
Freescale Semiconductor
Application Note

© 2004-2013 Freescale Semiconductor, Inc. All rights reserved.

This document compares the performance of fast Fourier
transform (FFT) with and without AltiVec™ technology to
demonstrate how mathematically-intensive code can be
adapted for use with AltiVec and how AltiVec increases code
performance. To locate published updates for this document,
see the website listed on the last page of this document.

Contents
1. Overview . 2
2. Signal Flow Graph for the Scalar and Vector FFTs . . 3
3. Fast Fourier Transform: Example 1 10
4. Fast Fourier Transform: Example 2 12
5. Performance . 15
6. Appendix . 16
7. References . 20
8. Revision History . 20

Complex Fixed-Point Fast Fourier
Transform Optimization for AltiVec™

Document Number: AN2114
Rev. 4, 04/2013

Complex Fixed-Point Fast Fourier Transform Optimization for AltiVec™ , Rev. 4

2 Freescale Semiconductor

Overview

1 Overview
Fourier transforms convert a signal to and from the frequency domain. Just as a glass prism may display
the spectrum of an incoming light wave, Fourier transforms break a signal down into its frequency
components. This process involves writing a signal as a summation of sines and cosines. Equation 1 shows
a typical algorithm used for this purpose, the discrete Fourier transform (DFT), and Equation 2 calculates
the DFT of a discrete signal using a set of symmetric points around a unit circle, WN.

Equation 1. DFT Equation

where x[n] = discrete-time signal
X[k] = frequency domain components
N = Number of Points
k = 0,1,2,..., N-1
WN is a multiplicand factor and is shown in Equation 2

Equation 2. WN Value

The DFT is of the order O(N2) for a signal of length N (an algorithm is said to have an order of N, O(N),
if it computes in a scalar multiple of N iterations). The fast Fourier transform (FFT) reduces the number
of calculations of the DFT by dividing the initial function into repeated subfunctions and continues this
process until the subfunction is no longer divisible. For a detailed description of the derivation of the FFT
formula and the various types of FFTs available, see Inside The FFT Black Box: Serial and Parallel Fast
Fourier Transform Algorithms, by Eleanor Chu and Alan George.

This equation shows the decimation of the DFT algorithm from Equation 1.

Equation 3. DFT subdivided into the Radix-2 Decimation in Frequency (DIF)

In Equation 3, the Radix-2 Decimation-in-Frequency (DIF), FFT divides the DFT problem into two
subproblems, each of which equals half the original sum. Note that, in this example, the FFT is a DIF
because it decimates the frequency components (X[k]) of the DFT problem. In comparison, if the FFT is
a DIT, it decimates the time components (x[n]).

The Radix-2 DIF FFT is not the fastest algorithm. If faster algorithms are desired, check on a higher radix
algorithm, such as Radix-4, which divides the equation into four subproblems.

This implementation of the FFT uses integer data types, specifically signed short integers, which have a
range of –32768 to 32767. For the purposes of calculation, sinusoidal values that natively range from –1

X k[] x n[] W
kn
N

⋅

n 0=

N 1–

∑=

WN n[] e
j 2Πn

N-----------⎝ ⎠
⎛ ⎞–

=

X k[] x n[] x n N
2
----++⎝ ⎠

⎛ ⎞ W
kn
N
2----

⋅

n 0=

N
2
---- 1–

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

x n[] x n N
2
----+–⎝ ⎠

⎛ ⎞W
n
N⎝ ⎠

⎛ ⎞ W
kn
N
2

⋅

n 0=

N
2
---- 1–

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

+=

Complex Fixed-Point Fast Fourier Transform Optimization for AltiVec™ , Rev. 4

Freescale Semiconductor 3

Signal Flow Graph for the Scalar and Vector FFTs

to 1 are scaled between these values. Fixed-point FFT implementations such as these have the
following advantages over floating-point FFT implementations:

• Integer math tends to execute faster than floating-point calculations, and this is also true for
AltiVec. With AltiVec, not only do the integer instructions complete in less time, but eight
signed shorts fit in a vector versus only four for floating-point values.

• Fixed-point FFTs are used because input data frequently comes directly from an
analog-to-digital converter (A/D). A/Ds typically provide a stream of fixed-point data, so
using a fixed-point FFT eliminates the need to convert the data into another format.

However, some problems are intrinsic to using fixed-point mathematics. Signed short integers
cover a much smaller range of values than floating-point values. Therefore, overflow and
underflow during mathematical operations are a concern. Precautions to prevent overflow and
underflow can add extra instructions, decreasing performance, and/or may scale the input data
limiting the accuracy and precision of the algorithm. By providing saturation logic with many of
its instructions, Altivec assists in decreasing the performance hit. The methods used to keep the
data within bounds are described in the sections below.

2 Signal Flow Graph for the Scalar and Vector FFTs
This section details two functions that perform the FFT. The first performs a fixed-point, signed
short, complex Radix-2 DIF FFT without using AltiVec instructions. The second function performs
the same transform using AltiVec instructions. These two functions are written as similarly as
possible to highlight the strengths of the AltiVec technology.

When coding FFTs, the signal flow graph (SFG) of the equations resemble a butterfly. The butterfly
equivalent to Equation 3 is shown in Figure 1. Note how the original x[n] values can be replaced
to constitute the new sets of coefficients.

Figure 1. Single Butterfly Representation of a Signal Flow Graph

Figure 2 shows an SFG for a data set of size N = 8. Inputs are on the left and calculations flow from
left to right. This DIF FFT takes the input signal in order and produces the output in bit-reversed
order. In bit reversed order, each output index is represented as a binary number and the indices’
bits are reversed. For example, in an eight-point DIF FFT, sequential order of the indices’ bits is
000, 001, 010, 011, and so on. Reversing these bits yields 000, 100, 010, 110 and so on. This
sequence corresponds to 0, 4, 2, 6, and so on in decimal notation, which is the output order shown
in Figure 2.

P + Q

W * (P - Q)

P

Q

where

P = x[n], Q = x[n +N/2]

and W = Wn
NW

-1

Complex Fixed-Point Fast Fourier Transform Optimization for AltiVec™ , Rev. 4

4 Freescale Semiconductor

Signal Flow Graph for the Scalar and Vector FFTs

Figure 2. Radix-2, DIF, FFT Computational Lattice Structure for N = 8

Each butterfly involves one complex addition and one complex subtraction followed by a complex
multiply (the value W involved in the complex multiply is commonly called a twiddle value). One
advantage of the butterfly structure is that result values can safely overwrite the input values in memory.
This allows the Radix-2 FFT to be complete as an in-place computation. A single iteration of in-place
computation forms a stage. As Figure 2 shows, within a stage, there are N/2 butterflies. There are log2(N)
stages; therefore, the Radix-2 FFT is an O(N*log2(N)) operation.

The illustrated implementation uses three nested “for” loops. The outer loop iterates over the stages. The
middle loop iterates over blocks, which is where butterflies intersect. As Figure 2 shows, stage 0 has one
block, Stage 1 has two blocks, Stage 2 has four blocks, and so on. Finally, the inner most loop iterates over
individual butterflies in a block.

Since the element size is a power of two, there are log2N stages. The size information is described as P
where:

N = 2P or more easily calculated as N = (1 << P).

2.1 Outer Loop

2.1.1 Scalar
The outer loop iterates P times, once for each stage. For AltiVec code, however, the last two stages are
done separately because, unlike prior stages, the two last stages have smaller blocks and both butterfly
points end up on the same vector. To be consistent with the vector code, the scalar code’s last two stages

x[0]

W
0
N

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

X[0]

X[4]

X[2]

X[6]

X[1]

X[5]

X[3]

X[7]

W
1
N

W
2
N

W
3
N

W
0
N

W
2
N

W
0
N

W
2
N

W
0
N

W
0
N

W
0
N

W
0
N

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1
Stage 0 Stage 1 ... Stage (N-1)

Complex Fixed-Point Fast Fourier Transform Optimization for AltiVec™ , Rev. 4

Freescale Semiconductor 5

Signal Flow Graph for the Scalar and Vector FFTs

are done separately. This ensures an accurate comparison. The first stage, however, is still
processed in the three nested loops.

The code below illustrates the scalar outer loop.
Outer Scalar Loop

2.1.2 Vector
Below is the code for the vector version of the outer loop.

Outer Vector Loop

2.2 Inner Loop

2.2.1 Scalar
Within a stage, two values must be calculated: the block offset and the stride. The block offset in
the stage block always points at the top of the current butterfly. The stride is the distance between
the top of a butterfly and its bottom. Incrementing to the next block within a stage requires knowing
the size of a block. This is a simple calculation: block size is always twice the value of stride. This
relationship is used in the “for” loop to increment through the blocks within a stage. Because the
block pointer should never point outside the dataset, block<N is the stopping condition for the loop.
Stride is initialized to N/2. The code below includes the second inner loop.

Inner Scalar Loop

2.2.2 Vector
The vector code looks different than but works similarly to the scalar code. The variable “block”
is used as a counter, not as an address offset. The pointer to the current blocks of butterflies is called
nBlk (the incrementing of nBlk is discussed in Section 2.3.2, “Vector”). The terminating case for
this loop is when block equals numBlks. Because the number of blocks doubles for each
subsequent stage, numBlks doubles after completing a stage.

for (stage=0; stage < (P-2); stage++)
{
/* Calculations for each block go here */
}

for (stage=0; stage < (P-2); stage++)
{
/* Calculations for each block go here */
}

for(stage=0; stage < (P-2); stage++)
{

for (block=0; block<N; block+= stride*2)
{

/* work on the butterflies here */
}

}

Complex Fixed-Point Fast Fourier Transform Optimization for AltiVec™ , Rev. 4

6 Freescale Semiconductor

Signal Flow Graph for the Scalar and Vector FFTs

Note that the “stride” in the vector version is also different. In the scalar case, the stride is twice the block
size; but in the vector case, because four data points can be operated on concurrently, stride is one quarter
of the value in the scalar case (each data point consists of real and imaginary portions, yielding the eight
signed shorts which fit into a vector). The code below shows the loop.

Inner Vector Loop

2.3 Innermost Loop

2.3.1 Scalar
The innermost loop calculates the butterflies. Two butterflies (vertically) are processed because symmetry
in the unit circle allows twiddle values loaded for one butterfly to be used again, with some manipulation,
for calculation in another butterfly. The number of butterflies in a stage is always equal to the stride.
Because two butterflies are processed in a loop, the stopping condition is stride/2. Two pairs of variables
are needed to point at the two butterflies and these pairs are a stride amount apart. One pair of variables,
pa and pb, point at the top and bottom of one butterfly, while variables qa and qb point to the top and
bottom of the second butterfly. Below is the scalar code.

Complete FFT Scalar Loops

2.3.2 Vector
Though the vector code uses a different indexing scheme than does the scalar code, it’s overall behavior is
the same. The location of the next block within a given stage is the address of the current block, nBlk, plus

for (stage=0; stage < (P-2); stage++)
{

nBlk = 0;
for (block=0; block<numBlks; block++)
{

/* work on the butterflies here */
/* nBlk points to the current block */

}
numBlks = numBlks * 2;

}

for(stage=0; stage < (P-2); stage++)
{
for(block=0; block<N; block += stride∗2)
{

pa = block;
pb = block + stride/2;
qa = block + stride;
qb = blockblock + stride + stride/2;
for(j = 0; j < stride/2; j++)
{
 /* work on two butterflies here */
}

}
}

Complex Fixed-Point Fast Fourier Transform Optimization for AltiVec™ , Rev. 4

Freescale Semiconductor 7

Signal Flow Graph for the Scalar and Vector FFTs

twice the stride. Again, because the stride differs from the scalar version, the terminating condition
for the innermost loop is different. Two vectors (or four butterflies) are processed within the inner
loop. The vector code is illustrated below.

Complete FFT Vector Loops

2.3.3 Scalar (detail)
The butterfly calculation is processed in the innermost loop. As mentioned above, pa, pb, qa, and
qb are used to point at the tops and bottoms of the two butterflies. pfs is the complex element array
of data. Initially, the values are inputs; but, because operated on in-place, they store the outputs as
well. The twiddle values are pre-calculated and stored in pfw. As Figure 2 shows, the twiddle
values for the first stage are accessed from consecutive places. For the second stage, the twiddle
values are accessed as every other value from a table and so forth.

Data scaling instructions both start the algorithm and are scattered through the inner loop. The
initial scaling is necessary because data may range from -32768 to 32767. Without scaling there
exists the possibility of overflow or underflow when performing the first round of additions and
subtractions. To guarantee that subsequent additions and subtractions remain within range, the
input data is shifted right by 1 bit, equivalent to dividing the dataset by two. This is a necessary
step but results in a loss of precision.

The scalar code shown below provides a more complicated case for scaling. Multiplying two 16-bit
numbers can possibly yield a 32-bit number. Here, a temporary 32-bit variable, tmpMult, holds the
result of the 16-bit multiplication. tmpMult is then shifted right 15 bits to get the upper portion of
the result. Note that tmpMult is shifted by only 15 bits and not 16 because the upper two bits are
sign bits. Shifting by 16 would yield a result half of the correct size. This is a straightforward
scaling algorithm, always scaling even if the numbers do not exceed bounds.

for (stage=0; stage < (P-2); stage++)
{

nBlk = 0;
for(block=0; block<N/2; block += stride)
{

for(j = 0; j < stride; j++)
{
 /* work on four butterflies here */
}
nBlk = nBlk + 2 * stride;

//twice as many blocks in next stage
numBlks = numBlks *2
//stride is half in next stage
stride = stride / 2

}

Complex Fixed-Point Fast Fourier Transform Optimization for AltiVec™ , Rev. 4

8 Freescale Semiconductor

Signal Flow Graph for the Scalar and Vector FFTs

Also note that re and im are parts of the structure representing the real and imaginary values.
Core Scalar Calculations

//Scale inputs
pfs[pa+j].re = pfs[pa+j].re >> 1;
pfs[pa+j].im = pfs[pa+j].im >> 1;
pfs[qa+j].re = pfs[qa+j].re >> 1;
pfs[qa+j].im = pfs[qa+j].im >> 1;
pfs[pb+j].re = pfs[pb+j].re >> 1;
pfs[pb+j].im = pfs[pb+j].im >> 1;
pfs[qb+j].re = pfs[qb+j].re >> 1;
pfs[qb+j].im = pfs[qb+j].im >> 1;

//add
ft1a.re = pfs[pa+j].re + pfs[qa+j].re;
ft1a.im = pfs[pa+j].im + pfs[qa+j].im;
ft1b.re = pfs[pb+j].re + pfs[qb+j].re;
ft1b.im = pfs[pb+j].im + pfs[qb+j].im;

//sub
ft2a.re = pfs[pa+j].re - pfs[qa+j].re;
ft2a.im = pfs[pa+j].im - pfs[qa+j].im;
ft2b.re = pfs[pb+j].re - pfs[qb+j].re;
ft2b.im = pfs[pb+j].im - pfs[qb+j].im;
pfs[pa+j] = ft1a; //store adds
pfs[pb+j] = ft1b;

//cmul
tmpMult = ((int) ft2a.re * (int) pfw[iw].re);
tmpMult = tmpMult - ((int)ft2a.im * (int)pfw[iw].im);
tmpMult = tmpMult >> 15;
pfs[qa+j].re = (signed short) tmpMult;

tmpMult = ((int) ft2a.re * (int) pfw[iw].im);
tmpMult = tmpMult + ((int)ft2a.im * (int)pfw[iw].re);
tmpMult = tmpMult >> 15;
pfs[qa+j].im = (signed short) tmpMult;

//twiddled cmul
tmpMult = ((int) ft2b.re * (int) pfw[iw].im);
tmpMult = tmpMult + ((int)ft2b.im * (int)pfw[iw].re);
tmpMult = tmpMult >> 15;
pfs[qb+j].re = (signed short) tmpMult;

tmpMult = ((int) -ft2b.re * (int) pfw[iw].re);
tmpMult = tmpMult + ((int)ft2b.im * (int)pfw[iw].im);
tmpMult = tmpMult >> 15;
pfs[qb+j].im = (signed short) tmpMult;

iw += edirts;

Complex Fixed-Point Fast Fourier Transform Optimization for AltiVec™ , Rev. 4

Freescale Semiconductor 9

Signal Flow Graph for the Scalar and Vector FFTs

2.3.4 Vector (detail)
As mentioned earlier, the innermost vector loop processes four butterflies at a time. By doing more
calculations within the inner loop, expensive memory transactions are minimized. Because
complex numbers are represented as interleavings of real and imaginary values, the vec_perm
instruction is used to extract the twiddle values as well as the data. Note that the input values are
scaled in much the same way, using vec_sra to shift the input values right by one bit. However, no
scaling is done for the multiplication because it is handled by the instruction vec_madds.
Vec_madds multiplies two signed short vectors, divides by 2^15, and then adds another vector to
the result. We are interested only in the multiplication portion of the vec_madds instruction, so a
vector constant of zeroes is chosen as the addend.

There are other important portions of the code specific to fixed-point mathematics. To reverse the
signs of some values, they must be multiplied not by a real -1, but by the scaled fixed-point
equivalent of-32767. Even those values whose sign remains the same in vec_madds instructions
must be multiplied by 32767 (the fixed-point equivalent of 1). This can be observed in the values
of the various constants, among them vFixKn1.

Below is the vector code for the innermost loop.
Core Vector Calculations

As mentioned earlier, two stages are removed from the iterations over the Signal Flow Graph. The
last two stages are removed because the final twiddle values (1,0) and (0,-1) do not require a

//load the vectors
ve = data[nBlk + n]; //[5]
vo = data[nBlk + stride + n]; //[6]

vw = vec_ld((nw*4)+ (n*16), w); //nw = num of twiddles values to skip.
//4 bytes/(twiddle value)

//scaling input
ve = vec_sra(ve, vScaleInput);
vo = vec_sra(vo, vScaleInput);

//do the regular math
vep = vec_adds(ve, vo); //[7]
vop = vec_subs(ve, vo); //[8]

vn = vec_madds(vw, vFixKn1, vk0s);
vMultiply = vec_madds(vop, vn, vk0s);
vSwap = (VSH) vec_perm(vMultiply, vMultiply, vkm1);
vReal = vec_adds(vMultiply, vSwap);

vs = (VSH) vec_perm(vw, vw, vkm1);
vMultiply = vec_madds(vop, vs, vk0s);
vSwap = (VSH) vec_perm(vMultiply, vMultiply, vkm1);
vImag = vec_adds(vMultiply, vSwap);

vopt= (VSH)vec_perm(vReal, vImag, vkm2); //[17]

//store the vectors
data[nBlk + n] = vep; //[19]
data[nBlk + stride + n] = vopt; //[20]

Complex Fixed-Point Fast Fourier Transform Optimization for AltiVec™ , Rev. 4

10 Freescale Semiconductor

Fast Fourier Transform: Example 1

complex multiply. Instead, a vector-permute and vector-negate instructions are used, though multiply
instructions do show up in the vector version to negate values.

After all iterations are done, the FFT of the original signal is found in the same memory location as the
original signal. The element at index zero of the result is the DC component of the signal. Lower index
values correspond to lower frequency bins of the FFT after bit reversal.

3 Fast Fourier Transform: Example 1
The concepts discussed above are illustrated in the following example.

This table shows eight data points, with real and imaginary parts, that represent input for the FFT.
However, for purposes of a fixed-point FFT, these values are scaled between the signed short range of
32767 to –32767. The scaled values that serve as input to the FFT are labeled as Fix Real and Fix Imag.
In an application, whether the input data must be converted or is natively integer depends on the input
source.

First the twiddle values are calculated using Equation 1. For a DFT calculation eight twiddle values across
the unit circle are needed. For the FFT discussed in this paper, symmetry is used to reduce these numbers
to two values (see Figure 3).

Table 1. Values for x[n]

n Real Imag Fix Real Fix Imag

0 0.00 .019 0 630

1 .707 –.092 23169 –3005

2 –1.00 .653 –32767 21401 where N = 8

3 .377 0.00 12364 0

4 0.00 0.00 0 0

5 –.032 –.882 –1057 –28904

6 .119 .207 3890 6789

7 .890 0.00 29169 0

Complex Fixed-Point Fast Fourier Transform Optimization for AltiVec™ , Rev. 4

Freescale Semiconductor 11

Fast Fourier Transform: Example 1

Figure 3. DFT Twiddle Values for N = 8

The two selected values {(1,0), (0.707, -0.707)} are W0 and W1in Equation 2. Each Wn starts from
an angle position of 0 and increases in the negative direction. Therefore, W2 and W3 (the only ones
needed for N = 8 FFT—see Figure 4) can be determined from the following:

• Real(W0) = -Imaginary(W2)
• Real(W1) = Imaginary(W3)
• Imaginary(W1) = - Real(W3)

The vector version assumes that initial twiddles have been used to generate a complete twiddle
table, containing all of twiddle values for each stage. Also, like the input data, twiddle values for
both scalar and vector versions must be scaled to fixed-point values. Figure 4 shows the new table
of twiddle values. Using these values, the FFT is calculated and the result (after bit reversing the
output addresses) is shown in Table 2.

1

0.707+0.707j

+j

-0.707+0.707j

-1

-0.707-0.707j

-j

0.707-0.707j

Complex Fixed-Point Fast Fourier Transform Optimization for AltiVec™ , Rev. 4

12 Freescale Semiconductor

Fast Fourier Transform: Example 2

Figure 4. Scaled DFT Twiddle Values for N = 8

4 Fast Fourier Transform: Example 2
The purpose of this example is to provide conceptual and visual insight into the FFT algorithm. Because
input and output data for larger data sets are better described in plots, the actual numerical results are of
lesser importance here.

The input data in this example consists of floating-point values that are more familiar for the sinusoidal
input signal. The fixed-point version behaves similarly, though the amplitudes of the spikes in its output
may vary. Note, however, the position (the sample number) of the spikes in the FFT output are unchanged.
For this example, the signal considered is:

Equation 4. Signal with Two Frequency Components

Table 2. Values for x[n] and X[k]

INPUT OUTPUT

n, K Real Imag Real Imag

0 0 630 8688 –777

1 23169 –3005 15477 12581

2 –32767 21401 –761 –2035

3 12364 0 –6327 –14896

4 0 0 –23128 15179

5 –1057 –28904 –8176 6056

6 3890 6789 15195 –11745

7 29169 0 –978 –3119

1

23166+23166j

+j

-23166+23166j

-1

-23166-23166j

-j

23166-23166j

x(t) 5 2Πx2t() 2Πx20t()sin+sin=

Complex Fixed-Point Fast Fourier Transform Optimization for AltiVec™ , Rev. 4

Freescale Semiconductor 13

Fast Fourier Transform: Example 2

For the above to be changed into a discrete signal, it needs to be sampled at a certain frequency. If
the signal is sampled at 256 samples per second, the discrete signal obtained is as shown in
Equation 5. Note that the discrete time variable, n, is equivalent to the time domain variable, t,
multiplied by the sampling frequency. Figure 5 shows the plot of the signal.

Equation 5. Discrete Signal with Two Frequency Components

Figure 5. Plot of Equation 5

The sinusoid of greater magnitude in the figure corresponds to the first sine term in Equation 5.
The nested sinusoids correspond to the second sine term in the Equation 5. When this signal is
transformed through the FFT function, the two frequency components are isolated. The output plot
is shown in Figure 6.

x[n] 5 2Πx2n
256

------------------⎝ ⎠
⎛ ⎞ 2Πx20n

256
---------------------⎝ ⎠
⎛ ⎞sin+sin=

8

6

4

2

0

-2

-4

-6

-8

1 17 33 49 65 81 97 113 145129 177161 193 209 225 241

Complex Fixed-Point Fast Fourier Transform Optimization for AltiVec™ , Rev. 4

14 Freescale Semiconductor

Fast Fourier Transform: Example 2

Figure 6. FFT Output for the Signal in Figure 5

The even part of the input signal corresponds to the imaginary part of the output. The odd part of the input
signal correspond to real output. Because the input was entirely composed of sine waves (which are pure
odd signals), the output is entirely composed of imaginary components. According to the Fourier
transform properties (Oppenheim and Schafer p52), the output of a real signal has an odd-symmetric
imaginary component. Figure 6 confirms this property. The spikes at positions 2 and 254 correspond to the
first term of the input signal. The spikes at positions 20 and 246 correspond to the second term in the input
signal.

Equation 6 shows the mathematically derived solution. This equation represents the first two spikes in
Figure 6 and their reflection on the y-axis. In the equation, ∂ is a signal input to extract the system’s
impulse response. To read more about FFT functions and other signal processing techniques and terms, see
Section 7, “References.”

Equation 6. Mathematical Representation of the FFT output

To relate the discrete-time frequency and the continuous-time frequency, the following relation is used.

-800

-600

-400

-200

0

200

400

600

800

1 16 35 52 69 86 103 120 137 154 171 188 205 222 239 256

XK
5
2
---j 256δ K 2–[] 256δ K 2+[]–[]– 1

2
---j 256δ K 20–[] 256δ K 20+[]–[]–=

Complex Fixed-Point Fast Fourier Transform Optimization for AltiVec™ , Rev. 4

Freescale Semiconductor 15

Performance

Equation 7. Discrete and Continuous Frequency

For the discrete time-frequency components, (k) is used, as in 2πk/N, where N is the number of
points displayed (see DSP First p340 - 343). Therefore, the first two spikes in the discrete
frequency domain correspond to 2π(2)/256 and 2π(20)/256. Because the sampling frequency is
256 samples per second, the continuous-time frequency is obtained by multiplying 2π(2)/256 and
2π(20)/256 by 256. This gives continuous-time radial frequencies of 2π(2) and 2π(20), or 2Hz and
20Hz, which Figure 5 confirms.

5 Performance
Performance results are given in clock cycles for a Freescale T4240 microprocessor. To obtain the
execution time, divide clock cycles by Megahertz. Performance for other AltiVec implementations
may vary. Also, performance can vary depending on the C compiler used and can improve as the
quality of a compiler improves from release to release. It is assumed that all required instructions
and data are present in the L1 cache.

Both versions of the Radix-2 DIF FFT function are executed to find the number of clock cycles
necessary for completion. These values are recorded in Table 3. From the clock cycles, the
performance gain is calculated as the scalar clock cycles divided by vector clock cycles.

The gain values in Table 3 show that the AltiVec version of the Radix-2 DIF FFT consistently
outperforms the scalar version. A performance gain of over 4.0 is seen for larger FFTs where

Table 3. Radix-2 DIF FFT Performance (Vector versus Scalar)

N Scalar Clock
Cycles

Vector Clock
Cycles Scalar/Vector

64 5,204 1,700 3.1

128 11,708 3,182 3.7

256 27,178 6,930 3.9

512 62,117 15,307 4.1

1024 139,946 33,336 4.2

2048 323,747 71,949 4.5

4096 740,735 157,357 4.7

8192 1,684,617 356,696 4.7

16384 3,866,877 880,851 4.4

32768 8,929,538 1,884,394 4.7

65536 20,343,323 4,026,735 5.1

131072 44,285,306 10,292,499 4.3

262144 96,563,909 22,167,880 4.4

W discrete() W continuous() Sampling× Period=

Complex Fixed-Point Fast Fourier Transform Optimization for AltiVec™ , Rev. 4

16 Freescale Semiconductor

Appendix

inner-loop computation is a larger part of the execution time than overhead. Performance degrades at N =
8192 because 8192 complex shorts and associated twiddles consume the 32 KB L1 data cache of the
T4240. Larger dataset sizes are influenced by hierarchical memory performance, which reduces
incremental performance for both scalar and vector routines - though vector remains faster.

To read more about FFT functions and other signal processing techniques and terms, see Section 7,
“References.”

6 Appendix

6.1 Scalar FFT Function Source Code
int sc_fft_dif(cplx *pfs, cplx *pfw, unsigned int n, unsigned int log_n)
{

unsigned int stage,blk,j,iw=0;
unsigned int pa,pb,qa,qb;
unsigned int stride,edirts;
cplx ft1a,ft1b,ft2a,ft2b,ft3a,ft3b;
int tmpMult;

//INIT
stride = n/2;
edirts = 1;

//DIF FFT
for(stage=0; stage<log_n-2; stage++) {

for(blk=0; blk<n; blk+=stride*2) {
pa = blk;
pb = blk + stride/2;
qa = blk + stride;
qb = blk + stride/2 + stride;
iw = 0;

for(j=0; j<stride/2; j++) {//2bufflies/loop

//Scale inputs
pfs[pa+j].re = pfs[pa+j].re >> 1;
pfs[pa+j].im = pfs[pa+j].im >> 1;
pfs[qa+j].re = pfs[qa+j].re >> 1;
pfs[qa+j].im = pfs[qa+j].im >> 1;
pfs[pb+j].re = pfs[pb+j].re >> 1;
pfs[pb+j].im = pfs[pb+j].im >> 1;
pfs[qb+j].re = pfs[qb+j].re >> 1;
pfs[qb+j].im = pfs[qb+j].im >> 1;

//add
ft1a.re = pfs[pa+j].re + pfs[qa+j].re;
ft1a.im = pfs[pa+j].im + pfs[qa+j].im;
ft1b.re = pfs[pb+j].re + pfs[qb+j].re;
ft1b.im = pfs[pb+j].im + pfs[qb+j].im;

//sub
ft2a.re = pfs[pa+j].re - pfs[qa+j].re;
ft2a.im = pfs[pa+j].im - pfs[qa+j].im;
ft2b.re = pfs[pb+j].re - pfs[qb+j].re;
ft2b.im = pfs[pb+j].im - pfs[qb+j].im;

Complex Fixed-Point Fast Fourier Transform Optimization for AltiVec™ , Rev. 4

Freescale Semiconductor 17

Appendix

pfs[pa+j] = ft1a;//store adds
pfs[pb+j] = ft1b;

//cmul
tmpMult = ((int) ft2a.re * (int) pfw[iw].re);
tmpMult = tmpMult - ((int)ft2a.im * (int)pfw[iw].im);
tmpMult = tmpMult >> 15;
pfs[qa+j].re = (signed short) tmpMult;

tmpMult = ((int) ft2a.re * (int) pfw[iw].im);
tmpMult = tmpMult + ((int)ft2a.im * (int)pfw[iw].re);
tmpMult = tmpMult >> 15;
pfs[qa+j].im = (signed short) tmpMult;

//twiddled cmul
tmpMult = ((int) ft2b.re * (int) pfw[iw].im);
tmpMult = tmpMult + ((int)ft2b.im * (int)pfw[iw].re);
tmpMult = tmpMult >> 15;
pfs[qb+j].re = (signed short) tmpMult

tmpMult = ((int) -ft2b.re * (int) pfw[iw].re);
tmpMult = tmpMult + ((int)ft2b.im * (int)pfw[iw].im);
tmpMult = tmpMult >> 15;
pfs[qb+j].im = (signed short) tmpMult;

iw += edirts;
}

}
}
stride = stride>>1;
edirts = edirts<<1;

}

//last two stages
for(j=0; j<n; j+=4) {

//Scaling
pfs[j].re = pfs[j].re >> 1;
pfs[j].im = pfs[j].im >> 1;
pfs[j+1].re = pfs[j+1].re >> 1;
pfs[j+1].im = pfs[j+1].im >> 1;
pfs[j+2].re = pfs[j+2].re >> 1;
pfs[j+2].im = pfs[j+2].im >> 1;
pfs[j+3].re = pfs[j+3].re >> 1;
pfs[j+3].im = pfs[j+3].im >> 1;

//upper two

ft1a.re = pfs[j].re + pfs[j+2].re;
ft1a.im = pfs[j].im + pfs[j+2].im;
ft1b.re = pfs[j+1].re + pfs[j+3].re;
ft1b.im = pfs[j+1].im + pfs[j+3].im;
ft2a.re = ft1a.re + ft1b.re;
ft2a.im = ft1a.im + ft1b.im;
ft2b.re = ft1a.re - ft1b.re;
ft2b.im = ft1a.im - ft1b.im;

//lower two
//notwiddle
ft3a.re = pfs[j].re - pfs[j+2].re;
ft3a.im = pfs[j].im - pfs[j+2].im;
//twiddle

Complex Fixed-Point Fast Fourier Transform Optimization for AltiVec™ , Rev. 4

18 Freescale Semiconductor

Appendix

ft3b.re = pfs[j+1].im - pfs[j+3].im;
ft3b.im = -pfs[j+1].re + pfs[j+3].re;

//store
pfs[j] = ft2a;
pfs[j+1] = ft2b;
pfs[j+2].re = ft3a.re + ft3b.re;
pfs[j+2].im = ft3a.im + ft3b.im;
pfs[j+3].re = ft3a.re - ft3b.re;
pfs[j+3].im = ft3a.im - ft3b.im;

}
return 0;

}

6.2 Vector FFT Function Source Code
int av_dif(int numStages, VSH *data, VSH *w)
{

//VARIABLES
int numBlks; //num blocks in current stage
int stride; //dist between even and odd pts in butterfly
int stage; //the current stage
int block; //the current block
int nBlk; //offset of current block
int n; //offset of current butterfly from nBlk
int nw; //twiddle block index
int lastStages; //Number of times to iterate through last 2 stages code
VSH ve; //vector of even (upper) butterfly data
VSH vo; //vector of odd (lower) butterfly data
VSH vw; //vector of twiddles
VSH vep; //result of even add
VSH vop; //result of odd subtract
VSH vopt; //vop with twiddles applied
VSH vn, vs; //intermediate results
VSH vm1,vm2,vpt; //intermediate results
VSH v,vp,vpp; //src vec, intermediate and final results
VSH vMultiply; //Intermediate for vec_madds results
VSH vSwap; //Swapped values for adding
VSH vReal, vImag; //Real and imag. int. results

//CONSTANTS
const VSH vk0s = (VSH)(0, 0, 0, 0, 0, 0, 0, 0);
const VUC vkm1 = (VUC)(2, 3, 0, 1, 6, 7, 4, 5, //[15]
 10, 11, 8, 9, 14, 15, 12, 13);
const VUC vkm2 = (VUC)(0, 1, 16, 17, 4, 5, 20, //[18]
 21, 8, 9, 24, 25, 12, 13, 28, 29);
const VUC vkm3 = (VUC)(8, 9, 10, 11, 12, 13, 14, 15, //[24]
 0, 1, 2, 3, 4, 5, 6, 7);
const VUC vkm4 = (VUC)(0, 1, 2, 3, 4, 5, 6, 7, //[30]
 8, 9, 10, 11, 14, 15, 12, 13);
const VUC vkm5 = (VUC)(4, 5, 6, 7, 0, 1, 2, 3, //[34]
 12, 13, 14, 15, 8, 9, 10, 11);
const VSH vFixKn2 = (VSH)(32767, 32767, 32767, 32767, -32767, -32767, -32767, -32767);
const VSH vFixNegate7 = (VSH) (32767, 32767, 32767, 32767, 32767, 32767, 32767, -32767);
const VSH vFixKn3 = (VSH) (32767, 32767, -32767, -32767, 32767, 32767, -32767, -32767);

Complex Fixed-Point Fast Fourier Transform Optimization for AltiVec™ , Rev. 4

Freescale Semiconductor 19

Appendix

const VSH vFixKn1 = (VSH) (32767, -32767, 32767, -32767, 32767, -32767, 32767, -32767);
const VUH vScaleInput = (VUH) (1, 1, 1, 1, 1, 1, 1, 1);

//INIT
numBlks = 1; //stage 0 has 1 block
nw = 0; //twiddle block index
stride = (int)(1 << numStages) / SPV; //dist b/n even & odd vecs

//FFT : iterate over all (but last 2) stages
for(stage=0; stage<(numStages-2); stage++) {

//start at the top of the lattice
nBlk = 0;

//iterate over all blocks in this stage
for(block=0; block<numBlks; block++) {

//iterate over all butterflies in this block
for(n=0; n<stride; n++) {

//load the vectors
ve = data[nBlk + n]; //[5]
vo = data[nBlk + stride + n]; //[6]

vw = vec_ld((nw*4)+ (n*16), w); //nw = num of twiddles values to skip.
//4 bytes/(twiddle value)

//scaling input
ve = vec_sra(ve, vScaleInput);
vo = vec_sra(vo, vScaleInput);

//do the regular math
vep = vec_adds(ve, vo); //[7]
vop = vec_subs(ve, vo); //[8]

vn = vec_madds(vw, vFixKn1, vk0s);
vMultiply = vec_madds(vop, vn, vk0s);
vSwap = (VSH) vec_perm(vMultiply, vMultiply, vkm1);
vReal = vec_adds(vMultiply, vSwap);

vs = (VSH) vec_perm(vw, vw, vkm1);
vMultiply = vec_madds(vop, vs, vk0s);
vSwap = (VSH) vec_perm(vMultiply, vMultiply, vkm1);
vImag = vec_adds(vMultiply, vSwap);

vopt= (VSH)vec_perm(vReal, vImag, vkm2); //[17]

//store the vectors
data[nBlk + n] = vep; //[19]
data[nBlk + stride + n] = vopt; //[20]

 }
//offset to next block is 2 strides away
nBlk = nBlk + 2 * stride;

}
//twice as many blocks in next stage
numBlks = numBlks * 2;
//next twiddle block is 4 strides away
nw = nw + 4 * stride;
//stride is half in next stage
stride = stride / 2;

}

Complex Fixed-Point Fast Fourier Transform Optimization for AltiVec™ , Rev. 4

20 Freescale Semiconductor

References

// SPECIAL CASE: last 2 stages combined into one. [38]
//iterate over all vectors in dataset
lastStages = ((1<<(numStages+1))/SPV);
for(n=0; n<lastStages; n++) {

v = data[n];
v = vec_sra(v, vScaleInput);
vm1 = (VSH)vec_perm(v, v, vkm3); //[25]
vp = vec_madds(v, vFixKn2, vm1); //[28]
vpt = (VSH)vec_perm(vp, vp, vkm4); //[31]
vpt = vec_madds (vpt, vFixNegate7, vk0s);
vm2 = (VSH)vec_perm(vpt, vpt, vkm5); //[35]
vpp = vec_madds(vpt, vFixKn3, vm2); //[37]
data[n] = vpp;

}

return 0;
}

7 References
1. Eleanor Chu and Alan George. Inside The FFT Black Box: Serial and Parallel Fast Fourier

Transform Algorithms. ISBN 0-8493-0270-b, CRC Press, 2000.
2. The FFT Demystified. http://www.eptools.com/tn/T0001/INDEX.HTM, Engineering Productivity

Tools Ltd., 1999.
3. J. H. McClellan, R. W. Schafer and M. A. Yoder. DSP First. ISBN 0-13-243171-8, Prentice-Hall,

1998.
4. A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal Processing. p599,

ISBN 0-130216292-X, Prentice-Hall, 1989.

8 Revision History
This table summarizes the revision history of this document.

Table 4. Revision History

Rev.
Number Date Substantive Change(s)

4 04/2013 • Modified Figure 1, “Single Butterfly Representation of a Signal Flow Graph,” to show W multiplies
(P-Q).

 • In Table 2, “Values for x[n] and X[k],” updated sign for n = 2.
 • Updated performance results in Table 3, “Radix-2 DIF FFT Performance (Vector versus Scalar),”

from MPC7410 to T4240
 • Minor typographical corrections and editorial changes

3 10/2006 Rebranding for Freescale; non-technical formatting.

2 2005 Modified table 3.
Updated the source code for scalar FFT function and vector FFT function.
Added revision history.

0–1 2004 Initial release

Document Number: AN2114
Rev. 4
04/2013

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer’s technical experts. Freescale does not convey any

license under its patent rights nor the rights of others. Freescale sells products pursuant

to standard terms and conditions of sale, which can be found at the following address:

freescale.com/SalesTermsandConditions.

How to Reach Us:
Home Page:
freescale.com

Web Support:
freescale.com/support

Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, C-Ware,

Energy Efficient Solutions logo, Kinetis, mobileGT, PowerQUICC, Processor Expert,

QorIQ, Qorivva, StarCore, Symphony, and VortiQa are trademarks of Freescale

Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack, ColdFire+,

CoreNet, Flexis, MagniV, MXC, Platform in a Package, QorIQ Qonverge, QUICC

Engine, Ready Play, SafeAssure, SMARTMOS, TurboLink, Vybrid, and Xtrinsic are

trademarks of Freescale Semiconductor, Inc. All other product or service names are

the property of their respective owners. The Power Architecture and Power.org word

marks and the Power and Power.org logos and related marks are trademarks and

service marks licensed by Power.org.

© 2004-2013 Freescale Semiconductor, Inc.

	1 Overview
	2 Signal Flow Graph for the Scalar and Vector FFTs
	Figure 1. Single Butterfly Representation of a Signal Flow Graph
	Figure 2. Radix-2, DIF, FFT Computational Lattice Structure for N = 8
	2.1 Outer Loop
	2.1.1 Scalar
	2.1.2 Vector

	2.2 Inner Loop
	2.2.1 Scalar
	2.2.2 Vector

	2.3 Innermost Loop
	2.3.1 Scalar
	2.3.2 Vector
	2.3.3 Scalar (detail)
	2.3.4 Vector (detail)

	3 Fast Fourier Transform: Example 1
	Table 1. Values for x[n]
	Figure 3. DFT Twiddle Values for N = 8
	Figure 4. Scaled DFT Twiddle Values for N = 8
	Table 2. Values for x[n] and X[k]

	4 Fast Fourier Transform: Example 2
	Figure 5. Plot of Equation 5
	Figure 6. FFT Output for the Signal in Figure 5

	5 Performance
	Table 3. Radix-2 DIF FFT Performance (Vector versus Scalar)

	6 Appendix
	6.1 Scalar FFT Function Source Code
	6.2 Vector FFT Function Source Code

	7 References
	8 Revision History
	Table 4. Revision History

	Complex Fixed-Point Fast Fourier Transform Optimization for AltiVec™

