|
y

'
A

Freescale Semiconductor

Order this document
by AN2168/D

Semiconductor Products Sector A N 2 168

Application Note

ColdFire" Microprocessor DMA Controller

By Melissa Hunter
Austin, Texas

Introduction

NOTE:

This application note discusses the use of the DMA (direct memory
access) module available on several of the ColdFire processors. This list
includes the MCF5206e, MCF5307, and MCF5407. The DMA modules
on all three of these processors are very similar, and most of the
information in this application note can be applied to all three.

The DMA module on the MCF5272 is also similar, although it does not
have all of the features offered by the DMA on the other processors.

For this application note, all of the examples and code have been run
and verified on the MCF5307. However, the same code can easily be
adapted to run on the MCF5407 and MCF5206e.

Refer to the user's manual and device errata for the processor to be
aware of any limitations of the DMA module for that particular processor.

UColdFire is a registered trademark of Freescale Semiconductor, Inc.

© Freescale Semiconductor, Inc., 2004. All rights reserved.

© Motorola, Inc., 2001
&

Z“ freescale"

semiconductor

rxzb30
Rectangle

rxzb30
ForwardLine

rxzb30
Rectangle

rxzb30
copywithline

rxzb30
copywithline

wr
PRt

Application Note

What Is a DMA Controller?

The DMA controller allows large blocks of data to be transferred without
intervention from the CPU (central processor unit). Once the DMA
registers have been programmed, a transfer can be started that will
relocate data from one memory location to another or write data to/from
a peripheral.

Why Use the DMA Controller?

When the DMA transfers data, it isn’t necessarily faster than using a
series of move instructions to relocate the data instead. In fact, the
timing for the bus cycle usually will be the same regardless of whether
the DMA or the core initiated the access. However, the DMA can
increase the overall performance of the system by freeing up the core to
execute code that is stored in cache or the on-chip SRAM (standby RAM
module). This has the inherent drawback that cache coherency is not
maintained when using the DMA, and the DMA cannot transfer data to
or from the on-chip SRAM.

What Do DMA Bus Cycles Look Like?

The ColdFire user’s manuals don’t show DMA-specific timings for full
bus cycles, because there isn't a difference in the timing for a bus cycle
initiated by the core and a bus cycle initiated by the DMA.

When performing a DMA transfer, as long as the alternate master (AM)
bit for the corresponding chip select or DRAMC register is cleared, the
DMA address can still “hit” in the associated chip select or DRAM
(dynamic RAM) region. Therefore, the bus cycles will appear the same
as a non-DMA (ColdFire core) access to the same address since the
timing (wait states, CAS latency, etc.) will be controlled by the same
register settings. The timing, control signals, and strobes will be the
same, only the transfer type and transfer modifier information will be
different. So if the DMA source or destination address “hits” in a chip
select space, then the chip select control registers will define the bus
cycle (wait states, bursting, etc.).

AN2168

Application Note
What Do DMA Bus Cycles Look Like?

For example, Figure 1 shows a software-initiated, word-sized bus cycle
to address OxFFE00400.

TLA - [Waveform 1]
File Edit View Data 3System Window Help == x|

=d| 8| B\E| e[?] seus | R 2
I=|E.|.| c‘;’él‘lﬁl |3_¢."-r¢.|-'| +|ﬂ'f||'."|T|me£Dw |2Elns I ++|++| _I
C1: |983.2ns = C2:[1.0272us = Delta Time: [44ns =

#C5 C1: FF C2: FF Delta: 00

7.500 ts 047,500 ud
5 ample 4 __I-IHIIIIIIIIIIIIIIIIIIIIIIIIIIIII|IIIIIIIIlI4lllul

BCLED[O)
Addresz
Data

ATS
R/

TT

TH

q2
For Help, press F1 | | Tekironi: I g

Figure 1. Chip Select-Initiated Bus Cycle

AN2168

Application Note

Figure 2 shows another word-sized bus cycle to OxFFE00400. The chip
select settings are the same, but this time it is a DMA-initiated bus cycle.

TLA - [Waveform 1]
File Edit WView Data Swystemn Window Help _|5’|£|

Iil'ﬂllnl @l |E| *?I ?I Statuz | Idle I_F[E
=E|8.] 2|52]| | 80| [rimeiv [ons o iy o
C1: I'I.'EIdEus = L2 I'B-?”S = Dielta Time: I-'I.'EIEE?us =

BCLEO[D] C1: 0 Cc2: 0 Delta: 0

T |

000 nE 145,000 ns
Sample |||H||||||||||||||||||||||||||||J'l:t|||r|-I

ECLEO(D] i =
Addresz b FFEQQ40Q0 e

D ata 1 acEEooee | | dEFCO0GE
/TS I
B
TT [T

TH [a[i]x]

A5 FF_% | [FE[__ 1 T

512 1 T w [T 1T

K
ST

For Help, press Fl | | Tekdronix 2

Figure 2. DMA-Initiated Bus Cycle

When comparing the two bus cycles, the basic timing properties are the
same. Both bus cycles take six clocks (three wait states) to complete. In
Figure 1 there are two dead clocks after the deassertion of the chip
select and before TS asserts for the start of the next bus cycle. The DMA
will result in back-to-back bus cycles, so in Figure 2 there are no dead
clocks between bus cycles. By eliminating dead clocks and allowing the
core to run code from internal memory, the DMA can be used to transfer
large blocks of data more efficiently than the core itself.

AN2168

Application Note
Dual and Single Address Modes

Dual and Single Address Modes

The DMA controller has two primary transfer modes:
* Dual address

» Single address

Dual Address Dual address mode is the most straightforward DMA transfer mode to

Mode implement. A dual address transfer consists of two phases. There is at
least one read from the source address followed by one or more writes
to the destination address. The number of reads and writes will depend
on the source and destination sizes programmed in the DMA control
register (DCR) as well as the port size for the source and destination
address.

Dual Address Mode For example, the MCF5307 is programmed with the following chip select
Example 1 parameters:

CSARD = OXFFEO ; base address = OxFFEO0000
CSMRO = 0x000F0001 ; address range = OxFFEO0000- FFEFFFFF
CSCRO = Ox0D80 ; 3 wait states, auto-acknow edge, 16-bit port
CSARL = 0x2000 ; base address = 0x20000000
CSMRL = 0x00000001 ; address range = 0x20000000- 2000FFFF
CSCR1L = 0x0158 ; O waitstates, autoacknow edge, 8-bit port, burst enabl ed
The DMA is programmed with the following values:
= 0x01 ; clear status register
= OxFFEO00400 ; source address = OxFFEOQ0400
= 0x20000000 ; destination address = 0x20000000
= 0x002 ; transfer 2 bytes
= 0x006B ; source = 16-bit, destination = 8-bit
AN2168

Application Note

Figure 3 shows the resulting dual address DMA transfer. Since the
DCRI[SSIZE] is programmed as word and the chip select mapped to the
source address (CS0) is also a word port size, there is a single read from
the source address. However, the destination size and chip select are
both programmed as bytes. The DMA controller needs to write the full
16 bits of data to the destination, so the read is followed by two byte-size
transfers to the destination address.

W Bl Edn Riew Data System Wmdow Hep =l x]
28] 8| By W(2| _sme | | - A =

£) BT W] feenne [o 2] O
C1: [4u=n: B T = DleTime [45 0w =

BEZ Ci: 10 G2 10 Cieiezc ([

5 ampls
BCLED)D)
s
)

5
AW

™

™

TS

5T

Bl

Foc Helgs, poaat Fl | wiess |

Figure 3. Dual Address Transfer, SSIZE = word, DSIZE = byte

AN2168

Application Note
Dual and Single Address Modes

Dual Address Mode To achieve a higher DMA transfer rate, the DMA settings from the
Example 2 example in Dual Address Mode Example 1 could be changed so that
the destination size is also word. Use the following DMA settings:

DSR = Ox01 ; clear status register

SAR = OxFFE00400 ; source address = OxFFEOQ0400

DAR = 0x20000000 ; destination address = 0x20000000
BCR = 0x0002 ; transfer 2 bytes

DCR = 0x006D ; source = 16-bit, destination = 16-bit

and the same chip select settings.

Figure 4 shows the DMA transfer with the source and destination both
set to word. Just as before, there is a single read from the source
address, but now there is a word burst to a byte port at the destination
address. Since CS1 is programmed to allow bursts and the DMA
requests a transfer size larger than the chip select’s port size, a burst
transfer results.

i TLA - [Waveform 1 =10] %]
M| Ele E&t Maew Dale System Hemdow Help =181 x]
=R S| DD W[2] _ s | e | A Tk
3 3 Il 3 e T e) R " £ 84

enfior: = e loe = pebates [5

BELEDM ci: £z 0 Dt -1

FegHelp, pevaa Fl p (T —

Figure 4. Dual Address Transfer, SSIZE = word, DSIZE = word

AN2168

Application Note

Single Address

Mode

Single Address
Mode Example

Programming the DMA source size and/or destination size to use
bursting bus cycles when possible can help to increase the overall
performance of a DMA transfer. The example in Dual Address Mode
Example 1 does not take advantage of the fact that CS1 is programmed
to allow bursting. The entire DMA transfer shown in Figure 3 takes

12 clock cycles to complete. However, the second example does take
advantage of the chip selects bursting capability, so the DMA transfer in
Figure 4 only takes 10 clock cycles to transfer the same amount of data.
Setting the destination size to 16-bit instead of 8-bit eliminates two clock
cycles. If the byte count used for the examples had been larger, then
even more clock cycles would have been eliminated by using the 16-bit
destination size. For example, if the transfer byte count had been

100 bytes instead of 2, then example 2 would have completed 100 clock
cycles faster than example 1.

In a single address transfer, only one bus access is performed — a read
or write to the source address. The S_RW bit in the DCR determines the
state of the R/W line during the transfer. Since there is only one bus
cycle, single address mode requires external logic to decode the access
and generate the necessary signals for the second device or an external
peripheral that has built-in logic that will decode the bus cycle.

Figure 5 shows a single address transfer to address 0x20000000 using
the following chip select settings:

CSARL = base address = 0x20000000
CSMRL = 0x00000001 ; address range = 0x20000000- 0x2000FFFF
CSCRL = 0 waitstates, autoacknow edge, 8-bit port, burst enabl ed
Then the DMA is programmed with these values:
= 0x01 ; clear status register

0x20000000 ; source address = 0x20000000
0x0002 ; transfer 2 bytes

0ox01D1 ;

single address, RW= 1, source=8-bit

AN2168

Application Note
Dual and Single Address Modes

TLA - [Waveform 1]
File Edit Wiew Data System Window Help _|ﬁ’|5|

ﬁlnl %l |EI N’?I ?l Status | Idle I Hum
2|8, | E| 2] a|eE| | 6h = [rimesmiv: [20ns =) et fed
C1: |1.94Bu3 3: C2: I-B.?r‘ls 3: Delta Time: I-'l.HEE?US 3:

BCLEO[D) C1: 1 C2:1 Delta: 0

Sample el .- i
BCLED(D) [
Address Fooooofpo 2000000
Data
iTS

R
TT
TH
JC5

F

ST Al

ForHelp, press Fl | | | Rekmonix g

Figure 5. Single Address Transfer, SSIZE = byte

In this example, the chip select is programmed for a zero wait state
8-bit port. The DMA is set up for 8-bit single address transfers with
R/W high.

AN2168

wr
PRt

Application Note

Continuous and Cycle Steal Modes

Request Modes

In continuous mode when the internal or external DMA request is
received and the DMA transfer starts, the DMA will continue to transfer
data until:

* A multiple of the BWC value is reached — The DMA will release
the bus when the BCR reaches a multiple of the value
programmed into the BWC.

* The transfer completes — The BCR reaches zero, the DMA
terminates with an error, or the DONE bit is set by software
(internal request only).

In cycle steal mode, there is one DMA transfer per request. Instead of
running multiple bus cycles until the entire byte count is transferred,
there is just one read and one write phase for each request (only one
read or write phase for single address mode).

For example, transferring 32 bytes of data from a longword port to a byte
port using cycle steal mode requires eight requests. For each request a
longword is read from the source, and then the same longword (four
bytes) is written to the destination. Since each transfer decrements the
BCR by four, it will take eight transfers to move the entire 32 bytes
(32/4 = 8). When the eighth transfer completes, the BCR will be cleared
and the DONE bit in the DSR will be set to indicate the completion of the
entire DMA transfer.

The DMA controller has two different types of requests that can be used
to start a DMA transfer:

* Internal requests

» External requests

AN2168

10

Internal Requests

NOTE:

External Requests

External Request,
Cycle Steal Mode

Application Note
Request Modes

For an internal request, software sets the DCR[START] bit to begin a
DMA cycle. Using internal DMA requests is straightforward. Since the
DMA is started by software, there aren’t any timing concerns to worry
about.

However, be careful when setting the DCR[START] if the DCR[EEXT] is
also set, since this could lead to conflicts with an incoming external
request.

All of the previous examples in this application note have used an
internal request to start the DMA transfer.

A DMA transfer also can be requested by asserting the DREQXx line. To
have an external request start a DMA transfer, the DCR[EEXT] must be
set; otherwise, the assertion of DREQx will be ignored.

At a minimum, DREQx should be asserted for one rising clock edge (it
will also need to meet the setup and hold time requirements with respect
to the clock edge). The maximum time DREQx can be held depends on
the configuration. In continuous mode, DREQx should be deasserted
before the end of the DMA transfer.

However, in cycle steal mode, the DREQx must be negated early
enough or additional unwanted transfers could occur. If you are using
dual address cycle steal mode and only want one DMA transfer, then
DREQx should be negated before the write portion of the transfer starts.
For single address cycle steal mode, DREQx must negate before the
DMA transfer starts to prevent additional transfers from occurring.

Figure 6 and Figure 7 show a cycle steal DMA transfer using the
external request mode. This example uses the following chip select

Example settings:
CSAR0 = OxFFEO ; base address = OxFFEO0000
CSMRO = Ox000F0001 ; address range = OxFFEO0000- Ox FFEFFFFF
CSCRO = 0x0DBO ; 3 waitstates, autoacknow edge, 16-bit port
CSARL = 0x2000 ; base address = 0x20000000
CSMRL = 0x00000001 ; address range = 0x20000000- 0x2000FFFF
CSCR1L = 0x0158 ; 0O waitstates, autoacknow edge, 8-bit port, burst enabl ed

AN2168

11

Application Note

The DMA module is programmed with these values:

DSR = 0x01 ; clear status register

SAR = OxFFE00400 ; source address = OxFFEO00400

DAR = 0x20000000 ; destination address = 0x20000000

BCR = 0x0004 ; transfer 4 bytes

DCR = Ox606A ; cycle steal, ext. request, source=16-bit, destination=8-bit

TLA - [Waveform 1]
File Edit Wiew Data Jystem Window Help = =] x|

=R 8| B|O| X2 _ sew | [Run (PRI
I:|E-|.| é’él‘lﬁl ﬁl'l +|ﬂ|"*|Tlme.-"Dw IEUHS l ++|+_,,| _l
C1: |-192ns = C2 |80 =] Delta Time: [476ns =]

512 C1: 00 Cz: 0 Delta: 01

Sarple -ZlE ns 344,000 rs

BCLED(O)
Address
Data

iTS

R A

TT

Thd

fCS

=]
ADREQ(D]

K
Eoe—g] o I!

For Help, press Fl | | | Teldronix |

Figure 6. Cycle Steal Transfer Using External Request Mode — 1

AN2168

12

Application Note
Request Modes

Figure 6 shows the first word transfer of the DMA cycle. Cursor 1 marks
the assertion of DREQ. After DREQ asserts, the processor completes
the current bus cycle and grants mastership of the external bus to the
DMA channel. Since the DMA is programmed for cycle steal mode, there
is just one read and one write phase. The basic DMA transfer timing is
the same as shown in Dual Address Mode Example 1. After the first
DMA transfer completes, the BCR is decremented by two. Bus
mastership is then returned to the core and a normal mode bus cycle
starts at cursor 2.

@ TLA - [Waveform 1 =1l
W] Fue Bt Wew [Dale Sviten Bindow Help ELR
SR 8| B e8] s | (] - | Al L
3[R 4|7 |%| SR[cF| <] frmemie [=] LY O

Sk

LEm Dela 11

For Heldp, press FL

| misreme -

AN2168

Figure 7. Cycle Steal Transfer Using External Request Mode — 2

Figure 7 shows the transfer of the second word. Cursor 2 marks the
beginning of the same normal mode access, as shown in Figure 6.
Again the DREQ signal is asserted to indicate an external DMA request
to the ColdFire. Once the DMA channel gains mastership, another read
and write phase is started (cursor 1). After the write phase is complete,
the BCR decrements by two again, clearing the BCR. This signals the
end of the entire DMA transfer and the DONE bit in the DSR is set.
Finally, bus mastership returns to the core and a normal mode access is
started.

13

Application Note

Auto-alignment

The DMA has an auto-alignment feature which allows transfers to or
from misaligned addresses. The auto-alignment logic will break
transfers up depending on the address, byte count, and transfer size.
For example, using the same chip select settings as Dual Address
Mode Example 1 and the DMA registers settings that follow would give
a configuration error.

0x01 ; clear status register

OXFFEO0001 ; source address = OxFFEO0001
0x20000000 ; destination address = 0x20000000
0x0004 ; transfer 4 bytes

0x006B ; no auto-align, source=16-bit, destination=8-hit

Since the source size is word, the source address must be word-aligned
if the auto-align feature is not being used. However, if the auto-align
feature is enabled, the ColdFire can complete the DMA transfer even if
either the source or destination is not aligned.

Here are the settings for the same transfer, but this time with auto-
alignment enabled:

0x01 ; clear status register

OXFFEO0001 ; source address = OxFFEO0001
0x20000000 ; destination address = 0x20000000
0x0004 ; transfer 4 bytes

0x106B ; auto-align, source=16-bit, destination=8-bit

Figure 8 shows the actual transfer.

AN2168

14

Application Note
Auto-alignment
H- Eét Uew Duts Gystem Wedow Help =18 x|
ECL L =L - A ok
of[Ry| & |79 SE|cF]| || frmemn 5] REISY] G
i |--'Th' E_ L2 [4fdn: = Digks Tame: | FFin:
4]
. Pot Help, press Fi | | | ki -'":El
Figure 8. Transfer from Misaligned Source Using Auto-alignment
At the start of the DMA transfer, the source address (OxFFE00001) is
byte-aligned, so the first bus cycle is a byte read. This is followed by a
byte-sized write to the destination. After the first byte is transferred, the
source address is incremented to OXFFEO0002. Now that the source is
word-aligned, the DMA can transfer a word at a time.
So the next cycle is word read from the source starting at cursor 1. Since
the destination is a byte port, it takes two bus cycles to write the data
read in during the word access to the source. Now there is only one byte
remaining to be transferred (BCR = 1), so there is a byte read from the
source and a byte write to the destination to complete the DMA transfer.
AN2168

15

wr
PRt

Application Note

DMA and UARTSs

NOTE:

NOTE:

The MCF5307 and MCF5407 both have four DMA channels. For
channels 0 and 1, the external request signals are connected to the
external request pins DREQ[1:0]. The external requests for the
remaining channels are internally tied to the UART interrupt request
lines so that channel 2 corresponds to UARTO and channel 3
corresponds to UART1. This allows a UART (universal asynchronous
receiver transmitter) receive interrupt condition to automatically trigger a
DMA transfer.

To generate a request to the DMA, the UART should be programmed so
that the receive interrupt is enabled in the UART interrupt mask register
(UIMR). The receive interrupt condition should be set to the RxRDY
option in the UART mode register (UMR1). Now the UART will assert its
interrupt request line whenever a character is received.

The interrupt must remain masked in the interrupt mask register (IMR).
This allows the DMA to respond to the UART interrupt request instead
of the core.

The DMA channel should be programmed for dual address, cycle steal
mode operation. The external request bit should be set so the DMA can
recognize the UART interrupt line as a DMA request. The source
address is set to the location of the UART receive buffer (URB) and the
source increment option is disabled.

Refer to DMA from UART Example for assembly example code.

The MCF5206e cannot DMA to or from the UARTs. The MCF5307 and
MCF5407 can DMA from the UARTS, but not to the UARTS.

AN2168

16

Bandwidth Control

Application Note
Bandwidth Control

Bandwidth Control
Example

AN2168

When a continuous mode DMA transfer (internal or external request) is
started, the DMA must assert a request to the processor’s internal arbiter
to gain mastership of the external bus. Once the internal arbiter grants
the channel mastership of the bus, the DMA transfer will begin. The DMA
module has a bandwidth control feature that can help to prevent the
DMA from choking off the core’s access to the external bus. The
bandwidth control settings programmed in the DCR[BW(C] can be used
to force the DMA to relinquish control of the external bus at certain
intervals and thereby allow the core an opportunity to gain mastership of
the external bus.

When a multiple of the BWC has been reached, the DMA channel will
relinquish the bus by negating its request to the internal arbiter for one
clock. At this point, the core or another DMA channel can gain
mastership of the bus. One clock later the DMA channel will request the
bus again so that it can complete the transfer. The DMA channel will
have to go through the arbiter to gain mastership of the bus again. If a
higher priority master is also requesting the bus, then the DMA cycle will
be delayed while waiting for the arbiter to grant bus mastership to the
DMA channel.

For example, if the DCR[BWC] bits are set for 512 bytes, then every time
the BWC reaches a value that is a multiple of 512 the DMA will negate
its request to the internal arbiter for one clock. If the byte count for the
entire transfer is set to 1000 bytes and the DMA transfers one byte at a
time (source and destination size are both byte), then after the first 488
bytes are transferred the BCR will equal 512 and the DMA will negate its
bus request. Since the DMA channel still has another 512 bytes left to
move, the DMA transfer is not complete. After the request is negated for
one clock, the DMA channel will reassert the bus request to the internal
arbiter. Once the internal arbiter gives mastership of the external bus
back to the DMA channel, the transfer will resume and continue until the
byte count decrements to zero.

17

wr
PRt

Application Note

DMA and Bus Prioritization (Latency Issues)

There are a couple of prioritization schemes that should be taken into
account when using the DMA. The first is the prioritization between the
ColdFire core and the DMA module. The ColdFire has an internal arbiter
that determines when the core or DMA should be granted access to the
external bus. The user can change the arbiter settings by programming
the MPARK register. If a system has too much delay between the
request for a DMA transfer and the DMA bus cycle, then the latency
might be reduced by reprogramming the MPARK register to give the
DMA channel priority over the core. The actual settings and arbitration
schemes vary from part to part, so refer to the SIM (system integration
module) section of the appropriate user’'s manual for more details.

Setting Up Interrupts for the DMA

Programming
the DIVR

Determining the correct vector number to use is the main concern when
using interrupts for on-chip resources. For the ColdFire DMA module,
there are two options for generating an interrupt vector number in
response to an interrupt acknowledge (IACK) cycle:

* Programming the DIVR

» Using the autovector feature

The first option is to program the DMA interrupt vector register (DIVR)
with the hex interrupt vector. The vector chosen should be one of the
ColdFire user-defined interrupts (vectors 64—-255). When an IACK cycle
for a DMA interrupt occurs, the DMA will return the value in the DIVR.
Then the processor will start the exception handling process by building
the exception stack frame and fetching the vector table entry specified
by the DIVR.

Refer to DMA Interrupt Example for a software example.

AN2168

18

Autovectoring

DACK Generation

Application Note
DACK Generation

The second option is using the ColdFire interrupt controller’s autovector
feature. Setting the AVEC bit in the appropriate interrupt control register
(ICR) will enable autovectoring for interrupts generated by the
corresponding module. The autovector feature allows the interrupt
controller to generate a vector for the interrupt based on the interrupt
level. Instead of using the vector returned during the internal IACK cycle,
the interrupt controller will discard this value and use a vector equal to
24 plus the interrupt level.

MCF5206e DACK
Generation

MCF5307 DACK
Generation

MCF5407 DACK
Generation

AN2168

In some cases, in particular when using an external DMA request, it is

helpful to have a DMA acknowledge signal that indicates when a DMA
cycle occurs. The method to generate a DACK can vary from processor
to processor, so each part is covered separately.

The MCF5206e does not generate any type of DACK, so external logic
is needed. The DACK can be generated by monitoring the TT[1:0] pins.
A TTI[1:0] encoding of 01 indicates a DMA bus cycle, then the address
or chip selects can be used to determine which DMA channel is
accessing the bus. If only one DMA channel is used, then the external
logic can be simplified to only monitor the TT[1:0] lines.

For the MCF5307, the TM[2:0] pins do indicate DACKs; however, these
are not dedicated DACK pins. They only indicate a DACK when the
TT[1:0] = 01 designating a DMA access, so external logic will be needed
to qualify the transfer modifier signals based on the transfer type
encoding.

The MCF5407 generates DACK signals. In this case, the DACK pins are
multiplexed with other functions, so the DACK functionality must be
enabled. This can be done in two steps. First, set the pin assignment
register (PAR) bit 3 and/or bit 2 to enable the transfer modifier and DACK
functionality. Then set one or both of the ENBDACKN bits in the interrupt
port assignment register (IRQPAR).

19

Application Note

Generating a
DACK at the End
of a DMA Cycle

NOTE:

At times, it is useful to have a DMA acknowledge that indicates when the
entire DMA transfer is complete, for instance, the BCR decrements to
zero. The MCF5307 (revision A and higher) and the MCF5407 have a
feature that allows for this. The DMA acknowledge type bit (DCR[AT])
can be programmed so that the DACK will assert for every transfer
(default) or so that DACK is asserted only during the final read and/or
write of the entire DMA transfer.

The AT bit is only available on the MCF5307 when the BCR24BIT in the
bus master park register (MPARK) is set.

AN2168

20

Application Note
DACK Generation

DMA PROGRAMMED, REQUEST
(INTERNAL OR EXTERNAL)
RECEIVED, AND DMA GRANTED
MASTERSHIP OF EXTERNAL BUS

Y

DMA READ PHASE BUS CYCLE(S)

‘ - FROM SOURCE ADDRESS

ERROR?
N

BUS ERROR ON SOURCE (BES)
AND DONE BITS SET IN DSR

SAR INCREMENTED

DMA WRITE PHASE BUS
CYCLE(S) FROM DESTINATION
ADDRESS

BUS ERROR ON DESTINATION
(BED) AND DONE BITS
SET IN DSR

DAR INCREMENTED

WAIT FOR NEXT
REQUEST.
THEN REQUEST
MASTERSHIP OF
EXTERNAL BUS

A BCR DECREMENTED

SET DONE BIT IN DSR

NEGATE EXTERNAL
BUS REQUEST
FOR AT LEAST ONE
CLOCK.
THEN REASSERT

REQUEST
FOR MASTERSHIP -
OF EXTERNAL BUS.

Figure 9. Dual Address Mode DMA Flowchart

AN2168

Application Note

DMA PROGRAMMED, REQUEST
(INTERNAL OR EXTERNAL)
RECEIVED, AND DMA GRANTED
MASTERSHIP OF EXTERNAL BUS

Y

DMA READ PHASE BUS CYCLE(S)

BUS ERROR ON SOURCE (BES)
AND DONE BITS SET IN DSR

SAR INCREMENTED

SET DONE BIT IN DSR

‘ A FROM SOURCE ADDRESS
ERROR?
BCR DECREMENTED
WAIT FOR NEXT
REQUEST.
THEN REQUEST
MASTERSHIP
OF EXTERNAL BUS
NEGATE EXTER-
NAL BUS REQUEST
FOR AT LEAST ONE
CLOCK.
THEN REASSERT
REQUEST FOR
MASTERSHIP
OF EXTERNAL BUS.

Figure 10. Single Address Mode DMA Flowchart

AN2168

22

Application Note
DMA from UART Example

DMA from UART Example

This exanple uses a UART interrupt signal to request a DVA transfer fromthe
UART receive buffer to nenmory. The code assunes that a chip select or DRAM

bank has al ready been mapped to cover the destination address (0x20000). The
code runs from address 0x20000000, so internal SRAM or other nenory needs to

be mapped to this region.

org $20000000
MBAR equ 0x10000000
RAVMBAR equ 0x20000000

DMA2 defi nes

SAR2 equ MBAR+0x 380
DAR2 equ MBAR+0x 384
DCR2 equ MBAR+0x 388
BCR2 equ MBAR+0x38C
DSR2 equ MBAR+0x390
DVR2 equ MBAR+0x 394

UARTO defi nes

UMR equ MBAR+0x1C0
UCSR equ MBAR+0x1C4
UCR equ MBAR+0x1C8
URB equ MBAR+0x1CC
UACR equ MBAR+0x 1D0
u MR equ MBAR+0x1D4
UBGL equ MBAR+0x 1D8
UB&X2 equ MBAR+0x 1DC

.align 0x10

XDEF _main
AN2168

23

Application Note

nop

nove. w #$2000, DO

nove.

Uartlnit:

nove.

nove.

nove.

nove.

nove.

nove.

nove.

nove.

nove.

nove.

nove.

nove.

nove.

nove.

nove.

nove.

nove.

nove.

nove.

nove.

w

o T T T T T

o T T T T T T ©T

o T T ©T

DO, SR

#0x20, DO
DO, UCR
#0x30, DO
DO, UCR
#0x10, DO
DO, UCR

#0x13, DO
DO, UMR

#0x07, DO
DO, UMR

#0xDD, DO
DO, UCSR
#0x00, DO
DO, UACR
#0x02, DO
DO, U MR

#0x00, dO
do, UBGL
#0x49, dO
do, UB&2

; Reset SR Interrupts

; possible at levels 0-7

: UARTO receiver reset

;UARTO transmtter reset

; UARTO Mode regi ster reset
;this sets the pointer to UVRL

;set up the UVMRL (UARTO nobde register)
;for no parity, 8 bits per character
;the receiver interrupt node is set for the

; RXRDY condition (one character received)

;After witing to this register, the node

; pointer points to UVR2

;set up the UVMR2 (UARTO npde register)

;for normal node, 1 stop bit

;the transmitter and receiver are both

; cl ocked using the system bus cl ock (BCLKO
;Disable interrupts for the COS & /CTS

; enabl ed receiver interrupt

; program di viders for 19200 baud rate

AN2168

24

nove.

nove.

nove.

nove.

Dmal nit:

| oop:

nove.

nove.

nove.

nove.

nove.

nove.

nove.

nove.

nove.

nove.

nop
nop

bra

£ £ £ =

#0x04, dO
do, UCR

#0x01, dO
do, UCR

#0x01, dO
do, DSR
#URB, dO

do, SAR2
#0x20000, dO
do, DAR2
#0x10, dO
do, BCR2
#0x601A, dO
do, DCR2

| oop

DMA Interrupt Example

Application Note
DMA Interrupt Example

;enable transmtter

:enabl e recei ver

;clear the DVA status register
;set the source address register to

;point to the UARTO receiver buffer

;destination address = 0x20000

;transfer 16 bytes/characters

;external request, cycle steal node,

;dest & source = 8-bit, the source address

;i1s not increnented, the destination is

;idle loop

This a sinple DVA interrupt exanple using the DIVR to provide the vector

for the DVA interrupt.

The code assunes that a chip select or

DRAM bank has

al ready been mapped to cover the source and destinati on address (0x20000 and

0x40000) .

The code runs from address 0x20000000,

so internal SRAM or ot her

menory needs to be mapped to this region.

org $100
DVA_VECTOR

AN2168

25

Application Note

DVA I NT ;64 (user defined interrupt)

dc. |
org $20000
SOURCE_DATA:
dc.| 0x00000000
dc. | Ox11111111
dc. | 0x22222222
dc.| 0x33333333
dc. | 0x44444444
dc. | 0x55555555
dc.| 0Ox66666666
dc. | Ox77777777
dc.| 0x88888888
dc. | 0x99999999
dc. | OXAAAAAAAA
dc.| 0OxBBBBBBBB
dc. | 0OxCCCCcccC
dc.| 0OxDDDDDDDD
dc.| OxEEEEEEEE
dc.| OxFFFFFFFF
org $20000000
MBAR equ 0x10000000
RAMBAR equ 0x20000000
VBR equ 0x00000000
| CR6 equ MBAR+0x052
I MR equ MBAR+0x044
SARO equ MBAR+0x300
DARO equ MBAR+0x 304
DCRO equ MBAR+0x308
BCRO equ MBAR+0x30C

AN2168

26

DSRO
Dl VRO

init:

start:

AN2168

equ

equ

.alig
XDEF
nop
move.

nove.

nove.

novec

nove.
nove.
nove.
nove.

nop

nove.
nove.
nove.
nove.
nove.
nove.
nove.
nove.
nove.
nove.
nove.

nove.

nove.
bset .

nove.

VMBAR+0x310
VMBAR+0x314

n 0x10

w #$2000, DO
w DO, SR

| #VBR, DO
DO, VBR

b #0x08, dO

| dO, 1 CR6

| #OxFFFFBFFF, dO
[dOo, I MR

#0x40, dO
do, DI VRO
#0x01, dO
do, DSRO

| #0x20000, dO
| dO, SARO

| #0x40000, dO
| dO, DARO

w #0x40, dO

w dO0, BCRO

w #0x8048, d0
w d0, DCRO

w DCRO, dO
| #0, dO
w d0, DCRO

Application Note
DMA Interrupt Example

; Reset SR Interrupts

; possible at levels 0-7

;define the init |ocation of the

; Vect or Base register

;set DMA ICR for level 2, priority O

;enable DMAO interrupt in I MR

;programthe DIVR to return vector 40 in

;response to an | ACK for DVA channel O

;clear the DVA status register

:set the source address to 0x20000

;set the destination address to 0x40000
;transfer the 64 bytes of data at 0x20000
; see the source data section above
;interrupt enabl ed, source and destination

;are both ongword with increnent enabl ed.

;set START bit to
; begin the DVA transfer

27

| oop: nop
nop
bra | oop
XDEF DMA_| NT
DVA | NT:

nove. b #0x01, dO
nove. b dO, DSRO

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center

2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong

+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center
P.O. Box 5405

Denver, Colorado 80217

1-800-441-2447 or 303-675-2140

Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Application Note

;idle loop

;clear the DVA status register

;to clear the interrupt condition

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

freescale"

semiconductor

rxzb30
Rectangle

rxzb30
Rectangle

rxzb30
disclaimer

rxzb30
hibbertleft

rxzb30
freescalecolorjpeg

	Introduction
	What Is a DMA Controller?
	Why Use the DMA Controller?
	What Do DMA Bus Cycles Look Like?
	Dual and Single Address Modes
	Dual Address Mode
	Dual Address Mode Example 1
	Dual Address Mode Example 2

	Single Address Mode
	Single Address Mode Example

	Continuous and Cycle Steal Modes
	Request Modes
	Internal Requests
	External Requests
	External Request, Cycle Steal Mode Example

	Auto-alignment
	DMA and UARTs
	Bandwidth Control
	Bandwidth Control Example

	DMA and Bus Prioritization (Latency Issues)
	Setting Up Interrupts for the DMA
	Programming the DIVR
	Autovectoring

	DACK Generation
	MCF5206e DACK Generation
	MCF5307 DACK Generation
	MCF5407 DACK Generation
	Generating a DACK at the End of a DMA Cycle

	DMA from UART Example
	DMA Interrupt Example

