
Order this document
by AN2168/D
Semiconductor Products Sector
Application Note

AN2168

ColdFire Microprocessor DMA Controller
By Melissa Hunter

Austin, Texas

Introduction

This application note discusses the use of the DMA (direct memory
access) module available on several of the ColdFire processors. This list
includes the MCF5206e, MCF5307, and MCF5407. The DMA modules
on all three of these processors are very similar, and most of the
information in this application note can be applied to all three.

The DMA module on the MCF5272 is also similar, although it does not
have all of the features offered by the DMA on the other processors.

For this application note, all of the examples and code have been run
and verified on the MCF5307. However, the same code can easily be
adapted to run on the MCF5407 and MCF5206e.

NOTE: Refer to the user’s manual and device errata for the processor to be
aware of any limitations of the DMA module for that particular processor.

 ColdFire is a registered trademark of Freescale Semiconductor, Inc.
© Motorola, Inc., 2001

TM

rxzb30
Rectangle

rxzb30
ForwardLine

rxzb30
Rectangle

rxzb30
copywithline

rxzb30
copywithline

Application Note
What Is a DMA Controller?

The DMA controller allows large blocks of data to be transferred without
intervention from the CPU (central processor unit). Once the DMA
registers have been programmed, a transfer can be started that will
relocate data from one memory location to another or write data to/from
a peripheral.

Why Use the DMA Controller?

When the DMA transfers data, it isn’t necessarily faster than using a
series of move instructions to relocate the data instead. In fact, the
timing for the bus cycle usually will be the same regardless of whether
the DMA or the core initiated the access. However, the DMA can
increase the overall performance of the system by freeing up the core to
execute code that is stored in cache or the on-chip SRAM (standby RAM
module). This has the inherent drawback that cache coherency is not
maintained when using the DMA, and the DMA cannot transfer data to
or from the on-chip SRAM.

What Do DMA Bus Cycles Look Like?

The ColdFire user’s manuals don’t show DMA-specific timings for full
bus cycles, because there isn't a difference in the timing for a bus cycle
initiated by the core and a bus cycle initiated by the DMA.

When performing a DMA transfer, as long as the alternate master (AM)
bit for the corresponding chip select or DRAMC register is cleared, the
DMA address can still “hit” in the associated chip select or DRAM
(dynamic RAM) region. Therefore, the bus cycles will appear the same
as a non-DMA (ColdFire core) access to the same address since the
timing (wait states, CAS latency, etc.) will be controlled by the same
register settings. The timing, control signals, and strobes will be the
same, only the transfer type and transfer modifier information will be
different. So if the DMA source or destination address “hits” in a chip
select space, then the chip select control registers will define the bus
cycle (wait states, bursting, etc.).
AN2168

2

Application Note
What Do DMA Bus Cycles Look Like?
For example, Figure 1 shows a software-initiated, word-sized bus cycle
to address 0xFFE00400.

Figure 1. Chip Select-Initiated Bus Cycle
AN2168

3

Application Note
Figure 2 shows another word-sized bus cycle to 0xFFE00400. The chip
select settings are the same, but this time it is a DMA-initiated bus cycle.

Figure 2. DMA-Initiated Bus Cycle

When comparing the two bus cycles, the basic timing properties are the
same. Both bus cycles take six clocks (three wait states) to complete. In
Figure 1 there are two dead clocks after the deassertion of the chip
select and before TS asserts for the start of the next bus cycle. The DMA
will result in back-to-back bus cycles, so in Figure 2 there are no dead
clocks between bus cycles. By eliminating dead clocks and allowing the
core to run code from internal memory, the DMA can be used to transfer
large blocks of data more efficiently than the core itself.
AN2168

4

Application Note
Dual and Single Address Modes
Dual and Single Address Modes

The DMA controller has two primary transfer modes:

• Dual address

• Single address

Dual Address
Mode

Dual address mode is the most straightforward DMA transfer mode to
implement. A dual address transfer consists of two phases. There is at
least one read from the source address followed by one or more writes
to the destination address. The number of reads and writes will depend
on the source and destination sizes programmed in the DMA control
register (DCR) as well as the port size for the source and destination
address.

Dual Address Mode
Example 1

For example, the MCF5307 is programmed with the following chip select
parameters:

CSAR0 = 0xFFE0 ; base address = 0xFFE00000

CSMR0 = 0x000F0001 ; address range = 0xFFE00000-FFEFFFFF

CSCR0 = 0x0D80 ; 3 wait states, auto-acknowledge, 16-bit port

CSAR1 = 0x2000 ; base address = 0x20000000

CSMR1 = 0x00000001 ; address range = 0x20000000-2000FFFF

CSCR1 = 0x0158 ; 0 waitstates, autoacknowledge, 8-bit port, burst enabled

The DMA is programmed with the following values:

DSR = 0x01 ; clear status register

SAR = 0xFFE00400 ; source address = 0xFFE00400

DAR = 0x20000000 ; destination address = 0x20000000

BCR = 0x002 ; transfer 2 bytes

DCR = 0x006B ; source = 16-bit, destination = 8-bit
AN2168

5

Application Note
Figure 3 shows the resulting dual address DMA transfer. Since the
DCR[SSIZE] is programmed as word and the chip select mapped to the
source address (CS0) is also a word port size, there is a single read from
the source address. However, the destination size and chip select are
both programmed as bytes. The DMA controller needs to write the full
16 bits of data to the destination, so the read is followed by two byte-size
transfers to the destination address.

Figure 3. Dual Address Transfer, SSIZE = word, DSIZE = byte
AN2168

6

Application Note
Dual and Single Address Modes
Dual Address Mode
Example 2

To achieve a higher DMA transfer rate, the DMA settings from the
example in Dual Address Mode Example 1 could be changed so that
the destination size is also word. Use the following DMA settings:

DSR = 0x01 ; clear status register

SAR = 0xFFE00400 ; source address = 0xFFE00400

DAR = 0x20000000 ; destination address = 0x20000000

BCR = 0x0002 ; transfer 2 bytes

DCR = 0x006D ; source = 16-bit, destination = 16-bit

and the same chip select settings.

Figure 4 shows the DMA transfer with the source and destination both
set to word. Just as before, there is a single read from the source
address, but now there is a word burst to a byte port at the destination
address. Since CS1 is programmed to allow bursts and the DMA
requests a transfer size larger than the chip select’s port size, a burst
transfer results.

Figure 4. Dual Address Transfer, SSIZE = word, DSIZE = word
AN2168

7

Application Note
Programming the DMA source size and/or destination size to use
bursting bus cycles when possible can help to increase the overall
performance of a DMA transfer. The example in Dual Address Mode
Example 1 does not take advantage of the fact that CS1 is programmed
to allow bursting. The entire DMA transfer shown in Figure 3 takes
12 clock cycles to complete. However, the second example does take
advantage of the chip selects bursting capability, so the DMA transfer in
Figure 4 only takes 10 clock cycles to transfer the same amount of data.
Setting the destination size to 16-bit instead of 8-bit eliminates two clock
cycles. If the byte count used for the examples had been larger, then
even more clock cycles would have been eliminated by using the 16-bit
destination size. For example, if the transfer byte count had been
100 bytes instead of 2, then example 2 would have completed 100 clock
cycles faster than example 1.

Single Address
Mode

In a single address transfer, only one bus access is performed — a read
or write to the source address. The S_RW bit in the DCR determines the
state of the R/W line during the transfer. Since there is only one bus
cycle, single address mode requires external logic to decode the access
and generate the necessary signals for the second device or an external
peripheral that has built-in logic that will decode the bus cycle.

Single Address
Mode Example

Figure 5 shows a single address transfer to address 0x20000000 using
the following chip select settings:

CSAR1 = 0x2000 ; base address = 0x20000000

CSMR1 = 0x00000001 ; address range = 0x20000000-0x2000FFFF

CSCR1 = 0x0158 ; 0 waitstates, autoacknowledge, 8-bit port, burst enabled

Then the DMA is programmed with these values:

DSR = 0x01 ; clear status register

SAR = 0x20000000 ; source address = 0x20000000

BCR = 0x0002 ; transfer 2 bytes

DCR = 0x01D1 ; single address, R/W = 1, source=8-bit
AN2168

8

Application Note
Dual and Single Address Modes
Figure 5. Single Address Transfer, SSIZE = byte

In this example, the chip select is programmed for a zero wait state
8-bit port. The DMA is set up for 8-bit single address transfers with
R/W high.
AN2168

9

Application Note
Continuous and Cycle Steal Modes

In continuous mode when the internal or external DMA request is
received and the DMA transfer starts, the DMA will continue to transfer
data until:

• A multiple of the BWC value is reached — The DMA will release
the bus when the BCR reaches a multiple of the value
programmed into the BWC.

• The transfer completes — The BCR reaches zero, the DMA
terminates with an error, or the DONE bit is set by software
(internal request only).

In cycle steal mode, there is one DMA transfer per request. Instead of
running multiple bus cycles until the entire byte count is transferred,
there is just one read and one write phase for each request (only one
read or write phase for single address mode).

For example, transferring 32 bytes of data from a longword port to a byte
port using cycle steal mode requires eight requests. For each request a
longword is read from the source, and then the same longword (four
bytes) is written to the destination. Since each transfer decrements the
BCR by four, it will take eight transfers to move the entire 32 bytes
(32/4 = 8). When the eighth transfer completes, the BCR will be cleared
and the DONE bit in the DSR will be set to indicate the completion of the
entire DMA transfer.

Request Modes

The DMA controller has two different types of requests that can be used
to start a DMA transfer:

• Internal requests

• External requests
AN2168

10

Application Note
Request Modes
Internal Requests For an internal request, software sets the DCR[START] bit to begin a
DMA cycle. Using internal DMA requests is straightforward. Since the
DMA is started by software, there aren’t any timing concerns to worry
about.

However, be careful when setting the DCR[START] if the DCR[EEXT] is
also set, since this could lead to conflicts with an incoming external
request.

NOTE: All of the previous examples in this application note have used an
internal request to start the DMA transfer.

External Requests A DMA transfer also can be requested by asserting the DREQx line. To
have an external request start a DMA transfer, the DCR[EEXT] must be
set; otherwise, the assertion of DREQx will be ignored.

At a minimum, DREQx should be asserted for one rising clock edge (it
will also need to meet the setup and hold time requirements with respect
to the clock edge). The maximum time DREQx can be held depends on
the configuration. In continuous mode, DREQx should be deasserted
before the end of the DMA transfer.

However, in cycle steal mode, the DREQx must be negated early
enough or additional unwanted transfers could occur. If you are using
dual address cycle steal mode and only want one DMA transfer, then
DREQx should be negated before the write portion of the transfer starts.
For single address cycle steal mode, DREQx must negate before the
DMA transfer starts to prevent additional transfers from occurring.

External Request,
Cycle Steal Mode
Example

Figure 6 and Figure 7 show a cycle steal DMA transfer using the
external request mode. This example uses the following chip select
settings:

CSAR0 = 0xFFE0 ; base address = 0xFFE00000

CSMR0 = 0x000F0001 ; address range = 0xFFE00000-0xFFEFFFFF

CSCR0 = 0x0D80 ; 3 waitstates, autoacknowledge, 16-bit port

CSAR1 = 0x2000 ; base address = 0x20000000

CSMR1 = 0x00000001 ; address range = 0x20000000-0x2000FFFF

CSCR1 = 0x0158 ; 0 waitstates, autoacknowledge, 8-bit port, burst enabled
AN2168

11

Application Note
The DMA module is programmed with these values:

DSR = 0x01 ; clear status register

SAR = 0xFFE00400 ; source address = 0xFFE00400

DAR = 0x20000000 ; destination address = 0x20000000

BCR = 0x0004 ; transfer 4 bytes

DCR = 0x606A ; cycle steal, ext. request, source=16-bit, destination=8-bit

Figure 6. Cycle Steal Transfer Using External Request Mode — 1
AN2168

12

Application Note
Request Modes
Figure 6 shows the first word transfer of the DMA cycle. Cursor 1 marks
the assertion of DREQ. After DREQ asserts, the processor completes
the current bus cycle and grants mastership of the external bus to the
DMA channel. Since the DMA is programmed for cycle steal mode, there
is just one read and one write phase. The basic DMA transfer timing is
the same as shown in Dual Address Mode Example 1. After the first
DMA transfer completes, the BCR is decremented by two. Bus
mastership is then returned to the core and a normal mode bus cycle
starts at cursor 2.

Figure 7. Cycle Steal Transfer Using External Request Mode — 2

Figure 7 shows the transfer of the second word. Cursor 2 marks the
beginning of the same normal mode access, as shown in Figure 6.
Again the DREQ signal is asserted to indicate an external DMA request
to the ColdFire. Once the DMA channel gains mastership, another read
and write phase is started (cursor 1). After the write phase is complete,
the BCR decrements by two again, clearing the BCR. This signals the
end of the entire DMA transfer and the DONE bit in the DSR is set.
Finally, bus mastership returns to the core and a normal mode access is
started.
AN2168

13

Application Note
Auto-alignment

The DMA has an auto-alignment feature which allows transfers to or
from misaligned addresses. The auto-alignment logic will break
transfers up depending on the address, byte count, and transfer size.
For example, using the same chip select settings as Dual Address
Mode Example 1 and the DMA registers settings that follow would give
a configuration error.

DSR = 0x01 ; clear status register

SAR = 0xFFE00001 ; source address = 0xFFE00001

DAR = 0x20000000 ; destination address = 0x20000000

BCR = 0x0004 ; transfer 4 bytes

DCR = 0x006B ; no auto-align, source=16-bit, destination=8-bit

Since the source size is word, the source address must be word-aligned
if the auto-align feature is not being used. However, if the auto-align
feature is enabled, the ColdFire can complete the DMA transfer even if
either the source or destination is not aligned.

Here are the settings for the same transfer, but this time with auto-
alignment enabled:

DSR = 0x01 ; clear status register

SAR = 0xFFE00001 ; source address = 0xFFE00001

DAR = 0x20000000 ; destination address = 0x20000000

BCR = 0x0004 ; transfer 4 bytes

DCR = 0x106B ; auto-align, source=16-bit, destination=8-bit

Figure 8 shows the actual transfer.
AN2168

14

Application Note
Auto-alignment
.

Figure 8. Transfer from Misaligned Source Using Auto-alignment

At the start of the DMA transfer, the source address (0xFFE00001) is
byte-aligned, so the first bus cycle is a byte read. This is followed by a
byte-sized write to the destination. After the first byte is transferred, the
source address is incremented to 0xFFE00002. Now that the source is
word-aligned, the DMA can transfer a word at a time.

So the next cycle is word read from the source starting at cursor 1. Since
the destination is a byte port, it takes two bus cycles to write the data
read in during the word access to the source. Now there is only one byte
remaining to be transferred (BCR = 1), so there is a byte read from the
source and a byte write to the destination to complete the DMA transfer.
AN2168

15

Application Note
DMA and UARTs

The MCF5307 and MCF5407 both have four DMA channels. For
channels 0 and 1, the external request signals are connected to the
external request pins DREQ[1:0]. The external requests for the
remaining channels are internally tied to the UART interrupt request
lines so that channel 2 corresponds to UART0 and channel 3
corresponds to UART1. This allows a UART (universal asynchronous
receiver transmitter) receive interrupt condition to automatically trigger a
DMA transfer.

To generate a request to the DMA, the UART should be programmed so
that the receive interrupt is enabled in the UART interrupt mask register
(UIMR). The receive interrupt condition should be set to the RxRDY
option in the UART mode register (UMR1). Now the UART will assert its
interrupt request line whenever a character is received.

NOTE: The interrupt must remain masked in the interrupt mask register (IMR).
This allows the DMA to respond to the UART interrupt request instead
of the core.

The DMA channel should be programmed for dual address, cycle steal
mode operation. The external request bit should be set so the DMA can
recognize the UART interrupt line as a DMA request. The source
address is set to the location of the UART receive buffer (URB) and the
source increment option is disabled.

Refer to DMA from UART Example for assembly example code.

NOTE: The MCF5206e cannot DMA to or from the UARTs. The MCF5307 and
MCF5407 can DMA from the UARTs, but not to the UARTs.
AN2168

16

Application Note
Bandwidth Control
Bandwidth Control

When a continuous mode DMA transfer (internal or external request) is
started, the DMA must assert a request to the processor’s internal arbiter
to gain mastership of the external bus. Once the internal arbiter grants
the channel mastership of the bus, the DMA transfer will begin. The DMA
module has a bandwidth control feature that can help to prevent the
DMA from choking off the core’s access to the external bus. The
bandwidth control settings programmed in the DCR[BWC] can be used
to force the DMA to relinquish control of the external bus at certain
intervals and thereby allow the core an opportunity to gain mastership of
the external bus.

When a multiple of the BWC has been reached, the DMA channel will
relinquish the bus by negating its request to the internal arbiter for one
clock. At this point, the core or another DMA channel can gain
mastership of the bus. One clock later the DMA channel will request the
bus again so that it can complete the transfer. The DMA channel will
have to go through the arbiter to gain mastership of the bus again. If a
higher priority master is also requesting the bus, then the DMA cycle will
be delayed while waiting for the arbiter to grant bus mastership to the
DMA channel.

Bandwidth Control
Example

For example, if the DCR[BWC] bits are set for 512 bytes, then every time
the BWC reaches a value that is a multiple of 512 the DMA will negate
its request to the internal arbiter for one clock. If the byte count for the
entire transfer is set to 1000 bytes and the DMA transfers one byte at a
time (source and destination size are both byte), then after the first 488
bytes are transferred the BCR will equal 512 and the DMA will negate its
bus request. Since the DMA channel still has another 512 bytes left to
move, the DMA transfer is not complete. After the request is negated for
one clock, the DMA channel will reassert the bus request to the internal
arbiter. Once the internal arbiter gives mastership of the external bus
back to the DMA channel, the transfer will resume and continue until the
byte count decrements to zero.
AN2168

17

Application Note
DMA and Bus Prioritization (Latency Issues)

There are a couple of prioritization schemes that should be taken into
account when using the DMA. The first is the prioritization between the
ColdFire core and the DMA module. The ColdFire has an internal arbiter
that determines when the core or DMA should be granted access to the
external bus. The user can change the arbiter settings by programming
the MPARK register. If a system has too much delay between the
request for a DMA transfer and the DMA bus cycle, then the latency
might be reduced by reprogramming the MPARK register to give the
DMA channel priority over the core. The actual settings and arbitration
schemes vary from part to part, so refer to the SIM (system integration
module) section of the appropriate user’s manual for more details.

Setting Up Interrupts for the DMA

Determining the correct vector number to use is the main concern when
using interrupts for on-chip resources. For the ColdFire DMA module,
there are two options for generating an interrupt vector number in
response to an interrupt acknowledge (IACK) cycle:

• Programming the DIVR

• Using the autovector feature

Programming
the DIVR

The first option is to program the DMA interrupt vector register (DIVR)
with the hex interrupt vector. The vector chosen should be one of the
ColdFire user-defined interrupts (vectors 64–255). When an IACK cycle
for a DMA interrupt occurs, the DMA will return the value in the DIVR.
Then the processor will start the exception handling process by building
the exception stack frame and fetching the vector table entry specified
by the DIVR.

Refer to DMA Interrupt Example for a software example.
AN2168

18

Application Note
DACK Generation
Autovectoring The second option is using the ColdFire interrupt controller’s autovector
feature. Setting the AVEC bit in the appropriate interrupt control register
(ICR) will enable autovectoring for interrupts generated by the
corresponding module. The autovector feature allows the interrupt
controller to generate a vector for the interrupt based on the interrupt
level. Instead of using the vector returned during the internal IACK cycle,
the interrupt controller will discard this value and use a vector equal to
24 plus the interrupt level.

DACK Generation

In some cases, in particular when using an external DMA request, it is
helpful to have a DMA acknowledge signal that indicates when a DMA
cycle occurs. The method to generate a DACK can vary from processor
to processor, so each part is covered separately.

MCF5206e DACK
Generation

The MCF5206e does not generate any type of DACK, so external logic
is needed. The DACK can be generated by monitoring the TT[1:0] pins.
A TT[1:0] encoding of 01 indicates a DMA bus cycle, then the address
or chip selects can be used to determine which DMA channel is
accessing the bus. If only one DMA channel is used, then the external
logic can be simplified to only monitor the TT[1:0] lines.

MCF5307 DACK
Generation

For the MCF5307, the TM[2:0] pins do indicate DACKs; however, these
are not dedicated DACK pins. They only indicate a DACK when the
TT[1:0] = 01 designating a DMA access, so external logic will be needed
to qualify the transfer modifier signals based on the transfer type
encoding.

MCF5407 DACK
Generation

The MCF5407 generates DACK signals. In this case, the DACK pins are
multiplexed with other functions, so the DACK functionality must be
enabled. This can be done in two steps. First, set the pin assignment
register (PAR) bit 3 and/or bit 2 to enable the transfer modifier and DACK
functionality. Then set one or both of the ENBDACKn bits in the interrupt
port assignment register (IRQPAR).
AN2168

19

Application Note
Generating a
DACK at the End
of a DMA Cycle

At times, it is useful to have a DMA acknowledge that indicates when the
entire DMA transfer is complete, for instance, the BCR decrements to
zero. The MCF5307 (revision A and higher) and the MCF5407 have a
feature that allows for this. The DMA acknowledge type bit (DCR[AT])
can be programmed so that the DACK will assert for every transfer
(default) or so that DACK is asserted only during the final read and/or
write of the entire DMA transfer.

NOTE: The AT bit is only available on the MCF5307 when the BCR24BIT in the
bus master park register (MPARK) is set.
AN2168

20

Application Note
DACK Generation
Figure 9. Dual Address Mode DMA Flowchart

ERROR?

N

SINC = 1?

N

DMA WRITE PHASE BUS
CYCLE(S) FROM DESTINATION

ADDRESS

ERROR?

DINC = 1?

N

N

BUS ERROR ON DESTINATION
(BED) AND DONE BITS

SET IN DSR

DAR INCREMENTED

Y

Y

BCR DECREMENTED

BCR = 0?
Y

SET DONE BIT IN DSR

N

CYCLE STEAL?

N

BCR = MULTIPLE OF BWC?

Y BUS ERROR ON SOURCE (BES)
AND DONE BITS SET IN DSR

Y SAR INCREMENTED

Y

Y

NEGATE EXTERNAL
BUS REQUEST

FOR AT LEAST ONE
CLOCK.

THEN REASSERT
REQUEST

FOR MASTERSHIP
OF EXTERNAL BUS.

N

DMA PROGRAMMED, REQUEST
(INTERNAL OR EXTERNAL)

RECEIVED, AND DMA GRANTED
MASTERSHIP OF EXTERNAL BUS

DMA READ PHASE BUS CYCLE(S)
FROM SOURCE ADDRESS

WAIT FOR NEXT
REQUEST.

THEN REQUEST
MASTERSHIP OF
EXTERNAL BUS
AN2168

21

Application Note
Figure 10. Single Address Mode DMA Flowchart

DMA PROGRAMMED, REQUEST
(INTERNAL OR EXTERNAL)

RECEIVED, AND DMA GRANTED
MASTERSHIP OF EXTERNAL BUS

DMA READ PHASE BUS CYCLE(S)
FROM SOURCE ADDRESS

ERROR?

SINC = 1?
SAR INCREMENTED

BUS ERROR ON SOURCE (BES)
AND DONE BITS SET IN DSR

BCR DECREMENTED

BCR = 0? SET DONE BIT IN DSR

CYCLE STEAL?

BCR = MULTIPLE OF BWC?

WAIT FOR NEXT
REQUEST.

THEN REQUEST
MASTERSHIP

OF EXTERNAL BUS

NEGATE EXTER-
NAL BUS REQUEST
FOR AT LEAST ONE

CLOCK.
THEN REASSERT
REQUEST FOR
MASTERSHIP

OF EXTERNAL BUS.

Y

N

Y

N

Y

N

N

Y

Y

N

AN2168

22

Application Note
DMA from UART Example
DMA from UART Example

; This example uses a UART interrupt signal to request a DMA transfer from the

; UART receive buffer to memory. The code assumes that a chip select or DRAM

; bank has already been mapped to cover the destination address (0x20000). The

; code runs from address 0x20000000, so internal SRAM or other memory needs to

; be mapped to this region.

org $20000000

MBAR equ 0x10000000

RAMBAR equ 0x20000000

; DMA2 defines

SAR2 equ MBAR+0x380

DAR2 equ MBAR+0x384

DCR2 equ MBAR+0x388

BCR2 equ MBAR+0x38C

DSR2 equ MBAR+0x390

DIVR2 equ MBAR+0x394

; UART0 defines

UMR equ MBAR+0x1C0

UCSR equ MBAR+0x1C4

UCR equ MBAR+0x1C8

URB equ MBAR+0x1CC

UACR equ MBAR+0x1D0

UIMR equ MBAR+0x1D4

UBG1 equ MBAR+0x1D8

UBG2 equ MBAR+0x1DC

.align 0x10

XDEF _main
AN2168

23

Application Note
_main: nop

move.w #$2000,D0 ;Reset SR. Interrupts

move.w D0,SR ;possible at levels 0-7

UartInit:

move.b #0x20,D0 ;UART0 receiver reset

move.b D0,UCR

move.b #0x30,D0 ;UART0 transmitter reset

move.b D0,UCR

move.b #0x10,D0 ;UART0 Mode register reset

move.b D0,UCR ;this sets the pointer to UMR1

move.b #0x13,D0 ;set up the UMR1 (UART0 mode register)

move.b D0,UMR ;for no parity, 8 bits per character

;the receiver interrupt mode is set for the

;RxRDY condition (one character received)

;After writing to this register, the mode

;pointer points to UMR2

move.b #0x07,D0 ;set up the UMR2 (UART0 mode register)

move.b D0,UMR ;for normal mode, 1 stop bit

move.b #0xDD,D0 ;the transmitter and receiver are both

move.b D0,UCSR ;clocked using the system bus clock (BCLKO)

move.b #0x00,D0 ;Disable interrupts for the COS & /CTS

move.b D0,UACR

move.b #0x02,D0 ;enabled receiver interrupt

move.b D0,UIMR

move.b #0x00,d0

move.b d0,UBG1 ;program dividers for 19200 baud rate

move.b #0x49,d0

move.b d0,UBG2
AN2168

24

Application Note
DMA Interrupt Example
move.b #0x04,d0 ;enable transmitter

move.b d0,UCR

move.b #0x01,d0 ;enable receiver

move.b d0,UCR

DmaInit:

move.b #0x01,d0

move.b d0,DSR ;clear the DMA status register

move.l #URB,d0 ;set the source address register to

move.l d0,SAR2 ;point to the UART0 receiver buffer

move.l #0x20000,d0

move.l d0,DAR2 ;destination address = 0x20000

move.w #0x10,d0

move.w d0,BCR2 ;transfer 16 bytes/characters

move.w #0x601A,d0 ;external request, cycle steal mode,

move.w d0,DCR2 ;dest & source = 8-bit, the source address

;is not incremented, the destination is

loop: nop

nop

bra loop ;idle loop

DMA Interrupt Example

; This a simple DMA interrupt example using the DIVR to provide the vector

; for the DMA interrupt. The code assumes that a chip select or DRAM bank has

; already been mapped to cover the source and destination address (0x20000 and

; 0x40000). The code runs from address 0x20000000, so internal SRAM or other

; memory needs to be mapped to this region.

org $100

DMA_VECTOR:
AN2168

25

Application Note
dc.l DMA_INT ;64 (user defined interrupt)

org $20000

SOURCE_DATA:

dc.l 0x00000000

dc.l 0x11111111

dc.l 0x22222222

dc.l 0x33333333

dc.l 0x44444444

dc.l 0x55555555

dc.l 0x66666666

dc.l 0x77777777

dc.l 0x88888888

dc.l 0x99999999

dc.l 0xAAAAAAAA

dc.l 0xBBBBBBBB

dc.l 0xCCCCCCCC

dc.l 0xDDDDDDDD

dc.l 0xEEEEEEEE

dc.l 0xFFFFFFFF

org $20000000

MBAR equ 0x10000000

RAMBAR equ 0x20000000

VBR equ 0x00000000

ICR6 equ MBAR+0x052

IMR equ MBAR+0x044

SAR0 equ MBAR+0x300

DAR0 equ MBAR+0x304

DCR0 equ MBAR+0x308

BCR0 equ MBAR+0x30C
AN2168

26

Application Note
DMA Interrupt Example
DSR0 equ MBAR+0x310

DIVR0 equ MBAR+0x314

.align 0x10

XDEF _main

_main: nop

move.w #$2000,D0 ;Reset SR. Interrupts

move.w D0,SR ;possible at levels 0-7

move.l #VBR,D0 ;define the init location of the

movec D0,VBR ;Vector Base register

move.b #0x08,d0 ;set DMA ICR for level 2, priority 0

move.l d0,ICR6

move.l #0xFFFFBFFF,d0 ;enable DMA0 interrupt in IMR

move.l d0,IMR

nop

init: move.b #0x40,d0 ;program the DIVR to return vector 40 in

move.b d0,DIVR0 ;response to an IACK for DMA channel 0

move.b #0x01,d0

move.b d0,DSR0 ;clear the DMA status register

move.l #0x20000,d0

move.l d0,SAR0 ;set the source address to 0x20000

move.l #0x40000,d0

move.l d0,DAR0 ;set the destination address to 0x40000

move.w #0x40,d0 ;transfer the 64 bytes of data at 0x20000

move.w d0,BCR0 ;see the source data section above

move.w #0x8048,d0 ;interrupt enabled, source and destination

move.w d0,DCR0 ;are both longword with increment enabled.

start: move.w DCR0,d0

bset.l #0,d0 ;set START bit to

move.w d0,DCR0 ;begin the DMA transfer
AN2168

27

N

O
N

-
D

I
S

C
L

O
S

U
R

E

A
G

R
E

E
M

E
N

T

R
E

Q
U

I
R

E
D

Application Note
loop: nop

nop

bra loop ;idle loop

XDEF DMA_INT

DMA_INT:

move.b #0x01,d0 ;clear the DMA status register

move.b d0,DSR0 ;to clear the interrupt condition

rxzb30
Rectangle

rxzb30
Rectangle

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

	Introduction
	What Is a DMA Controller?
	Why Use the DMA Controller?
	What Do DMA Bus Cycles Look Like?
	Dual and Single Address Modes
	Dual Address Mode
	Dual Address Mode Example 1
	Dual Address Mode Example 2

	Single Address Mode
	Single Address Mode Example

	Continuous and Cycle Steal Modes
	Request Modes
	Internal Requests
	External Requests
	External Request, Cycle Steal Mode Example

	Auto-alignment
	DMA and UARTs
	Bandwidth Control
	Bandwidth Control Example

	DMA and Bus Prioritization (Latency Issues)
	Setting Up Interrupts for the DMA
	Programming the DIVR
	Autovectoring

	DACK Generation
	MCF5206e DACK Generation
	MCF5307 DACK Generation
	MCF5407 DACK Generation
	Generating a DACK at the End of a DMA Cycle

	DMA from UART Example
	DMA Interrupt Example

