
1 Introduction
For MCUs with USB device controllers, the NXP SDK (Software
Development Kit) generally provides a USB audio example. This
example only supports a single audio format. For example, LPC55S69-
EVK, this board has a WM8904 codec. A USB audio example
(usb_device_composite_hid_audio_unified_bm) is also provided in the
SDK. Now, this example supports the 48 K/16 bit audio format. However,
in the actual application of the customer, it is sometimes necessary to support
multiple audio formats. This application note takes LPC55S69 as an example to describe how to make the USB audio speaker
support 48 K/16 bit and 48 K/32 bit audio formats based on the USB audio example of LPC55S69 SDK v2.10. The core idea
is to add an alternate interface setting that supports the 48 K/32 bit format to the audio speaker in the USB configuration
descriptor. When a USB device receives a set interface request, it reconfigures I2S, DMA, and codec according to the value of
bAlternateSetting. In this application note, the Full Speed (FS) USB interface is used, the USB Audio Class (UAC) version is
1.0, and USB audio works in synchronous mode.

2 USB audio stream interface descriptor
The USB audio function can be regarded as a closed system, opening a predefined interface to the outside world. Each audio
function must include an Audio Control (AC) interface, zero or more Audio Stream (AS) interfaces, and zero or more MIDI Stream
(MS) interfaces. The audio control interface is used to access all audio controls in the audio function. The audio stream interface
is used to transfer the audio data stream into or out of the audio function and the MIDI stream interface is used to transfer MIDI
data stream into or out of the audio function. This example uses two audio streaming interfaces: the recorder interface and the
speaker interface.

Audio stream interface descriptors include standard interface descriptor, audio class-specific interface descriptor, audio stream
endpoint descriptor, and so on. The structure diagram of the audio speaker interface in the USB audio example in the SDK
package is shown in Figure 1.

Contents

1 Introduction......................................1
2 USB audio stream interface

descriptor...1
3 Add the 48 K/32 bit audio format.....4
4 Test... 12
5 Conclusion.....................................13
6 References....................................13
7 Revision history13

AN13447
How To Implement Multiple USB Audio Formats On LPC5500
Rev. 0 — 08 November 2021 Application Note

Figure 1. Structure diagram of the audio speaker interface

The audio speaker interface descriptor captured by the USB analyzer is shown in Figure 2, the audio format supported by this
configuration is 48 K/16 bit.

NXP Semiconductors
USB audio stream interface descriptor

How To Implement Multiple USB Audio Formats On LPC5500, Rev. 0, 08 November 2021
Application Note 2 / 14

Figure 2. USB audio speaker interface descriptor

If USB audio asynchronous mode is used, an isochronous feedback endpoint is also required in the audio speaker
interface descriptor.

 NOTE

If you want to make the audio speaker interface support multiple audio formats, add multiple corresponding format alternate
settings for this speaker interface. Figure 3 shows the structure diagram of an audio speaker interface that supports two
audio formats.

NXP Semiconductors
USB audio stream interface descriptor

How To Implement Multiple USB Audio Formats On LPC5500, Rev. 0, 08 November 2021
Application Note 3 / 14

Figure 3. Structure diagram of the audio speaker interface that supports two audio formats

The next chapter introduces detailed steps of adding the 48 K/32 bit audio format.

3 Add the 48 K/32 bit audio format
This section introduces how to add a new 48 K/32 bit audio format based on the SDK example.

The complete code after the change is published on the NXP website as an attachment to the application note. In the attached
code, search for the USB_AUDIO_FORMAT_SWITCH_ENABLE macro to find out what changes have been made based on the
SDK code.

3.1 Key steps
This section describes the key steps of adding the 48 K/32 bit audio format.

3.1.1 Add a new audio stream interface descriptor for the audio speaker
Add an alternate audio stream interface descriptor for the speaker interface in the original configuration descriptor, and configure
the audio format as 48 K/32 bit, as shown in Figure 4.

NXP Semiconductors
Add the 48 K/32 bit audio format

How To Implement Multiple USB Audio Formats On LPC5500, Rev. 0, 08 November 2021
Application Note 4 / 14

Figure 4. Newly added USB audio stream interface descriptor for speaker interface

3.1.2 Handle set interface request
After adding a new audio stream interface descriptor, modify the USB_DeviceAudioSpeakerSetInterface() function, as shown
in Figure 5.

NXP Semiconductors
Add the 48 K/32 bit audio format

How To Implement Multiple USB Audio Formats On LPC5500, Rev. 0, 08 November 2021
Application Note 5 / 14

Figure 5. Handle Set interface request

After you switch the audio format on the PC, the USB host sends a set interface request to the USB device and
sends the corresponding bAlternateSetting value to the USB device. After the USB device receives this request, it
calls the USB_DeviceAudioSpeakerSetInterface() function to reconfigure the I2S interface and codec according to the
bAlternateSetting value so that the I2S interface and USB audio use the same audio format.

3.2 Implementation details
This section gives the details of the implementation process.

3.2.1 Modify the usb_device_descriptor.h file
Add the corresponding macro definition for the 48 K/32 bit audio format, the relevant code is shown below.

#define USB_AUDIO_SPEAKER_STREAM_INTERFACE_ALTERNATE_COUNT (3)
#define USB_AUDIO_SPEAKER_STREAM_INTERFACE_ALTERNATE_2 (2)

#define AUDIO_OUT_FORMAT_CHANNELS_32BIT (0x02U)
#define AUDIO_OUT_FORMAT_BITS_32BIT (32)
#define AUDIO_OUT_FORMAT_SIZE_32BIT (0x04)

#define AUDIO_OUT_TRANSFER_LENGTH_ONE_FRAME_32BIT \

NXP Semiconductors
Add the 48 K/32 bit audio format

How To Implement Multiple USB Audio Formats On LPC5500, Rev. 0, 08 November 2021
Application Note 6 / 14

 (AUDIO_OUT_SAMPLING_RATE_KHZ * AUDIO_OUT_FORMAT_CHANNELS_32BIT * AUDIO_OUT_FORMAT_SIZE_32BIT)
#define FS_ISO_OUT_ENDP_PACKET_SIZE_32BIT (AUDIO_OUT_TRANSFER_LENGTH_ONE_FRAME_32BIT)

3.2.2 Modify usb_device_descriptor.c file
Modify the definition of the global variables of the interfaces and endpoints related to the audio speaker, such as
g_UsbDeviceAudioSpeakerEndpoints and g_UsbDeviceAudioSpeakerStreamInterface.

3.2.2.1 Modify the g_UsbDeviceAudioSpeakerEndpoints array

Figure 6. Definition of g_UsbDeviceAudioSpeakerEndpoints array

The ISO out packet length is the largest packet length among multiple audio formats.

3.2.2.2 Modify the g_UsbDeviceAudioSpeakerStreamInterface array

Add an alternate setting for the audio speaker stream interface.

Figure 7. Definition of g_UsbDeviceAudioSpeakerStreamInterface array

3.2.2.3 Modify the USB configuration descriptor

In the USB configuration descriptor, an alternate audio stream interface descriptor must be added to the speaker interface and
the length of the configuration descriptor must be modified, as shown in Figure 8.

NXP Semiconductors
Add the 48 K/32 bit audio format

How To Implement Multiple USB Audio Formats On LPC5500, Rev. 0, 08 November 2021
Application Note 7 / 14

Figure 8. USB configuration descriptor

NXP Semiconductors
Add the 48 K/32 bit audio format

How To Implement Multiple USB Audio Formats On LPC5500, Rev. 0, 08 November 2021
Application Note 8 / 14

3.2.3 Modify the audio_unified.h file
The macro below is used to calculate the length of the ring buffer that stores audio data, so the largest packet length among
multiple audio formats must be used.

#define AUDIO_PLAY_BUFFER_SIZE_ONE_FRAME_32BIT AUDIO_OUT_TRANSFER_LENGTH_ONE_FRAME_32BIT

3.2.4 Modify the audio_unified.c file
This section describes the process of modification of the audio_unified.c file.

3.2.4.1 Modify the length of the data buffer of audio speaker

Modify the length of the data buffer related to audio speaker to make them support the 48 K/32 bit audio format.

#if USB_AUDIO_FORMAT_SWITCH_ENABLE
uint8_t audioPlayDataBuff[AUDIO_SPEAKER_DATA_WHOLE_BUFFER_COUNT_NORMAL *\
AUDIO_PLAY_BUFFER_SIZE_ONE_FRAME_32BIT];
#else
uint8_t audioPlayDataBuff[AUDIO_SPEAKER_DATA_WHOLE_BUFFER_COUNT_NORMAL *\
AUDIO_PLAY_BUFFER_SIZE_ONE_FRAME];
#endif

#if USB_AUDIO_FORMAT_SWITCH_ENABLE
uint8_t audioPlayPacket[FS_ISO_OUT_ENDP_PACKET_SIZE_32BIT];
#else
uint8_t audioPlayPacket[FS_ISO_OUT_ENDP_PACKET_SIZE];
#endif

The audioPlayDataBuff is used as a ring buffer to store data from the USB audio speaker interface. The audioPlayPacket array
is used to store a complete frame of USB audio data, so its length must meet the maximum packet length in multiple audio formats.

3.2.4.2 Modify the USB_AudioSpeakerPutBuffer() function

The USB_AudioSpeakerPutBuffer() function is used to copy the latest USB audio data frame in audioPlayPacket to the ring
buffer audioPlayDataBuff. In different audio formats, the length of an audio data frame sent by the USB host is different.
It is necessary to calculate the the length of the audio data packet in the current audio format according to the value of
g_USBSpeakerAlternateSettingIndex, then copy the data of the corresponding length to the ring buffer.

Figure 9. USB_AudioSpeakerPutBuffer() function

NXP Semiconductors
Add the 48 K/32 bit audio format

How To Implement Multiple USB Audio Formats On LPC5500, Rev. 0, 08 November 2021
Application Note 9 / 14

3.2.4.3 Modify the USB_DeviceAudioSpeakerSetInterface() function

The process bAlternateSetting=2 in the USB_DeviceAudioSpeakerSetInterface() function is shown in Figure 5. After the
user switches the audio format on the PC, the USB host sends a set interface request. After receiving this request, the USB device
reconfigures the I2S interface and codec. Every time the audio format is switched on the PC, the USB host sends a set interface
(bAlternateSetting=0) request first, and then send the actual alternate setting. For specific processing details, refer to the code
in the attachment.

3.2.5 Modify the composite.c file
This section describes the details of modifying the composite.c file.

3.2.5.1 Modify the length of the related array

#if USB_AUDIO_FORMAT_SWITCH_ENABLE
static uint8_t audioPlayDMATempBuff[AUDIO_PLAY_BUFFER_SIZE_ONE_FRAME_32BIT];
#else
static uint8_t audioPlayDMATempBuff[AUDIO_PLAY_BUFFER_SIZE_ONE_FRAME];
#endif

When the USB host stops sending audio data, the DMA data source must be configured as audioPlayDMATempBuff, the data
in audioPlayDMATempBuff are all 0x00. The data length of audioPlayDMATempBuff must meet the maximum packet length in
different audio formats.

3.2.5.2 Add the g_USBSpeakerAlternateSettingIndex variable

To record the current interface configuration of the USB audio speaker, add a variable (g_USBSpeakerAlternateSettingIndex).
Different interface configurations correspond to different audio formats, as shown in Table 1.

uint8_t g_USBSpeakerAlternateSettingIndex = 0;

Table 1. Correspondence between interface configuration and audio format

g_USBSpeakerAlternateSettingIndex Audio format

0 -

1 48 K/16 bit

2 48 K/32 bit

3.2.5.3 Modify the I2S interface configuration

Different USB audio formats correspond to different I2S configurations, so it is also necessary to add corresponding I2S
configurations for the 48 K/32 bit format. Such as adding Init_Board_Audio_32bit(), BOARD_DMA_EDMA_Start_32bit(),
I2S_USB_Audio_TxInit_32bit(), and other functions.

3.2.5.3.1 Add the I2S_USB_Audio_TxInit_32bit() function

Figure 10. I2S_USB_Audio_TxInit_32bit() function

Use the I2S_USB_Audio_TxInit_32bit() function to configure the I2S interface to the 48 K/32 bit format.

NXP Semiconductors
Add the 48 K/32 bit audio format

How To Implement Multiple USB Audio Formats On LPC5500, Rev. 0, 08 November 2021
Application Note 10 / 14

3.2.5.3.2 Add the Init_Board_Audio_32bit() function

Figure 11. Init_Board_Audio_32bit() function

Use Init_Board_Audio_32bit() function to configure the I2S interface and codec to the 48 K/32 bit format.

3.2.5.3.3 Add the BOARD_DMA_EDMA_Start_32bit() function

Figure 12. BOARD_DMA_EDMA_Start_32bit() function

Use BOARD_DMA_EDMA_Start_32bit() to modify the data length of each DMA transfer to the USB data packet length
corresponding to the 48 K/32 bit format.

3.2.5.4 Modify the USB_DeviceCallback() function

When the USB host initiates a set interface request, the value of the g_USBSpeakerAlternateSettingIndex variable is updated
to indicate different interface configurations, and the length of each frame of USB audio packet is updated according to the value
of g_USBSpeakerAlternateSettingIndex.

Figure 13. USB_DeviceCallback() function

NXP Semiconductors
Add the 48 K/32 bit audio format

How To Implement Multiple USB Audio Formats On LPC5500, Rev. 0, 08 November 2021
Application Note 11 / 14

4 Test
Connect the FS USB interface of LPC55S69-EVK to a PC through a micro USB cable, download the modified program to the
board, and reset the board. After the enumeration is successful, the USB host recognizes a USB audio device. The characteristics
of the device are shown in Figure 15.

Figure 14. LPC55S69 EVK Board

Figure 15. PC recognizes devices that support multiple audio formats

When the audio format is switched on the PC, the PC sends the set interface request to the USB audio device and send audio
data according to the new audio format, as shown in Figure 16.

NXP Semiconductors
Test

How To Implement Multiple USB Audio Formats On LPC5500, Rev. 0, 08 November 2021
Application Note 12 / 14

Figure 16. PC sends set interface request

Set the audio format to 48 K/16 bit on the PC, the USB host sends a set interface request with Altr Setting = 1 to the USB device,
and then send a packet of audio data every 1 ms, the packet length is 192 bytes. Set the audio format to 48 K/32 bit on the PC,
and the USB host sends a set interface request with Altr Setting = 2 to the USB device, and then send a packet of audio data every
1 ms, the packet length is 384 bytes.

5 Conclusion
This application note introduces how to support multiple audio formats based on the USB audio speaker example in the LPC55S69
SDK, and provides detailed implementation steps. You can refer to this article to implement more audio format support.

6 References
1. Access USB Technology and Application Based on Microcontrollers.

2. USB 2.0 specification.

7 Revision history
Table 2. Revision history

Revision number Date Substantive changes

0 08 November 2021 Initial release

NXP Semiconductors
Conclusion

How To Implement Multiple USB Audio Formats On LPC5500, Rev. 0, 08 November 2021
Application Note 13 / 14

https://www.usb.org/document-library/usb-20-specification

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Limited warranty and liability — Information in this document is provided solely to enable system and software implementers to use NXP
products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on
the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does
NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets and/or
specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including
“typicals,” must be validated for each customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at
the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including
without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all
information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer
is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these
vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other open and/or proprietary
technologies supported by NXP products for use in customer’s applications. NXP accepts no liability for any vulnerability. Customer
should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features
that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its
products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products,
regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team
(PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of
NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP, HITAG,
ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE
ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS,
UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis,
Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, Tower,
TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V. All other product or service names are the
property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight,
Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb,
TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm
Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power
Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org. M, M Mobileye and other Mobileye trademarks or logos appearing herein are trademarks of Mobileye Vision
Technologies Ltd. in the United States, the EU and/or other jurisdictions.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 08 November 2021
Document identifier: AN13447

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 USB audio stream interface descriptor
	3 Add the 48 K/32 bit audio format
	3.1 Key steps
	3.1.1 Add a new audio stream interface descriptor for the audio speaker
	3.1.2 Handle set interface request

	3.2 Implementation details
	3.2.1 Modify the usb_device_descriptor.h file
	3.2.2 Modify usb_device_descriptor.c file
	3.2.2.1 Modify the g_UsbDeviceAudioSpeakerEndpoints array
	3.2.2.2 Modify the g_UsbDeviceAudioSpeakerStreamInterface array
	3.2.2.3 Modify the USB configuration descriptor

	3.2.3 Modify the audio_unified.h file
	3.2.4 Modify the audio_unified.c file
	3.2.4.1 Modify the length of the data buffer of audio speaker
	3.2.4.2 Modify the USB_AudioSpeakerPutBuffer() function
	3.2.4.3 Modify the USB_DeviceAudioSpeakerSetInterface() function

	3.2.5 Modify the composite.c file
	3.2.5.1 Modify the length of the related array
	3.2.5.2 Add the g_USBSpeakerAlternateSettingIndex variable
	3.2.5.3 Modify the I2S interface configuration
	3.2.5.3.1 Add the I2S_USB_Audio_TxInit_32bit() function
	3.2.5.3.2 Add the Init_Board_Audio_32bit() function
	3.2.5.3.3 Add the BOARD_DMA_EDMA_Start_32bit() function

	3.2.5.4 Modify the USB_DeviceCallback() function

	4 Test
	5 Conclusion
	6 References
	7 Revision history

