Freescale Semiconductor, Inc. ANL751/D

Rev. 01, 05/98

Freescale Semiconductor

DSP563xx Port A Programming Contents
by lantha Scheiwe Part 1: Configuration............... 1
11 Performance.............ccueuue.... 1
. 12 System Set-up........c.ccceevinne 2
The DSP56300 expansion port, Port A, allows the DSP 121 DSP56300 to Memory
programmer to expand memory space accessible to the DSP CONNECLIONS.....coocorvrrvrarnnnnnes 2
core or to expand memory-mapped /0. Theinterfaceis 1;; . X‘gg“ory/z"tf‘%--i ------------------- g
straightforward, and external memory iseasily and quIcKlY | 1557 BusConrolon 7
retrieved through the use of DMA or simple MOVE 1.22.3 DRAM Control Register8

commands. This application note describes:
Part 2: Accessing External

. . . Devices.....ccoovvvnveennnen 11

 The hardware and software configurations required , Simple SRAM Access Using
to connect the DSP core to external SRAM and Move Instruction 1
DRAM 211 Initialization........c..ccevvevnee. 11
212 Programccccevvevneinnne 12

» Examples of moves to and from external memory | 2.2 Overlapping External Memory
Space with Internal Core

» Examples of DMA accesses (10 oSO 13
221 Initialization..........c.cccuvveene 14
. . 222 Programccccevvevnveinne 15
Part 1 Conf|gurat|on 2.3 Multiplexed Access Using
DMA ..ooorreermneieeinresee 15
Part 1 of this application note describes system requirements 231 Address Attribute Register Bit
and the hardware configuration that you must establish 030 ﬁ]ﬁ:\:“'z':ﬂd:r:e’@ Muxing.... ig
between the DSP and off-chip memory devices prior to 2'3'3 PIOGIAM oo 18
programming. Part 2 describes the programming required to 24 Accessto an 8-bit Peripheral
interface with SRAM and DRAM. The techniques used in Using DMA and Packing
this application note to interface to external devices enable MOGE......ooeeereeee s 18
you to interface to any device that uses Port A. The code in 24.1 Address Attribute Register:
this document was devel oped using the DSP56303EVM and BPAC - Packing Mode...... 19
DSP56301ADM boards. Y ou can use other DSP56300 S MAIZAION. >
Family EVMs, but the memory maps for each device may o5 Afcﬂéﬁéﬁﬁéﬁ& """" 2
vary. For complete timing information on the connections SRAM Using DMA £
between Port A and memory, see the external memory Through POrt A...oooooe....... 25 E
interface (Port A) chapter in the DSP56300 Family Manual. 251 Initidization........coeeeeene. 25 g
252 Programceeeeeeevevenenan. 29 o
26 Troubleshooting................. 31 é
1.1 Performance 27 CONCIUSIONS .oocrrvrvrrcnen 31 S
28 References.........ccoovvveuenee. 31 3
The speed of memory access through Port A depends largely §
on the speed of the memory used in a system. Port A provides o
o

a programmable number of wait states that correspond to the
specifications of the memory used. A minimum of one wait
state is required for external accesses. Any other timing
issues are determined by system constraints and delays.

.

Z “freescale"

For More Information On This semiconductor
Go to: www.freescale

© Freescale Semiconductor, Inc., 2004. All rights reserved.

Freescale Semiconductor, Inc.
System Set-up

The DSP56300 family devices contain between 8K and 34K of on-chip memory. In many applications
and systems, the core processor must access additional memory. Port A enables expansion of the
on-chip memory spaceto 12 M x 24 bits of external memory. The memory is easily accessibleto the
core for processing large blocks of data. With this port, you can access a single piece of data using a
common MOVE instruction or transfer alarge block into on-chip memory space for faster execution
using aDMA transfer. With DMA transfers, you can transfer data from external memory to interna
memory and to other peripherals, such asthe SCI and ESSI.

1.2 System Set-up

In order to access external memory and peripheral devicesthrough Port A, it isimportant to understand
pin set-ups as well asinterna register configuration.

1.2.1 DSP56300 to Memory Connections

On the EVM and ADM boards, the memory connections are aready made, if the proper jumpersarein
place. To access SRAM on the DSP56303EV M, J9 pins 2-3 must be connected. On the
DSP56301ADM, ajumper must be placed on JP1. Figure 1-1 depicts the DSP-to-SRAM memory
connection. SRAM is accessible on both EVM and ADM boards using the Address Attribute Register
0 (AAROQ). However, you can aso use Address Attribute Registers 1, 2, or 3 when configuring a
system.

Figurel-1. DSP-to-SRAM Connection

DSP563xx SRAM

A — A
D | D

AML— plE
RD———b

@

W W

DRAM isavailable on the DSP56301ADM board, but not on the DSP56303EV M. To access DRAM
on the ADM board, the jumper on JP2 must be set.

DSP563xx Port A Programming 1-2

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
System Set-up

For the DSP56301ADM, DRAM is accessible to Port A using the Address Attribute 3 (AARS3)
Register. Figure 1-2 depicts the DSP-to-DRAM memory connection.

Figure 1-2. DSP-to-DRAM Connection

DSP563xx DRAM

A | —
D - D

>

CAS——» CAS
AA/ RAS|—— = RAS
RDH———» G
WR——» W

Both the DSP56303EVM and DSP56301ADM boards have on-board Flash PEROM that you can
access using the Address Attribute 1 (AAR1) chip select. Figure 1-3 depicts the DSP-to-Flash
PEROM connection.
Figure 1-3. DSP-to-Flash PEROM Connection
DSP563xx PEROM

A —
D |- D

>

RD—» CE
AA———» CE

On the DSP56303EV M, the code in flash memory isrun at reset. Though the following sections do not
give an example of Flash PEROM usage, the program f | ash. asmis included with all
DSP563xxXEVMs. This program allows you to download any desired program into the flash memory
so that it can be run at processor reset. Information onusing f | ash. asmisgivenin each EVM/ADM
user's manual.

Contents 1-3

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

System Set-up

1.2.2

Memory Map

To prevent overlap in the mapping of external devices or interference with internal core operations,
consult the memory map beforeinitiaizing access to memory.

Figure 1-4 depicts the core memory map. Devices can be mapped anywhere in the external memory
spaces for X, Y, and Program (P) memory.

Figure 1-4. DSP56300 Core Memory Map

PROGRAM X DATA Y DATA
$FFFFFF $FFFFFF | INTERNAL X-1/0 $FFFFFF | INTERNAL Y-1/0
$FFFF80 $FFEFF80
RESERVED INTERNAL X-1/O INTERNAL Y-1/0
FOR INTERNAL OR EXTERNAL OR EXTERNAL
P-MEMORY . :
$FFFo00 | . X-MEMORY $FFFo00 | . . Y -MEMORY
$FF00CO RESERVED RESERVED
FOR INTERNAL FOR INTERNAL
192-Words
X-MEMORY Y-MEMORY
$FF0000 |BOOTSTRAPROM $FF0000 $FF0000
EXTERNAL EXTERNAL EXTERNAL
P-MEMORY X-MEMORY Y-MEMORY
maximum
$00FFFF
Ic A'g] E?E’%'r' oK maximum | . maximum | ..
<<<<<<<<<<<<< $OOFFFF INTERNAL $0OFFFF | INTERNAL
INTERNAL X-MEMORY Y-MEMORY
$000000 P-MEMORY $000000 i $000000 i
DSP563xx Port A Programming 1-4

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
System Set-up

1.2.2.1 Address Attributes

This section describes how to map an external device to the DSP memory space. The Address
Attribute Register in Figure 1-5 sets up the memory access address and range for the external device.
It also defines whether you are using SRAM or DRAM. If Address Attributes are not initialized, the
DSPisnot notified that a deviceis available in the external memory space. The Address Attribute line
acts as a chip select for the externa device. Any combination of X, Y, and P external memory space
can be made available. For a complete explanation of each of the bits, see the DSP56300 Family
Manual. Only the bits used in the examplesin this application note are explained. Part 2.3 explainsthe
Address Muxing option (BAM), and Part 2.4 explains the Packing mode option (BPAC).

11

Figure 1-5. Address Attributes Register (AARO-AARS3)

10 9 8 7 6 5 4 3 2 1 0

‘ BNC3 ‘ BNC2 ‘ BNC1 ‘ BNCO ‘ BPAC ‘ BAM ‘ BYEN ‘ BXEN ‘ BPEN ‘ BAAP ‘ BAT1 ‘ BATO ‘

|
| |
| External Access Type
AA Pin Polarity

Program Space Enable
X Data Space Enable

Y Data Space Enable

Address Muxing

23

Packing Enable
Number of Address Bitsto
Compare

22 21 20 19 18 17 16 15 14 13 12

‘ BACL1 ‘ BAClO‘ BACY ‘ BACS ‘ BAC7 ‘ BAC6 ‘ BAC5 ‘ BAC4 ‘ BAC3 ‘ BAC2 ‘ BAC1 ‘ BACO ‘

|
|_ Address to Compare

Bit/Field Definitions:

AARX[23:12], Address Compare (BAC)
AARX[11:8], Number Compare (BNC)

These two sets of bits are related. AARx[23:12]:BAC[11:0] define the memory address at
which you can access the external device. AARX[8:11]:BNCJ[3:0] define the range of the
address that is compared for external memory accesses. For example, to map a device to the
space from $100000 to $104000, set BAC[11:0] to $104 and BNC[3:0] to $A. The BNC bits
act as a gatekeeper. When the address request is given, the BNC bits verify that the first bits, in
this case ten, match the memory space where the device is mapped externally. If those bits
pass the compare, the core is enabled to retrieve data from the external device. When setting
up this address space, it is extremely important to make sure that external devices are not
overlapping.

Contents 1-5

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

System Set-up

NOTE:

AARX[5], Y Space Enable (BYEN)
AARX[4], X Space Enable (BXEN)
AARX[3], Program Space Enable (BPEN)

When these bits are activated, access to external Y data space, X data space, and program
space is enabled. You can map a device to be accessible in any combination of these data
spaces at a specified data range. If BYEN=0, BXEN=1, and BPEN=0, then access to $100000
in X data space is allowed (if that address range is the one specified in the BAC and BNC bits)
and a move to that address in Y or P space is rejected.

The EVM boards have a contiguous memory space, so $100000 in X and $10000@dae Y sp
actuallyare the samphysical memory locations. Therefore, if both X and Y szaieeenabled
at $100000, a write to $100000 in Yase #s0 appears in X space.

AARX[2], Address Attribute (AA) Pin Polarity (BAAP)

This bit defines the device chip sele8y RAS) as an active low or an active high pin. If it is
cleared, the pin is active low. If it is set, the pin becomes active high.

AARX[1:0], External Access Type (BAT)

These bits determine the type of memory or peripheral device that is accessed. If you want to
access a device other than memory, set the access type to SRAM (BAT[1:0] = 01) as the
default. Sed able 1-1.

BAT1 BATO External Access Type
0 0 Reserved
0 1 Static RAM access
1 0 DRAM access
1 1 Reserved

Tablel-1. BAT1and BATO External Access Types

DSP563xx Port A Programming 1-6

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
System Set-up

1.2.2.2 Bus Control

The Bus Control Register (BCR) in Figur e 1-6 defines the number of wait states required to access
each of the external devicesin order to achieve proper operation. It also controls the arbitration pins.

Figure 1-6. BusControl Register (BCR)

11 10 9 8 7 6 5 4 3 2 1 0

‘ BA2W1 ‘ BAZWO‘ BAIWA4 ‘ BA1W3 ‘ BAIW2 ‘ BA1W1 ‘ BAIWO ‘ BAOW4 ‘ BAOWS3 ‘ BAOW?2 ‘ BAOW1 ‘ BAOWO ‘
| | | | | | | | |

Area 0 wait states

Areal wait states

Area 2 wait states

23 22 21 20 19 18 17 16 15 14 13 12
BRH BLH BBS | BDFW4 | BDFW3 | BDFW2 | BDFW1 | BDFWO | BA3W2 | BA3W1 | BA3SWO | BA2W2

| | |
_ Area 3 wait states

Default areawait states

Bus State

Bus Lock hold

Bus Request hold

Bit/Field Definitions:

« BCR[20:16], Default Area Wait States (BDFW)
BCR[15:13], Area 3 Wait States (BA3W)
BCRJ[12:10], Area 2 Wait States (BA2W)
BCRJ[9:5], Area 1 Wait States (BA1W)
BCR[4:0], Area 0 Wait States (BAOW)

Each of these bit sets operates the same way. Each defines the number of wait states inserted
into an external access for memory setup time. The external memory interface (Port A) chapter
in the DSP56300 Family Manual gives details on timing for memory devices. Each set of bits
defines the wait states for a different external device. The area wait state bits define the states
required for accessing the devices mapped by the Address Attribute registers. The BDFW bits
are inserted into each external access not defined by an attribute register. These bits should
have a minimum value of one wait state, since the access type is SRAM (as stated earlier for
default devices), and SRAM memory access requires at least one wait state.

Contents 1-7

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
System Set-up

1.2.2.3 DRAM Control Register

The DRAM Control Register (DCR), shown in Figure 1-7, defines wait states for DRAM accesses,
refresh rates, and other DRAM requirements.

Figure1-7. DRAM Control Register (DCR)

3 2 1 0

1 10 9 8 7 6 5 4
BPSL BRW1 ‘ BRWO ‘ BCW1 ‘ BCWO ‘

[In-page wait states
Out-of-page wait states

DRAM Page Size

Page logic Enable
23 22 21 20 19 18 17 16 15 14 13 12

‘ BRP ‘ BRF7 ‘ BRF6 ‘ BRF5 ‘ BRF4 ‘ BRF3 ‘ BRF2 ‘ BRF1 ‘ BRFO ‘ BSTR ‘ BREN ‘ BME ‘

Mastership Enable J

Refresh Enable

Software triggered Refresh
Refresh request rate
Refresh Prescal er

- Reserved Bit

Bit/Field Definitions:

 DCR[23], Refresh Prescaler (BRP)

This read/write control bit controls a prescaler in series with the refresh clock divider. If this
bit is cleared, the prescaler is bypassed. However, if it is set, a divide-by-64 prescaler is
connected in series with the refresh clock divider. Thisbit is cleared during hardware reset.

« DCRJ[22:15], Refresh Rate (BRF)

These read/write bits control thefresh request rate. The rate can range from oaBaolf
enabled, a refresh request is generated each time the refuedbraeaches zero.

 DCRJ[14], Software Triggered Refresh (BSTR)

This read/write status bit generates a software-triggesfeelsh request. When set, a refresh
request is generated and executed to all DRAM banks. After the access is executed, the
DRAM controller hardware clears the BSTR bit. The refresh cycle length depends on the
BRWI1:0] bits.

« DCR[13], Refresh Enable (BREN)

When BREN is set, the refresh counter is enabled, aefilesh request is generated each time
the refresh counter reaches zero. If it mackd, the refresh counterdisabled, and software
can trigger a refresh request using the BSTR bit.

« DCR[12], Mastership Enable (BME)

This bit enables/disables the irfeare to a local DRAM for the DSP. If it is cleared, TRAS
andCAS pins are thee-stated when mastership is lost. Therefore, you must connect an

DSP563xx Port A Programming 1-8

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
System Set-up

external pull-up resistor to these pins. The DSP DRAM controller assumes a page fault each
time mastership islost. A DRAM refresh then requires bus mastership. If BME is set, the RAS
and CAS pins are aways driven from the DSP, and the DRAM refresh can be performed even
if the DSP is not the bus master.

« DCR[11], Page Logic Enable (BPLE)

If the BPLE bit is set, it enables the page logic. Each in-page identification causes the DRAM
controller to drive only the column address. When BPLE igreld the paglegic is disabled,

and the DRAM controller always accesses the external DRAM in out-of-page accesses. This is
useful for low-power dissipation.

-« DCR[9:8], DRAM Page Size (BPS)

BPS[1.0] defines the size of the external DRAM page. The internal page mechanism abides by
these bits only if the page logic is enabl&dble 1-2 shows the encoding of these bits.

BPS1 BPSO Column AddressWidth DRAM Page Size
0 0 9 bits 512 words
0 1 10 bits 1K
1 0 11 bits 2K
1 1 12 bits 4K

Table 1-2. Encoding of Bits BPS1 and BPSO

« DCR[3:2], Out-of-page Wait States (BRW)

The BRWI[1:0] bits define the number of wait states that are inserted in each DRAM
out-of-page acces$able 1-3 shows the encoding of these bits.

BRW1 BRWO DRAM External Access
0 0 4 w.s. for each out-of-page access
0 1 8 w.s. for each out-of-page access
1 0 11 w.s. for each out-of-page access
1 1 15 w.s. for each out-of-page access

Table 1-3. Encoding of Bits BRW1 and BRWO

Contents 1-9

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

System Set-up

« DCR[1:0], In-page Wait States (BCW)

These bits define the number of wait states that are inserted in each DRAM in-page access.
Table 1-4 shows the encoding of these bits.

BCW1 BCWO DRAM External Access
0 0 1 w.s. for each in-page access
0 1 2 w.s. for each in-page access
1 0 3 w.s. for each in-page access
1 1 4 w.s. for each in-page access

Table 1-4. Encoding of BitsBCW1 and BCWO0

For more information on calculating wait states for memory devices, s&SHE300 Family
Manual.

DSP563xx Port A Programming 1-10

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Simple SRAM Access Using Move Instruction

Part 2 Accessing External Devices

The following programming examples for accessing external devices using Port A begin with abasic
access to one memory location in external SRAM. An examplein which the external memory space
overlaps with the internal memory space follows. Such overlaps should be avoided in practice, but we
include this example as an aid to troubleshooting code. The third example is a multiplexed access
using DMA. The DMA access is adjusted to show how to access an 8-bit device using Packing mode.
The last example uses DMA to access DRAM and SRAM.

2.1 Simple SRAM Access Using Move Instruction

Thisrun exercises asingle, generic access to external SRAM through Port A.
The following Port A options are used for this exercise:

e Clock Frequency = 68 MHz

e Packing mode disabled

e Address muxing disabled

e X space enabled; Y and P disabled

* 64 words of data from Y:$000000 to X:$500000

* SRAM using AARO

* Transfer method: MOVE instruction

As Figure 2-1 shows, the code trafess 64 words of data fromM:$0 to X:$500000-$500040. The
transfer is done using a MOVE instruction in a DO loop.

Figure 2-1. Data Transfer from Y to X Memory

$FFFFFF [INTERNAL X-1/0 $FFFFFF [INTERNAL Y-1/Q
$FFFF80 $FFFF80
$FFFO00 | - - - - - - - - - $FFFO00 | - - - - - - - - - -
RESERVED RESERVED
FOR INTERNAL FOR INTERNAL
SFFO000 X-MEMORY SFFO000 Y-MEMORY
maximum | maximum |
$O00FFFF INTERNAL $OOFFFF INTERNAL
$000000 [=XMEMORY $000000 |—Y-MEMORY

Transfer datafrom Y:$0 to X:$500000
Read the following register explanations before looking at the code.

2.1.1 Initialization

In setting up a transfer to Port A, initialize the Address Attributes and Bus Control registers. The
equates for this example are set up as follows. In addition to the AARO and BCR registers, set the

Contents 2-11

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Simple SRAM Access Using Move Instruction

PCTL (PLL Control Register) at the beginning of the program. If the code is running on the 66 MHz
DSP56303EVM, set PCTL to $040003 (68 MHz operation).

Since the SRAM on the DSP56303EVM connects to the AARO enable ling, the code uses the AARO
Register to access the SRAM. The DSP has four Address Attribute registers.

AAROV1 EQU $500111
; SRAM access
; Address Attribute Register O

; [23:12] = BACJ 11: 0] = $500 (Address to conpare)
; [11:8] = BN 3:0] = $C (Num of add to conpare)
; [7] = BPAC = 0 (Packi ng di sabl ed)

; [6] = BAM = 0 (Address nuxi ng di sabl ed)

; [5] = BYEN = 0 (Y nenory di sabl ed)

i [4] = BXEN = 1 (X nmenory enabl ed)

; [3] = BPEN = 0 (P nenory di sabl ed)

; [2] = BAAP = 0 (Active | ow enabl ed)

; [1:0] = BAT[1: 0] = 01 (SRAM access)

Note that BAC[11:0] = $500, which corresponds to the address where we want to store the data in

external memory. We are using only a small section of data (64 words), so we use al 12 bits on the

compare. Therefore, the BNC[1:0] value equals $C. If the first 12 bits match the address given, the

memory access can occur. DMA isn't used, so Packing mode isn’t invoked. Also, Address Muxing is
not needed. The code accesses only external X memory, so we enabladbatrsflisable Y and P
memories. The SRAM is enabled using an active low signal.

BCRV EQU $012422
; Bus Control Register

23] = BRH = 0 bus request hol d of f
22] = BLH = 0 bus lock hold of f
21] = BBS = 0 bus state
BDFW4:0] = 1 default area wait states

15:13] = BA3W2:0] =1 area 3 wait states
12:10] = BA2W2:0] =1 area 2 wait states
9:5] = BAIW4: 0] 1l area 1 wait states
4: 0] = BAOW4: O] 2 area 0 wait states

In the Bus Control Register, this access is given two wait states. All SRAM accesses require at least
one wait state. The other areas are set to default values of one wait state each. With this code,
arbitration is not a concern. The megnificant three bits, BRH, BLH, and BBS, remain at their

default value of zero.

© [20: 16]

2.1.2 Program

The code that actually invokes the transfer of data from internal to external memory has three parts. In
the first part, the main program defines data values. In the second part, it initializes the registers.
Finally, it moves data from internal memory to external memory.

DSP563xx Port A Programming 2-12

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Overlapping External Memory Space with Internal Core Space

include ‘portaequ.asm’
org vy:$0

; Assembly-Time Equates
START EQU $000400
LINEAR EQU $FFFFFF
; Address Equates
DATA_START EQU PATT
MEM_START EQU $500000
LOOP2 EQU $40

org p:START
nop
MAIN_INIT
movep #PCTLx:M_PCTL
move #LINEAR,mO
SRAM_INIT
movep #AAROV1x:M_AARO
movep #BCRV,xM_BCR
move #LOOP2,n7
move #MEM_START,r1
move #DATA START,I0
SRAM_ACCESS
nop
do n7,end_in
move y:(r0)+,x0
move X0, x:(rl)+
nop
end_in
nop
jsr*
end

; this file holds equates for BCRV and AARO

; start address for code
; set up linear addressing mode

; set PLL
; linear addressing

; set up AARO as desired
; set up Bus Control Register as desired
; data is 64 words long
; rl points to address in external memory
; 10 points to data start address

; xfer from Y to xO
; place x0 in external X memory

The port aequ. asmfile holdsthe AARO and BCR equates described earlier. Our datais 64 words

long, so LOOP2 = $40.

The main program starts by setting the PLL. It then sets the addressing mode to linear addressing. Now
the program is ready to start the SRAM access. It initializes the AARO and BCR Registers. It also
initializes loop counters and data pointers. Once initialization is complete, the program transfers the
datafrom Y:$0 to X:$MEM_START (defined to be $500000). It copies 64 data values to external X

memory.

This exampleisthe simplest of transfers. It uses aMOVE instruction with only one external memory
device mapped to X memory. The next example is avariation on this example.

2.2 Overlapping External Memory Space with
Internal Core Space

Thisrun exercises aseemingly generic memory access, but it accidentally accesses memory ininternal
space, resulting in undesired operation.

Contents 2-13

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Overlapping External Memory Space with Internal Core Space

The Port A options for this exercise are as follows:
e Clock Frequency = 68 MHz
e Packing mode disabled
e Address Muxing disabled
» X space enabled; Y and P disabled
« 64 words of data from Y:$0 to X:$FFEFF2
* SRAM using AARO
* Transfer method: move instruction

As Figure 2-2 shows, the code transfers 64 words of data from Y:$0 to X:$FFEFF2-$FFF032. The
transfer isdone using the MOVE instruction in a DO loop. The data is then moved back to internal
memory at X:$0.

Figure2-2. Data Transfer from Y to X Memory

$FFFFFF | |NTERNAL X-1/O $FFFFFF | INTERNAL Y-1/0

$FFFF80 $FFFF80

$FFFO0 oo $FFFO00 | _ . _ _ ..
RESERVED RESERVED

FOR INTERNAL FOR INTERNAL

$FF0000 X-MEMORY $FFO000 Y-MEMORY

maxi mum maximum

$OOFFFF | - - INTERNAL: - $00FFFF | - {NTERNAL- -
X-MEMORY a

$000000 $000000 | Y-MEMORY

Transfer datafrom Y:$0 to X:$FFEFF2

221 Initialization

The data transfer begins somewhere in the $FFE000 range (the exact address given in the main
program) using an SRAM access to X memory. The Bus Control Register is initialized the same way
as in the first exercise. Seart 2.1.1.

DSP563xx Port A Programming 2-14

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Multiplexed Access Using DMA

AAROV1 EQU $FFE311
; SRAM access
; Address Attribute Register O

; [23:12] = BAJ 11: 0] = $FFE (Address to conpare)
; [11:8] = BNO 3:0] = $B (Num of add to conpare)
; [7] = BPAC = 0 (Packi ng di sabl ed)

; [6] = BAM = 0 (Address nuxi ng di sabl ed)

; [5] = BYEN = 0 (Y menory di sabl ed)

; [4 = BXEN =1 (X menory enabl ed)

; [3] = BPEN = 0 (P menory di sabl ed)

i [2] = BAAP = 0 (Active | ow enabl ed)

; [1:0] = BAT[1:0] = 01 (SRAM access)

2.2.2 Program

Thisexampleisidentical to the previous example, except for the Address Attribute initialization and
the starting memory address for the external data. Therefore, we provide only the code for the memory
start addressin X memory and the loop count.

MEM START EQU S$FFEFF2
LOCP2 EQU $40

When these values are used in the code shown previoudly, the data does not transfer correctly. The
program iswritten to transfer 64 words of datafrom Y :$0 to X:$FFEFF2 -> X:$FFF032. However, on
the memory map external X memory does not begin until X:$FFF000. Therefore, the program
attempts to write 14 words of data to read-only internal X memory instead of to the external device
mapped to X:$FFEO0O. The processor does not halt execution to show an attempted write to the wrong
memory space; the data simply does not arrive there. If the datais read back to internal memory for
processing later on, or if it is sent to another device, the datais not complete. Therefore, when setting
up the external memory space, verify that the space is available and not overlapping other memory
device space.

2.3 Multiplexed Access Using DMA

Multiplexed access is supported on both the DSP56301 and DSP56305. The code presented in this
section exercises multiplexed access to SRAM. The parameters for this exercise are asfollows:

e Clock Frequency = 68 MHz
e Packing mode disabled
e Address Muxing enabled
e P space enabled; Y and X disabled
« 64 words of data from Y:$0 to P:$200000
* SRAM using AARO
* Transfer method: DMA
Address Muxing means that only the upper eight address bits are used, and the lower eight bits are

allowed to sit idle for the transfer. Transfers work the same way as before, and you can use Address
Muxing if only eight address lines are required for addressing the data space.

2.3.1 Address Attribute Register Bit: BAM - Address Muxing

If the AARX[6], Address Muxing Bit (BAM) is set, the eight least significant bits of the address appear
on the A23-A16 pins (most significant portion of the external address bus). If the bit is cleared, the
address appears on the entire external address bus (A23-A0). This bit allows you to connect an external

Contents 2-15

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Multiplexed Access Using DMA

peripheral to the M S bits of the address and thus decrease the load on the least significant pins of the
external address. This enables more efficient interface to externa memories. Thisbit isignored during
DRAM accesses.

Figure 2-3 shows how to connect two memory devices to the DSP using the same Address Attribute
chip select.The eight LS bits appear on the A23-A16 pins when Address Muxing is set in the Address
Attribute Register.

Figure 2-3. Connectionswith Same Address Attribute Chip Select

DSP563xx .
Both memories use the same
Address Attribute (AA) chip
select line, but they are mapped to
Port A different memory space areas
MS LS in external memory.
Address Address

16ﬁ#4 Aﬁ&

MEMORY 0 MEMORY 1

The EVM boards are not set up for Address Muxing (i.e. with different memories connected to the
same address line as diagrammed in Figur e 2-3), so Address Muxing is simulated in this example. We
use the same memory setup as in previous examples, but when the external access occurs, only eight of
the address bits are used. As Figur e 2-4 shows, this example sends data from Y :$0 to P:$200000 using
DMA.

Figure 2-4. Transfer from Y to X Memory

$FFFFFF | INTERNAL X-1/0 $FFFFFF [INTERNAL Y-I/Q
$FFFFSO $FFFF80
SFFFO00 | - = - = - = == - - - SFFFO00 | _ o _ . .
RESERVED RESERVED
FOR INTERNAL FOR INTERNAL
$FFO000 X-MEMORY $FFO000 Y-MEMORY
I
maximum | - - .- oo . maximum
$O00FFFF INTERNAL $O0OFFFF | - INTERNAL -
P-MEMORY -
$000000 $000000 Y-MEMORY

DMA (channd Q) Transfer datafrom Y:$0 to P:$200000

DSP563xx Port A Programming 2-16

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Multiplexed Access Using DMA

2.3.2 Initialization

The code presented in this section uses DMA to access P memory in SRAM at $200000. Address
Muxing is enabled.

AAROV1 EQU $200749
; SRAM access
Address Attribute Register 0

; [23:12] = BAJ 11: 0] = $200 (Address to conpare)
; [11:8] = BN 3:0] = $7 (Numof add to conpare)
; [7] = BPAC = 0 (Packi ng di sabl ed)

; [6] = BAM =1 (Address nuxi ng enabl ed)

; [5] = BYEN = 0 (Y menory di sabl ed)

; [4 = BXEN = 0 (X menory di sabl ed)

; [3] = BPEN =1 (P nmenory enabl ed)

i [2] = BAAP = 0 (Active | ow enabl ed)

; [1:0] = BAT[1:0] = 01 (SRAM access)

DMA initiaization follows. This application note does not cover the various modes of DMA access.
Instead, it covers only the bit settings required for the following examples. For more information on
DMA access modes, see the DMA Controller chapter in the DSP56300 Family Manual.

The program initiates one DMA transfer to transfer datato P memory. The DMA transfer isfrom
$000000 in Y memory to $200000 in P memory using DMA channel 0. The transfer isapriority level
1 transfer and the DMA interrupt is enabled. The interrupt tells the program when the transfer is
complete. DCOOV 1 designates that the transfer sends 64 words to external memory. The DAM[5:0]
bitsin the DCRO Register indicate that the source and destination addresses increment by one after
each word transfer. The data also transfers continuously.

DSROV1 EQU $000000

; DVA Source Address Register for channel 0
DDROV1 EQU $200000

; DVA Destination Address Register for channel 0
DCO0V1 EQU $000040

; DNMA Counter for channel 0O
DCROV1 EQU $000000

; DMA Ofset Register for channel 0O
DCROV1 EQU $5B02D9

; DVA Control Register for channel 0

; [23] = DE = 0 DVA (peration di sabl ed

; [22] = DE =1 DVA Interrupt enabl ed

; [21:19] = DIM2:0] = 011 triggered by DE, DE=O@nd

; [18:17] = DPR1:0] =01 priority level 1

; [16] = DOON = 1 Conti nuous node enabl ed

; [15:11] = DRY[4:0] = 00100 Transfer done fromchan 0O
; [10] = D3D = 0 non 3-d node

9:4] = DAM5:0] = 101101 post inc. s/d by 1
3:2] = DDS[1:0] = 10 P nenory destination
1:0] = DSY1:0] =01 Y nmenory source
Contents 2-17

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Access to an 8-bit Peripheral Using DMA and Packing Mode

2.3.3 Program
org p: START
nop
MININT
novep #PCTL, x: M_PCTL ; set PLL
nove #LI NEAR, nD ; linear addressing
DVAINT
nop
movep #AAROVL, x: M AARD ; set up AARD as desired
movep #BCRV, x: M BCR ; set up Bus Control Register
movep #DSROVL, x: M DSRO ; setup DVA src add
movep #DDROVL, x: M DDRO ; setup DVA dest add
novep #DCAOV1, x: M_DCQ0 ; set DMA counter
movep #DCROVL, x: M DCRO ; initialize DVA control reg
DVA_XFER
nop
bset #23, x: <<M DCRO ; start DMA transfer
bra *
end

Since the DMA registersinclude addressinitiaization, the MEM_START and DATA_START
addresses are not required in the main program. Instead of initiating an SRAM _INIT and
SRAM_ACCESS, this program executes DMA accesses.

The DMA_INIT routine initiaizes the bus and Address Attribute registers, followed by initialization
of the DMA registers. The DMA_XFER routine turns on the DMA access and waits for the transfer to
complete.

The code in this example gives a basic introduction to executing DMA transfers through Port A. The
only unusual setting isthe Address Muxing Bit; the Address Muxing function is transparent during
execution.

2.4 Access to an 8-bit Peripheral Using DMA and

Packing Mode

This run exercises both a conventional DMA accessto SRAM and an access using Packing mode.
Packing mode is generally used to access a byte-wide peripheral. The DMA access, if enabled,
accesses three byte-wide memory locations and places them in a single 24-hbit location in internal
memory. Be careful to set the DMA specifications appropriately to handle the transfer.

The Port A options for this exercise are as follows:
e Clock Frequency = 68 MHz
e Packing mode enabled
e Address Muxing disabled
e X space enabled; Y and P disabled
« 153 words of data from Y:$0 to X:$3E00000
» 51 words of packed data from X:$E00000 to X:$0
* SRAM using AARO
* Transfer method: DMA

DSP563xx Port A Programming 2-18

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Access to an 8-bit Peripheral Using DMA and Packing Mode

2.4.1 Address Attribute Register: BPAC - Packing Mode

The BPAC bit pertains only to DMA accesses into Port A from an externa device. Suppose you want

to place an 8-hit peripheral on a DSP board and need to receive data from that peripheral: Access can

easily be set up using Port A without wasting data space in the on-chip memory. Turning on Packing

mode causes three external DMA accesses to the peripheral to be “packed” into one 24-bit data word
in the on-chip memory. Packing is done automatically by hardware once you initialize it. The external
memory should reside in the eight least significant bits of the external data bus. You must set up DMA
with proper offsets and updates for this to operate correctly.

The exercise invokes two DMA transfers. The transfer on DMA channel 0 is a standard DMA access.
As Figure 2-5shows, it takes 153 words from internal Y memory and places it in external X memory.
When the first transfer is complete, it triggers an interrupt that in turn starts the second DMA transfer.
The second transfer (now on DMA channel 1) uses Packing mode and brings 51 words of data (153
bytes) back to internal memory and places it starting at X:$0. When the code finishes, compare the
data at Y:$0 to the data at X:$0 to understand how Packing affed¢s the data.

Figure2-5. DMA Transfers

$FFFFFF INTERNAL X-1/0 $FFFFFF [INTERNAL Y-I/Q
$FFFFB0 $FFFF80
$FFFO00 f - - -« - - - - - - $FFFO00 | - - - - - - - - - -
RESERVED RESERVED
FOR INTERNAL FOR INTERNAL
#FFo000 | XMEMORY sFFo000 | Y-MEMORY

maximum | - - - - . maximum | - - - ...
$OOFFFF INTERNAL $OOFFFF INTERNAL
X-MEMORY | £ 000000 | Y"MEMORY
DMA channel 1
DMA (channel 0) Transfer datafrom Y:$0 to X:$E00000
2.4.2 Initialization
Data is transferred to/from SRAM X memory at $E00000 using Packing mode.
AAROV1 EQU $E00M1
; SRAM access

; Address Attribute Register O

; [23:12] = BAJ 11: 0] = $EO0 (Address to conpare)
; [11:8] = BNO 3:0] = $C (Num of add to conpare)
7 [7] = BPAC = 1 (Packi ng enabl ed)

; [6] = BAM = 0 (Address nmuxi ng di sabl ed)

; [5] = BYEN = 0 (Y menory di sabl ed)

; [4 = BXEN =1 (X menory enabl ed)

; [3] = BPEN = 0 (P menory di sabl ed)

i [2] = BAAP = 0 (Active | ow enabl ed)

; [1:0] = BAT[1:0] = 01 (SRAM access)

DMA initialization for the channel O trafes is alrmost identical to the initialization in the previous
Address Muxing example; the only difences are the addresses for datace and destination and
the length of the transfer.

Contents 2-19

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Access to an 8-bit Peripheral Using DMA and Packing Mode

DSROV1 EQU $000000

; DVA Source Address Register for channel 0
DDROV1 EQU $EO0000

; DVA Destination Address Register for channel 0
DOV EQU $000099

; DMA Counter for channel 0O
DCROV1 EQU $5B02D1

; DVA Control Register for channel 0O

; [23] = DE = 0 DVA (peration disabled

; [22] = DE =1 DVA Interrupt enabl ed

; [21:19] = DIM2:0] = 011 triggered by DE DE=0@nd

; [18:17] = DPR1:0] =01 priority level 1

; [16] = DOON = 1 Conti nuous node enabl ed

; [15:11] = DRY 4:0] = 00000 Transfer done fromchan O
; [10] = 8D = 0 non 3-d node

9:4] = DAM 5:0] = 101101 post inc. s/d by 1
3:2] =DDS[1:0] = 00 X nenory destination
1:0] =DSY1:0] =01 Y menory source

Initialization for channel 1 must account for the use of Packing mode, making the setup more
complicated. The source and destination registers are initialized in the same way. However, since
Packing mode is used, atwo-dimensional DMA accessis requi red.! Thefirst dimension of the access
refersto the amount of datatransferred (51 words), while the second dimension uses the offset register
to update the pointer. We need to update the pointer by three each time, since we are using a 24-hit
peripheral to simulate an 8-bit peripheral, and three memory locations are accessed for each transfer.
When used in thisway, the DCO Register isturned into adua counter. Since 153 bytes are transferred,
but three are transferred at a time using Packing mode, we set the first dimensional counter to 51 or
$33. Thisvalue must be in the first 12 bits of the counter, designated as the DCOH vaue. The data
values are automatically grouped in threes by packing hardware, so we set the second counter, DCOL,
to zero. The offset register, DOR, must be set to $000003 since the values are taken in groups of three,
and the address pointer must be updated accordingly. This register automatically updatesthe DMA
pointer registers.

Wemust aso initialize the DAM[5:0] bitsin the DCR Register differently than for the channel 0 setup.
Since a 2-D transfer is executed, the control register must be notified of which offset register to use as
its address pointer update value. The source register must be updated by three each transfer, but the
destination should receive the data in contiguous memory locations. Thus, DAM[5:3] = 001 sets the
address mode to 2-D, and selects DORL as the offset select. DAM[2:0] = 101, which means that the
destination is updated by one for each transfer. DAM[2:0] is the same mode as used in the channel 0
transfer.

1. Refer to the application note entitled Using the DSP56300 Direct Memory Access Controller for more
information on DMA setup.

DSP563xx Port A Programming 2-20

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Access to an 8-bit Peripheral Using DMA and Packing Mode

DSR1V1 EQU $EO00000

; DVA Source Address Register for channel 1
DDR1V1 EQU $000000

; DVA Destination Address Register for channel 1
DCOLV1 EQU $033000

; DNMA Counter for channel 1
DCROV1 EQU $000003
DCR1V1 EQU $5B0280

; DVA Control Register for channel 1

; [23] = DE = 0 DVA (peration disabl ed

; [22] = DE=1 DVA Interrupt enabl ed

; [21:19] = DIM2:0] = 011 triggered by DE, DE=O@nd

; [18:17] = DPR1:0] =01 priority level 1

; [16] = DOON = 1 Conti nuous node enabl ed

; [15:11] = DRY[4:0] = 00000 Transfer done fromchan 0O
; [10] = D3D = 0 non 3-d node

9:4] = DAM5:0] = 101000 post inc. d by 1, 2D s
3:2] = DDY[1:0] = 00 X nenory destination
1:0] = DSY1:0] = 00 X nmenory sour ce
Contents 2-21

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Access to an 8-bit Peripheral Using DMA and Packing Mode

2.4.3 Program
org p:
DVA I N TO
nop
bset #8, sr
bel r #9, sr ; set interrupt masks
novep #$00A000, x: <<M IPRC ; set DVA interrupt priorities levels
andi #$1C, eom ; set core-DVA priority to 00
bel r #23, sr ; set core priority |evel
movep #AAROVL, x: M AARD ; set up AARD as desired
movep #BCRV, x: M BCR ; set up Bus Control Register
movep #DSROVL, x: M DSRO ; setup DVA src add
nmovep #DDROVL, x: M DDRO ; setup DVA dest add
novep #DCAOV1, x: M_DCQ0 ; set DMA counter
movep #DCROVL, x: M DCRO ; initialize DVA control reg
DVA_XFER
nop
bset #23, x: <<M DCRO ; start channel 0 DVA xfer
bra *
end_dmal
nop
DVA_PACK
nop
bset #8, sr
bel r #9, sr ; set interrupt masks
novep #$00A000, x: <<M I PRC ; set DVA interrupt priority levels
andi #$1C, eom ; set core-DVA priority to 00
bel r #23, sr ; set core priority |evel
DVA IN T1
movep #DSRLVL, x: M DSRL ; setup DVA src add
movep #DDRLVL, x: M DDRL ; setup DVA dest add
novep #DCOLV1, x: M_DCOL ; set DMA counter
movep #DOROVL, x: M DORO ; set DVA Ofset Register
movep #DCRLVL, x: M DCRL ; initialize DVA control reg
start _dma2
nop
bset #23, x: <<M DCRL ; start DWVA pack transfer
bra *
end_dma2
nop
I NTR_RQUT ; interrupt routine
clr a
i nc a
j sr DVA PACK
END
jsr *
end

The DMA subroutines are similar to the Address Muxing DM A routines, since they too are performing

DMA accesses. This example shows that once Packing mode isinitialized for the registers, the
program runs similarly to most DMA transfers—hardware does all the work. The interrupt jump table
is shown next.

DSP563xx Port A Programming 2-22

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Access to an 8-bit Peripheral Using DMA and Packing Mode

xr ef
xr ef
xr ef

vectors

START
I NTR_ROUT

CRG
JWP

jmp
jsr

jnp
NCP

jmp
NOP

P.0

START ; Hardware RESET
*

I NTR_RQUT ;- DVA Channel O
END ;- DVA Channel 1

;- DVA Channel 2

Only the section of the table relevant to this example is shown. Notice that when the DMA channel 0
interrupt occurs, the code jumpsto INTR_ROUT, whichisan interrupt service routine that initiatesthe

Packing mode transfer routine, DMA_PACK. DMA_PACK transfers datausing DMA channel 1.
When that transfer is compl ete, the interrupt directs program flow to the end of the program.

The comparison in Table 2-1 shows how the DMA transfer back to internal X memory takes only the
low eight bits of each word, treating the memory space as an 8-bit peripheral. It takes three consecutive
bytes and packs them into one word of data starting at X:$0.

Contents

For More Information On This Product,
Go to: www.freescale.com

2-23

Access to an 8-bit Peripheral Using DMA and Packing Mode

Freescale Semiconductor, Inc.

Memory

Address Original Data Packed Data

X:$000000 000000 FFFFFF AAAAAA 555555 AAFFO0 000055 000000 000000
X:$000004 800000 400000 200000 100000 000000 000000 800000 102040
X:$000008 080000 040000 020000 010000 020408 FFFFO1 FFFFFF FFFFFF
X:$00000C 008000 004000 002000 001000 FFFFFF FFFFFF TFFFFF EFDFBF
X:$000010 000800 000400 000200 000100 FDFBF7 56BAFE BAA945 A94556
X:$000014 000080 000040 000020 000010 4556BA 5555A9 555555 555555
X:$000018 000008 000004 000002 000001 555555 555555 555555

TFFFFF BFFFFF DFFFFF EFFFFF

F7FFFF FBFFFF FDFFFF FEFFFF

FF7FFF FFBFFF FFDFFF FFEFFF

FFF7FF FFFBFF FFFDFF FFFEFF

FFFF7F FFFFBF FFFFDF FFFFEF

FFFFF7 FFFFFB FFFFFD FFFFFE

FEDCBA 123456 012345 EDCBA9

FEDCBA 123456 012345 EDCBA9

FEDCBA 123456 012345 EDCBA9

00AAS55 00AA55 00AAS55

Table2-1. Comparison of Original and Packed Data
DSP563xx Port A Programming 2-24

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Accessing DRAM and SRAM Using DMA Through Port A

2.5 Accessing DRAM and SRAM Using DMA
Through Port A

The ADM boards have resident DRAM, so the example presented in this section can run on the ADM
boards. Also, you can remove the DRAM portion and then run the code on the DSP563xXEV M boards

if the PLL valueis adjusted properly. The parameters for this exercise are as follows:

e Clock Frequency = 66 MHz

« Packing mode disabled
e Address Muxing disabled

e X space enabled; Y and P disabled

» 256 words of data from Y:$0 to X:$100000 DRAM
e 256 words of data from Y:$0 to X:$E00000 SRAM
« SRAM using AARO
« DRAM using AAR3
e Transfer method: MOVE instruction and DMA

As Figure 2-6 shows, this example maps two external memory devices, SRAM and DRAM, to the
external memory space accessible by Port A. You can use multiple devices if the space accessible by
each device does not overlap. Since the DSP56301ADM DRAM connects to the AA3 chip select pin
on the DSP, Address Attribute Register AA3 initializes DRAM.

DMA (ch 0)
to X :MV
@

DMA (ch 3)
to X:$0

251

DRAM is mapped to X memory at $100000. Packing mode and Address Muxing are disabled. SRAM
is mapped to X memory at $E00000. While both memory devices are in the X memory space, they do
not overlap at any point. Also, neither device is mapped into internal memory space. AARO and AAR3
are initialized to a range of 2 M words. This range is much larger than the space used in this example,

Figure 2-6. SRAM and DRAM Mapped to External Memory

$FFFFFF | INTERNAL X-1/0
$FFFFS0
$FFFO00 | - - - - - - - - - -
RESERVED
FOR INTERNAL
oFF X-MEMORY
SRAM
DRAM
$OOFFFF | INTERNAL
X-MEMORY
$000000
Initialization

SFFFFFF
$FFFF80

$FFFO00

$FF0000

maximum
$O0FFFF

$000000

SRAM Transfer datafrom Y:$0 to X:$E00000
DRAM Transfer datafrom Y:$0 to X:$100000

INTERNAL Y-I/Q

RESERVED
FOR INTERNAL
Y-MEMORY

INTERNAL
Y-MEMORY

but is acceptable since no other devices require use of the memory space.

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Accessing DRAM and SRAM Using DMA Through Port A

AAROV1 EQU $E00311
; SRAM access Y: $0-> X $E00000
Address Attribute Register O

; [23:12] = BACJ11: 0] = $EO0 (Address to conpare)

; [11:8] = BN 3:0] = $3 (Nunber of add to conpare)
; [7] = BPAC = 0 (Packi ng di sabl ed)

; [6] = BAM= 0 (Address nuxi ng di sabl ed)

; [5] = BYEN = 0 (Y nenory di sabl ed)

i [4] = BXEN = 1 (X nmenory enabl ed)

; [3] = BPEN = 0 (P nenory di sabl ed)

; [2] = BAAP = 0 (Active | ow enabl ed)

; [1:0] = BAT[1: 0] = 01 (SRAM access)

AAR3V1 EQU $100312
; DRAM access Y:$0 -> X $100000
Address Attribute Register 3

; [23:12] = BACJ11: 0] = $100 (Address to conpare)

; [11:8] = BN 3:0] = $3 (Nunber of add to conpare)
; [7] = BPAC = 0 (Packi ng di sabl ed)

; [6] = BAM = 0 (Address nuxi ng di sabl ed)

; [5] = BYEN = 0 (Y nenory di sabl ed)

i [4] = BXEN = 1 (X nenory enabl ed)

; [3] = BPEN = 0 (P nenory di sabl ed)

; [2] = BAAP = 0 (Active | ow enabl ed)

; [1:0] = BAT[1: 0] = 10 (DRAM access)

The DRAM Control Register sets up wait states for DRAM accesses. The valuesin thisregister are
defined mostly by the choice of DRAM. The Bus Control Register value hereis similar to that in
previous examples.

BCRV EQU $004042
; Bus Control Register

= BRH = 0 bus request hol d of f
22] = BLH = 0 bus lock hold of f

= O bus state
BDFW 4: 0] 00000 default area wait states
BA3W 2: 0] 010 area 3 wait states
BA2W?2:0] = 000 area 2 wait states
9:5] = BAIW4:0] = 00010 area 1 wait states

108

© [20: 16]

4:0] = BAOW4:0] = 00010 area O wait states

DCRV EQU $873A0A
; DRAM Control Register
23] = BRP = 1 refresh prescal er on

22:15] = BRF[7:0] = 00001110 refresh request rate
14] BSTR = 0 software triggered refresh of f

13] - BREN = 1 refresh enable
12] = BME = 1 nastership enabl e
= BPLE = 1 page | ogic enabl e

10] reserved

9:8] = BPY1:0] = 10 DRAM page si ze (.5,1, *2K*, 4)
7. 4] reserved

3:2] = BRW1:0] 10 Qut of page w.s. (4,8,*11*,15)
1: 0] = BCW1: (] 10 In page w.s. (1-4 ws; 3 ws)

The transfersto SRAM and DRAM are done using the MOV E instruction. However, DMA accesses
transfer the data back to internal memory. The transfers are standard DMA transfers, so the setup is
similar to the setup described in Part 2.3.

T

DSP563xx Port A Programming 2-26

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Accessing DRAM and SRAM Using DMA Through Port A

;. SRAM Access DMA channel 0

DSROV1
DDROV1
DCCOV1

DOROVL
DCROV1

; DRAM Access DI\/AchannéI 3

DSR3V1
DDR3V1
DCCBV1

DCOR3V1
DCR3V1

EQU
EQU
EQU

EQU
EQU

EQU
EQU
EQU

EQU
EQU

$E00000

; DVA Source Address Register for channel 0

$000400

; DVA Destination Address Register for channel 0
$000100

; DNMA Counter for channel 0

$000000

$500200

; DVA Control Register for channel 0

; [23] = DE = 0 DVA (peration disabl ed

; [22] = DE =1 DVA Interrupt enabl ed

; [21:19] = DIM2:0] = 011 triggered by DE, DE=O@nd
; [18:17] = DPR1:0] = 10 priority level 2

; [16] = DCON = 0 Conti nuous node di sabl ed

; [15:11] = DRY[4:0] = 00000 Transfer done fromchan 0O
; [10] = D3D = 0 non 3-d node

9:4] = DAM5:0] = 101101 post inc. s/d by 1
3:2] = DDS[1:0] = 00 X nenory destination
1:0] = DSY1:0] = 00 X nmenory sour ce
$100000
; DVA Source Address Register for channel 3
$000000

; DVA Destination Address Register for channel 3
$000100

; DNMA Counter for channel 3

$000000

$500200

; DVA Control Register for channel 3

; [23] = DE = 0 DVA (peration disabl ed

; [22] = DE =1 DVA Interrupt enabl ed

; [21:19] = DIM2:0] = 011 triggered by DE, DE=O@nd
; [18:17] = DPR1:0] = 10 priority level 2

; [16] = DCON = 0 Conti nuous node di sabl ed

; [15:11] = DRY[4:0] = 00000 Transfer done fromchan 3
; [10] = D3D = 0 non 3-d node

9:4] = DAM5:0] = 101101 post inc. s/d by 1
3:2] = DDS[1:0] = 00 X nenory destination
1:0] = DSY1:0] = 00 X nmenory sour ce

Both MOVE and DMA transfers generate a DMA interrupt. In the Interrupt Priority Register C
(IPRC), the DMA channel 0 (SRAM) and DMA channel 3 (DRAM) interrupts are set to priority level
2. This priority level setting is arbitrary, since no other devices should be causing interrupts. If this
exercise were included in alarger program, we would set the interrupt priority as determined by
application requirements.

Contents 2-27

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Accessing DRAM and SRAM Using DMA Through Port A

| PRCV1 EQU $082000

Interrupt Priority Register C (includes DVA int)

23:22] = D5L[1:0] = 00 DMA5 Int Priority Level
21:20] = DAL[1:0] = 00 DVM | PL
19:18] = DBL[1:0] = 10 DVA3 IPL
17:16] = D2L[1:0] = 00 DVA2 |PL
15:14] = DIL[1:0] = 00 DVAL |PL
13:12] = DOL[1:0] = 10 DVRO | PL
11] = IDL2 = 0 | RD node

10:9] = IDL[1:0] = 00 IR IPL
8] =132 = 0 | R node

7:6] = 1CL[1:0] = 00 |RQC I PL
5] = 1BL2 = 0 | RQB node

4:3] = IBL[1:0] = 00 IR®B IPL
2] = 1AL2 = 0 | RQA node

1:0] = IA[1:0] = 00 | RQA IPL

The DSP56301ADM uses a faster external clock, so we set the PLL to asmaller value for 66 MHz
parts. In previous examples, the PLL value was set to $400003, which multiplied the external clock by
four. For the DSP56301ADM, we multiply the clock by two.

DSP563xx Port A Programming

For More Information On This Product,
Go to: www.freescale.com

2-28

Freescale Semiconductor, Inc.

Accessing DRAM and SRAM Using DMA Through Port A

2.5.2 Program
; Assenbl y-Ti me Equat es
START EQU $000400
LI NEAR EQU $FFFFFF
; Address Equat es
DATA_START EQU PATT
MEM STARTD EQU $100000
MEM STARTS EQU $E00000
LOOP_NUM EQU ¢4
LOOP_PATT EQU $40

org p: START

nop
MAININT

novep #PCTL, x: M_PCTL
novep #DCRV, x: M _DCR
nove #L1 NEAR nD
DRAMIN T
nop
nmovep #AAR3VIL, x: M AAR3
nove #LOOP_PATT, n7
nove #LOOP_NUM n4
nove #MEM STARTD, r 1

DRAM ACCESS
nop
do n4, end_dnem
nop
nove #DATA START, r0
do n7,end_din

nove y: (r0)+, x0
nove X0, x: (r1)+
end_din
nop
end_drmem
nop
SRAMINT
nop
nmovep #AAROVI, x: M AARD
novep #BCRV, x: M_BCR
nove #LOOP_NUM n4
nove #LOOP_PATT, n7
nove #MEM STARTS, r 1

SRAM ACCESS
nop
do n4, end_snem
nop
nove #DATA START, r0
do n7,end_sin

nove y: (r0)+, x0
nove X0, x: (r1)+
end_sin
nop
end_smem
nop

DVA IN T3
nop
bset #8, sr
bel r #9, sr

movep #l PROVL, x: <<M | PRC

andi #$1C, eom
bel r #23, sr

start address for code
set up linear addressing node

DRAM st art address
SRAM st art addr ess

set PLL
set DRAM Control Register
|'i near addressing

set up AAR3 as desired

data pattern is 64 words |ong

repeat data pattern

rl points to address in nenory

go through menory and fill with pattern
ro points to data start address

xfer fromy memto tenporary register
xfer fromtenp reg to external X nenory

set up AARO as desired

set up Bus Control Register as desired
repeat data pattern

data pattern is 64 words |ong

rl points to address in nenory

go through menory and fill with pattern
rO points to data start address

xfer fromy memto tenporary register
xfer fromtenp reg to external X nenory

unnask | PLs

core priority 1

Contents 2-29

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Accessing DRAM and SRAM Using DMA Through Port A

nmovep #DSR3VL, x: M DSR3 ; setup DVA src add
nmovep #DDR3VL, x: M DDR3 ; setup DVA dest add
movep #DOR3VL, x: M DOR3 ; set up offset register
novep #DCCBV1, x: M _DOX3 ; set DMA counter
movep #DCR3VL, x: M DCR3 ; initialize DVA control reg
DVA I N TO
nop
movep #DCROVL, x: M DCRO ; initialize DVA control reg
movep #DSROVL, x: M DSRO ; setup DVA src add
nmovep #DDROVL, x: M DDRO ; setup DVA dest add
movep #DOROVL, x: M DORO ; setup DVA O f set Register
novep #DCOOV1, x: M DCQ0 ; set DMA counter
res
DVA_XFER
nop
bset #23, x: <<M DCR3 ; start DRAM DVA xfer
bset #23, x: <<M _DCRO ; start SRAM DVA xfer
bra *
END
nop

jsr *

include ‘intr_rout.asm’
end

In this code, the DRAM accessisfirst. The registers are initialized and then the access begins,

followed by the SRAM access. Finaly, the DMA registers are initialized for DRAM and SRAM
access, and the two transfers start almost simultaneoudly.

Each accessis similar to those previous examples, but here they are brought together in one program.

Notice that the DMA transfer for each device starts within one cycle of the previous transfer. Since

each channel has the same priority level as the other, the hardware initiates a “round-rolbén’ knans

this mode, each DMA channel can transfer one piece of data, at which point the bus access is given to
the other DMA channel. This alternation continues until each channel complets its transfer. In this
example, both channels transfer the same amount of data and finish their transfers within a cycle of
each other. However, if the DRAM were transferring twice as much data as SRAM, the two memory
devices would work in the round-robin fashion until SRAM completed its transfer, at which point
DRAM would gain full control of the bus.

DVA_ENDSRAM
nove #$000001, yO
nove Y0, y: $400
jnp END
DVA_ENDDRAM
nove #$000002, yO
nove y0,y: $401
bra *

The interrupt routines are short. The DRAM access initiates first and completes first. Thus, when the
interrupt is generated, a value is placed in Y memory for debugging purposes, and the core waits for
the SRAM transfer to complete. When the SRAM transfer is complete, it places a value in Y memory
for debugging purposes.

DSP563xx Port A Programming 2-30

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
References

2.6 Troubleshooting

If aprogram using Port A does not work properly, use the following list as a guideline for debugging.

« Check the address space where data is transferred externally. Does the address match the one
given in the AARXx:BAC[11:0] and AARXx:BNC]J3:0] bits? Is the cect data space (X,Y,P)
enabled?

* Is the external access type (AARX:BATJ[1:0]) set for either DRAM or SRAM? Is the pin
polarity for the device (AARx:BAAP) set correctly?

« Make sure that the number of wait states matches what is necessary for the syséarse In
wait states in the Bus Control Register or DRAM Control Register, if necessary.

e If using Packing mode, check DMA offset and counter registers. Make sure that
two-dimensional mode is being used and the counter is setcdy.

« Check the PLL value to make sure it is within operating range for the device.

If these are all correct, the problem probably lies in an area of code other than the Port A setup. Check
the program flow to ensure that registers are used properly.

2.7 Conclusions

As the examples in this application note show, external memory access using Port A on Motorola’s
DSP56300 family of devices is fast and straightforward. Port A is a necessary peripheral for systems
that require immediate access to off-chip memory. With six DMA channels available in the core, you
can execute transfers to and from external memory on demand. Using Port A in combination with the
DSP core and other peripherals provides a powerful system solution for wireless applications.

2.8 References

1. DSP56300 Family Manual, Motorola, 1995. Order this document by document order number
DSP56300FM/AD. Or download it from the Freescaléeb site at
http://www.freescale.com/DSP/documentation/DSP56300.html

2. DSP56301ADM User’'s ManugWlotorola, 1995. Order this document by document order number
DSP56301ADMUM/AD. Or download it from the Freescale Web site at
http://www.freescale.com/pub/DSP/LIBRARY/TOOLSDOC/ADS

3. DSP56303EVM User’'s Manuaiotorola, 1996. Order this document by document order number
DSP56303EVMUM/AD. Or download it from the Freescale Web site at
http://www.freescal e.com/D SP/documentati on/D SP56300.html

Contents 2-31

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center

2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong

+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center
P.O. Box 5405

Denver, Colorado 80217

1-800-441-2447 or 303-675-2140

Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

2 “ freescale’

semiconductor

For More Information On This Product,
Go to: www.freescale.com

rxzb30
hibbertleft

rxzb30
disclaimer

rxzb30
freescalecolorjpeg

	DSP563xx Port A Programming
	Part 1 Configuration
	1.1 Performance
	1.2 System Set-up
	1.2.1 DSP56300 to Memory Connections
	1.2.2 Memory Map
	1.2.2.1 Address Attributes
	1.2.2.2 Bus Control
	1.2.2.3 DRAM Control Register

	Part 2 Accessing External Devices
	2.1 Simple SRAM Access Using Move Instruction
	2.1.1 Initialization
	2.1.2 Program

	2.2 Overlapping External Memory Space with Internal Core Space
	2.2.1 Initialization
	2.2.2 Program

	2.3 Multiplexed Access Using DMA
	2.3.1 Address Attribute Register Bit: BAM - Address Muxing
	2.3.2 Initialization
	2.3.3 Program

	2.4 Access to an 8-bit Peripheral Using DMA and Packing Mode
	2.4.1 Address Attribute Register: BPAC - Packing Mode
	2.4.2 Initialization
	2.4.3 Program

	2.5 Accessing DRAM and SRAM Using DMA Through Port A
	2.5.1 Initialization
	2.5.2 Program

	2.6 Troubleshooting
	2.7 Conclusions
	2.8 References

	Disclaimer and Contact Information

