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Abstract and Contents

The DSP56800E’ s DSP core architecture represents the next step in the evolution of Motorola s 16-bit

DSP56800 Family of digital signal processors. It maintains compatibility with the DSP56800 while
improving performance and adding new features. The main purpose of this application noteisto
recommend a method for porting DSP56800 applications to the DSP56800E and for optimizing the
applications, exploiting the advantages of the new architecture.

An important feature of the DSP56800E is its source code compatibility with the DSP56800. Code

developed for the DSP56800 can be assembled for the DSP56800E and will run correctly if certain coding
requirements are fulfilled. These requirements are identified, analyzed, fulfilled, and verified with regard

to example code in this application note.
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1 Introduction

The DSP56800E’s DSP core architecture represents the next step in the evolution of Motorola s 16-hbit
DSP56800 Family of digital signal processors. It maintains compatibility with the DSP56800 while
improving performance and adding new features.

Some of the new and useful features of the DSP56800E (as compared to the DSP56800) that can be
exploited for optimization include:

» Additional registers (accumulators, pointers, and an offset register)

e Extended set of data ALU operations

* AGU arithmetic

e Support for nested DO looping

e New datatypes (byte and long)

e 24-bit data memory address space and 21-bit program memory address space
e Support for real-time debugging (Enhanced OnCE™)

An important feature of the DSP56800E is its source code compatibility with the DSP56800. Code
developed for the DSP56800 can be assembled for the DSP56800E and will run correctly if certain coding
reguirements are fulfilled. These requirements are not very restrictive. They are identified, analyzed,
fulfilled, and verified with regard to example code in this application note. If these requirements are not
met in the initial application, the necessary changes are easy to implement.

The sample code that was ported to the DSP56800E executed in half the number of cycles required by the
DSP56800, even without any optimization (without exploiting the new features of the DSP56800E).
Whereas the DSP56800 typically completes execution of an instruction in 2 cycles, the DSP56800E
performsthe same job in 1 cycle. Moreover, code written for the DSP56800 can be further optimized
because of the new features introduced in the DSP56800E.

Another difference between the DSP56800E and the DSP56800 is new pipeline behavior. Although this
behavior does not affect code correctness, in some casesit can introduce stalls. The programmer can avoid
these situations by rearranging instructions.

The main purpose of this application note isto recommend a method for porting DSP56800 applicationsto
the DSP56800E and for optimizing the applications, exploiting the advantages of the new architecture.
This document also details some aspects of the following issues:

e Therdative benefit of rewriting a function from scratch compared to porting and optimizing the
application

* How pipeline effects on the DSP56800E can affect the ported code
« How an application can be translated beyond the 64 kwords boundary for program and datamemory

(M) moToroLa Introduction 1
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1.1 Case Study

The application chosen as an example to be ported was the implementation of the International
Telecommunications Union (ITU) Recommendation V.22 bis. The original code was taken from Freescale
Embedded Software Development Kit (SDK) version 2.1. This software development kit, which runs with
Metrowerks CodeWarrior 3.5.1 for the DSP56800 Family, can be found at the following URL.:

http://www.freescale.com

The initial application could be run in two modes:. either using a digital or an analog loopback (the latter
could be run only on DSP56824 EVM). Modifications were made to the original code to run it only on the
simulator (using only a digital loopback). Also, all callsto the SDK libraries were eliminated. These
modifications affected only the tester, not the modem library.

The original code was initially optimized for the DSP56800. The result was considered the reference code
for the next round of optimization (employing only the new features introduced by DSP56800E). The
performance improvement gained after DSP56800E optimization is measured against the performance of
this reference code and is discussed in Section 3, “ Optimizing the Ported Code.”

1.2 References and Tools

This application note refers to the DSP56800E 16-Bit Digital Sgnal Processor Core Reference Manual
(Order number DSP56800ERM/D) as the Core Reference Manual.
Thetools used for devel oping and testing the code discussed in this document were the following:

* Metrowerks CodeWarrior 3.5.1 for DSP56800

e Prototype tools for DSP56800E including the assembler and the simulator
The porting process requires knowledge of several DSP56800 topics that are not explained in this
application note. The following documents provide necessary information on these topics:

« DSP56800 16-Bit Digital Sgnal Processor Family Manual (Rev. 1.00, order number

DSP56800FM/D)

*  Freescale Embedded SDK 2.1 Help and Documentation: information about SDK libraries and
system calls

In addition, coding requirements and recommendations used in this application note derive from a
forthcoming guide on porting applications from the DSP56800 platform to the DSP56800E platform.

2 Application Porting
This section investigates porting a DSP56800 application to the DSP56800E architecture.

The entire application was tested and developed using a 16-bit address model for program and data
memory space. Although the DSP56800E has larger addressing capabilities, they are not necessary for this
application. Problems can result from using the extended DSP56800E program and data memory space for
DSP56800 code. Section 6, “Converting Applications for Increased Data and Program Memory,” details
these problems.

2 Porting and Optimizing DSP56800 Applications to DSP56800E @ MOTOROLA
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2.1 Porting Process

To set up the application to run on DSP56800E toals, the following steps were performed:

1. Theoriginal application code was tested, and test vectors were obtained. These steps are
required for testing the ported code and for possible further optimization.

2. Theorigina code's compliance with the coding requirements for porting was verified.

2.1.1 Running the Original Application Code and Obtaining Test
Vectors

The original application wasrun in digital loopback mode under CodeWarrior 3.5.1 for DSP. The output of
the digital loopback is a Boolean value resulting from a comparison between the transmitted and received
data.

Using this version, we also obtained the test vectors. the data to be sent, the data received, and the
information to be transmitted to the analog converter (data received as parameters by the transmitter’s
callback function, which should be sent by wire by the codec). Only the global test vectors were saved.
Local test vectors, represented by the input and output data of afunction, were saved later using
DSP56800E tools, when they were required during the optimization process. The reason for this approach
isthat the local vectors were not required for porting, and it was simpler to save them from DSP56800E
tools using simulator scripts (the CodeWarrior simulator does not accept scripts, and memory save and
restore operations using /O streams increase the simulation time).

2.1.2 Verifying the Coding Requirements

Coding practices are required to ensure that a DSP56800 program is compatible with the DSP56800E. The
main code example that is featured in this application note met all requirements without being modified.

2.1.2.1 AGU Arithmetic Overflow and Underflow

Applications must be written so that there isno AGU overflow or underflow of 64K boundaries when data
or program memory is accessed with the following DSP56800 addressing modes:

« (Rn)+

¢ (Rn)-
« (Rn)+N

e (SP—xx)

o (SP+xxxx)
e (R2+xx)

AGU overflow and underflow should not appear in normal conditions. They are not always easy to detect.

Consider a scenario showing the differences that appear when AGU overflow occurs. Assume that during
the linking phase, a certain array or data structure is placed at the end of the addressabl e space, wrapping
from ahigh address to alow address. To help detect such memory areas, an indication of the memory
arrangement can be obtained from a memory utilization report generated by the assembler or from alinker
map file.

One case isthe accessto this array using the (Rn)+ addressing mode. On DSP56800 architecture, the AGU
overflows. When the application is ported to DSP56800E architecture, the wrapping does not occur and the
array is placed in a contiguous space above the 64K boundary. Then, if the same addressing mode is used,
the AGU calculates 24-bit addresses, overflow does not occur, and the array is accessed correctly.

@ MOTOROLA Application Porting 3
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Another caseis when the (Rn) addressing mode is used and an LEA instruction updates the address
register. As expected, the AGU overflows on the DSP56800. When the code is ported to DSP56800E, the
results are different than in the preceding case. This addressing mode, which existsin the enhanced core to
ensure DSP56800 compatibility, causes the AGU to produce 16-bit addresses by filling the upper 8 bits
with 0, simulating an overflow. If the array is accessed with the sequence shown in Code Example 1, the
next address will be forced to 16 hits, which is an error since the rest of the array is placed above 64K.

Code Example 1. Updating an Address Register (AGU Overflow or Underflow)

; accessing an array
nove y0, x: (r2) ; witing YO at the address fromR2

; ot her code that m ght use the address fromR2 regi ster

lea (r2)+n ; updating the R2 register with the increnent fromN
; theresult is a 16-bit address on both architectures

The solution in this case is to replace the LEA instruction with ADDA, resulting in a 24-bit address.

However, there is no guaranteed method to detect these errors. Memory files can only give indications
about data that might cause problems. Only a careful inspection of the code can reveal incompatibilities.
The code chosen as the main example in this application note had no problems caused by AGU overflow or
underflow.

2.1.2.2 MAC Output Limiter

Be careful with applications that enable the MAC output limiter (by setting the SA bit in the OMR). There
are three instructions—ADC, SBC, and DIV—that are not affected by the state of the SA bit on the
DSP56800E architecture but are affected on the DSP56800. When the DIV, ADC, or SBC instructions are
executed, the accumulator extension registers must contain only sign extension, not significant bits.

Consider how the SA hit affects an ADC instruction on the DSP56800. The arithmetic instruction could be
executed on awhole 36-bit accumulator, returning the correct 36-hbit result when the SA bit is 0 or a 32-bit
result when the SA bit is set. This feature was introduced so that the algorithms keep bit exactness on the
DSP56800 (as compared to other DSPs that do not support high-precision arithmetic using extension hits).
The MAC output limiter converts a 36-bit number to a 32-bit number. If it is a positive number and larger
than the maximum value represented on 32 hits, it will be limited at $07FFFFFFF; if it is a negative
number that cannot be represented on 32 hits, it will be limited at $F80000000. On the DSP56800E, the SA
bit does not affect an ADC instruction; the result has 36 hits.

Due to this effect, DSP56800 code that uses the MAC output limiter feature and that includes ADC, DIV,
and SBC instructionsthat are affected by it should be rewritten so that these instructions are used only with
32-bit sign-extended accumulators. Code Example 2 illustrates the consequence of not following this
recommendation.

Code Example 2. Using ADC with Non-Signed Operands (Different Results)

; exanple of the effect of the SAbit from QW

bf set #$10, ont ; setting SA bit

nove #$1000, y1

nove #$F000, al ; No sign extension in A register
adc

y,a
: yl= $1000 yO= $0000

; a2= $0 al= $f000 a0= $0000 <= prior execution

: yl= $1000 yO= $0000

; a2= $0 al= $7fff a0= $ffff <= execution on DSP56800: limtation occurs
: yl= $1000 yO= $0000

; a2= $1 al= $0000 a0= $0000 <= execution on DSP56800E no linitation

4 Porting and Optimizing DSP56800 Applications to DSP56800E @ MOTOROLA
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To avoid this problem, scan the codefor ADC, SBC, or DIV instructions that are run with the SA bit set. If
the operands are not always 32-hit and sign extended or if the result of the operation having 32-hbit
sign-extended operands is larger than 32 bits, the solution is the SAT instruction. This instruction,
available only on the DSP56800E, forces the saturation (see Code Example 3). It issafeto placea SAT
instruction after ADC, SBC, or DIV, explicitly saturating the result.

Code Example 3. Using ADC with Non-Signhed Operands (with Correction)

; exanple of the effect of the SAbit from OWR

bf set #$10, ont ; setting SA bit

nove #$1000, y1

nmove #$F000, al ; No sign extension in A register

adc y,a

sat a, a ; this instruction nmanually forces saturation

: yl= $1000 yO= $0000

; a2= $f al= $f000 a0= $0000 <= prior execution

: yl= $1000 yO= $0000

; a2= $0 al= $7fff a0= $ffff <= execution on DSP56800E: |initation caused by SAT instruction

The code used as the main example in this application note did not face this type of limiting problem.

2.2 Application Performance Comparison

Test vectors were generated and coding requirements were verified, and the main test application ran
correctly on both DSPs. Immediately afterward, all DSP56800 code optimization methods were
implemented. The correctness of the results was preserved on both platforms. The code obtained after this
step was considered the reference code for all subsequent optimization allowed by the new features of the
DSP56800E.

The reference application’ s different speeds on the two platforms indicate the improvement was achieved
only by porting. The speeds were measured with the function testL oopback (representing the entire
application, including not only the V.22 bislibrary but also the main function, which realizes the digital
loopback). On the DSP56800, this function took 61,918,898 cycles (the code was run using the
CodeWarrior simulator). The ported code on the DSP56800E was expected to run about two times faster.
Indeed, the function testL oopback on the DSP56800E took 31,694,501 cycles.

The DSP56800E measurement is dightly more than half the number of cycles on the DSP56800. The
difference can be explained in that some instructions that take more than half the cycles to execute unlike
similar instructions on the DSP56800 (such as those for change of flow: Bec, BRA, Jec, IMP). Also, the
new pipeline effects on the DSP56800E (not present on the DSP56800) slightly increase on the number of
cycles.

More interesting is the study of performance for the V.22 bis library alone. For this reason, in the
remainder of this document, size measurements refer only to the size of the library, and speed
measurements refer to the worst case for a symbol transmitting and receiving (these two tasks are
performed by the functions TXBAUD and RXBAUDPROC, respectively).

Table 1 presents acomparison between the size of the V.22 bislibrary built and run on both the DSP56800
and DSP56800E (the same source code, after minor modifications required for porting).

Table 1. Size Comparison Between DSP56800 and DSP56800E Ported Code

Data Memory (Words)
Program Memory
Platform
(Words) .
Constants/Tables | Variables
DSP56800 4735 1092 909
DSP56800E 4973 1092 909
@ MOTOROLA Application Porting 5
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NOTE:
Throughout this application note, 1 word equals 16 bits.

The size of the data memory does not include the gaps that the circular buffers introduce.

The size of dataisthe same on both platforms (as expected), but the size of the code is slightly (5 percent)
larger on the ported application. One explanation is that some instructions (such as Bcc) are coded with
more words on the DSP56800E than on the DSP56800. Program space also increases somewhat due to the
different coding of some addressing modes. For example, a MOV E instruction with an immediate operand
and an indexed operand, addressed using R2, is coded on 2 words on the DSP56800E and 1 word on the
DSP56800.

Other interesting information is the processing load of the DSP, measured in million cycles per second
(MCPS). It is computed as the worst-case number of cycles needed to transmit or receive a symbol,
multiplied by 600 symbols per second (V.22 bis assumes that 600 symbols per second are transmitted at
2400 Hz or 1200 Hz), and divided by 1,000,000. Processing load for the full duplex mode includes
processing loads for both transmission and reception. For example, if the worst cases for transmission and
reception are 1352, respectively 9870 cycles, the worst case for full duplex modeis 1352 + 9870 = 11222
cycles. Processing load for full duplex is 11222 x 600 / 1000000 = 6.73 MCPS.

The comparison performed on worst case and processing load illustrates that, as with the speed
measurements for the entire application, the number of cycles on the DSP56800E is slightly more than half
the number of cycles on the DSP56800. See Table 2.

Table 2. Cycle Count Comparison of Ported DSP56800 Code to DSP56800E

Dat Worst Case Processing Load
ata (Cycles) (MCPS) Speedup
Component
Factor
or Mode
DSP56800 | DSP56800E | DSP56800 | DSP56800E
Transmitter 1352 571 0.81 0.34 2.33
Receiver 9870 5154 5.92 3.09 1.92
Full duplex 11222 5697 6.73 3.43 1.97

Note that the DSP56800E also runs at higher clock rates; the DSP56800E runs at a clock frequency of
120 MHz, while the DSP56800 runs at 35 MHz. Thus, the actual execution time is much shorter, and the
total improvement in speed obtained by simply porting DSP56800 code to the DSP56800E is significantly
higher.

3 Optimizing the Ported Code

This section summarizes some of the optimization practices that are allowed by the new features of the
improved core architecture. The section al so assesses the improvements achieved by implementing these
practices.

The DSP56800E optimization methods that were used do not attempt to make any change in the algorithm
or in the program flow. The modular structure defined by the functionsin the reference code is maintained.
The optimization methods were applied at function level, by replacing selected limited code sequences
with optimized equivalents. All of the methods comply with recommended coding practices.

@ MOTOROLA
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Methods based on ailmost all the new DSP56800E features, which are summarized in Section 1,
“Introduction,” were used to improve the speed of the application. Table 3 and Table 4 present the overall
results obtained after most of the time-consuming functions were optimized.

Table 3. Size Comparison

Data Memory
Code Prog(rsvn;rlt\jﬂ:)mory (Words)
Constants/Tables | Variables
DSP56800 reference 4735 1092 909
DSP56800E ported 4957 1092 909
DSP56800E optimized 4856 1100 911
Optimized vs. ported —2.04% +0.73% +0.22%
Optimized vs. reference +2.10% +0.73% +0.22%

The program memory size decreased by 2 percent compared to the ported code, nearing the size of the
DSP56800 reference code. Better code density was achieved because more registers were used and some
instructions were replaced with more flexible ones. The datamemory areadlightly increased because of the
gapsintroduced by alignment requirements.

Table 4 illustrates the speed improvements.
Table 4. Speed Comparison

Data Component Code Worst Case | Processing Load Sp_eedup Factor
or Mode (Cycles) (MCPS) Relative to Reference

Transmitter DSP56800 reference 1352 0.81 N/A
DSP56800E ported 571 0.34 2.37
DSP56800E optimized 498 0.30 2.71

Receiver DSP56800 reference 9870 5.92 N/A
DSP56800E ported 5154 3.09 1.91
DSP56800E optimized 4692 2.81 2.10

Full duplex DSP56800 reference 11222 6.73 N/A
DSP56800E ported 5697 3.43 1.97
DSP56800E optimized 5190 3.11 2.16

The DSP56800E optimization methods produced an increased speed of about 9 percent compared to the
ported version. The optimized version runsin less than half the number of cycles compared to the
DSP56800 reference version. Remember that the actual execution time is much shorter, since the
DSP56800E is afaster processor.

Table 5 indicates the effects of optimizing the most time-consuming functions. The results are presented
globally, not for each individual act of optimization.

@ MOTOROLA Optimizing the Ported Code 7
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Table 5. Optimization Gains on the Most Time-Consuming Functions

Function Initial Final Gain
RXBPF 2158 2015 6.63%
RXDEMOD 717 641 10.60%
RXINTP 265 252 4.91%
RXCDAGC 152.67 142.54 6.64%
RXDECIM 118 116 1.69%
tx_fm 192 190 1.04%
RXEQUD 201 199 1.00%
TONEDETECT 318 286 10.06%
RXS1 110.25 106.53 3.37%
RXUSB1 71.74 69.73 2.80%
rx_dscr 125.03 104.47 16.44%
RXEQERR 99.54 95.54 4.02%
tx_scr 81.86 73.33 10.42%

The optimization techniques applied to the reference code to reach the speed and size improvements are
discussed in the following subsections.

3.1 Delay Slots on Change of Flow

The delayed flow control instructions are designed to increase throughput by eliminating execution cycles
that are wasted when program flow changes. An instruction that affects normal program flow (such asa
branch or jump instruction) requires 2 or 3 additional instruction cyclesto flush the execution pipeine. The
program controller stops fetching instructions at the current location and beginsto fill the pipeline from the
target address. The execution pipeline stalls while this switch occurs. The additional cycles required to
flush the pipeline are reflected in the total cycle count for each change-of-flow instruction. A special group
of instructions referred to as “ delayed” instructions provide a mechanism for executing useful tasks during
these normally wasted cycles.

Itissimpleto employ theseinstructions. Replace every BRA, IMP, RTI, and RTS instruction with BRAD,
JMPD, RTID, and RTSD, respectively. These instructions provide a number of delay dots (see Table 6),
which must be filled with instructions.

Table 6. Available Delay Slots

Delayed Instructions | Number of Delay Slots

BRAD 2
JMPD 2
8 Porting and Optimizing DSP56800 Applications to DSP56800E @ MOTOROLA
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Table 6. Available Delay Slots (Continued)

Delayed Instructions

Number of Delay Slots

RTID 3
RTSD 3
FRTID 2

New Registers

The number of instruction wordsfilling the delay slots must equal the number of delay dots. If some delay
dlots cannot be filled with valid instructions, then each unused delay slot must be filled with aNOP
instruction. If a pipeline dependency occurs due to instructions executed in the delay slots, the appropriate
number of interlock cycles are inserted by the core, reducing correspondingly the number of delay-slot
cyclesthat are available for instructions.

Code Example 4. Pipeline Dependency in Delay Slot

j npd rx_next _task ; 2-3 cycles 2-3 words
npy y0, x0, b ;1 cycle 1 word
nmove. w b, x: (r1) +n ;1 cycle 1 word

In Code Example 4, the pipeline dependencies force the MOV E.W instruction in the delay slot to execute
in 2 cyclesinstead of 1. (For more on pipeline dependencies, see Section 5, “ Pipeline Effects on
DSP56800E.”) The total number of instruction cyclesin the delay slotsis 3, while IMPD provides only 2
delay dots.

An example from rx_egerr.asm appears in Code Example 5.

Code Example 5. Using Delay Slots

nmove y1, x: >LASTDP ; 2 cycles 2 words

add yl,b ;1 cycle 1 word

nove. w b, x: (r1)+n ;1 cycle 1 word
End_RXEQERR

jnp rx_next _task ; 4-5 cycles 2-3 words
; DSP56800 ori gi nal code: 8-9 cycles / 6-7 words

nmove y1, x: >LASTDP ; 2 cycles 2 words
End_RXEQERR
; use delay slots

j npd rx_next _task ; 2-3 cycles 2-3 words

add y1, b ; 1 cycle 1 word
nove. w b, x: (r1)+n 1 cycle 1 word
; DSP56800E optim zed code: 6-7 cycles | 6-7 words

Thefirst MOVE instruction does not insert any pipeline interlocks, and the ADD instruction in the delay
dot is executed normally (in 1 cycle and with 1 word). Also, the second MOV E.W instruction takes
1 cycleand 1 word.

This optimization can be easily implemented, and it was widely used in the code selected for this
application note. It can be used in every type of code, DSP or control, with respect to the restrictions
specified in the Core Reference Manual.

The main benefit of this optimization is obtained in control code, where flow control instructions are
heavily used.

3.2 New Registers

Compared to the DSP56800, the DSP56800E has the following new registers:
* Two new accumulators, C and D
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e Two new address registers, R4 and R5

e A second offset register, N3

* New loop address and counter registers, LA2 and LC2
e FISR and FIRA registers

e Shadow registersfor RO, R1, N, and MO1

LA2 and LC2 are discussed in Section 3.8. The second offset register, N3, can be used for the second
memory read in adual parallel memory read, but it was not used in this project. FISR, FIRA, and the
shadow registers support faster interrupt processing, but this subject is beyond the scope of this note.

Generally, using the new DSP56800E registers reduces the register pressure in some parts of the program,
thus eliminating additional memory loads and stores (spill code).

The new accumul ators can al so be used to eliminate some moves from an accumulator to another register
that are required on the DSP56800. These moves are required on that platform because the results of
certain instructions are always obtained in an accumulator, and the value in that accumul ator must be saved
first.

Using the new registersin these ways is not usually automatic. Data flow and control flow must be
inspected to see which registers are used and how, and so forth.

These methods of optimization apply to both control and DSP code. In the sample code, hew registerswere
used on almost all of the functions that were optimized.

Code Example 6 shows how to replace spill in memory with spill in the new accumulators. Both this
example and Code Example 7 are taken from the function RXBPF from the file rx_bpf.asm.

Code Example 6. Avoiding Saving Variables in Memory

do #12, END_RX_BPF
move a, x: TEMP1 ; 2 cycles, 2 words
nove b, x: TEMP2 ; 2 cycles, 2 words
move x: TEMP1, yO ; 2 cycles, 2 words
...use yo0
nove x: TEMP2, yO ; 2 cycles, 2 words
...use y0

END_RX_BPF

; DSP56800 ori gi nal code: 12*8 cycles / 8 words
do #12, END_RX_BPF
move. w a, cl ;1 cycle, 1 word
nove. w b, d1 ;1 cycle, 1 word

. calcul ations

...use cl
...use dl

END_RX_BPF

; DSP56800E opti m zed code: 12*2 cycles / 2 words

Code Example 7 presents one of the ways that new address registers can be used. R3 is not loaded with an
immediate value inside the loop; instead, the immediate value is preloaded in R4 before the loop starts, and
R4 is used inside the loop.
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Code Example 7. Using Address Registers to Store Addresses

do #12, END_RX_BPF
nove x: >BPF_PTR, r3 ; 2 cycles, 2 words
... use and nodify r3

END_RX_BPF

; DSP56800 original code: 12*2 cycles / 2 words
nove. w x: >BPF_PTR r4 ; 2 cycles, 2 words
do #12, END_RX_BPF
tfra r4,r3 ;1 cycle, 1 word
... use and nodify r3

END_RX_BPF

;. DSP56800E optimzed code: 2+12*1 cycles / 2+1 words

The optimization methods presented save 74 cycles per symbol out of an initia average of 4278.5 cycles
per symbol, resulting in an improvement of 1.7 percent.

3.3 Immediate Operands

This optimization method consists of using ADD, SUB, and CMP between aregister and an immediate
value directly instead of first loading the immediate into atemporary register.

On the DSP56800, there are two ways to use ADD, SUB, or CMP between an immediate value and a
register. Thefirst one isto load the immediate into a register and then perform the operation between two
registers. The second one isto use the immediate directly. Both variants have the same speed, but the
second takes 1 less word to be encoded. The variants are presented in Code Example 8.

Code Example 8. Two Ways of Performing CMP with Immediate on DSP56800

nove #$125, x0 ; 4 cycles, 2 words
cnp y0, x0 ; 2 cycles, 1 word
; DSP56800 original code: 6 cycles / 3 words

cnp #$125, x0 ; 6 cycles, 2 words
; DSP56800 code optinized for size: 6 cycles / 2 wor ds

On the DSP56800E, both variants are possible, but the second variant takes not only 1 fewer word but also
1 fewer cycle. See Code Example 9.

Code Example 9. Two Ways of Performing CMP with Immediate on DSP56800E

nove. w #$125, x0 ; 2 cycles, 2 words
cnmp. w y0, x0 ;1 cycle, 1 word
; DSP56800E origi nal code 3 cycles / 3 words
LW #$125, ; 2 cycles, 2 words

; DSP56800E code opti mzed for size and speed: 2 cycI es / 2 words

This method of optimization can often be used automatically. However, programmers must be careful to
observe whether the immediate value that is loaded into the register is used somewhere else. If it is, this
method cannot be used.

This method was performed on more than half the functions that were optimized because in the main code
example, most al comparisons with immediates were performed through intermediate registers.

3.4 AGU Arithmetic

Compared to the DSP56800, the arithmetic capabilities of the AGU improved considerably on the
DSP56800E. Pointer arithmetic can be done directly in the AGU, whereas on the DSP56800 the arithmetic
operations must be performed in the data ALU and the result must be transferred in a pointer. These new
DSP56800E facilities provide capabilities to improve both speed and code density.
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The improvement achieved by the AGU arithmetic isillustrated in Code Example 10, which istaken from
the function RXDEMOD (from the file rx_demod.asm).

Code Example 10. Performing Address Calculations on DSP56800

do #12, end_r x_denod ; Loop 12 tines

nove. w #SI N_TBL, yO ; CGet address of the table

add. w al, yo ; Add offset to the start address
nmove. w yo,rl ; Load into the address register

end_.r ;<._dem)d
; DSP56800 original code: 12*4 cycles / 4 words

The presented sequenceis 4 wordsin size and runsin 4 cycles. Code Example 11 shows how the codein
Code Example 10 can be rewritten using AGU arithmetic.

Code Example 11. Performing Address Calculations on DSP56800E Using AGU

nove. | #SIN TBL, r5 ; SIN.TBL address kept in r5

do #12, end_r x_denod ; Loop 12 tines

move al, rl ; Load offset inrl

adda r5,rl ; Add offset to the start address

end_'r ;<'_dede
; DSP56800E opti m zed code: 12*2+3 cycles / 4 words

The size of the code remains 4 words (considering the entire function), but the code runsin 2 cyclesinside
the loop (which means that the improvement must be multiplied by the number of loops) plus 3 additional
cycles outside the loop. Of course, the code could be aso written asin Code Example 12.

Code Example 12. Size Optimization on DSP56800E Using AGU
do #12, end_r x_denod ; Loop 12 tines

adda #SIN TBL, al,r1 ; Add offset al to the start address
; and put result inrl

end_'r ;<'_dede
; DSP56800E opti m zed code: 12*4 cycles / 2 words

This optimization method is for size. The size decreases by 2 words, but the code would still runin
4 cycles.

The arithmetic operations performed for initializing pointers can be easily identified, and the modifications
can be made rather easily if there is no pressure on pointer registers.

3.5 Operations and Memory Access on 32 Bits

Another feature introduced in the DSP56800E core is 32-bit operations. The arithmetical and logical
operations (such as ADD, SUB, CLR, and ASL) are extended to support 32-hit operands. The extended
instructions have the suffix “.L” (ADD.L, SUB.L, CLR.L, and ASL.L). Memory access on 32 bitsisalso
possible with the new core.

Code Example 13 (taken from the function tx_a_ton from thefile tx_feed.asm) illustrates how an array of
data can be copied on the DSP56800. An array with 16-bit elementsis updated with values read from a
table. Each valueisread in the register X0, and then it iswritten in the array. In the original version there
were no restrictions regarding the alignment of the array.
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Code Example 13. Copying a Buffer on DSP56800
SECTI ON TX_MEM

fi(l_out ds 12 ; The out put buffer
ENDSEC
SECTI ON V22B_TX

nove #tx_out,rl ; Load address of output buffer

do #12, up_t xout ; Repeat 12 tines

nove x: (r0)+, x0 ; Update 16-bit values array with

nove X0, x: (rl)+ ; val ues obtained froma table.
up_t xout

ENDSEC

; DSP56800 original code: 12*2 cycles / 2 words

This code was rewritten using 32-bit memory access. Each value is read in a 32-bit accumulator and is
stored in the array using 32-bit access (see Code Example 14).

Code Example 14. Copying a Buffer on DSP56800E
SECTI ON TX_MEM

fﬂ(l_out dsm 12 ; The out put buffer
ENDSEC
SECTI ON V22B_TX

noveu. w #tx_out,rl ; Load address of output buffer

do #6, up_t xout ; Repeat 6 tines

nmove. | x:(r0)+c ; Update 16-bit values array with

nove. | cl10, x: (rl)+ ; table. The table is read on 32-bit.
up_t xout

ENDSEC

; DSP56800E optim zed code: 6*2 cycles / 2 words

The new code has the same size, but it executes two times faster because the loop is executed only six
timesinstead of twelve asin the initial version. This optimization method required the alignment of the
vector pointed to by RO at a 2-word boundary, which was achieved using the assembler directive DSM (see
Code Example 14).

Code Example 15 (taken from the function tx_scr from the file tx_scr.asm) presents how multi-bit 32-bit
shifting can be performed in asingle instruction instead of by using a REP followed by a 36-hit shifting.

Code Example 15. Multi-Bit Shifting
rep n ; takes 2 cycles, 1 word

asl a ; takes 1 cycle, 1 word
; DSP56800 original code: 2+n*1 cycles / 2 words

asl|.| d,a ; takes 2 cycles, 1 word
; d contains the sane value as n in original code
; DSP56800E optim zed code: 2 cycles / 1 word

This particular optimization cannot be applied automatically. Programmers must be careful to determine
whether the original program really required 32-bit instead of 36-bit shifting and whether saturation issues
could appear.

Thetwo instancesin Code Example 14 and Code Example 15 are the only placesin the main project where
32-bit operations and memory access were used, because the processing unit is a nibble (4 bits).
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3.6 Operations and Memory Access on 8 Bits

Compared to its predecessor, the DSP56800E architecture introduced another new data type: 8-bit data.
There are instructions that have an 8-bit operand in memory. The 8-bit data can be accessed using two
types of pointers: word pointers and byte pointers. The Core Reference Manual contains more information
about these features.

Using this new data type reduces the amount of data memory. Byte arrays can be optimally used on
DSP56800E architecture.

An exampleis the function contained in tx_enc.asm. To encode 4 bits, this function uses an array
containing offsets from another table. These offsets are 2 bits wide. However, code complexity and size
would increase if these offsets had been further compacted.

The original tableis defined as an array of 16 words (see Code Example 16).
Code Example 16. Array with 16-Bit Values on DSP56800

dc 2,0,3,1
dc 3,2,1,0
dc 0,1,2,3
dc 1,3,0,2
DSP56800 ori gi nal code: data nermory 16 words

Using 8-hit accesses, the table can be redefined as an array of 16 bytes. Each unit of information that was
previously stored in aword is now represented as a byte (see Code Example 17).

Code Example 17. Array with 8-Bit Values on DSP56800E

dcb 0,213
dcbh 2,3,0,1
dcbh 1,0,32
dcb 3,120
; DSP56800E opti m zed code: data nmenory 8 words

The array elements are accessed using aMOVE.BP instruction, asin Code Example 18, which aso
presents the instruction used in the original DSP56800 code.
Code Example 18. Accessing an 8-Bit Memory Value on DSP56800E

nove x:(rl)+ vyl ; accessing a word from nenory
; DSP56800 original code: 1 cycle / 1 word

nove. bp x:(rl)+ vyl ; accessing a byte from nenory
done with a byte pointer which
; supports this addressi ng node
; DSP56800E opti m zed code: 1 cycle / 1 word

There are differences between aword pointer and a byte pointer. The latter has more flexibility when used
with alarger variety of addressing modes.

This optimization method involves the modification of the data structures. It is therefore difficult to use,
but the benefits are obvious and very important in memory-constrained systems.

3.7 New Addressing Modes and New Register
Combinations in Data ALU Operations

Asmentioned in Section 1, “Introduction,” the DSP56800E introduces some microcontroller features. One
such feature is the extension of the addressing modes in the arithmetic instructions such as ADD and SUB.
These improvements provide more flexibility than do the similar instructions on the DSP56800.
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For example, compare the instruction ADD on the DSP56800 to the instructions ADD, ADD.L, and
ADD.W on the DSP56800E. On the DSP56800, ADD operands can use the following addressing modes:
register, immediate, direct, and displacement relative to SP. Of course, there are restrictions regarding the
alowed register combinations. On the DSP56800E, these restrictions disappear, and new addressing
modes exist for ADD.W: indirect and indexed.

Code Example 19, taken from the function RXDEMOD (from the file rx_demod.asm), shows how the
ADD instruction was used on the DSP56800.

Code Example 19. ADD Usage on DSP56800

do #12, end_r x_denod ; Loop 12 tines

nove x: >CDP, a ; Load CDP

nmove x: >DPHASE, y0 ; Load DPHASE

add y0, a ; Updat e DPHASE val ue
nmove al, x: >DPHASE ; Save DPHASE

end_'r ;<'_dem)d
; DSP56800 original code: 12*7 cycles / 7 words

The new pointer R4 could be used for addressing the variable DPHA SE, which would allow the code
seguence to run faster. Also, the new accumulator C can be used to store the constant CDP. The rewritten
code is presented in Code Example 20.

Code Example 20. Optimized Code Using New Addressing Modes

nove. | #DPHASE, r 4 ;poi nter of DPHASE kept in r4
nmove x: >CDP, d ;constant kept in d
do #12, end_r x_denod ; Loop 12 tines
tfr d,a ; Load CDP fromD
add. w x:(rd),a ; Updat e DPHASE val ue using i ndirect
; addr essi ng
nmove. w al, x:(r4) ; Save DPHASE using indirect addressing

end_'r ;<'_dede
; DSP56800E opti m zed code: 12*4 cycles / 7 words

Thefirst version of the code sequence executed in 7 cycles; the modified version executed in only 4 cycles.
When this gain is multiplied by the number of loops (because the sequenceisin aloop), the total
improvement is considerable. The code size was not modified with regard to the entire function
(RXDEMOD). Although the modified sequence is 4 words smaller, there are 2 move instructions added
outside this sequence to initialize the accumulator C and the pointer R4.

This method of optimization cannot be considered automatic because it depends on the availability of the
pointer register to keep the memory address of variables that are frequently accessed. In addition, it
requires a careful analysis of the entire function.

Another improvement is the elimination of the many restrictions regarding register combinationsin data
ALU operations. Consider Code Example 21, which was also extracted from RXDEMOD.

Code Example 21. Restrictions Using MACR on DSP56800
do #12, end_r x_denod ; Loop 12 tines

move y0,y1l ;transfer yO to yl to allow the
; follow ng macr on DSP56800
nacr bl,yl, a

end_'r ;<'_dem)d
; DSP56800 original code: 12*2 cycles / 2 words

Thetransfer from YO to Y 1 is necessary on the DSP56800 because of restrictions regarding operands of
MACR (and similar instructions). On the DSP56800E, this restriction does not exist, and the code can be
written asin Code Example 22.
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Code Example 22. Restrictions Removed Using MACR on DSP56800E
do #12, end_r x_denod ; Loop 12 tines

macr bl,y0, a ;the register conbinationis
; allowed on DSP56800E

end_'r ;<'_dem)d
; DSP56800E optim zed code: 12*1 cycles / 1 word

In terms of size, the gainis 1 word. In terms of speed, the gainis 1 cycle multiplied by the number of loops
(because the sequence is extracted from aloop).

Generally, wherever there are transfers between registers and these registers are used in the following data
ALU instructions, this method of optimization can be used automatically. However, be sure to check
whether the value stored in aregister is used later in the program.

3.8 Nested Loops

The DSP56800E improves hardware support for DO looping. Unlike the DSP56800, which supports one
single hardware loop, the new core supports two nested hardware loops with no overhead.

To perform two nested loops on the DSP56800, the user must insert additional code that savesthe LC and
LA registers before the inner loop and then restores them after the inner loop. See Code Example 23.

Code Example 23. Two Nested Loops on DSP56800

do #ti mes_out er, END OUTER LOCP
lea (sp)+ ; Lcycle/ 1 word
nmove la, x: (sp)+ ; 1 cycle/ 1 word
nove I c,x:(sp) ; 1 cycle/ 1 word
do #ti mes_i nner, END_| NNER_LOCP
END_| NNER_LOCP
pop lc ; 1 cycle/ 1 word
pop la ; 1 cycle/ 1 word

END_CUTER LOCP

The DSP56800E core directly supports two nested hardware |oops by automatically saving LA and LC
into the new LA2 and L C2 registers before the inner loop and restoring them afterward. See
Code Example 24.
Code Example 24. Two Nested Loops on DSP56800E
do #ti mes_out er, END QUTER LOCP

do #times_i nner, END_| NNER LOCP
END | NNER LOOP
END_CUTER LOOP

Code Example 23 contains five additional instructions compared to Code Example 24. All of these
instructions take 1 cycle to execute on the DSP56800. By eliminating these instructions that are
unnecessary on the DSP56800E, the code has a gain of 5 cycles that is multiplied by the number of times
the outer loop is executed.

This optimization method can be considered automatic. To quickly identify instances where this method
can be used, search for occurrences of DO and then examine whether any occurrence is preceded by
instructions that save LA and LC.

This optimization is especially suitable for DSP code, where nested loops are more frequently used.
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The main project contains only one place where two imbricated DO loops are used, in the function RXBPF
from the file rx_bpf.asm. The function performs band pass filtering and contains an outer loop that
executes 12 times.

This optimization method saves 60 (5 x 12) cycles per symbol out of aninitial average of 4278.5 cycles per
symbol. This single method produces an improvement of 1.4 percent.

4 Writing DSP56800E Code from Scratch

The methods described in Section 3, “Optimizing the Ported Code,” preserve the original design of the
functions. However, this design was influenced by DSP56800 limitations. This section compares the
results of optimizing the ported code to those of writing entirely new DSP56800E code “from scratch.”

The functions RXDEMOD, a DSP function, and RXEQERR, a control function, illustrate the comparison.
Both of them were written from scratch, tested, and benchmarked. Then they were compared to the
optimized ported versions.

Writing DSP56800E code from scratch obtained better use of the following features (compared to the
process of optimizing the ported code):

» Increased register set. When afunction is being designed, the additional accumulators, address

registers, and index registers provide more flexibility in arranging variablesin registers and in
deciding which variables to store in memory.

» Moreflexibleinstruction set. The new register combinations and addressing modes that the
DSP56800E allows for many instructions provide more freedom to place variablesin registers and
to design the data flow.

e AGU arithmetic. When DSP56800E code iswritten from scratch, AGU arithmeticisnaturally used
whenever pointer manipulation is required. This capability eliminates some transfers from data
registers to address registers and a so enables the application to use the extended memory space.

« New datatypes. Instead of being used to modify existing code and data structures, 32-bit and 8-bit
instructions and memory access can be used more simply from the start.

The main reason why writing from scratch is better isthat it enables programmersto reconsider the codein
its entirety. When optimizing ported code, one usualy inspects small groups of instructions that can be
replaced with other groups of instructions and usually avoids considering larger portions of code.

The optimized ported versions and the written from scratch versions of the two functions are presented in
Appendix A. Section 4.1, “RXDEMOD,” and Section 4.2, “RXEQERR,” present specific issues about
these functions. The code examples presented in these subsections were obtained after the functions were
rewritten and parts of equivalent code were identified.

4.1 RXDEMOD

Comparative results for theinitial code, optimized ported code, and written from scratch code are
presented in Table 7.
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Table 7. Results Obtained for RXDEMOD

Speed Size
RXDEMOD i i
Minimum Maximum Average Galn_ . Value Galr! .
(Cycles) (Cycles) (Cycles) Over Initial (Words) Over Initial
y Y y (%) (%)
Initial 745 745 745 N/A 68 N/A
Optimized 621 621 621 16.64 65 4.41
Written from scratch 522 522 522 29.93 71 -4.41

The most important new features of the DSP56800E used in writing RXDEMOD from scratch were the
increased number of registers and the increased number of register combinations for different instructions
(which are allowed by the more flexible instruction set).

A first specific difference between the optimized ported version and the written from scratch version isthat
the latter chooses other variables (DPHASE instead of CDP) to stay in registers and preloads two more
constants in registers to be available in the inner loop (mod_tbl_offset and #30040-1). This arrangement
makes better use of the registers.

Another difference is that the written from scratch version uses the new DSP56800E AGU instruction
ZXTA.B, which takes 1 cycle, instead of BFCLR, which takes 2 cycles. See Code Example 25.

Code Example 25. Using DSP56800E AGU Instruction
#$FFOO, a

bfclr ; 2 cycles, 2 words
move. w al, rl ;1 cycle, 1 word

; DSP56800E optim zed code: 3 cycles / 3 words
nove. w al, rl ;1 cycle, 1 word
zxta. b ri ; 1 cycle, 1 word

; DSP56800E witten fromscratch code: 2 cycles / 2 words

The register combinations used for MPY and MACR in Code Example 26 are not valid on the DSP56800
but are valid on the DSP56800E.
Code Example 26. New Register Combinations Allowed on DSP56800E

; 1 cycle, 1 word
;1 cycle, 1 word

npy b1, y0, b
macr -al,yl,b

To perform these instructions, the original DSP56800 code first exchanges values between YO and Y1 to
obtain avalid register combination. This extra step adds 3 more instructions, each taking 1 cycle to
execute, as presented in Code Example 27.

Code Example 27. Additional Code Needed by Less Flexible DSP56800 Instruction Set

nove. w yO,n ;1 cycle, 1 word
nove. w y1,y0 ;1 cycle, 1 word
nmove. w n,yl ; 1 cycle, 1 word
npy bl,yl,b ;1 cycle, 1 word
macr -al,y0,b ;1 cycle, 1 word

The limited number of accumulators forces the original DSP56800 code to frequently move results from
accumulators to other registers to make room for the results of the next operations.
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The original code contains 10 register-to-register moves that compensate for the lack of accumulators and
the reduced number of register combinations for MACs. The optimized ported code eliminates five of
these moves, leading to an improvement of 60 (12 % 5) cycles on the entire function. The written from
scratch version eliminates all of these transfers, leading to an improvement of 60 additional cycles, or a
total improvement of 120 cycles.

4.2 RXEQERR

The written from scratch RXEQERR function has a new design. By arranging values in registers without
considering theinitial DSP56800 design, it performs more parallel moves, and by choosing other variables
to be stored in registers, the new code avoids afew memory transfers. This redesign leadsto again of 7-12
cycles, depending on the function flow.

Note that the original DSP56800 code does not use parallel moves, but the optimized version rearranges
the values in memory so that parallel moves can be performed. The gain of 7-12 cyclesisrelative to the
optimized version.

Comparative results for theinitial code, optimized ported code, and written from scratch code are
presented in Table 8.

Table 8. Results Obtained for RXEQERR

Speed Size
RXEQERR . . . .
Minimum Maximum Average Gain Value Gain
(Cycles) (Cycles) (Cycles) (%) (Words) (%)
Initial 52 126 99.50 N/A 108 N/A
Optimized 50 124 97.50 2.01 108 0.00
Written from scratch 44 95 77.66 21.94 81 25.00

Much of the improvement results from better coding rather than from using new DSP56800E features. For
example, in the original code, there is a check at one point whether two variables (A and B) have different
signs. If they do, then the value in A is negated. The optimized ported code is presented in

Code Example 28.
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Code Example 28. Optimized Ported Code on DSP56800E

nmove. w #0,y1l ; 1 cycle, 1 word
tst.w a ; 1 cycle, 1 word

Jgt APCS ; 5/4 cycles, 2 words
nove. w #$0100, y1 ; cycles, 2 words
move. w #0, x0 ;1 cycle, 1 word

tst b ; 1 cycle, 1 word

jgt BPCS ; 5/4 cycles, 2 words
nove. w #$0100, x0 ; 2 cycles, 2 words
nove. w x0, b1

eor. w yl,b ;1 cycle, 1 word

tst b ; 1 cycle, 1 word
jeq TANCK : 5/4 cycles, 2 words
neg a ;1 cycle, 1 word

TANCK
; DSP56800E opti m zed ported code: 23-25 cycles / 13 words

In the code that was written from scratch, a better sequence was obtained. See Code Example 29. Note that
this sequence does not use new DSP56800E features.

Code Example 29. DSP56800E Code Written from Scratch

nmove. w a,yl ; 1 cycle, 1 word

nove. w b, cl ; 1 cycle, 1 word

eor. w cl,yl ; 1 cycle, 1 word

bge SAMVE_SI QN ; 5/4 cycles, 1 word

neg a ;1 cycle, 1 word
SAME_SI &GN

; DSP56800E witten fromscratch code: 8 cycles / 5 words

Another difference between code written from scratch and optimized code isthat the latter uses conditional
transfers wherever possible instead of using conditional jumps, that take a higher number of cyclesto
execute. Code Example 30 presents this.

Code Example 30. Using Conditional Transfers Instead of Conditional Jumps

nmove. w #%$0400, x0 ; 2 cycles, 2 words
sub b, a ; 1 cycle, 1 word
jge PCs ; 5/4 cycles, 2words
nove. w #%$f c00, x0 ; 2 cycles, 2 words
... use x0
; DSP56800 optim zed ported code: 8/ 9 cycles / 7 words

nove. w #$0400, b ; 2 cycles, 2 words
nove. w #$f c00, yO ; 2 cycles, 2 words
sub a, ;1 cycle, 1 word
tgt y0, b ; 1 cycle, 1 word

. use bl

; DSPS6800E written fromscratch code: 6 cycles / 6 words

Note that, unlike the other instructions, Jcc and Bcc take approximately the same number of cycles on both
DSP56800 and DSP56800E. It is recommended to replace them with Tcc wherever possible.

5 Pipeline Effects on DSP56800E

DSP56800E has a different pipeline structure, with more pipeline stages as compared to DSP56800. This
explains the different pipeline effects of these two DSPs. Both DSPs have pipeline dependencies which
can be met (especially AGU dependencies). DSP56800E introduced afew pipeline dependencies that did
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not occur on DSP56800 (specifically, data ALU pipeline dependencies and hardware looping
dependencies). Also, DSP56800E eliminated additional dependencies, such as, loading an address register
with an immediate value and using it to address the next immediate instruction.

The DSP56800E core handles the pipeline dependencies in two different manners:

e In most cases a hardware interlock automatically causes stalls of the DSP56800E pipeline. The
assembler can warn the programmer about these cases.

« Thereare afew cases when the core does not stall (for example, modification of N3 or MO1 and
using them to address in the next immediate instruction or hardware looping dependencies). The
assembler can insert NOPs and warn the programmer about this insertion, or it can report an error.

Because of the new types of pipeline dependencies, the code ported from DSP56800 can stall in some
cases. There are examples of data ALU or AGU pipeline effects on DSP56800E in the V.22 bis code. The
DSP core automatically inserts stalls in these cases and the code executes correctly. However, many cycles
arelost during these stalls, so the dependencies that generate them should be removed.

Special attention must be made to dependencies that involve hardware looping. Generally, the ported code
could contain these new types of dependencies, which were not an issue for DSP56800. In the selected
application exampl e these dependencies are not met.

It is assumed that readers are familiar with Chapter 10, “Instruction Pipeline” from the Core Reference
Manual. Several pipeline dependencies and methods to avoid them are illustrated in the selected code.

5.1 Data ALU Pipeline Dependencies

Because of the pipeline structure of DSP56800E, a few pipeline dependencies can occur for data ALU
instructions, dependencies that did not occur on DSP56800. The reason they occur isthat the “ Execute”
stage in the DSP56800 was broken into four stages in the DSP56800E pipeline; Address Generation,
Operand Prefetch 2, Execute and Operand Fetch, and Execute 2.

The data ALU of DSP56800E can cause pipeline dependencies, when one of the three following
conditions occurs:

« Theresult of adata ALU instruction executed inthe “Late” state (Execute 2) isused in the
instruction that immediately follows as a source register in amove instruction.

e Theresult of adataALU instruction executed inthe“Late” stateisused in the two-stageinstruction
that immediately follows as a source register to a multiplication or multi-bit shifting operation. A
dependency does not occur if theresult is used in an accumul ation, arithmetic, or logic operationin
the instruction that immediately follows.

< Aninstruction requiring condition codes, such as Bcc, is executed immediately after adata ALU
instruction is executed in the “Late” state.

When adata ALU dependency occurs, core interlocking hardware automatically stalls the core for 1 cycle
to remove the dependency, affecting the execution time of a sequence of instructions, but not the
correctness of the results.

Data ALU pipeline dependencies occur in many code sequences in the ported V.22 bis application.
Although they do not affect the correctness, they introduce extra stall cycles. Code Example 31 istaken
from function RXEQUD (file rx_equpd.asm).

Code Example 31. Data ALU Pipeline Dependency in DSP56800E Ported Code

nl: macr x0,y0, b a,x:(r3)+ ; theresult B available after Ex2
n2: move b, x: (r2)+ ; data ALU pi pel i ne dependency
n3: nove x:(r3),a ;

; 4 cycles /| 3 words
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Between instruction n2 and nl isadata ALU pipeline dependency. Because the result becomes availablein
B after the Execute 2 phase, the n2 instruction must stall 1 cycle to be able to write the B content in the
memory. Four cycles are needed for execution of the sequence and can be rewritten as shown in

Code Example 32.

Code Example 32. Removing Data ALU Pipeline Dependency

nl: nacr x0,y0, b a,x:(r3)+ ; theresult b available after Ex2

n2' : move x:(r3),a ; Bis not used in this instruction,
t he dependency was renoved

n3' : nove b, x: (r2)+

; 3 cycles / 3 words

The data ALU pipeline dependency was removed. The core does not stall, thus the sequence is executed in
three cyclesinstead of four.

Considering that data AL U pipeline dependencies occur most frequently in ported applications, identifying
the code with data ALU dependencies and avoiding this code increases execution speed. To identify the
pipeline dependencies, the programmer must fully understand the structure and behavior of the pipeline,
and must give specia attention when writing new code sequences.

5.2 AGU Pipeline Dependencies

The types of AGU pipeline dependencies on the DSP56800E represent almost all AGU dependencies that
occur on the DSP56800, however the behaviors of the two cores differ for asimilar dependency. When one
of the conditions presented below occurs on DSP56800E, hardware interlocks are generated and the core
automatically stallsthe pipeline 1 or 2 cycles. The stalls can be avoided by introducing one 2-cycle
instruction or two 1-cycle instructions after the instruction that generates an AGU dependency. On
DSP56800 a single instruction is needed to remove an AGU dependency.

A dependency occurs if the same register is used within the next two instructions cycles that immediately
follow and if the register is:

e Used asapointer in an addressing mode

e Used as an offset in an addressing mode

e Used asan operand in an AGU calculation
* UsedinaTFRA instruction.

Consideration must be given to dependencies caused by the modification of the N3 or MO1 registers by a
move or bit-manipulation instruction because the core does not automatically stall the pipelinein these
cases. Additionally, a bit-manipulation operation performed on the N register does not automatically stall
the pipeline.

There are some special cases where there are no AGU dependencies. For instance, there is no dependency
when immediate values are written to the address pointer registers, RO—R5, N, and SP. Similarly, there are
no dependencies when aregister isloaded with a TFRA instruction. DSP56800 has more restrictions
regarding the AGU pipeline dependencies than does DSP56800E.

There can be situations when a sequence, which did not have dependencies on DSP56800, introduces one
stall on DSP56800E (the reason was explained at the beginning of this subsection). Code Example 33
taken from function tx_shit (file tx_enc.asm) presents a situation of thistype.
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Code Example 33. Code Without AGU Pipeline Dependencies on DSP56800

nl: move y1, x: >t x_quad ; Store tx_quad

n2: add b, a ; Get the actual address of variable

n3: nove a,rl ; inrl

n4: nop ; Necessary to avoi d dependency on DSP56800
n5: nove x:(rl)+ al ; Get the variable

On DSP56800 the NOP introduced in instruction n4, avoids the pipeline dependency. On DSP56800E,
there are 2 cycles needed to avoid the pipeline dependency, therefore the dependency remains even though
aNOP was introduced and the core will stall 1 cycle. Seven cycles are needed to execute this sequence on
DSP56800E. Removing the NOP does not influence the execution time. Moving instruction nl, which is
performed in 2 cycles, instead of n4, reduces the number of cyclesto five. The code sequence is presented
in Code Example 34.

Code Example 34. AGU Pipeline Dependency Avoided in DSP56800E Optimized Code

n2: add b, a ; Get the actual address of variable
n3: noveu.w a, rl ; inrl

n4d’ :move.w yl, x: >t x_quad ; Store tx_quad

n5: move.w Xx:(rl)+ al ; Get the variable

Avoiding the AGU pipeline dependencies provides an opportunity to improve the speed of the ported
application and to improve the size of code. Because the DSP56800 applications usually contain inserted
NOPs to avoid the dependencies, NOPs can be removed from the DSP56800E code.

5.3 Dependencies with Hardware Looping

Other dependencies, which did not appear on DSP56800, are those regarding the hardware looping. They
occur when the L C register isloaded prior to executing one of the hardware looping instructions (DO,
DOSLC, or REP). Because of the architecture of the instruction pipeline, none of the hardware looping
instructions can be executed immediately after avalueis placed in the LC register.

In V.22 bis there were no dependencies of this type, but on occasion they could appear in ported code.

6 Converting Applications for Increased Data and
Program Memory

DSP56800E provides extended data memory space (24-bit data addresses instead of 16-bit) and extended
memory space (21-bit program addresses instead of 16-hit). However, for a program that was written for
the DSP56800 family to use DSP56800E extended memory, it is necessary to perform certain changesin
the source code. These modifications are not always “automatic” and require a careful inspection of all
source code.

This section describes these modifications, which are performed on a D SP56800E application (obtained by
porting DSP56800 code), to make use of the extended data and program memory.

The examples are from a small application which uses the state machine from the original modem and
performs scrambling and descrambling over a number of nibbles.

Note that the application does not require such alarge amount of dataand program memory. So both
program and data memory must be forced to use extended memory by two “ORG” directives placed before
all the code and all the data declarations.
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6.1 Extending Data Memory Size From 64K to 16M

There are two assembler switches that instruct the DSP56800E application to use more than 16 bits for
addresses: -0d21 and -0d24. Following these instructions, al addresses will become 24 bits long instead of
16 hits. Source code changes must be made to support this.

Instructions that are forced by the ‘>’ operator to use 16-hit data addresses must be forced with the new
‘>>" operator to use 24-hit addresses. Code Example 35 displays the use of the force operator.

Code Example 35. Using the 24-Bit Force Operator Instead of 16-Bit Force Operator

nove al, x: >buf f er ; forced to use 16-bit address
; DSP56800 origi nal code
nove. w al, x: >>buf fer ; forced to use 24-bit address

; DSP56800E ported code

Instructions that load addresses wider than 16 bitsinto address registers must also be modified, asshownin
Code Example 36.

Code Example 36. Loading 24-bit Inmediates into Address Registers

nove #buffer,rl
; DSP56800 origi nal code
nove. | #buffer,rl

; DSP56800E ported code

The memory storage size for pointers to data memory must aso be extended from 16 bits to 32 bits as
shown in Code Example 37. Care must be taken to ensure that storage location is 2 word aligned.

Code Example 37. Extending Memory Storage Size for Pointers to Data Memory

poi nt er ds 1
; DSP56800 ori gi nal code
poi nt er 2

dsm
; DSP56800E ported code

Instructions that store the values of address registersin memory must also be modified to store not only
16 hits, but also 24 bits. These modifications are shown in Code Example 38.

Code Example 38. Saving 24-bit Values from Address Registers

nove r1, X: poi nt er ; save LSP 16 bits of r1l
; DSP56800 origi nal code
nove. | r1, x: poi nt er ; save all 24 bits of rl

; DSP56800E ported code

All theinstructions that access these memory locations must be changed as shown in Code Example 39.

Code Example 39. Modifying Instructions to Access Memory on 32 Bits

inc X: poi nt er ; increment the word at x:pointer
; DSP56800 origi nal code

inc.| X: poi nt er ; increment the 2-word val ue at x:pointer
; DSP56800E ported code

Note that on more complex applications which are ported to use data memory space above 64K require
more complex modifications. For example, 16-bit arithmetic on pointers must be replaced with 32-bit
arithmetic.

A summary of the extended data memory size for this project is presented in the Table 9.
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Table 9. Summary of Extended Data Memory Size

Extended Data Size (Words) Speed
Memory Data | Program (Cycles)
Initial version 828 316 195246
Data memory extended 832 345 199865
Increase (percentage) +0.48 +9.17 +2.36

Code size increased and speed decreased, however the differences are insignificant. This behavior was
expected because the instructions that use address memory of 24 bits are coded with more words compared
to the same instructions that use 16-bit memory addresses. Additionally, the instructions need extra cycles
to perform.

6.2 Extending Program Memory Size From 64K to 2M

In porting applications from the DSP56800 platform to the DSP56800E platform, one coding
recommendation is to not use the program memory space above 64K. However, here are some issues
related to this feature if the programmer needs to useit.

In the selected exampl e the program addresses were forced to 21 bits by using the assembler switch —op21.
Also, relocation counters for program memory were initialized with addresses higher than 64K with an
ORG p: directive.

The original code, which stores routine pointers in 1-word storage locations, had to be changed. This
pointer array was transformed into along pointer array. To be accessed with long word instructions, this
array had to be 2-words aligned and is shown in Code Example 40.

Code Example 40. Extending Storage Size For a Pointer Array

RXQ ds 25
; DSP56800 origi nal code
RXQ dsm 2
ds 24*2
; DSP56800E ported code

Access to these pointers was achieved using word instructions in the DSP56800 original code. The
pointers must be accessed using long word instructions (the array where they are stored should be 2-word
aligned). Thisis presented in Code Example 41.

Code Example 41. Accessing 21-Bit Program Addresses

nove #RX_durmy, a ; getting the routine pointer

nmove a, x: (ro)+ ; storing the routine pointer
; DSP56800 origi nal code

nove. | #RX_durmy, a ; getting the routine pointer

nove. | alo, x: (r0)+ ; storing the routine pointer

; DSP56800E ported code

Another issue is the change of flow instructions. Instructions such as IMP or JSR can perform a change of
flow to an address contained in aregister. This feature was not available on DSP56800 platform and it was
substituted by atechnique that used the stack and RTS instruction. Basically, the address of the routine was
placed on the stack together with SR and then an RTS instruction was executed.

The Code Example 42 is extracted from rx_ctrl.asm.
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Code Example 42. DSP56800 Original Code

rx_next _task

| ea (sp)+

nove X: >RxQ ptr,r3 ; Restore the RxQ pointer

i ncw x: RxQ ptr ; Increment the RxQoptr.

nove x: (r3),x0 ; Get the address of next task
nove X0, x: (sp) + ; Push the address of task to be
nove sr, x: (sp) ; performed onto the stack

rts ; Performtask
; DSP56800 origi nal code

This code is functional on the DSP56800E platform within the 64K program memory boundary. The
problem occurs when the program memory is extended over 64K. The upper bits of a program address are
stored in the SR register. The previous code will not work on the DSP56800E platform. It should be
replaced with the specialized instruction available only on DSP56800E: JMP (n). Thisis presented in
Code Example 43.

Code Example 43. DSP56800E Modified Code

rx_next _task

nmoveu. w X:>RxQ ptr,r3
inc.w X: RxQ ptr
moveu. w x:(r3),n

j mp (n) ; 3 cycles less
; DSP56800E ported code

At this stage, the code is still not ready to run on the extended program memory because the data width
stored into the R3 register is 16 bits. The Code Example 44 presents all the corrections required by this
program memory extension.

Code Example 44. DSP56800E Code That Allow Program Memory Access Beyond 64K

nove. | X: >RxQ ptr,r3 ;Pointer stored in nenory has 32b
adda #2,r3,n ;Long arithnetic: added 2 words
nove. | n, x: RxQ ptr ; Storing back the pointer

move. | x:(r3),n ; Readi ng the address for junp

jmp (n) ;Performng the junp
; DSP56800E ported code

A summary of the extended program memory size for this application is presented in Table 10.

Table 10. Summary of Extended Program Memory Size

Size (Words) Speed
Extended Program Memory pee
(Cycles)
Data | Program
Data memory extended (initial) 832 339 169145
Program memory extended 862 355 185292
Increase (percent) +3.6% +4.7% +9.5%

Theinitial code was the code modified to support data memory extended addresses, presented in

Section 6.1. This code was optimized using IMP (N) instead of the initial jump to subroutine mechanisms.
This method of optimization is responsible for the difference between the speed of 169,145 cycles and
199,865 cycles of the ported code from the Section 6.1.

The explanation for the program memory increase and speed decrease is that every instruction that accepts
X:xxxx when encoded to X:xxxxxx is 1 word longer and takes 1 extra cycle.
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7 Conclusions

This application note investigated the process of porting an application developed for DSP56800 to the
DSP56800E and the methods to optimize the ported code using the new features of DSP56800E. Also, the
methods to optimize selected ported functions were analyzed and compared to redesigning and rewriting
the functions.

Porting an existing DSP56800 code to DSP56800E is almost adirect process because the assembly codeis
compatible. There are certain requirements the code must meet to comply, but in normal applications they
are not usually an issue. The only exception isthe “MAC Output Limiter,” but that can also be corrected.
The ported code runs on DSP56800E in almost half the number of cycles and uses nearly the same
program size. Some pipeline effects can occur on the ported code, however these do not influence the
correctness of the results. Only the execution time (in cycles) is slightly longer than half the number of
cycles of the DSP56800 original code. Also, the program memory size of the ported application is slightly
larger than the original. For the selected application, the number of cycles decreased from 61,918,898 to
31,694,501 cycles, however, because the DSP56800E processor runs at a higher clock frequency, the
actual time is much shorter. This corresponds to a decrease from 6.73 MCPS to 3.43 MCPSin the
processing load.

Additional speed improvement can be achieved by performing methods to optimize the ported code, by
making use of the new DSP56800E features. M ost of these methods can be done easily without a deep
understanding of the algorithm and the overall code. The new features introduced by DSP56800E, which
are most useful in this process, are additional registers, the extended set of data ALU operations, increased
flexibility of the instruction set, AGU arithmetic, and hardware support for nested looping. In the example
presented in thisnote, al of these features were used in different selected functions. The overall processing
load improvement was from 3.43 MCPS to 3.13 MCPS—that is, about 10 percent. Achieving this
improvement isrealistic for general applications. The code of the optimized version was dightly smaller
(about 2 percent). However, these methods of optimizing preserved the original code structure, as designed
for DSP56800. If codeiswritten from scratch, designed directly for DSP56800E, some of the new features
can be exploited on alarger scale (for example, extended register set, more flexibility of theinstruction set,
new data types and AGU arithmetic). On selected examples, total improvements between 22 percent and
30 percent less cycles were obtained.

In summary, the following rules of thumb are presented:

e Unmodified DSP56800 code ported to DSP56800E generally takes half the
number of clock cycles.

* Modification can further improve performance:
— Loca optimizations result in 10 percent clock cycle improvement.
— Code rewrite may result in 20-30 percent clock cycle improvement.

Regarding the new pipeline structure, the original DSP56800 code runs directly, giving correct results.
However, there are situations when code that did not violate pipeline restrictions on DSP56800 creates
dependencies on DSP56800E. The core resolves these dependencies by introducing stalls (as in the case of
data ALU dependencies). If the assembler signals these situations, the programmer can rearrange the code
and eliminate the stalls, increasing speed even more.

In certain cases it might be necessary to extend the application making full use of DSP56800E addressing
capabilities. The process of extending a ported application beyond the 16-bit boundary for program and
datawas analyzed. Usually thisis not a straightforward process. However, if anew DSP56800E
application is designed from scratch for this purpose, there are absolutely no problemsin using the whole
addressing space.

This application note proved that using of the new DSP56800E in existing DSP56800 applicationsis quite
direct and brings performance improvements. These applications run in half the number of cycles
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compared to DSP56800. Also new optimization methods can be introduced to further increase the
performance. Moreover, the new DSP is faster than the older (120 MHz versus 35 MHZz) and this means
that the actual execution time is much shorter. Being a processor which can be defined as |low-cost,
low-power, and mid-performance computing, and which combines DSP power and parallelism with
microcontroller programming simplicity, the DSP56800E is recommended for alarge range of embedded
applications.
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Appendix A
Functions Written from Scratch

A.1 Optimized Ported Version of RXDEMOD

RXDEMOD

nove. |
nove. |
nove. |

nove. |
nove. |
nove. w

do
noveu. w

tfr
add. w
nove. w
nove. w

npy

nove. w
bfclr

Isr.w

noveu. w
adda

noveu. w
nove. w
nove. w
sub
nove. w
nacr

nove. w
sub
noveu. w

nove. w
nmacr

noveu. w
nove. w

npyr

nacr
tfr

nove. w
nove. w
nove. w

nmpy

nmacr

@ MOTOROLA

#BPF_QUT, r 3 ; Init. pointer to demod inputs
#RXCB2A, r 2 ; Init. pointer to demod outputs
#MOD TBL, r0 ; Load address of carrier freq.

; table.
#SIN_TBL, r5 ; keep SINTBL in r5
#DPHASE, r 4 ; and DPHASE in r4
x: CDP, d ; load CDP and keep it in d

#12, end_r x_denod

; Loop 12 tines

#$80f f , nO1 ; rlis set to nod 256 node of
;  addressi ng
d,a ; Load CDP fromd
x:(r4),a
#$0080, y0 ; Load constant for DPHASE >> 8
al, x:(r4) ; Save DPHASE
; Note : if DPHASE overflows then
; the nodul o value is stored
; DPHASE is kept inr4
; REM & CFFSET
al,yo, a ; rem= DPHASEY256 in a0
; and offset = DPHASE>>8 in al
a0, yl ; Save the fractional part
#%f £ 00, a ; Truncate offset to 8 LS bits
7 which is also a nodul o 256
; calculation
yl ; shift to get into 1.15 fornat
; SINPH & COSPH
al, rl
r5rl ; Load the address register with the
; correct location in the 256 poi nt
; sine table.
#$40-1, n ; Load of fset register
x:(rl)+ a ; sinel = SIN TBL(of fset)
x:(r1l)+n, b ; sine2 = SIN TBL(of f set +1)
a, b ; sine2-sinel in y0
b1, y0 ;

y1,y0,a x:(rl)+b

si nphi = sinel+(sine2-sinel)*rem
; cosl = SI N TBL(of f set +$40)

x:(rl)+c ; cos2= SI N TBL(of f set +$40+1)

b, c ; €0s2-cosl in y0

#11, n01 ; Set rO to nmod 12 addressing node
; -SIN & CC8

cl,y0

y1,y0,b X:(r0)+,y0

x: nod_t bl _of fset, n

b

; cosphi = cosl+(cos2-cosl)*rem
; Get cosw from nenory
Load of fset to MDD TBL
Saturate the output

, C )
al,yo, b X: (r0)+n,yl ; sinphi*cosw

Get -sinw fromnenory

cl,yl, b ;-SI'N = -si nwFcosphi +cosw*si nphi
b, x0 Save -SIN

y0, n

y1,y0 ;o Get -sinw

n,yl Get cosw

cl,yl,b x:(r3)+yl coswcosphi in b

-al,yo0,b

; Gt X
; 008 = si nwtsi nphi +cosw*cosphi

Functions Written from Scratch
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nove. w
nmpy

nmacr

nmacr

nove. w
noveu. w

end_r x_denod

End_RXDEMD
jnp

Freescale Semiconductor, Inc.

b, b

bl,yl,a x: (r3)+,y0

-y0, X0, a

y1, x0, a a, x:(r2)+

bl,yO0, a

rx_next _task

DEMODULATE

Saturate the output

XQB in a

Y in y0

X*Q0& Y*- SIN

X-SINin a

Get Y

Y*QO6+X*-SINin a

this register conbination for
nacr is allowed on 56800e
Save denodul at ed out put
roin linear addr. Mde

Go to next task

A.2 RXDEMOD Written from Scratch

RXDEMOD

nove. |
nove. |
nove. |
nove. |
noveu. w
nove. w
noveu. w
noveu. w

do

add
nove. w
npy
nove. w
nove. w
Isr.w
zxta.b
adda

noveu. w
nove. w
nove. w
sub

nmacr

nove. w
sub
nmacr

noveu. w
noveu. w
nove. w
nove. w
nove. w

npy
macr

npyr
macr

nove.
nove.
nove.
nove.

nmpy
macr

npy
macr

2L

noveu. w
nove. w

end_| oop
nove. w
noveu. w

End_RXDEMXD
Jnp

A-2

#BPF_QUT, r 4
#RXCB2A, r 3
#MOD_TBL, r 0
#SIN_TBL, r5
x:mod_tbl _offset,r2
x: DPHASE, y1

#$80f f , n01

#3$0040- 1, n3

#12, end_| oop
x: CDP, y1
#$0080, x0
y1, x0, a

al, rl

a0, yo

n3, n
x:(rl)+ a
x: (r1)+n, x0
al, x0

x0, y0, a x:(rl)+c

x:(rl),x0
cl, x0
x0, y0, c

r2,n

#11, nD1

x: (r0)+, x0
x: (r0)+n,y0
c, bl

b1, x0, c
-y0,al, c

x0, al, d
y0, b1, d

x:(r4)+, x0
x:(r4)+y0
c,cl

d,dl
x0,cl, a
-y0,d1, a
x0,d1, b
y0,cl,b a, (r3)+
#$80f f, n01

b, (r3)+

y1, x: DPHASE
#$Ffff, n01

rx_next _task

1

1

| oad #BPF_QUT

| oad #RXCB2A

| oad #MCD TBL

| oad #SI N_TBL

| oad md_t bl _of set

keep DPHASE in y1

set 256 nodulo for ri
preload this constant in N3

execute 12 tines
DPHASE += CDP

add #SIN TBL to of f set
rl contains #SIN TBL + of f set
use prel oaded #$0040-1

al <- sinl

x0 <- sin2

X0 <- sin2 - sinl

a <- sinl + (sin2 - sinl) * rem
cl <- cosl

a contains sinphi

X0 <- cos2

x0 <- cos2 - cosl

C <- cosl + (cos2 - cosl) * rem
c contains cosphi

use prel oaded nod_t bl _of f set
Set rO to nmod 12 addressi ng node
X0 <- cosw

y0 <- (-sinw)

saturate cosphi

al contains sinphi

bl contains cosphi

c <- cosphi * cosw

c < c - (-sinw sinphi)

c contains CO5

(d) -SIN += cosw * sinphi
(d) -SIN = (-sinw *cosphi

d contains -SIN

x0 <- X

yo <- Y

saturate CCB

saturate —SI' N

npl = X * OB

mpl -= Y*(-SIN

(b) tnmp2 = X * (-SIN

(b) tmp2 += Y * Q06
RXCB2A(| ++) <- tenpl

256 nmodul o for rl
RXCB2A(| ++) <- tenp2

save DPHASE
set linear addressing
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A.3 Optimized Ported Version of RXEQERR

RXEQERR

nove. w

noveu. w
noveu. w
noveu. w
noveu. w

nove. w
tfr
sub

npy
nmacr
tfr
sub

nove. w
npy

nove. w
nac
asl

asl
nove. w
nac

nove. w

EQU22

nove. w

nove. w
tst

jeq
gt
nove. w

deca
deca
nove. w

nmpy

nmacr
nove. w

tst
jgt
nmove. w

abs
nove. w

abs

cnp
nmove. w

jot

_eor

j npd
nove. w

DVID
eor

bfclr
rep
div
nove. w
TSTSAN
tst
Jeq
neg

nmove. w

@ MOTOROLA

Freescale Semiconductor, Inc.

#30, n
#EQX, r 3
#DECX, r 0
#DP, rl
#DX, r 2

X:(r0)+,y0 x:(r3)+ x0
x0, b X: (r0)+n,yl
y0, b

x0,v1, a
-x0,vy0, a
x0, a a
yl, a b,

b, y0
y0,y0, b

a, yo
y0,y0, b
b

x: (r3)+n, x0

b x: (r2)+n, x0

#$7000, yO
x0,y0, b

b, x: (r2)+n

#0,y1

x:(rl)+n,a
a

CAR NCR
APCS
#$0100, y1

r3
ro
x:(r0)+,y0 x:(r3)+,x0
x0,y0,b  x:(r0)+n,y0

x0,y0, b
#0, x0

b

BPCS
#%$0100, x0

b
b, y0

a
a, b
x0, bl

DvVID

yl,b
TSTSGN
#$0400, a

yl,b

#$0001, sr
#11

y0, a

ao, a

b
TANCK
a

a, x: (r1)+n

Get the hard decision val ue of |
Get the hard decision value of Q
Get the soft decision value of |

Cal cul at e DX=EQX- DECX

Cal cul at e EQX* DECY

Cal cul at e DP=EQX* DECY- EQY* DECX
Store the cal cul ated DP

Cal cul at e DY=EQY- DECY

Store DX

Cal cul ate DX*DX
St or e DY=EQY- DECY

Cal cul at e DX* DX+DY* DY
Conput e 2* ( DX* DX+DY* DY)
Conput e 4* ( DX* DX+DY* DY)
bring x:>NA SE in x0

NQ SE=4* ( DX* DX+DY* DY) +
$7000*NA SE
Store the accurmul ated NA SE

If the phase error is positive,
yl will be set to zero. H se
it will be set to $8000

Get the phase error

If the phase error is zero then
ski p nornalization process

If the phase error is negative
If the phase error is negative
set yl to $8000

resetting the address registers

Get EQX, DECX

:(r3)+,x0

Conput e EQX* DECX

Get EQY, DECY

Cal cul at e real p=EQX* DECX+EQY* DECY
If realp value is +ve set x0 to
zero

Test whether realp value is +ve
or not

If found -ve set x0 to $8000

Conput e |real p|

Move |realp| into a register for
t he divi si on operation

Conput e | DF|

Check whether |real p|> DP| or not
Get the sign information of realp
in bl

If the divisor > dividend let the
division takes place

use del ay slots

Conputation to deternine the sign
of the phase error
Set the carry bit clear

Deternine the sign of the phase
error and set accordingly

Store the normal i zed phase error
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CAR NOR

nove. w

tst
] ge
clr
nove.
jpd
nove.
start
nove.
nove.
nove.
sub

£ £ =

Jge
nove. w
abs
nove. w
nove. w
cnp. w

jlt

sub
nove. w

nove. w

_Ecar22_nor

End_RXECQERR
j npd
add
nove. w

Freescale Semiconductor, Inc.

; PHASE ERRCR UNWRAP RQOUTI NE
x: WRPFLG b ; Get the WRPFLG
; Get the phase error
Test the WRPFLG

b X (RL) +N a
; If WRPFLG >= 0 goto _start
start ; If WRPFLG >= 0 goto _start
a ; else set WRAP = 0 and
a, xX: WRAP ; LASTDP = 0 and go to
rx_next _task ; next task
a, X: >LASTDP
x: LASTDP, b ; Get LASTDP
a,yl ; Store DPinyl
#$0400, x0 ; Set tenp = $0400
b, a ; Conput e DP-LASTDP
; | f DP-LASTDP < 0
PCs ; If DP-LASTDP < 0
#%f c00, x0 ; set tenp = $fc00
a Conput e | DP- LASTDP|
#$0400, yO
x: WRAP, b ; Get the val ue of WRAP
y0, a ; Conpare | DP-LASTDP| and
;. $0400
NONRAP ; | f | DP- LASTDP| <$0400 t hen
; junmp to _NOARAP
x0, b ; el se WRAP = WRAP-t enp
b, x: WRAP
y1l, Xx:LASTDP ; Set LASTDP = DP
rx_next _task
yl,b ; DP=DP+WRAP and go to next task

b, x: (r1)+n

A.4 RXEQERR Written from Scratch
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RXECERR

nove.
nove.
nove.
nove.

= =77~

nove.
nmpy

sub
nmacr
sub

npy

nac
asl

asl

nove. w
mac

tst
nove. w
beq
nove.
nove.

nmpy

nmacr
nove. w
abs

abs

cnp

bgt
jpd

==

#EQX, r0 ; r0 points to EQX
#DECX+1, 13 ; r3 points to DECY
#DX, r2 ; r2 points to DX
#0,n

X:(r0)+,y0 x:(r3)-,x0 ; y0 <- EQX, x0 <- DECY
x0, y0, a X:(r0)+n,yl x:(r3)+,¢
;o a < DECY * EQX

; oyl < EQY
;¢ <- DECX
cl,y0 ; y0 <- EQX - DECX [DX
-cl,yl,a ;a < a- DECX* EQY [DP
x0,y1l ; yl <~ EQY - DECY [DY]
y0,y0,b yo,x:(r2)+ ; b < DX* DX
; store DX
yl,yl, b i b < b+ DY * DY
b yl,x:(r2)+ ; b < b* 2
, store DY
b X:(r2)+n,y0 ; b <- b * 2
; y0O <- NA SE
#$7000, y1 7yl <- $7000
y0,y1, b ; b <~ b+ $7000 * NO SE [ NO SE]
a
b, x: (r2)+n ; store NA SE
UNVRAP
a,yl ; copy ain yl for conparing signs
x:(r0)-,y0 7 y0 <- EQY
y0, x0, b x:(r0)+,y0o ; b < EQ * DECY
; ¥y0 < EX
y0,cl, b i b < b+ EQX* DECX [real p]
b, cl ; ; copy bincl for conparing signs
b ; | realp|
a ;| DRl
a, b ; |DPl ? |real p|
DO DV
SET_DP
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nove. w
DO DV
nove. w
bfclr
rep
div
nove. w
SET_DP
eor
bge
neg
SAME_SI QN

tst.w
bge
j pd
clr
clr
next 2
nove.
nove.
nove.
nove.
nove.
sub
tgt
abs
clr
cnp. w
tgt
sub
nove. w
add
final
nove. w
nove. w
End_RXECERR
j npd
nove. w

E£s=s¢s
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#$0400, a

b, x0
#$0001, sr
#11

x0, a

ao, a

cl,yl
SAME_SI CN
a

x: WRPFLG
next_2
final

c

d

x: WRAP, ¢
x: LASTDP, d
#$0400, b
b, x0

#%$f c00, yO

c, X: WRAP

d, x: LASTDP
rx_next _task
a, x: >DP

i

tnp <- #$0400

conpare signs of realp and DP
if they have the same sign

a contains DP

WRAP <- 0
LASTDP <- 0

c <~ WRAP

d <- LASTDP

b <- #3$0400 [tenp]

store #$0400 for further use

y0 <- #3$fc00

d <- LASTDP - DP

if LASTDP - DP >0 then b <- #$fc00 [tenp]
d <- | LASTDP - DA

| DP - LASTDP| ? #$0400

If |DP - LASTDP| < O then tenp <- 0
c <- WRAP - tenp

LASTDP <- DP

DP <- DP + WRAP

store WRAP
store LASTDP

store DP
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