
AN13706
Partitioning the Storage Medium on the i.MX 8M Family
Rev. 0 — 23 August 2022 Application note

Document information
Information Content

Keywords AN13706, i.MX 8M, Storage partitions, UUU, U-Boot

Abstract This application note provides details about how to partition and resize the
storage medium on the i.MX 8M family at the image creation and deployment
stages.

NXP Semiconductors AN13706
Partitioning the Storage Medium on the i.MX 8M Family

1 Introduction

This application note provides details about how to partition and resize the storage
medium on the i.MX 8M family at the image creation and deployment stages.

This document explains the following two objectives:

• How to partition the storage space using pre-built images (downloaded from the NXP
website)

• How to partition the storage space using images resulted from the yocto project build
environment

1.1 Software environment
Linux BSP release 5.15.32_2.0.0, Embedded Linux for i.MX Applications Processors
(document IMXLINUX) is used throughout the document.

Note: The same BSP release is used for the yocto project build.

The Universal Update Utility (UUU) version 1.4.193 is used to deploy the images to the
board.

1.2 Hardware environment
The information described in this document applies to the i.MX 8M family development
boards. The supplied scripts are for the i.MX 8MQ development boards, but they can be
easily ported to other boards from the i.MX 8M family.

2 Overview of image deployment

To begin partitioning the storage space on the board, the necessary files must be
obtained. There are two main methods of getting a deployable image as explained below:

• The first method involves downloading the Linux BSP pre-built binaries, which offer
a starting point for testing the features supported on the evaluation boards. However,
since they are pre-built, there is no easy way to add/remove functionalities included in
the supplied images without a building process for that specific component.

• This limitation brings us to the second method: building the image itself. This method
offers more flexibility and control over the generated image as features can be added
or removed as desired via the yocto project build system.

Since pre-built binaries can avoid the building stage, partitioning methodologies differ
primarily at the deployment stage, depending on the intermediary used to handle
commands (Linux/U-Boot). The standard deployment image for the i.MX 8M Linux BSP
includes the following major components:

• Bootloader image
– It does not represent a partition in itself
– It has a specific start address in relation to the board, as well as a boot mode

(normal/fast). For more information, see the reference manuals of the chip listed in
Section 6.

• Boot partition
– FAT32 partition containing the kernel image, dtbs, and Cortex-M4 demos

AN13706 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 23 August 2022
2 / 11

https://www.nxp.com/design/software/embedded-software/i-mx-software/embedded-linux-for-i-mx-applications-processors:IMXLINUX
https://github.com/NXPmicro/mfgtools/releases/tag/uuu_1.4.193

NXP Semiconductors AN13706
Partitioning the Storage Medium on the i.MX 8M Family

– It is a bootable partition
• Rootfs partition

– EXT type partition containing the root filesystem.

Figure 1. Usual storage medium layout after image deployment (partitions not to scale)

Note: Boot and Rootfs partitions can be resized and their start address can be changed.
However, care must be taken when doing this change as they cannot overlap with the
bootloader location. Also, ensure that their sizes must not be lower than their respective
images. The standard partition table type is MBR for Linux BSPs.

3 Partitioning for pre-built binaries

The release package for the Linux BSP contains the following components:

• SD/EMMC prebuilt image for the release target SoC
• Kernel and device tree binaries
• Boot images
• Applicable Arm Cortex-M4 demos if applicable to target SoC
• UUU default and example scripts.

For the exact contents, refer to the associated i.MX Linux Release Notes (document
IMXLXRN).

The UUU tool is used for deployment. This tool provides an easy way of writing images
to the i.MX 8M family boards using either the built-in scripts or a user provided command
file. The tool can be run on both Windows and Linux.

UUU uses the fast-boot protocol to issue commands and transfer files to the board either
in the bootloader or Linux environment. The FB tag precedes U-Boot commands, while
the FBK tag precedes Linux commands. For more information about the tool, refer to the
UUU readme (document UUU (Universal Update Utility)).

The example_kernel_emmc file represents the starting point for the current script,
available in the samples folder in the release package for the specific version of Linux
BSP. The placeholder names for the specific components must be replaced with the
desired ones. The script adapted for writing on the EMMC on the i.MX 8MQ development
board is as follows, with a few additions which are explained later:

AN13706 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 23 August 2022
3 / 11

https://www.nxp.com/docs/en/release-note/IMX_LINUX_RELEASE_NOTES.pdf
https://github.com/NXPmicro/mfgtools/releases/download/uuu_1.4.193/UUU.pdf

NXP Semiconductors AN13706
Partitioning the Storage Medium on the i.MX 8M Family

uuu_version 1.2.39
This command runs when i.MX6/7 i.MX8MM, i.MX8MQ are used
SDP: boot -f imx-boot-imx8mqevk-sd.bin-flash_evk
This command runs when ROM support stream mode
i.MX8QXP, i.MX8QM
SDPS: boot -f imx-boot-imx8mqevk-sd.bin-flash_evk
These commands run when SPL is used and is skipped if there is no SPL
SDPU is deprecated, therefore use SDPV instead of SDPU
{
SDPU: delay 1000
SDPU: write -f imx-boot-imx8mqevk-sd.bin-flash_evk -offset 0x57c00
SDPU: jump
}
These commands run when SPL is used and is skipped if there is no SPL
if (SPL support SDPV)
{
SDPV: delay 1000
SDPV: write -f imx-boot-imx8mqevk-sd.bin-flash_evk -skipspl
SDPV: jump
}
FB: ucmd setenv fastboot_buffer ${loadaddr}
FB: download -f Image-imx8mqevk.bin
FB: ucmd setenv fastboot_buffer ${fdt_addr}
FB: download -f imx8mq-evk.dtb
FB: ucmd setenv fastboot_buffer ${initrd_addr}
FB: download -f fsl-image-mfgtool-initramfs-imx_mfgtools.cpio.zst.u-boot
#FB: ucmd setenv bootargs console=${console},${baudrate} earlycon=${earlycon},${baudrate}
FB: acmd ${kboot} ${loadaddr} ${initrd_addr} ${fdt_addr}
Get mmc dev number from kernel command line
Wait for emmc
FBK: ucmd while [! -e /dev/mmcblk*boot0]; do sleep 1; echo "wait for /dev/mmcblk*boot*
 appear"; done;
Search emmc device number, if your platform have more than two emmc chip, echo dev number
 >/tmp/mmcdev
FBK: ucmd dev=`ls /dev/mmcblk*boot*`; dev=($dev); dev=${dev[0]}; dev=${dev#/dev/mmcblk};
 dev=${dev%boot*}; echo $dev > /tmp/mmcdev;
dd to clear the possible MBR
FBK: ucmd mmc=`cat /tmp/mmcdev`; dd if=/dev/zero of=/dev/mmcblk${mmc} bs=512 count=1
Create partition
FBK: ucmd mmc=`cat /tmp/mmcdev`; PARTSTR=$'10M,500M,0c\n600M,,83\n'; echo "$PARTSTR" |
 sfdisk --force /dev/mmcblk${mmc}
FBK: ucmd mmc=`cat /tmp/mmcdev`; dd if=/dev/zero of=/dev/mmcblk${mmc} bs=1k seek=4096
 count=1
FBK: ucmd sync
Enable below command to write boot partition but offset is different at difference
 platform
FBK: ucmd mmc=`cat /tmp/mmcdev`; echo 0 > /sys/block/mmcblk${mmc}boot0/force_ro
FBK: ucp imx-boot-imx8mqevk-sd.bin-flash_evk t:/tmp
FBK: ucmd mmc=`cat /tmp/mmcdev`; dd if=/tmp/imx-boot-imx8mqevk-sd.bin-flash_evk of=/dev/mmc
${mmc}boot0 bs=1K seek=33
FBK: ucmd mmc=`cat /tmp/mmcdev`; echo 1 > /sys/block/mmcblk${mmc}boot0/force_ro
FBK: ucmd mmc=`cat /tmp/mmcdev`; while [! -e /dev/mmcblk${mmc}p1]; do sleep 1; done
FBK: ucmd mmc=`cat /tmp/mmcdev`; mkfs.vfat /dev/mmcblk${mmc}p1
FBK: ucmd mmc=`cat /tmp/mmcdev`; mkdir -p /mnt/fat
FBK: ucmd mmc=`cat /tmp/mmcdev`; mount -t vfat /dev/mmcblk${mmc}p1 /mnt/fat
FBK: ucp Image-imx8mqevk.bin t:/mnt/fat
FBK: ucmd mmc=`cat /tmp/mmcdev`; mv /mnt/fat/Image-imx8mqevk.bin /mnt/fat/Image
FBK: ucp imx8mq-evk.dtb t:/mnt/fat
FBK: ucmd umount /mnt/fat
FBK: ucmd mmc=`cat /tmp/mmcdev`; mkfs.ext3 -F -E nodiscard /dev/mmcblk${mmc}p2
FBK: ucmd mkdir -p /mnt/ext3
FBK: ucmd mmc=`cat /tmp/mmcdev`; mount /dev/mmcblk${mmc}p2 /mnt/ext3
FBK: acmd export EXTRACT_UNSAFE_SYMLINKS=1; tar -jx -C /mnt/ext3
FBK: ucp imx-image-full-imx8mqevk.tar.bz2 t:-
FBK: Sync
FBK: ucmd umount /mnt/ext3
FBK: DONE

This script loads the bootloader, followed by Linux, into the RAM of the board. Using
Linux to apply the modifications is easier since the commands are documented and have
larger community support.

The partition table layout is specified in the PARTSTR variable, which is used by the
sfdisk tool in order to create the partitions. In the supplied script two partitions are
generated as follows:

• First (Boot partition): Start offset - 10 MB, Size - 500 MB, Type 0x0c, bootable - FAT32
filesystem

AN13706 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 23 August 2022
4 / 11

NXP Semiconductors AN13706
Partitioning the Storage Medium on the i.MX 8M Family

• Second (Rootfs partition): Start offset - 600 MB, Size - remaining disk space from start
address onward, Type 0x83 - Linux filesystem

The next step is to write the bootloader at the address determined by the storage
medium, boot type, chip type, and revision. In this example, the bootloader is written on
the EMMC, with the chip following a normal boot procedure, leading to the 33 kB starting
address. Refer to the associated i.MX 8MQ Applications Processor Reference Manual
(document IMX8MDQLQRM).

Note: The starting offset for the bootloader can differ based on platform and revision –
check the used chip associated reference manual listed in Section 6.

After the bootloader is written, there is a sequence of straight-forward operations left:
the mounting of the partitions, creation of necessary filesystems, downloading of the
associated data and unmounting.

Note: When downloading the kernel image and device tree binary, take care that their
names match the ones expected by the bootloader. The solution is either renaming them
before/after writing or changing the associated U-Boot environment variables to match
the names of the files at the first boot. If the names differ, the board most likely gets stuck
at the bootloader stage, because it cannot find the necessary components to continue
booting.

4 Partitioning for binaries obtained from a yocto build

Additional features are easily added when building the image with the yocto project
environment, resulting in final packages containing the modifications according to the
supplied instructions. The yocto build enables additional methods of configuring the
partitioning scheme when building and deploying the image.

4.1 Partitioning at the image creation stage
The yocto build system partitioning consists of two methods for modifying the sizing
during the image creation stage, depending on the partition involved:

• Sizing the Rootfs:
The build system determines the required size for the generated Rootfs image, and
then adds additional space based on that size and some other parameters. For more
detailed information on this algorithm, refer to the The Yocto Project version 4.0.999
reference manual. As stated in the manual, the following variables are in play:
– IMAGE_ROOTFS_SIZE defines the size in kB for the generated image.
– IMAGE_OVERHEAD_FACTOR defines a multiplier that the build system applies to the

initial image size.
– IMAGE_ROOTFS_EXTRA_SPACE defines additional free disk space created in the

image in kB.
By adding these variables in the local.conf, the Rootfs partition can be extended
accordingly.

• Placing the three elements and sizing the Boot partition:
When creating a Wic image, the yocto build system must know what goes into the final
image and where. This information is structured in the form of partitioning commands
located in an Openembedded kickstart file (*.wks). The build system determines which
*.wks file to use by inspecting the WKS_FILE variable. For more information regarding
the *.wks files, refer to the The Yocto Project version 4.0.999 reference manual.

AN13706 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 23 August 2022
5 / 11

https://www.nxp.com/webapp/Download?colCode=IMX8MDQLQRM
https://docs.yoctoproject.org/singleindex.html
https://docs.yoctoproject.org/singleindex.html

NXP Semiconductors AN13706
Partitioning the Storage Medium on the i.MX 8M Family

For example, the *.wks for the i.MX 8M family is defined in meta-freescale/conf/
machine/include/imx-base.inc as follows:
SOC_DEFAULT_WKS_FILE ?= "imx-uboot-bootpart.wks.in"
SOC_DEFAULT_WKS_FILE_mx8m ?= "imx-imx-boot-bootpart.wks.in"
SOC_DEFAULT_WKS_FILE_mx8 ?= "imx-imx-boot-bootpart.wks.in"
SOC_DEFAULT_WKS_FILE_mxs ?= "imx-uboot-mxs-bootpart.wks.in"
<…>
WKS_FILE ?= "${SOC_DEFAULT_WKS_FILE}"

The imx-imx-boot-bootpart.wks.in file contains the following partitioning
relevant information:
part u-boot --source rawcopy --sourceparams="file=imx-boot" --ondisk mmcblk --no-table --
align ${IMX_BOOT_SEEK}
part /boot --source bootimg-partition --ondisk mmcblk --fstype=vfat --label boot --active
 --align 8192 --size 64
part / --source rootfs --ondisk mmcblk --fstype=ext4 --label root --align 8192
bootloader --ptable msdos

– The size for the /boot partition can be set using the --size parameter, specified in
MB.

– Other parameters like filesystem and labels can also be set here.
– For Rootfs, specify the size using IMAGE_ROOTFS_SIZE,
IMAGE_OVERHEAD_FACTOR, and IMAGE_ROOTFS_EXTRA_SPACE.

The individual partitions and full Wic image can be found in the work directory for the
imx-image-(imagetype) package, where imagetype corresponds to the chosen
image type (multimedia/full/core). The Wic can then be written normally using UUU,
with no additional script required.
Note: UUU version 1.4.165 or later can be used to write entire Wic images.

4.2 Partitioning at the image deployment stage
This method is similar to the Section 3, but requires usage of the building process in
order to activate the required features.

The partitions can be listed using the MMC part or GPT read command in U-Boot
for the specified storage medium. However, in order to write the MBR type partition
table, the MBR tool in U-Boot must be included by enabling the MBR feature. Use make
menuconfig in the build folder, after issuing the following command:

bitbake -f -c configure u-boot-imx

AN13706 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 23 August 2022
6 / 11

https://github.com/NXPmicro/mfgtools/releases/tag/uuu_1.4.165

NXP Semiconductors AN13706
Partitioning the Storage Medium on the i.MX 8M Family

Figure 2. MBR symbols in U-Boot menuconfig tool

After enabling the MBR support, the bootloader image is generated. It is used to write
directly from U-Boot the MBR partition table, followed by the chosen imx-image type
build process.

The images for the Boot and Rootfs partitions are extracted from the resulting imx-
image-(imagetype).wic file found in the deploy folder where imagetype is the
chosen image type (multimedia/full/core).

The partition images are labeled as follows:

• 0.fat for Boot partition
• 1.img for Rootfs partition

The partitions are also found in the imx-image-(imagetype) build folder, under the
following name:

imx-imx-boot-bootpart-(build_date)-mmcblk.direct.(partition_id)

The partition_id identifies the partitions according to the list described in the
previous chapters (imx-imx-boot-bootpart.wks.in).

The partitioning is done from U-Boot rather than Linux, therefore a separate script must
be used for this method. Similar to the pre-built image, the names of the binary must
be replaced with the desired ones. The script adapted for the i.MX 8MQ platform is as
follows:

AN13706 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 23 August 2022
7 / 11

NXP Semiconductors AN13706
Partitioning the Storage Medium on the i.MX 8M Family

uuu_version 1.2.39
This command runs when i.MX6/7 i.MX8MM, i.MX8MQ
SDP: boot -f imx-boot-imx8mqevk-sd.bin-flash_dp_evk

This command runs when ROM support stream mode
i.MX8QXP, i.MX8QM
SDPS: boot -f imx-boot-imx8mqevk-sd.bin-flash_dp_evk
These commands run when SPL is used and is skipped if no SPL is used
SDPU is deprecated, use SDPV instead of SDPU
{
SDPU: delay 1000
SDPU: write -f imx-boot-imx8mqevk-sd.bin-flash_evk -offset 0x57c00
SDPU: jump
}
These commands run when SPL is used and is skipped if no SPL is used
if (SPL support SDPV)
{
SDPV: delay 1000
SDPV: write -f imx-boot-imx8mqevk-sd.bin-flash_evk -skipspl
SDPV: jump
}
FB: ucmd setenv fastboot_dev mmc
FB: ucmd setenv mmcdev ${emmc_dev}
FB: ucmd mmc dev ${emmc_dev}
FB: ucmd setenv mbr_parts
'name=boot,start=8M,size=128M,bootable,id=0x0e;name=rootfs,start=140M,size=4096M,id=0x83'
FB: ucmd mbr write mmc ${emmc_dev}
FB: flash -raw2sparse mmcsda1 0.fat
FB: flash -raw2sparse mmcsda2 1.img
FB: flash bootloader imx-boot-imx8mqevk-sd.bin-flash_evk
FB: ucmd if env exists emmc_ack; then ; else setenv emmc_ack 0; fi;
FB: ucmd mmc partconf ${emmc_dev} ${emmc_ack} 1 0
FB: done

The script uses only the U-Boot environment to do most of the operations required. It
loads the bootloader, and generates the partition table using the mbr write command.
It populates the Boot and Rootfs partitions, ending with the writing of the bootloader.

The partition table layout is specified in the mbr_parts variable, which is used by
the mbr write command in order to create the partitions. In the supplied script two
partitions are generated as follows:

• First (Boot partition): Start offset - 8 MB, Size - 128 MB, Type 0x0c, bootable - FAT32
filesystem

• Second (Rootfs partition): Start offset - 140 MB, Size - 4096 MB, Type 0x83 - Linux
filesystem

Note: For the flash -raw2sparse instructions the partition handles should be checked,
as they differ based on the storage medium and platform used. This information is found
out after writing a pre-built image by issuing the gpt read mmc <dev> command in U-
Boot, where <dev> is the device to which the image is written. In the current example,
mmcsda1 and mmcsda2 are used for the eMMC on the i.MX 8MQ EVK.

If the partition space is checked after the script is finished, it reports the correct
dimension, but the filesystem is unaware of the partition expanding. As a result, the
resize2fs command must be used on the first boot to Linux to allow the filesystem to
include the new available space. Otherwise, the space cannot be used.

5 Conclusion

This application note describes how to partition and resize the storage medium on the
i.MX 8M family at the image creation and deployment stages. These objectives are
achieved either through the UUU deployment tool or through the yocto build process.

AN13706 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 23 August 2022
8 / 11

NXP Semiconductors AN13706
Partitioning the Storage Medium on the i.MX 8M Family

6 References

The following references are available to supplement this document. Some of the
documents listed below may be available only under a non-disclosure agreement
(NDA). To request access to these documents, contact your local NXP field applications
engineer (FAE) or sales representative:

• i.MX 8MP Applications Processor Reference Manual (document IMX8MPRM)
• i.MX 8MQ Applications Processor Reference Manual (document IMX8MDQLQRM)
• i.MX 8MM Applications Processor Reference Manual (document IMX8MMRM)
• i.MX 8MN Applications Processor Reference Manual (document IMX8MNRM)
• UUU readme (document UUU (Universal Update Utility))
• Welcome to the Yocto Project Documentation (document The Yocto Project version

4.0.999)
• Linux 5.15.32_2.0.0, Embedded Linux for i.MX Applications Processors (document

IMXLINUX)

7 Revision history

The Table 1 lists the substantive changes done to this document since the initial release.

Revision number Date Substantive changes

Rev 0 23 August 2022 Initial release

Table 1. Revision history

AN13706 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 23 August 2022
9 / 11

https://www.nxp.com/webapp/Download?colCode=IMX8MPRM
https://www.nxp.com/webapp/Download?colCode=IMX8MDQLQRM
https://www.nxp.com/webapp/Download?colCode=IMX8MMRM
https://www.nxp.com/webapp/Download?colCode=IMX8MNRM
https://github.com/NXPmicro/mfgtools/releases/download/uuu_1.4.193/UUU.pdf
https://docs.yoctoproject.org/singleindex.html
https://docs.yoctoproject.org/singleindex.html
https://www.nxp.com/design/software/embedded-software/i-mx-software/embedded-linux-for-i-mx-applications-processors:IMXLINUX

NXP Semiconductors AN13706
Partitioning the Storage Medium on the i.MX 8M Family

8 Legal information

8.1 Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

8.2 Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this data sheet expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

8.3 Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

AN13706 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.

Application note Rev. 0 — 23 August 2022
10 / 11

mailto:PSIRT@nxp.com

NXP Semiconductors AN13706
Partitioning the Storage Medium on the i.MX 8M Family

Contents
1 Introduction ... 2
1.1 Software environment ..2
1.2 Hardware environment 2
2 Overview of image deployment 2
3 Partitioning for pre-built binaries 3
4 Partitioning for binaries obtained from a

yocto build ...5
4.1 Partitioning at the image creation stage 5
4.2 Partitioning at the image deployment stage6
5 Conclusion ...8
6 References ... 9
7 Revision history .. 9
8 Legal information ..10

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© NXP B.V. 2022. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 23 August 2022
Document identifier: AN13706

	1 Introduction
	1.1 Software environment
	1.2 Hardware environment

	2 Overview of image deployment
	3 Partitioning for pre-built binaries
	4 Partitioning for binaries obtained from a yocto build
	4.1 Partitioning at the image creation stage
	4.2 Partitioning at the image deployment stage

	5 Conclusion
	6 References
	7 Revision history
	8 Legal information
	Contents

