type to filter ‘
Mcuxpresso.nxp.com to obtain
additional SDKs.
NXP MKW38A512xxx4
v KW3x
MKW38A512xxx4

frdmkw38

Selected Device: MKW38A512xxx4 using board: FRDM-KW38
Target Core: cmOplus
Description:

SDKs for selected MCU

Name SDK Vers... Manifest ... Location
KW38A: Kinetis KW38A - 2.4 GHz BLE and Generic FSK

4 SDK_2.x_FRDM-KW3€ 2.6.5 (Stage 3.5.0 E <Common>\SDK_2.6.5_FRI
connectivity Wireless Radio Microcontroller (MCU) based

@

< Back Next > Finish Cancel

Figure 28. Device selection perspective

4.

In the Examples textbox, type bootloader_otap. Select the suggested project by wireless_examples -> framework ->
bootloader_otap -> bm. Click Finish.

5. Flash the bootloader otap project, OTAP Bootloader project, in your FRDM-KW38 board.

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020
Application Note

28/42

NXP Semiconductors

Testing the HRS-OTAP demo

. SDK Import Wizard

@ The source from the SDK will be copied into the workspace.

If you want to use linked files, please unzip the 'SDK_2.x_ FRDM-KW38' SDK.

. Import projects
Project name prefix| frdmkw38

“ Project name suffix:
Use default location

Location: | CG\Users\nxf46726\Documents\MCUXpressolDE_11.1.0_3209\workspace\frdmkw38

Project Type

Project Options
(®C Project ' C++ Project | C Static Library

Copy sources
Import other files
Examples

I bootloader_otap I

C++ Static Library SDK Debug Console () Semihost (@ UART

Browse...

Example default

tal 2 W% BB

Name

Description
~ [m] £ wireless_examples

~ [m] £ framework

v M
v

bootloader_otap
£ bm

= bootloader_otap Framework bootloader otap unitility.

Version

@

< Back Next >

Figure 29. Importing the OTAP Bootloader project on the workspace

6. Repeat 2 to 4 to import the otac_att project. It is located in wireless_examples -> bluetooth -> otac_att -> freertos.

Application Note

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020

29/42

NXP Semiconductors

Testing the HRS-OTAP demo

. SDK Import Wizard

Y The source from the SDK will be copied into the workspace.
If you want to use linked files, please unzip the 'SDK_2.x_FRDM-KW38' SDK.

. Import projects
Project name prefix| frdmkw38

Use default location
C\Users\nxf46726\Documents\MCUXpressolDE_11.1.0_3209\workspace\frdmkw38

“ Project name suffix:

Browse...

Project Options

SDK Debug Console (® Semihost () UART Example default
Copy sources

Import other files

Project Type
(® C Project C++ Project | C Static Library | ' C++ Static Library

Examples | 2 M %| @B

|| otac_att I

Name Description Version

v [m] £ wireless_examples
v [m] £ bluetooth
v [m] £ otac_att
[15 bm
v £ freertos

= otap_client_att_freertos The BLE otap client att application is a simple demonstration...

Figure 30. Importing the OTAP client project on the workspace

7. Set the storage configurations on the OTAP Client software:
a. Open the app_preinclude.h file located in the source folder of the project.

» To configure the software for external flash storage method, set the gEepromType defination to
gEepromDevice_AT45DB041E_c.

» To use the internal flash storage method, set the gEepromType defination to
gEepromDevice_lInternalFlash_c.

For more details about storage methods, see OTAP memory management during the update process

/* specifies the type of EEPROM available on the target board */

#idefine gEepromType d gEepromDevice AT4S5DBB41E c

Figure 31. Configuring the storage method at the preinclude file

b. Navigate to Project -> Properties in MCUXpresso IDE. Go to C/C++ Build -> MCU settings -> Memory
details perspective.

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020
30/42

Application Note

NXP Semiconductors

Testing the HRS-OTAP demo

» To select external flash storage method, configure the fields in the Memory details pane, as shown in Figure 32.

Flash PROGRAM_FLASH Flash (2000 079200 FTFE_2K_PD.cfx
Flash MNVM_region Flash2 Ox7b300 04000 FTFE_2K_PD.cfx
Flash FREESCALE_PROD_DATA Flash3 Ox7F300 0x800 FTFE_2K_PD.cfx

Figure 32. Configuring external storage method

To select internal flash storage method, configure the fields in the Memory details pane, as shown in Figure 33.

Type Mame Alias Location Size Driver

Flash PROGRAM_FLASH Flash 0x2000 0x3c800 FTFE_2K_PD.cfx
i Flash INT_STORAGE Flash2 0x3e800 0x3d000

Flash NVM_region Flash3 (x7bB00 04000 FTFE_2K_PD.cfx
Flash FREESCALE PROD _DATA Flash4 Cx7FR00 0200 FTFE_2K_PD.cfx

Figure 33. Configuring internal storage method

8. Clean and build the project. Flash the OTAP Client the project on the FRDM-KW38 board previously programmed with
the OTAP Bootloader.

Now, you have programming and configuring the OTAP client software on your board. You can communicate to a server and
request for a software update.

5.2 Creating an HRS-OTAP S-record image to update the software

1. Install the HRS-OTAP demo provided with this document in your MCUXpresso IDE. You can drag and drop the project from

your installation path to the MCUXpresso workspace. A warning message appears, as shown in Figure 34, click the Copy
button to clone the original example.

. MCUXpresso IDE Project Import [] X

l@ Are you sure you want to import the following projects?

D:Afrdmkw38_HrsOtap_heart_rate_sensor_freertos)

Copy Cancel Link

Figure 34. Importing the HRS-OTAP demo on the MCUXpresso workspace

2. Open the end_text.1dt linker script located at the linkscripts folder in the workspace. Locate the section placement and
remove the FILL and BYTE statements, as shown in Figure 35. This step is needed only to build the SREC image file to
reprogram the device.

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020
Application Note 31/42

NXP Semiconductors

Testing the HRS-OTAP demo

£

/* Remowe this section to keep the nym section on writting the device
NV

1
iz oninans s

. = ORIGIN({NWM_region) 4+ LENGTH{NVM_ regicn) - 1;

o i

T » NVM_region

Figure 35. Preparing the linker file

3. Clean and build the project.

4. Deploy the Binaries icon in the workspace. Click the right mouse button on the .axffile and select Binary Utilities -> Create
S-Record. The S-Record file will be saved at the Debug folder in the workspace with .s79 extension.

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020

Application Note 32/42

NXP Semiconductors

Testing the HRS-OTAP demo

.workspace - MCUXpresso IDE

File Edit Navigate Search Project ConfigTools Run Analysis FreeRTOS Window Help

i g @ v/ v R:VDIBin]|D BN SR hbEakiEie villhiL

i Project Explorer 2 | % Peripherals+ (i Registers # Faults =
S|E=Yl @y v

v & frdmkw38_HrsOtap_heart_rate_sensor_freertos <Debug>

© Project Settings
~ # Binaries

% frdmkw3g ~ New ’
& Includes Open
& CMSIS Open With >
@ amazon-freer Show in Local Terminal >
2 bluetooth
& board 2 Copy Ctrl+C
& device Paste Ctrl+V
= drivers # Delete Delete
2 framework e
& libs Rename... F2
2 linkscripts 1 Import...
2 source = Export...
& startup Build Project
& Debug 21 Refresh F5
= doc R ,
@ LA_OPT_NXP. Hnas
1+ Debug As >
= SW-Content-
Profile As >
Utilities >
< Binary Utilities > Create hex
, .
U Quickstart Panel = ezl Create binary
Validate Create S-Record
MCUXpress # Run C/C++ Code Analysis Disassemble
— Project: frdmkw. Team 4 ELF Information
~ Create or import z Compare With ? Size
N project.. Replace With ? Strip debug symbols
4 /frdmkw38_HrsOtar Properties Alt+Enter Process symdefs file

Figure 36. Creating the SREC file

5. Save this file in a known location on your smartphone.

5.3 Creating an HRS S-record image to update the software

1. Open MCUXpresso IDE. In the Quickstart Panel view. click the Import SDK example(s), and the device selection
perspective will appear. Click twice on the frdmkw38 icon.

2. In the Examples textbox, type hrs and select the freertos project at wireless_examples -> bluetooth -> hrs -> freertos.
Click Finish.

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020
Application Note 33/42

NXP Semiconductors

Testing the HRS-OTAP demo

38 sDK Import Wizard O K

Y The source from the SDK will be copied into the workspace.
If you want to use linked files, please unzip the 'SDK_2.x_FRDM-KW38' SDK.

. Import projects

Project name prefix; frdmkw38 “ Project name suffix: i
Use default location
C\Users\nxf46726\Documents\MCUXpressolDE_11.1.0_3209\workspace\frdmkw38 Browse...
Project Type Project Options

(®C Project C++ Project | C Static Library () C++ Static Library SDK Debug Console ® Semihost (JUART ' Example default
Copy sources
Import other files

Examples | 2 M %|E B

[[bs | |

Name Description Version

v [m] £ wireless_examples
v [m] £ bluetooth
v [m] £ hrs
[15 bm
v £ freertos

= heart_rate_sensor_freertos The BLE heart rate sensor application is a simple demonstrati...

@ < Back Next > Cancel

Figure 37. Importing the HRS project on the workspace

3. Open the app_preinclude.h file under the source folder at the MCUXpresso workspace. Locate the
cPWR_UsePowerDownMode macro and change its value to zero. This step is not mandatory, but it is useful at running
time to confirm whenever the software update has been successfully programmed by the OTAP bootloader.

/* Enable/Disable PowerDown functionality in PwrLib */
#define cPWR UsePowerDownMode 0

4. Define geepromType_d as internal flash storage in the Board Configuration section of the app_preinclude.hfile. This is a
dummy definition needed to place the Bootloader Flags in the proper address, so this will not affect the storage method
chosen when you programmed previously the OTAP Client software in the MCU.

/* Specifies the type of EEPROM available on the target board */
#define gEepromType d gEepromDevice InternalFlash c

5. Navigate to Project -> Properties -> C/C++ Build -> MCU settings. Configure the following fields and save the changes.

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020
Application Note 34/42

NXP Semiconductors

Testing the HRS-OTAP demo

Flash PROGRAM_FLASH Flash (%2000 (x79800 FTFE_2K_PD.cfx
Flash NYM_region Flash2 0x7b800 04000 FTFE_2K_PD.cfx
Flash FREESCALE_PROD_DATA Flash3 0x7800 (%800 FTFE_2K_PD.cfx

Figure 38. Configuring the memory layout

6. Navigate to the workspace. Locate the linkscripts folder and include into it the main text section.ldt linker script. You
can copy and paste from the OTAP client SDK example.

v = frdmkw38_heart_rate_sensor_freertos

© Project Settings

& Includes

&2 CMSIS

2 amazon-freertos

& bluetooth

& board

2 device

& drivers

2 framework

2 libs

v & linkscripts

end_text|dt
main_text_section.ldt
main_text.Idt
symbols.ldt

2 source

2 startup

= doc

Figure 39. Importing linker scripts

7. Open the end text.1dt linker script located at the linkscripts folder in the workspace. Locate the section placement and
remove the FILL and BYTE statements, as shown in Figure 40.

/* Remove this section to keep the nym section on writting the device */
NV
1
e
. = ORIGIN(NWM region) 4+ LENGTH{NVM regicn) - 1;

o i

T ox NWM_regicon

Figure 40. Preparing the linker file

8. Include the OfaSupportfolder and its files in the framework folder. Include the Externalfolder and its files in the
framework -> Flash folder. This step can be done in the same way as explained in Importing the OTAP Bluetooth LE
service and framework software into the HRS project.

9. Clean and build the project.

10. Deploy the Binaries icon in the workspace. Click the right mouse button on the .axffile and select Binary Utilities ->
Create S-Record. The S-Record file will be saved at the Debug folder in the workspace with .s79 extension.

11. Save this file in a known location on your smartphone.

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020
Application Note 35/42

NXP Semiconductors

5.4 Testing the HRS-OTAP software

Figure 41 exemplifies the testing case of this section. The FRDM-KW38 contains the OTAP client software. The OTAP client
will request a software update from the OTAP server (the smartphone). This software image is the HRS-OTAP demo. The
FRDM-KW38 at this point has been updated and can handle all the incoming communication from an HR central or the OTAP
server. To demonstrate that you can continue updating the software of the KW38 device, you can connect the HRS-OTAP to an
OTAP server and request a software update that only contains the HRS example. From this point, you cannot continue updating
the software since the OTAP service was not included in the last software upgrade. This example was designed to understand the
key points of the OTAP integration. However, the main purpose of this application note is to create software updates that include

the OTAP service and continue upgrading and improving the KW38 device.

Testing the HRS-OTAP demo

First Update (HRS-
OTAP)

FRDM-KW38 OTAP Client profile

OTAP Client Software

Smartphone OTAP Server
Software Update for Client

OTAP Client Software

Second Update
(only HRS)

FRDM-KW38

HRS-OTAP profile

OTAP Client Software

Smartphone OTAP Server
Software Update for Client

KW38 can not request
another update from
the server since OTAP
service was not
integrated in the
software update. It
shows the
importance of
integrating OTAP

FRDM-KW38

Temp Coll profile

Smartphone OTAP Server
Software Update for Client

Figure 41. Proposed test

1. Open the loT Toolbox App and select the OTAP demo. Click the SCAN button to start scanning for a suitable advertiser.

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020

Application Note

36/42

NXP Semiconductors

Testing the HRS-OTAP demo

20

loT Toolbox

()

Cycling Speed

©
S

Glucose

®
®

Proximity

®

OTAP

N,

Zigbee Shell

Figure 42. loT Toolbox interface

Running Speed

Thermometer

Beacons

@

QPP

NFC

Blood Pressure

®

Heart Rate

Sensor

oo
@

Wireless UART

D

Thread Shell

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020

Application Note

37/42

NXP Semiconductors

2. Press the ADV button, SW2, on the FRDM-KW38 board to start advertising.
3. Create a connection with the NXP_OTAA device. Then, the OTAP interface will be displayed on your smartphone.

Testing the HRS-OTAP demo

e S
2T Toolbox

OTAP

HEP_OTARA
DEB0ET IAFCLA
Unbonded

5T dBm

AE& ¥ 2 L1045
loT Toolbax DESCONNECT
OTAP
r . . ™y
File information
File Mame
File Version
File Size
Stlatus Filly # bsasdhind
\ =)
-
Firmware Update &
[1 100
: 3)

L iy
. b

Sisius: Conneched

Figure 43. Connecting the OTAP client and the OTAP server

4. Click the Open button and search for the HRS-OTAP SREC file.

5. Click the Upload to start the transfer. Wait until the confirmation message is displayed.

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020

38/42

Application Note

NXP Semiconductors

Testing the HRS-OTAP demo

L. 20

B i o

loT Toolbox

OTAP

£ 10:46

DISCONNECT

(

(

File Information
File Name FSL BLE OTAP Demo Image File
File Version 0x0111111141000005
File Size 213.724609375 kb
Status Valid File
Lo

\

J

0%

Firmware Update &

I 55

| 100%

\

3
¢

Status: Connected

<

Figure 44. Updating the OTAP client to HRS-OTAP

®

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020

Application Note

39/42

NXP Semiconductors

Testing the HRS-OTAP demo

6. Wait few seconds until the OTAP bootloader has finished programming the new image. The HRS-OTAP application will
start automatically, with the RGB LED blinking.

7. Pressthe ADV button, SW2, on the FRDM-KW38 board to start advertising. Verify that the device can be detected by both,
HRS and OTAP applications of the IoT Toolbox. The device is named as NXP_HRS_OTAP. You can create a connection

and interact with both demos.

| 10V 2 Lo 10OV 2 1

i ¢ loT Toolbox DISCONNECT 10T Toolbox DESCONNECT
I Heart Rate OTAP

NXP_HRS_OTAP : = : - -

00T ZAFC D : : File Information

Unbonded : H
1 68 i | File Hame FEL BLE OTAS Bema image File
bpm
: N : | File Version Oxll111111141 000005
: Sensor Location H B
Chest * | File Size 182 4433593TE kb
- Suatus Viadid File
- | o
R . E
: {111 |
: It N
N AN
2 TRWAY
i /I {\ Firmware Update &
. PV

| Smtus: Connected

<

Figure 45. HRS-OTAP device detected by both applications

8. Connect the HRS-OTAP device with the OTAP smartphone application. Update the software using the HRS SREC file.

9. Confirm that the device has been updated to a simple HRS, making use of the HRS-OTAP demo. Press the ADV button,
SW2, on the FRDM-KW38 board to start advertising. Now the device’s name is NXP_HRS. Connect the device with the

HRS loT Toolbox app and verify that it works as expected.

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020

Application Note

40/42

NXP Semiconductors

Testing the HRS-OTAP demo

L] L] 20w 2 81054
& oT Toolbox & loT Toolbox DESCONNECT
Hea Ca) H]
HNXP_HRS
o0 60-37 TAFCLT
Uinbonded &7 dim 1 53
bpm

Sensor Location

Chest
L] /\/\
- f/\z"
2|

Siatus Connected

Figure 46. HRS-OTAP device detected by both applications

KW38 - Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device, Rev. 0, 11/2020
Application Note

41/42

How To Reach Us
Home Page:
nxp.com

Web Support:

nxp.com/support

arm

Information in this document is provided solely to enable system and software implementers
to use NXP products. There are no express or implied copyright licenses granted hereunder
to design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products
for any particular purpose, nor does NXP assume any liability arising out of the application

or use of any product or circuit, and specifically disclaims any and all liability, including

without limitation consequential or incidental damages. “Typical” parameters that may be
provided in NXP data sheets and/or specifications can and do vary in different applications,
and actual performance may vary over time. All operating parameters, including “typicals,”
must be validated for each customer application by customer's technical experts. NXP does
not convey any license under its patent rights nor the rights of others. NXP sells products
pursuant to standard terms and conditions of sale, which can be found at the following address:
nxp.com/SalesTermsandConditions.

Security — Customer understands that all NXP products may be subject to unidentified

or documented vulnerabilities. Customer is responsible for the design and operation of its
applications and products throughout their lifecycles to reduce the effect of these vulnerabilities
on customer’s applications and products. Customer’s responsibility also extends to other open
and/or proprietary technologies supported by NXP products for use in customer’s applications.
NXP accepts no liability for any vulnerability. Customer should regularly check security updates
from NXP and follow up appropriately. Customer shall select products with security features
that best meet rules, regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible for compliance with
all legal, regulatory, and security related requirements concerning its products, regardless of
any information or support that may be provided by NXP. NXP has a Product Security Incident
Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation,
reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, Freescale,
the Freescale logo, CodeWarrior, Kinetis, Layerscape, and QorlQ are trademarks of NXP B.V.
All other product or service names are the property of their respective owners. AMBA, Arm,
Arm7, Arm9, Arm11, Artisan, Cortex, are trademarks or registered trademarks of Arm Limited
(or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by
any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and
Java are registered trademarks of Oracle and/or its affiliates.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 11/2020
Document identifier: AN12979

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 OTAP client software
	2.1 OTAP memory management during the update process
	2.2 Advantages of the OTAP service integration

	3 Prerequisites
	3.1 Downloading and installing the software development kit

	4 Customizing a based Bluetooth LE demo to integrate the OTAP service
	4.1 Importing the OTAP Bluetooth LE service and framework software into the HRS project
	4.2 Main modifications in the source files
	4.2.1 pin_mux.h and pin_mux.c
	4.2.2 app_preinclude.h
	4.2.3 app_config.c
	4.2.4 gatt_db.h and gatt_uuid128.h
	4.2.5 heart_rate_sensor.c

	4.3 Modifications in project settings and storage configurations

	5 Testing the HRS-OTAP demo
	5.1 Preparing the OTAP client SDK software
	5.2 Creating an HRS-OTAP S-record image to update the software
	5.3 Creating an HRS S-record image to update the software
	5.4 Testing the HRS-OTAP software

