
Freescale Semiconductor
Application Note

© Freescale Semiconductor, Inc., 2004, 2006. All rights reserved.

A stopwatch timer is an apparatus for measuring the exact
duration of an event. Measuring code execution time on a
DSP is useful to identify opportunities for code optimization,
to understand system loading, and to compare execution
speeds of different processors.

This application note presents techniques for implementing
a stopwatch timer on DSPs based on the StarCore™
SC140/SC1400 cores using the built-in features of the
enhanced on-chip emulation module (known as EOnCE or
OCE10), hereafter referred to as the emulator.

Although many devices with embedded DSPs provide
application-specific timer blocks, these timers cannot be
used for debugging without interference from the application
itself. The ability to use the enhanced emulator as a
stopwatch timer gives us non-intrusive timing capabilities.
This application note describes how to set up the stopwatch
timer using the SC140 code in an application or using the
Metrowerks® CodeWarrior® debugger.1

Code examples illustrate the use of the stopwatch timer on
the SC140 Software Development Platform (SDP). Minor

1. This application note was written for the Beta v.1.0 release
of Metrowerks CodeWarrior. Screen captures of CodeWar-
rior tools may vary in future versions.

Contents
1. Stopwatch Timer Basics . 2
2. Setting Up the Stopwatch Timer In an Application . . 3
3. Setting Up the Stopwatch Timer In the Debugger . . . 9
4. Setting Up the System Clock Speed 13
5. Verifying Correct Set-up . 15
6. Conclusion . 18
7. References . 18

Using the SC140/SC1400 Enhanced
On-Chip Emulator Stopwatch Timer

Kim-Chyan Gan and Yuval Ronen

AN2090
Rev. 2, 06/2006

Using the SC140/SC1400 Enhanced On-Chip Emulator Stopwatch Timer, Rev. 2

2 Freescale Semiconductor

Stopwatch Timer Basics

configuration changes are needed to apply the techniques to other SC140-based devices. The necessary
modifications are also described in this application note.

1 Stopwatch Timer Basics
This section presents the features of the emulator stopwatch timer and the resources required for
implementation. The capabilities of the stopwatch timer are also explained.

1.1 Features
The emulator stopwatch timer provides the following features:

• A 64-bit counter, incrementing on each DSP clock cycle. The counter is less susceptible to
overflow with 64-bit precision.

• The stopwatch timer can be used repeatedly while an application executes.

Conversion between clock cycles and absolute time, based on the operating clock frequency of the DSP,
is described in Section 2.4, “Converting Cycles to Actual Time.

1.2 Resources
The emulator stopwatch timer requires use of these resources:

• One emulator event detector (of the six available on each DSP)
• Emulator event counter
• Program memory of 724 bytes

Because the emulator supports only one event counter, the stopwatch timer cannot be used if the event
counter is required for other debugging purposes, such as to set up a debugger breakpoint that requires
counting of events.

1.3 Implementation
The stopwatch timer allocates a variable in memory to serve as the target for memory write operations.
The emulator event detector is set up to detect writes to this flag variable. When an event detector is set up
to detect memory access operations, it is necessary to specify which of the two data memory buses should
be “snooped”. Because the bus is selected dynamically, the event detector is set up to snoop both buses
(XABA or XABB). Upon detecting the write to the flag variable, the event detector enables the event
counter, which starts counting down.

The emulator event counter can be configured as either a 64-bit counter or a 32-bit counter. Configuring
the counter to use 64-bits eliminates the danger of counter overflow, at a negligible extra cost.

To stop the stopwatch timer, an appropriate value is written into the emulator memory-mapped event
counter control register. When this operation completes, the cycle countdown halts. Now, you can read out
the values of the emulator event counter registers and translate them into an elapsed number of cycles or
elapsed absolute time.

Using the SC140/SC1400 Enhanced On-Chip Emulator Stopwatch Timer, Rev. 2

Freescale Semiconductor 3

Setting Up the Stopwatch Timer In an Application

2 Setting Up the Stopwatch Timer In an Application
This section describes how to initialize, start, and stop the stopwatch timer within an application. The
sequence of operations is shown in Figure 1. Additionally, this section discusses how to convert cycles to
actual time and put all the application code together. Finally, this section explains how to adapt the
stopwatch timer code to other SC140-based devices.

Figure 1. Sequence of Operations

2.1 Initializing the Stopwatch Timer
The C code to set up the stopwatch timer is shown in Example 1. This code contains the definitions of the
emulator memory-mapped address registers.

Example 1. Event Detector Set-up Code

/*

* Header file contains definitions of EOnCE memory-mapped register addresses,

* and definition of the WRITE_IOREG() macro.

*/

#include “EOnCE_registers.h”

static volatile long EOnCE_stopwatch_timer_flag; /*Global dummy variable*/

void EOnCE_stopwatch_timer_init()

{

WRITE_IOREG(EDCA1_REFA,(long)&EOnCE_stopwatch_timer_flag);

/* Address to snoop for on XABA */

WRITE_IOREG(EDCA1_REFB,(long)&EOnCE_stopwatch_timer_flag);

/* Address to snoop for on XABB */

WRITE_IOREG(EDCA1_MASK,MAX_32_BIT);

/* No masking is performed in address comparison */

WRITE_IOREG(EDCA1_CTRL,0x3f06);

Sequence Instructions
to be Timed

Initialize Stopwatch

Enable Stopwatch

Disable Stopwatch

Using the SC140/SC1400 Enhanced On-Chip Emulator Stopwatch Timer, Rev. 2

4 Freescale Semiconductor

Setting Up the Stopwatch Timer In an Application

/* Detect writes on both XABA and XABB */

}

The EOnCE_registers.h header file contains the macro definitions, such as EDCA1_MASK, which
provides each memory-mapped register’s memory address. This header file also defines the C macros:
READ_IOREG() and WRITE_IOREG(). These macros simplify the read and write operations on these
registers.

To initialize the stopwatch timer, set up the Address Event Detection Channel (EDCA), which triggers the
cycle countdown. The emulator supports six EDCAs. The implementation presented in this application
note uses EDCA1, though this choice is arbitrary. To set up the EDCA, you must initialize the following
four registers:

• 32-bit EDCA reference value register A (EDCAi_REFA).
• 32-bit EDCA reference value register B (EDCAi_REFB).
• 32-bit EDCA mask register (EDCAi_MASK).
• 16-bit EDCA control register (EDCAi_CTRL).

2.1.1 Event Detector Control
The EDCA1_CTRL register controls the behavior of the EDCA. The fields of the EDCA1_CTRL register
are shown in Figure 2.

Figure 2. EDCA Control Register (EDCA1_CTRL)

Table 1 describes the settings of these fields in the stopwatch timer implementation.

The EDCA is enabled as soon as these values are written into the control register. The EDCA stays enabled
for the duration of program execution to enable repeated use of the stopwatch timer.

Table 1. EDCA_CTRL Settings

Field
Setting

(binary value)
Description

EDCAEN 1111 This channel is enabled

CS 11 Trigger event if the address matches on either comparator A or comparator B

CBCS 00 “address match” is detected when the sampled bus value equals the value in EDCA_REFB.

CACS 00 “address match” is detected when the sampled bus value equals the value in EDCA_REFA.

ATS 01 Detect write accesses only

BS 10 The sampled buses are XABA and XABB

Using the SC140/SC1400 Enhanced On-Chip Emulator Stopwatch Timer, Rev. 2

Freescale Semiconductor 5

Setting Up the Stopwatch Timer In an Application

2.1.2 Address Comparison Set-up
EDCA address comparison detects writes to the stopwatch timer flag variable. Because writes can occur
on either of the two data memory buses, both EDCA1_REFA and EDCA1_REFB are set up to contain the
address of the stopwatch timer flag variable.

The EDCA1_MASK register allows masking of address bits when the sampled address is compared with
those in the EDCA1_REFA and EDCA1_REFB registers. Our implementation of the stopwatch timer uses
all 32-bits of the flag variable address, so EDCA1_MASK is set to 0xFFFFFFFF.

2.2 Starting the Stopwatch Timer
The C code to start the stopwatch timer is shown in Example 2. This code contains the write commands
that trigger the event counter.

Example 2. C Code to Start the Stopwatch Timer

#include “EOnCE_registers.h”

void EOnCE_stopwatch_timer_start()

{

 WRITE_IOREG(ECNT_VAL,MAX_32_BIT); /* Countdown will start at (2**32)-1 */

 WRITE_IOREG(ECNT_EXT,0); /* Extension will count up from zero */

 WRITE_IOREG(ECNT_CTRL,0x12c);

/* Counting will be triggered by detection on EDCA1 */

 EOnCE_stopwatch_timer_flag = 0;

/* This write to the flag triggers the counter */

}

The counter registers must be initialized before the stopwatch timer is triggered. Initializing the event
counter requires set up of the following three 32-bit registers:

• Event counter value register (ECNT_VAL)
• Extension counter value register (ECNT_EXT)
• Event counter control register (ECNT_CTRL)

When these initialization are complete, the C code triggers the stopwatch timer and cycle counting
commences.

Using the SC140/SC1400 Enhanced On-Chip Emulator Stopwatch Timer, Rev. 2

6 Freescale Semiconductor

Setting Up the Stopwatch Timer In an Application

2.2.1 Event Counter Control

This section describes the initialization of the event counter registers. The ECNT_CTRL register controls
the behavior of the event counter. The fields of the ECNT_CTRL register are shown in Figure 3.

Figure 3. Event Counter Control Register (ECNT_CTRL)

Table 2 describes the settings of these fields in the stopwatch timer implementation.

2.2.2 Counter Registers
ECNT_VAL is a countdown counter, and ECNT_EXT is a count-up counter. ECNT_VAL decrements on
each occurrence of an event, as specified in the control register. ECNT_EXT increments each time there
is an underflow in ECNT_VAL. For maximum cycle counting capacity, the stopwatch timer
implementation initializes ECNT_VAL to the largest possible value, which is 2147483647, or
0x7FFFFFFF. ECNT_EXT is initialized to zero.

2.3 Stopping the Stopwatch Timer
The C code to stop the stopwatch timer is shown in Example 3.

Example 3. C Code to Stop the Stopwatch Timer

#include “EOnCE_registers.h”

void EOnCE_stopwatch_timer_stop(unsigned long *clock_ext, unsigned long *clock_val)

{

 WRITE_IOREG(ECNT_CTRL,0); /* Disable event counter */

 READ_IOREG(ECNT_VAL,*clock_val); /* Save ECNT_VAL in program variable */

 READ_IOREG(ECNT_EXT,*clock_ext); /* Save ECNT_EXT in program variable */

 *clock_val = (MAX_32_BIT-*clock_val); /* Adjust for countdown */

}

Table 2. ECNT_CTRL Settings

Field
Setting

(binary value)
Description

EXT 1 Event counter operates as a 64-bit counter.

ECNTEN 0010 The event counter is disabled and is enabled when EDCA1 detects an event.

ECNTWHAT 1100 The counter advances on each core clock cycle.

Using the SC140/SC1400 Enhanced On-Chip Emulator Stopwatch Timer, Rev. 2

Freescale Semiconductor 7

Setting Up the Stopwatch Timer In an Application

To stop the stopwatch timer, the ECNT_CTRL register is cleared to zero. After the stopwatch timer stops,
the routine copies the values of the ECNT_VAL and ECNT_EXT registers into program variables.
Therefore, the stopwatch timer can be used again without losing the result of the previous measurement.

Because ECNT_VAL contains the result of a countdown process, the routine converts that result into the
actual number of cycles elapsed by subtracting the ECNT_VAL from the value to which it was initialized,
specifically, 2147483647.

2.4 Converting Cycles to Actual Time
The stopwatch timer measures durations in units of core clock cycles. Most often the units of interest are
units of absolute time, such as milliseconds or microseconds. Conversion from core clock cycles, as
measured by the event counter registers, to milliseconds is computed in Equation 1.

Eqn. 1

EXT is the value in ECNT_EXT, VAL is the value in ECNT_VAL, and Clock Speed is measured in MHz.
Example 4 shows the C code for clock-cycle-to-time conversion. The C code depends on setting the value
of the constant CLOCK_SPEED in EOnCE_stopwatch.c to match the clock speed as set in the PLL. The
conversion routine distinguishes between three different output units: seconds, milliseconds, and
microseconds. Handling each unit separately allows the computations to be performed using integer
arithmetic without loss of accuracy.

Example 4. C Code for Clock-Cycle-to-Time Conversion

typedef enum { EONCE_SECOND, EONCE_MILLISECOND, EONCE_MICROSECOND } tunit;

unsigned long Convert_clock2time(unsigned long clock_ext, unsigned long clock_val, short
option)

{

 unsigned long result;

 switch(option)

 {

 case EONCE_SECOND:

 result= clock_ext*MAX_32_BIT/CLOCK_SPEED + clock_val/CLOCK_SPEED;

 break;

 case EONCE_MILLISECOND:

 result= clock_ext*MAX_32_BIT/(CLOCK_SPEED/1000)

 + clock_val/(CLOCK_SPEED/1000);

 break;

 case EONCE_MICROSECOND:

 result= clock_ext*MAX_32_BIT/(CLOCK_SPEED/1000000)

 + clock_val/(CLOCK_SPEED/1000000);

Time ms() EXT 0xffffffff× VAL+() 1000
ClockSpeed
-------------------------------×=

Using the SC140/SC1400 Enhanced On-Chip Emulator Stopwatch Timer, Rev. 2

8 Freescale Semiconductor

Setting Up the Stopwatch Timer In an Application

 break;

 default: result=0; /* error condition */

 break;

 }

 return result;

}

2.5 Putting it All Together
Example 5 shows the stopwatch timer using the routines described so far.

Example 5. Use of Stopwatch Timer Functions

long clock_ext,clock_val,clock_cycle,time_sec;
...

 EOnCE_stopwatch_timer_init(); /* Execute once per program execution */
...

EOnCE_stopwatch_timer_start();
/*
 * Code whose execution time is measured goes here
 */
EOnCE_stopwatch_timer_stop(&clock_ext, &clock_val);

...
time_sec = Convert_clock2time(clock_ext, clock_val, EONCE_SECOND);

...

...
EOnCE_stopwatch_timer_start();
/*
 * Code whose execution time is measured goes here
 */
EOnCE_stopwatch_timer_stop(&clock_ext, &clock_val);

...
time_sec = Convert_clock2time(clock_ext, clock_val, EONCE_SECOND);

The calls to the stopwatch timer functions can be made from different locations in the application code,
not necessarily from within one subroutine. The EOnCE_stopwatch_timer_start() and
EOnCE_stopwatch_timer_stop() can be called more than once to measure the time consumed in different
modules as desired.

2.6 Adapting Stopwatch Timer Code to SC140 Devices
The stopwatch timer implementation controls the emulator by writing to its memory-mapped registers.
The addresses of these registers are determined in the memory map of the device in which the SC140 core
is embedded. The offset between the base address of the memory-mapped peripherals and the addresses
of the emulator registers is the same across SC140-based devices. Therefore, when the stopwatch timer
code is adapted to a specific device it suffices to set the value of REG_BASE_ADDRESS in the header

Using the SC140/SC1400 Enhanced On-Chip Emulator Stopwatch Timer, Rev. 2

Freescale Semiconductor 9

Setting Up the Stopwatch Timer In the Debugger

file EOnCE_registers.h. In the Software Development Platform (SDP), the base register of the emulator is
0x00EFFE00. Consult the user manual of the specific DSP for the value of this C macro.

3 Setting Up the Stopwatch Timer In the Debugger
Occasionally developers are faced with a situation where instrumentation of the code is not possible. For
example, the code might be available in object form only. In such cases, execution times can be measured
by setting up the stopwatch timer within the Metrowerks Code Warrior SC140 debugger, as explained in
this section.

3.1 Initializing the Stopwatch Timer
When the stopwatch timer is set up within the debugger, the triggering event executes the first instruction
in the measured code. Program code disassembly is used to obtain the address of this first instruction.

NOTE

In the following descriptions of selecting options in the debugger windows,
the → symbol separates each command in the menu hierarchy. For example,
EONCE → EONCE CONFIGURATOR → EDCA1 lists the hierarchy to be followed to
select the EDCA1. In this example, one would highlight EOnCE in the
menu bar, then highlight EOnCE Configurator, and finally choose the
EDCA1 tab.

3.1.1 Setting Up the Event Detector
The procedure to set up the stopwatch timer is described in this section. To set up the event detector, find
the starting address of measured function or sequence of instructions, as follows:

1. Choose PROJECT → DEBUG.
2. In the debugger window, choose MIXED.

Using the SC140/SC1400 Enhanced On-Chip Emulator Stopwatch Timer, Rev. 2

10 Freescale Semiconductor

Setting Up the Stopwatch Timer In the Debugger

The starting address can be found in mixed mode, as shown in Figure 4.

Figure 4. Finding the Starting Address in Debugger

After finding the starting address, the event detector can be set up. The procedures are outlined in these
steps:

1. Choose EONCE → EONCE CONFIGURATOR → EDCA1.
2. Click PC in the BUS SELECTION box.
3. Enter the starting address of the function or a sequence of instructions into the COMPARATOR A HEX

32-BITS box.
4. Click ENABLE in the ENABLED AFTER EVENT ON box.

Using the SC140/SC1400 Enhanced On-Chip Emulator Stopwatch Timer, Rev. 2

Freescale Semiconductor 11

Setting Up the Stopwatch Timer In the Debugger

Figure 5 shows the event detection settings after these steps are performed. For details on emulator
configuration in the CodeWarrior tools, refer to [3].

Figure 5. Event Detection Settings

3.1.2 Setting Up the Event Counter
The event counter is configured to the mode described in Section 2.2.1, “Event Counter Control, except
that this time the configuration occurs in the debugger windows:

1. Choose EONCE → EONCE CONFIGURATOR → COUNTER.
2. Click on CORE CLOCK in the WHAT TO COUNT box.
3. Click EDCA1 in the ENABLE AFTER EVENT ON box.
4. Type “0xFFFFFFFF” in the EVENT COUNTER VALUE (HEX 32) box.
5. Check the box in the left side of EXTENSION COUNTER VALUE (HEX 32 VALUE).

Using the SC140/SC1400 Enhanced On-Chip Emulator Stopwatch Timer, Rev. 2

12 Freescale Semiconductor

Setting Up the Stopwatch Timer In the Debugger

The result of this procedure is shown in Figure 6.

Figure 6. Event Counter Settings

3.2 Stopping the Stopwatch Timer
The stopwatch timer stops when execution of the application halts at a breakpoint. Set up the breakpoint
at the point in the application where you want such halts to occur. When the breakpoint is in place, the
debugger can be instructed to run the application.

When the executing application reaches the breakpoint, the value of the stopwatch timer counters can be
retrieved by opening the EONCE → EONCE CONFIGURATOR → COUNTER dialog box. Figure 7 shows an event
counter dialog box after the debugger halts at the breakpoint. Because the countdown counter is initialized
to the maximum value (0xFFFFFFFF), the difference between the maximum value and the value in the
EVENT COUNTER VALUE column yields the real SC140 clock counts. To convert the values of the real SC140
clock counts to absolute time, use the computation described in Section 2.4, “Converting Cycles to Actual
Time.

After the debugger stops at the breakpoint, the counter, which is set up in sleep mode and is enabled by the
events at the beginning of the code, is now enabled and continues to count (see the ENABLED AFTER EVENT ON

Using the SC140/SC1400 Enhanced On-Chip Emulator Stopwatch Timer, Rev. 2

Freescale Semiconductor 13

Setting Up the System Clock Speed

column in Figure 7). However, continued counting is irrelevant because the SC140 clock count has been
achieved.

Figure 7. Event Counter Dialog Box When Debugger Halts at Breakpoint

4 Setting Up the System Clock Speed
Every SC140-based device contains a phase lock loop (PLL) to control operating frequency. The
frequency of the device is governed by the frequency control bits in the PLL control register, as defined in
Equation 2.

Eqn. 2

Where:
• MFI (multiplication factor integer), MFN (multiplication factor numerator), MFD (multiplication

factor denominator), and PODF (post division factor) are defined in the PCTL1 register.
• PDF (predivision factor) is defined in the PCTL0 register.
• Fext is external input frequency to the device at the EXTAL pin.
• Fdevice is the device operating frequency.

The range of values of these terms is described in [1].

Fdevice
Fext MFI MFN

MFD
-------------+⎝ ⎠

⎛ ⎞×

PODF PDF×
---=

Using the SC140/SC1400 Enhanced On-Chip Emulator Stopwatch Timer, Rev. 2

14 Freescale Semiconductor

Setting Up the System Clock Speed

Figure 8 and Figure 9 illustrate the PLL registers; PCTL0 and PCTL1, respectively.

Figure 8. Programming Model of PCTL0

Figure 9. Programming Model of PCTL1

4.1 Setting Up the PLL in Software
The clock frequency of the SC140/SC1400 core can be set up in either software or hardware. This section
describes how to set up the core in the Software Development Platform (SDP) to operate at 300 MHz using
these two alternatives. The C code to set up the PLL to 300 MHz is shown in Example 6.

Example 6. C Code to Set Up the PLL to 300 MHz

#include “EOnCE_registers.h”

void PLL_setup_300MHz()

{

asm("move.l #$80030003,PCTL0");

asm("move.l #$00010000,PCTL1");

}

To set up the core for operation at 300 MHz, the PCTL0 and PCTL1 registers should be set to the values
0x80030003 and 0x00010000, respectively. These settings are explained in Table 3.

Table 3. Settings of PCTL0 and PCTL1

Field
Setting

(binary value)
Description

PCTL0.PEN 1 PLL enabled. The internal clocks are derived from the PLL output.

PCTL0.RCP 0 PLL locks with respect to the positive edge of the reference clock

PCTL0.MFN 000000000 MFN = 0

Using the SC140/SC1400 Enhanced On-Chip Emulator Stopwatch Timer, Rev. 2

Freescale Semiconductor 15

Verifying Correct Set-up

With these configurations, the Fchip is calculated as expressed in Equation 3.

Eqn. 3

The PLL should be configured so that the resulting PLL output frequency is in the range specified in the
device’s technical data sheet.

4.2 Setting Up the PLL in Hardware
During the assertion of hardware reset, the values of all the PLL hardware configuration pins are sampled
into the clock control registers (PCTL0 and PCTL1). Thus, the core frequency can be set up at reset by
configuring the jumpers on the SDP board. To set up the PLL for operation at 300 MHz, the jumpers for
PLLEN, PDF1, PDF0, MFI3, and MFI2 should be removed (thereby causing these bits to be asserted). For
details on jumper configuration of SDP, refer to [2].

5 Verifying Correct Set-up
This section describes how to verify that the system is set up correctly and that the emulator stopwatch
timer measurements are as described in Section 2, “Setting Up the Stopwatch Timer In an Application. The
verification process is based on measuring a specified time period, while also creating an external behavior
(turning on and off an LED) that can be measured independently by a “wall clock” (that is, an independent
stopwatch, such as an oscilloscope).

5.1 Using the LED on the SDP
The implementation described in this section is based on the configuration of the SDP. In SDP, each EE1
pin of the emulator is connected to an LED. The following implementation is based on the ability to
program the emulator to toggle the output value on its pins whenever an event is detected by one of the
emulator event detection channels. Our implementation toggles the output value on the EE1 pin when the
stopwatch timer starts or stops running. This capability requires just a small enhancement to the stopwatch
timer software that is presented in Example 6.

PCTL0.MFI 1100 MFI = 24

PCTL0.MFD 000000000 MDF = 1

PCTL0.PD 0011 PD = 4

PCTL1.COE 1 clock out pin receives output

PCTL1.PODF 0 PODF = 1

Table 3. Settings of PCTL0 and PCTL1 (continued)

Field
Setting

(binary value)
Description

Fchip
50MHz 24 0

1
---+⎝ ⎠

⎛ ⎞×

4 1×
-- 300Mhz= =

Using the SC140/SC1400 Enhanced On-Chip Emulator Stopwatch Timer, Rev. 2

16 Freescale Semiconductor

Verifying Correct Set-up

5.1.1 Setting Up EE1
The functionality of the emulator pins is controlled through the EOnCE pins control register (EE_CTRL).
Figure 10 displays the structure of this register.

Figure 10. EE Pins Control Register (EE_CTRL)

In EE_CTRL, the EE1DEF field is set to 00, which signifies an output signal when detected by EDCA1.
The remaining fields in EE_CTRL are irrelevant because they are not used. Example 7 shows the set-up
code for EE control registers.

Example 7. EOnCE_LED_init()

void EOnCE_LED_init()

{

*((long *)EE_CTRL) &= ~(3<<2); /* Toggle EE1 when event1 happens */

}

5.1.2 Toggling EE1
The initialization previously discussed the set up of EE1 to toggle each time an event is detected by
EDCA1. The same channel is also used to trigger the stopwatch timer to count. Therefore, all that remains
is to create an EDCA1 event when the stopwatch timer stops. This is achieved by writing to the Enhanced
OnCE stopwatch timer flag variable. Caution should be taken to perform this write only after execution of
EOnCE_stopwatch_timer_stop().

Example 8. Turn LED Off

void EOnCE_LED_off(){

 EOnCE_stopwatch_timer_flag = 0; /* Create an EDCA1 event */

}

5.2 Testing the Stopwatch Timer
The program in Example 9 sets up the stopwatch timer and measures the time it takes to execute two loops
whose duration is built into the program. The measured code sequences are constructed to take 5 seconds
and 3 seconds, respectively. These durations are constructed as the code samples the emulator counter and
loop until the expected number of clock cycles have passed. Trying this code prior to measuring the target
application is recommended as a means of verifying correct system set-up. If the times measured are not
correct, check the PLL set-up and the values of the clock speed and the memory-mapped register base (as
set in the header files).

Using the SC140/SC1400 Enhanced On-Chip Emulator Stopwatch Timer, Rev. 2

Freescale Semiconductor 17

Verifying Correct Set-up

Example 9. Testing Code

#include <stdio.h>
#include "EOnCE_stopwatch.h"

#ifdef COMPILER_BETA_1_BUG
extern long ECNT_VAL;
#else
#include "EOnCE_registers.h"
#endif

void PLL_setup_300MHz()
{
 asm("move.l #$80030003,PCTL0");
 asm("move.l #$00010000,PCTL1");
}

void main(){
 unsigned long clock_ext,clock_val,clock_cycle,cycle_req;
 unsigned long time_sec;
 extern unsigned long CLOCK_SPEED;

 PLL_setup_300MHz();
 EOnCE_stopwatch_timer_init(); /* Setup to event detector 1 for any write to
 dummy variable. Setup EOnCE event counter
 to count if event 1 happens */
 EOnCE_LED_init(); /* Setup LED to toggle in detection of
 event 1 */
cycle_req = CLOCK_SPEED*10; /* Calculate total clock cycles required
 by 10 sec */
 EOnCE_stopwatch_timer_start(); /* Event 1 happens, counter & LED on */

 do {
 READ_IOREG(ECNT_VAL,clock_cycle); /* Read bit 31-0 counter value */
 clock_cycle = MAX_32_BIT - clock_cycle;/* Minus max value due to count down */
 } while (clock_cycle <= cycle_req);

 EOnCE_stopwatch_timer_stop(&clock_ext, &clock_val); /* Stop timer, return bit 63-0

counter value */
 EOnCE_LED_off(); /* LED off */
 time_sec = Convert_clock2time(clock_ext, clock_val, EONCE_SECOND);
 printf("duration = %u sec\n", time_sec);

 cycle_req = CLOCK_SPEED*7.5; /* Calculate total clock cycles required
 by 7.5 sec */
 EOnCE_stopwatch_timer_start(); /* Event 1 happens, counter & LED on */

 do {
 READ_IOREG(ECNT_VAL,clock_cycle); /* Read bit 31-0 counter value */
 clock_cycle = MAX_32_BIT - clock_cycle;/* Minus max value due to count down */
 } while (clock_cycle <= cycle_req);

 EOnCE_stopwatch_timer_stop(&clock_ext, &clock_val); /* Stop timer, return bit 63-0

counter value */

Using the SC140/SC1400 Enhanced On-Chip Emulator Stopwatch Timer, Rev. 2

18 Freescale Semiconductor

Conclusion

 EOnCE_LED_off(); /* LED off */
 time_sec = Convert_clock2time(clock_ext, clock_val, EONCE_MILLISECOND);
 printf("duration = %u ms\n", time_sec);

 return;
}

6 Conclusion
This application note presents two techniques for measuring the execution speed of software running on a
DSP device based on the StarCore SC140 or SC1400 core, using the enhanced on-chip emulator. The first
technique requires instrumenting the application code with calls to stopwatch timer routines. The second
technique controls the stopwatch timer within the Metrowerks Code Warrier debugger. Examples in this
application note demonstrate setting up the SC140 Phase Lock Loop, and software control of the LED
available on the Software Development Platform.

7 References
The following documents are available at the Freescale web site listed on the back cover of this document:

1. SC140 DSP Core Reference Manual (MNSC140CORE)
2. Device Application Development System (ADS) Reference Manual.
3. SC1000-Family Processor Core Reference Manual.
4. OCE10 On-Chip Emulator Reference Manual.

Using the SC140/SC1400 Enhanced On-Chip Emulator Stopwatch Timer, Rev. 2

Freescale Semiconductor 19

References

THIS PAGE INTENTIONALLY LEFT BLANK

Document Number: AN2090
Rev. 2
06/2006

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
HyperTransport is a trademark of the HyperTransport Technology Consortium. All other
product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2004, 2006.

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

email:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
1-800-521-6274
480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064, Japan
0120 191014
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447
303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

	1 Stopwatch Timer Basics
	1.1 Features
	1.2 Resources
	1.3 Implementation

	2 Setting Up the Stopwatch Timer In an Application
	Figure 1. Sequence of Operations
	2.1 Initializing the Stopwatch Timer
	2.1.1 Event Detector Control
	Figure 2. EDCA Control Register (EDCA1_CTRL)
	Table 1. EDCA_CTRL Settings

	2.1.2 Address Comparison Set-up

	2.2 Starting the Stopwatch Timer
	2.2.1 Event Counter Control
	Figure 3. Event Counter Control Register (ECNT_CTRL)
	Table 2. ECNT_CTRL Settings

	2.2.2 Counter Registers

	2.3 Stopping the Stopwatch Timer
	2.4 Converting Cycles to Actual Time
	2.5 Putting it All Together
	2.6 Adapting Stopwatch Timer Code to SC140 Devices

	3 Setting Up the Stopwatch Timer In the Debugger
	3.1 Initializing the Stopwatch Timer
	3.1.1 Setting Up the Event Detector
	Figure 4. Finding the Starting Address in Debugger
	Figure 5. Event Detection Settings

	3.1.2 Setting Up the Event Counter
	Figure 6. Event Counter Settings

	3.2 Stopping the Stopwatch Timer
	Figure 7. Event Counter Dialog Box When Debugger Halts at Breakpoint

	4 Setting Up the System Clock Speed
	Figure 8. Programming Model of PCTL0
	Figure 9. Programming Model of PCTL1
	4.1 Setting Up the PLL in Software
	Table 3. Settings of PCTL0 and PCTL1

	4.2 Setting Up the PLL in Hardware

	5 Verifying Correct Set-up
	5.1 Using the LED on the SDP
	5.1.1 Setting Up EE1
	Figure 10. EE Pins Control Register (EE_CTRL)

	5.1.2 Toggling EE1

	5.2 Testing the Stopwatch Timer

	6 Conclusion
	7 References
	Using the SC140/SC1400 Enhanced On-Chip Emulator Stopwatch Timer

