
Freescale Semiconductor
Application Note

AN2252
Rev. 3, 3/2005

CONTENTS

1 Received Model ..2
2 Path Searcher ...3
2.1 Complex Autocorrelation ..3
2.2 Non-Coherent Averaging ..4
2.3 Local Peak Search ...5
2.4 Compute Threshold ...5
2.5 Local Peak Removal ...6
3 Implementation in StarCore6
3.1 Complex Autocorrelation ..7
3.2 Non-Coherent Averaging10
3.3 Find Local Peak ..11
3.4 Compute Threshold ...13
3.5 Local Peak Removal ...14
4 Results... 15
5 Fine Tuning ...17
6 References ...17

Path Searcher for a WCDMA Rake
Receiver
By Kim-Chyan Gan
Wideband CDMA (WCDMA), a third-generation air interface,
is based on direct-sequence (DS) CDMA technology. A Rake
receiver minimizes distortion of the signals in a DS-CDMA
system. One component of a Rake receiver is a path searcher.
The Rake receiver consists of “fingers,” each corresponding to
one path delay of a received signal. The number of fingers and
the delay of each finger in a Rake receiver are allocated on the
basis of the path searcher. The operating parameters of the path
searcher are assigned by the finger management.

In wireless channels, a signal may go through different fading
paths. Since each path has a different length and the signals
travel at the same speed, the signal arrival times for the paths
differ. The path searcher finds the arrival time of the signals
from different paths. In order for the path searcher to work, the
delay of different paths must be greater than a chip period.
Since the bandwidth of a CDMA system is usually wide, a chip
period is very small, so delays of different paths are usually
greater than one chip period.

This application note explains how the path searcher works and
then describes how it is implemented on Freescale StarCore™-
based DSPs.
© Freescale Semiconductor, Inc., 2002, 2005. All rights reserved.

Received Model
1 Received Model
In a DS-CDMA system, the discrete-time received signal from base station to handset can be expressed as follows:

r p() cl p()ak p
τ l
Tc
-----–⎝ ⎠

⎛ ⎞ nk l, p()+

l 1=

L

∑
k 1=

K

∑=

 Equation 1

Where:

• p: discrete time index

• r(p): received baseband signal after the match filter

• K: number of channels within frequency band

• L: number of fading paths

• cl(p): discrete complex channel coefficient of l-th path (channel distortion)

• ak(p): discrete transmitted chip data of k-th channel after scrambling and spreading

• τ l: delay of l-th path

• Tc: chip period

• [x]: rounding of x

• nk,l(p): additive white gaussian noise (AWGN) of k-th channel in l-th path

The expression in Equation 1 omits the symbol-level details and starts at the chip level. In a downlink, each
channel within the same frequency band is separated by a spreading code. From the receiver point of view, every
single channel within a frequency band goes through the same L-path fading. Thus, the complex channel
coefficients are the same at a receiving point for all channels within a frequency band.

The path searcher is based on the Primary Common Pilot Channel (P-CPICH). In the WCDMA system, each frame
contains 15 slots. In each slot of P-CPICH, ten complex symbols of 1+j are transmitted when there is one
transmission source (no transmit diversity). Each symbol is expanded into chip level by a fixed spreading factor of
256 with a spreading code of “all ones.” P-CPICH carries data, spreading code, and scrambling code. However,
data is 1+j and the spreading code consists of 256 ones, so the only valuable information extracted from P-CPICH
is the scrambling code. In Equation 2, the first term on R.H.S (k=1) refers to P-CPICH.

r p() cl p()sc p
τ l
Tc
-----–⎝ ⎠

⎛ ⎞ cl p()ak p
τ l
Tc
-----–⎝ ⎠

⎛ ⎞ nk l, p()+

l 1=

L

∑
k 2=

K

∑+

l 1=

L

∑

cl p()sc p
τ l
Tc
-----–⎝ ⎠

⎛ ⎞ mai p() nk l, p()+ +

l 1=

L

∑

cl p()sc p
τ l
Tc
-----–⎝ ⎠

⎛ ⎞ w p()+

l 1=

L

∑

=

=

=

 Equation 2
Path Searcher for a WCDMA Rake Receiver, Rev. 3

2 Freescale Semiconductor

Path Searcher
where

mai p() cl p()ak p
τ l
Tc
-----–⎝ ⎠

⎛ ⎞

l 1=

L

∑
k 2=

K

∑=

mai(p) is the multiple-access interference caused by signals from other channels. sc(p) is the scrambling code for a
particular cell. For simplicity, mai(p) can be modeled as AWGN. Both the mai(p) and nk,l(p) terms can be
combined and become w(p), which is also AWGN. There is some interference caused by signals transmitted from
adjacent cells. However, inter-cell interference is assumed to be negligible.

2 Path Searcher
The path searcher has five blocks (see Figure 1). Initially, a received signal, r(t), is digitized by A/D. Since the
delay of each path may not be a multiple of the chip period, r(t) is over-sampled for better precision in a
digitalization process. The discrete received signal is fed into the autocorrelation block, and the output of this block
is the power delay profile based on one frame of P-CPICH. In the next block, the power delay profile is averaged
over a few previous frames. The finger management algorithm sets the tap, length, and frame parameters, which
determine how the complex autocorrelation and average block are performed. Next, a search for a local peak is
performed on the averaged power delay profile while a threshold is computed using just the first moment statistics
of the averaged power delay profile. Finally, the algorithm determines the validity of strong peaks by checking
their magnitude against the threshold. A strong peak corresponds to one path signal. The index of the strong peaks,
which is delay of signals in discrete form, is passed from the path searcher to the Rake receiver.

2.1 Complex Autocorrelation
Complex autocorrelation is the most computationally intensive part of the path searcher. Initially, the cell search
gives an estimate of when the frame starts, and the path searcher searches around this estimated starting point. The
path searcher relies on the near orthogonal1 property of the complex scrambling code that separates each path
signal. The multi-path fading signal in P-CPICH can be viewed as a multiple shifted version of the scrambling code
combined2. The autocorrelation yields to a peak whenever there is an exact alignment between the conjugate of the
scrambling code (sc∗(t)) and the delay/shift version of the scrambling code embedded in P-CPICH (r(t)). Thus,
three peaks imply three strong path signals.

X

Autocorrelation

tap, length Finger Management

Non
Coherent
Average

Search
Local Peak

Remove
Peak
Below

Threshold

Calculate
Mean

Set
Threshold

Compute Threshold

Frame
Output

r(t)

sc * (t)

Figure 1. Block Diagram of Path Searcher

1. Two vectors, a and b are orthogonal if <a,b> is equal to zeros, where < > is the vector inner product.
2. Each channel consists of data, spreading code, and scrambling code. P-CPICH bears only scrambling code since

data is 1+j and the spreading code consists of 256 ones. In a multi-path channel, P-CPICH has different paths, and
each path has it own delay. The composite received signal can be viewed as a superposition of the multiple-delay
version of the scrambling code.
Path Searcher for a WCDMA Rake Receiver, Rev. 3

Freescale Semiconductor 3

Path Searcher
The received signal is correlated with the conjugate of the scrambling code, which is unique within the cell in
which the base station is located. The output of the correlator can be expressed as follows:

y n m,() =

=

1
N
---- r p m+()sc∗ p() m,

p 0=

N 1–

∑ 0 1 2…P 1–, ,=

1
N
---- cl p m+()sc p m

τ l
Tc
-----–+⎝ ⎠

⎛ ⎞ sc∗ p() w p m+()sc∗ p() m,+

l 1=

L

∑
p 0=

N 1–

∑ 0 1 2…P 1–, ,=

 Equation 3

where N is the “no of taps” or the “window size” of the autocorrelation chosen, P is the “length” of autocorrelation,
m is the “index” of autocorrelation, p is the discrete time index, and n is the frame index. For the path searcher to
tolerate up to 20 µs of delay spread, P is chosen to be 320. If m=[τ i/Tc] when the autocorrelation index is equal to
delay of one of the paths, the y(n,m) becomes:

y n m,() 1
N
---- ci p()δ m

τ i
Tc
-----–⎝ ⎠

⎛ ⎞ cl p()sc p m
τ l
Tc
-----–+⎝ ⎠

⎛ ⎞ w p m+()sc p()

p 0=

N 1–

∑+

l 1 l i≠,=

L

∑
p 0=

N 1–

∑+

p 0=

N 1–

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

 Equation 4

The first term on the R.H.S. is the average of the channel coefficients, which is a complex gaussian distribution.
The summation and scaling of the first term on the R.H.S. is essentially the same as taking the mean of the channel
coefficient. Since N is not large enough, the first term on the R.H.S. becomes the local mean of the channel
coefficient. The second term on the R.H.S. is interpath interference (IPI), which is interference caused by other
paths and does not align perfectly with the scrambling code. Since the scrambling code yields a peak only if two
scrambling codes are perfectly aligned, the IPI is usually small when compared with the third term, which is multi-
access interference (MAI) and thermal noise. Usually, the first term is larger than the last two terms. However, in
deep fading duration when the local mean of channel coefficients is close to zero, the magnitude of the first term
can be significantly lower, undermining the performance of path searcher.

If m does not align with any of the path delays, the autocorrelation output becomes the following, which consists of
only interference and noise terms.Typically, these two terms are small.

y n m,() 1
N
---- cl

l 1=

L

∑ p()sc p m
τ l
Tc
-----–+⎝ ⎠

⎛ ⎞ w p m+()sc p()

p 0=

N 1–

∑+

p 0=

N 1–

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

 Equation 5

2.2 Non-Coherent Averaging
Non-coherent averaging helps to combat a spurious peak signal in a fading channel. It averages the current and
previous M-1 power delay profiles since a single measurement of a power delay profile is likely to be erroneous. M
can be chosen to be a power of two so that the division is implemented efficiently by scaling. Non-coherent
averaging can be expressed as follows:

z n m,() 1
M
----- y n k m,–() 2 m,

k 0=

M 1–

∑ 0 1 2…P 1–, ,= =

 Equation 6
Path Searcher for a WCDMA Rake Receiver, Rev. 3

4 Freescale Semiconductor

Path Searcher
where M is the total number of power delay profiles to be averaged, P is the “length” of the autocorrelation, m is
the autocorrelation index, and n is the frame index. Averaging the power delay profile reduces the spurious floor
noise, especially when there is high interference. If the channel fluctuates slowly, M should be increased to get a
more accurate estimate. If the power delay profile changes rapidly, M should be decreased to increase the adaptive
rate for a better performance. This process is characterized as “non-coherent” since averaging elements are
obtained from different time intervals (from frame index n-M-1 to frame index n). Assuming that the channel
statistic does not change over M frame, Equation 6 can be simplified, as follows:

z n m,() E ci p(){ }2δ m
τ i
Tc
-----–⎝ ⎠

⎛ ⎞ σ2 m,+ 0 1 2…P 1–, ,= =

 Equation 7

The first term contributes to the peak in the power delay profile, and the second term constitutes the floor noise. If
the autocorrelation index, m, does not correspond to the delay, the first term disappears, leaving only the second
term.

2.3 Local Peak Search
The local peak search searches for all the local peaks in the power delay profile. It is based on the observation of
three points. As long as the middle point is higher than the two points at the side, a local peak is found. Both the
magnitude and index of the peaks are stored.

2.4 Compute Threshold
Not all local peaks correspond to the delay index. A threshold is computed, which should be higher than all the
floor noise but lower than the true delay peak. Usually, the component of floor noise comes from interpath
interference (IPI), multi access interference (MAI), and thermal noise. An adaptive threshold is used because it is
more robust, accounting for both interference and noise variations. The threshold is based on statistics of the power
delay profile. Since all the terms in Equation 7 are complex gaussian distributions, the first and second moments
are enough to determine the statistics of the power delay profile. In [1], the mean and variance of the power delay
profile are calculated for a threshold setting. A simplified way of threshold setting based only on the mean is
presented in [2]. The threshold is given in Equation 8.

θ 1
P
--- z n m,()

m 0=

P 1–

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

a bMc+()=

 Equation 8

where M is number of frames to be used in calculating the power delay profile, and a,b, and c are the parameters
that can be adjusted for good performance. In [2], experiments are conducted to find the different value of a, b, and
c for better performance. a=2, b=4, c=-0.5 yields the best results. The formula used in the implementation is:
Path Searcher for a WCDMA Rake Receiver, Rev. 3

Freescale Semiconductor 5

Implementation in StarCore
θ 1
P
--- z n m,()

m 0=

P 1–

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

2 4
M

---------+⎝ ⎠
⎛ ⎞=

 Equation 9

2.5 Local Peak Removal
Local peak removal is the final operation of the path searcher. All the local peaks are compared against the
threshold, and peaks lower than the threshold are removed and the higher are retained. In this step, the noise-only
path is discarded because it would penalize the decoding performance. It also increases the power consumption by
dedicating a redundant finger to do the computation. However, if the number of paths, denoted by L, is greater than
number of fingers available in the Rake receiver, denoted by N, the finger management assigns the highest N peaks
of the power delay profile to the N finger.

3 Implementation in StarCore
The main path searcher routine is written in “C,” since the code for this routine is mostly control-oriented. The
implementation is based on Figure 1. The pseudo-code of this routine is as follows:

1. Perform complex autocorrelation. In this implementation, there are two types of autocorrelation,
exhaustive and fast. The output of the autocorrelation is the power delay profile of the received signal:
— Exhaustive autocorrelation is performed in the oversampling chip period (which is a factor of four

smaller than the chip period) over 20 µs. It is performed once every Mth frame (mod_idx is equal
to zero).

— Fast autocorrelation is performed in the chip period (which is a factor of four larger than the over-
sampling chip period in this example). It is then interpolated by a factor of four using a zero-order
hold approach (that is, simply repeated) over 20 µs. Then autocorrelation is performed in the
oversampling chip period around the peak of the previous averaged power delay profile. Fast
autocorrelation is performed if mod_idx is not equal to zero.

2. Average the power delay profile over M frames.
3. Find the local peaks and the threshold on the basis of the averaged power delay profile.
4. Remove the peaks below the threshold.

Example 1. Path Searcher

#include <stdlib.h>
#define AVG_LEN 8 /* M in Eqn 6 */
#define AUTO_LEN 320 /* P in Eqn 6 */
static long autoc[AVG_LEN+1][AUTO_LEN];
#pragma align *autoc 16
static short mod_idx=0;
int pathsearch(short *in, short *sc, short *peak_idx){
#pragma align *sc 8
#pragma align *in 8
#pragma align *peak_idx 8
static short prev_idx[300];
 long mag[300];
#pragma align *mag 16
 short idx[300];
#pragma align *idx 16
 short no_peak;
Path Searcher for a WCDMA Rake Receiver, Rev. 3

6 Freescale Semiconductor

Implementation in StarCore
 long threshold;
 short *tmp_ptr;
 short i;
 if (mod_idx == 0){
 FullComplexAuto(&in[0],sc,&mag[0]);
 }
 else {
 ComplexAuto(&in[2],sc,mag);
 for (i=1; i<=prev_idx[0] ; i++){
 FineComplexAuto(&in[(prev_idx[i]-4)*2],sc,&mag[prev_idx[i]-4]);
 }
 }
 average(mag);
 no_peak = findlocalpeak(&mag[0], &idx[0]);
 threshold = findthreshold();
 no_peak = removepeak(mag, idx, threshold, no_peak);
 prev_idx[0] = no_peak;
 for (i=0; i<no_peak; i++){
 prev_idx[1+i] = idx[i];
 peak_idx[i] = idx[i];
 }
 mod_idx = ((mod_idx+1) % AVG_LEN);
 return (no_peak);
}

3.1 Complex Autocorrelation
The received signal contains an enormous amount of data. In every M frames, exhaustive complex autocorrelation
in the oversampling period is performed. For the rest of the frames, fast complex autocorrelation is performed in
the chip period and interpolated to the oversampling chip period. Then, autocorrelation is also performed in every
oversampling chip interval around the peaks of the previous averaged power delay profile because the
autocorrelation peaks probably occur around the same index with a slight variance. This approach decreases the
computation without significantly sacrificing performance. The length of autocorrelation chosen is 320, which
allows the system to tolerate a delay spread of up to 20 µs. This interval is larger than the typical delay of an urban
(3 µs) and sub-urban (0.5 µs) environment [4]. The output of a complex autocorrelation is a power delay profile,
which is a series of complex numbers (see Equation 4). Different metrics, for example L1 or other metrics, can be
used to evaluate the “pseudo” power delay profile for simplicity of computation. If the L2 metric is taken, y(n,m)
becomes the power delay profile. The metric implemented in this example is the absolute value of the real plus the
absolute value of the imaginary. The optimization techniques employed in this subroutine are as follows:

• Guard bit. There is a total of 8 guard bits in data registers (d0 to d15). These bits ensure 256 additions
without overflowing the register. The scaling occurs after 256 additions. However, to use the guard bit,
the saturation mode in the SR register must be turned off at the beginning of the routine and on at the
end of the routine.

• Software pipelining. Ensures that the DALUs are fully employed in the inner loop. The data is loaded
into the data register before the loop. The memory-to-register load in the last execution set of the
“inner3” loop is used in the next loop.

• Multisampling. Prevents memory alignment problems and exploits the inter-tap data redundancy,
decreasing memory traffic [5]. However, two autocorrelations must be computed within the “inner3”
loops, implying that the length of autocorrelation must be multiple of two.
Path Searcher for a WCDMA Rake Receiver, Rev. 3

Freescale Semiconductor 7

Implementation in StarCore
Example 2 uses the exhaustive autocorrelation. Two functions in a fast autocorrelation implementation are
ComplexAuto() and FineComplexAuto() (see Example 1). Since they are similar to the implementation in
Example 2, their source code is not included. The code shown in Example 2 is written in stand-alone assembly
and follows the application binary interface (ABI). The complex autocorrelation is stored in 32 bits instead of 16
bits to accommodate a large dynamic range. This routine requires 839,231 cycles and has a code size of 242 bytes.

Example 2. Complex AutoCorrelation

section .text local
 global _FullComplexAuto
 align 16
_FullComplexAuto type func
; r0 : in -- r6
; r1 : sc -- r5
; (sp-28): idx -- r3
 [push r6
 push r7
]
 [push d6
 push d7
]
 [bmclr #$4,sr.l ; saturation off
 tfra r0,r6 ; r6 -> in
]
 [move.l (sp-28),r3 ; r3 -> idx
 move.l #4,n0
]
 adda #4,r6,r7
 [dosetup1 inner1
 doen1 #160 ; AUTO_LEN/2
]
 loopstart1
inner1
 [clr d12
 clr d13
 clr d14
 clr d15
 tfra r1,r5 ; r5 -> sc
 move.2f (r6)+n0,d4:d5 ; load in_r(1),in_i(1)
]
 [move.2f (r5)+,d0:d1 ; load sc_r(1),sc_ri(1)
 move.2f (r7)+n0,d6:d7 ; load in_r(4),in_i(4)
] ; software pipelining
 [dosetup2 inner2
 doen2 #10
]
 loopstart2
inner2
 [clr d8
 clr d9
 clr d10
 clr d11
]
 [dosetup3 inner3
 doen3 #128
]
 loopstart3
inner3
 [mac d4,d0,d8 ; A_r(1) += in_r(1) * sc_r(1)
Path Searcher for a WCDMA Rake Receiver, Rev. 3

8 Freescale Semiconductor

Implementation in StarCore
 mac d5,d0,d9 ; A_i(1) += in_i(1) * sc_r(1)
 mac d6,d0,d10 ; A_r(4) += in_r(4) * sc_r(1)
 mac d7,d0,d11 ; A_i(4) += in_i(4) * sc_r(1)
 move.2f (r6)+n0,d2:d3 ; load in_r(4),in_i(4)
]
 [mac d5,d1,d8 ; A_r(1) += in_i(1) * sc_i(1)
 mac -d4,d1,d9 ; A_i(1) += -in_r(1) * sc_i(1)
 mac d7,d1,d10 ; A_r(4) += in_i(4) * sc_i(1)
 mac -d6,d1,d11 ; A_i(4) += -in_r(4) * sc_i(1)
 move.2f (r5)+,d0:d1 ; load sc_r(2),sc_ri(2)
 move.2f (r7)+n0,d6:d7 ; load in_r(8),in_i(8)
]
 [mac d2,d0,d8 ; A_r(1) += in_r(4) * sc_r(2)
 mac d3,d0,d9 ; A_i(1) += in_i(4) * sc_r(2)
 mac d6,d0,d10 ; A_r(4) += in_r(8) * sc_r(2)
 mac d7,d0,d11 ; A_i(4) += in_i(8) * sc_r(2)
 move.2f (r6)+n0,d4:d5 ; load in_r(8),in_i(8)
]
 [mac d3,d1,d8 ; A_r(1) += in_i(4) * sc_i(2)
 mac -d2,d1,d9 ; A_i(1) += -in_r(4) * sc_i(2)
 mac d7,d1,d10 ; A_r(4) += in_i(8) * sc_i(2)
 mac -d6,d1,d11 ; A_i(4) += -in_r(8) * sc_i(2)
 move.2f (r5)+,d0:d1 ; load sc_r(3),sc_ri(3)
 move.2f (r7)+n0,d6:d7 ; load in_r(12),in_i(12)
]
 loopend3
 [asrr #14,d8 ; scaling
 asrr #14,d9
 asrr #14,d10
 asrr #14,d11
]
 [add d8,d12,d12 ; A_r(1)
 add d9,d13,d13 ; A_i(1)
 add d10,d14,d14 ; A_r(4)
 add d11,d15,d15 ; A_i(4)
]
 loopend2
 [abs d12
 abs d13
 abs d14
 abs d15
 adda #8,r0,r0
]
 [add d12,d13,d12 ; |A_r(1)| + |A_i(1)|
 add d14,d15,d13 ; |A_r(4)| + |A_i(4)|
 tfra r0,r6 ; r6 -> in
 tfra r1,r5 ; r5 -> sc
]
 [move.2l d12:d13,(r3)+
 adda #4,r6,r7
]
 loopend1

 bmset #$4,sr.l ; saturation mode on
 nop
 nop
 [pop d6
 pop d7
]
 [pop r6
Path Searcher for a WCDMA Rake Receiver, Rev. 3

Freescale Semiconductor 9

Implementation in StarCore
 pop r7
]
 rts
 endsec

3.2 Non-Coherent Averaging
Non-coherent averaging is based on Equation 6 and assumes that the length of the autocorrelation is P and the
number of the frame to be averaged is M. The total number of additions required is (M-1)× P. However, the
number of additions can be reduced to 2 × P at the expense of memory. The savings is large when M increases. The
approach is based on circular first-in-first-out (FIFO) memory, as shown in
Figure 2.

Average

4× i+2 frame

4× i+3 frame

4× i+0 frame

4× i+1 frame

4× i+4 frame

Figure 2. Averaging

Assume that four frames are averaged and that the average buffer contains an average of frame 4i+0, 4i+1, 4i+2,
and 4i+3. As the new frame (4× i+4) arrives, the average is recomputed by subtracting the value in the older frame
(4× i+0) and adding up the value of the latest frame (4× i+4). Now, the average buffer contains the average value of
the 4i+1, 4i+2, 4i+3, and 4i+4 frames. The routine shown in Example 3 is written in in-line assembly format with
a C interface. A “%C” is appended to the label so that compiler does not issue “duplicate label” error message
when the optimization option is turned on. This routine requires 505 cycles and has a code size of 112 bytes.

Example 3. Non-Coherent Averaging

#if NOOPT
void average(long *idx){
 unsigned int i,j;
 for (i=0 ; i<AUTO_LEN ; i++){
 autoc[AVG_LEN][i] += idx[i];
 autoc[AVG_LEN][i] -= autoc[mod_idx][i];
 autoc[mod_idx][i] = idx[i];
 }
}
#else
asm void average(long *idx)
{
asm_header
.arg
 _idx in $r0;
.reg $d0,$d1,$d2,$d4,$r0,$r1,$r2,$r3;
asm_body
 [push d6
 push d7
]
 bmclr #$4,sr.l
 move.l #_autoc,d0
Path Searcher for a WCDMA Rake Receiver, Rev. 3

10 Freescale Semiconductor

Implementation in StarCore
 move.l #_mod_idx,r1
 [move.w #1280,d7
 move.w #160,d1 ; AUTO_LEN = 320/2
]
 move.w (r1),d2
 [imac d7,d2,d0
 move.l #_autoc+10240,r2
]
 [move.l d0,r1
 doen0 d1
]
 [dosetup0 _lp0%C
 tfra r2,r3
]
 [move.2l (r0)+,d0:d1 ; idx[i]
 move.2l (r3)+,d8:d9 ; autoc[AVG_LEN][i]
]
 falign
 loopstart0
_lp0%C:
 [move.2l d0:d1,(r1)+ ; autoc[mod_idx][i] = idx[i]
 move.2l (r1),d2:d3 ; autoc[mod_idx][i]
 add d8,d0,d4 ; autoc[AVG_LEN][i] + idx[i]
 add d9,d1,d5
]
 [sub d2,d4,d4 ; autoc[AVG_LEN][i] - autoc[mod][i]
 sub d3,d5,d5
 move.2l (r0)+,d0:d1 ; idx[i]
 move.2l (r3)+,d8:d9 ; autoc[AVG_LEN][i]
]
 move.2l d4:d5,(r2)+
 loopend0
 bmset #$4,sr.l
 nop
 nop
 [pop d6
 pop d7
]
asm_end
}
#endif

3.3 Find Local Peak
The local peak search is based on three consecutive points, a, b, and c. The gradient of a and b is calculated in the
previous loop and stored in an “up” buffer. The gradient between b and c is calculated in the current loop. Based on
these gradients, the routine determines whether a local peak is found. A local peak is found only if the a-b gradient
is positive and the b-c gradient is negative. Since it is a sliding window, the b-c gradient become the a-b gradient in
the next iteration. Thus, the b-c gradient is stored in the “up” buffer. The code shown in Example 4 is written in in-
line assembly format with a C interface. It requires 2078 cycles and has a code size of 90 bytes. It is control-
oriented and therefore contains checking and branching, which break the pipeline. This routine searches through all
the local peaks and returns the number of each local peak, its value, and its index.

Example 4. Find Local Peak

#if NOOPT
short findlocalpeak(long *mag, short *idx){
 short up=0,ii=0;
Path Searcher for a WCDMA Rake Receiver, Rev. 3

Freescale Semiconductor 11

Implementation in StarCore
 unsigned short i;
 for (i=1 ; i< AUTO_LEN ; i++) {
 if (autoc[AVG_LEN][i] - autoc[AVG_LEN][i-1] < 0){
 if (up == 1) {

idx[ii] = i-1;
mag[ii] = autoc[AVG_LEN][i-1];
ii++;

 }
 up = 0;
 }
 else {
 up = 1;
 }
 }
 return (ii); // number of local peak
}
#else
asm short findlocalpeak(long *mag, short *idx)
{
asm_header
.arg
 _mag in $r0;
 _idx in $r1;
 return in $d0;
.reg $d0,$d1,$d2,$d4,$d5,$d8,$d9,$r0,$r1,$r2;
asm_body
 move.l #_autoc+10240,r2
 [clr d4 ; up = d4
 clr d3 ; ii = d3
 move.w #-1,d2 ; i = d2
]
 move.2l (r2)+,d0:d1
 [doen3 #319 ; AUTO_LEN
 dosetup3 lllp3%C
]
lllp3%C:
 falign
 loopstart3
 [sub d1,d0,d5 ; autoc[AVG_LEN][i-1] - autoc[AVG_LEN][i]
 inc d2 ; i = i+1
 tfr d0,d8 ; prev
 tfr d1,d0 ; prev = curr
 move.l (r2)+,d1
]
 [tstgt d5
 tfr d4,d9 ; up - d9
 clr d4
]
 nop
 [iff cont end_lllp3%C
 move.w #1,d4
]
 cmpeq.w #1,d9
 nop
 [ift inc d3
 move.w d2,(r1)+
 move.l d8,(r0)+
]
 loopend3
end_lllp3%C:
Path Searcher for a WCDMA Rake Receiver, Rev. 3

12 Freescale Semiconductor

Implementation in StarCore
 tfr d3,d0 ; return (ii)
asm_end
}
#endif

3.4 Compute Threshold
The computer threshold routine is based on Equation 9 and is written in in-line assembly format with a C
interface. It requires 106 cycles and has a code size of 120 bytes. Initially, the mean of the power delay profile is
calculated. The threshold is set according to the mean of the power delay profile. In computing the mean, the
additions are performed in a tree-like structure. One part of the values is added into register A and another part is
added into register B. Eventually, register A and register B are added together.

Example 5. Compute Threshold

#if NOOPT
long findthreshold()
{
 unsigned short i;
 long m=0;
 for (i=0; i<AUTO_LEN ; i++){
 m += autoc[AVG_LEN][i] >> 8;
 }
 m = m*3; // aproximate mean * (2+4/sqrt(8))
 // 2.73 * m
 return(m);
}
#else
asm long findthreshold()
{
asm_header
 return in $d0;
.reg $d0,$d1,$d2,$d4,$d5,$d6,$d7,$r0,$r1,$r2,$r3;
asm_body
 bmclr #4,sr.l ; saturation off, use ext bits
 move.l #_autoc+10240,r0
 nop
 [push d6
 push d7
]
 [adda #8,r0,r1
 move.w #2,n0
]
 [doensh0 #79
 dosetup0 _llp0%C
]
 [move.2l (r0)+n0,d0:d1
 move.2l (r1)+n0,d2:d3
 clr d6
 clr d7
]
 [add d0,d1,d4
 add d2,d3,d5
 move.2l (r0)+n0,d0:d1
 move.2l (r1)+n0,d2:d3
]
 falign
 loopstart0
_llp0%C:
Path Searcher for a WCDMA Rake Receiver, Rev. 3

Freescale Semiconductor 13

Implementation in StarCore
 [move.2l (r0)+n0,d0:d1
 move.2l (r1)+n0,d2:d3
 add d0,d1,d4
 add d2,d3,d5
 add d4,d6,d6
 add d5,d7,d7
]
 loopend0
 [add d4,d6,d6
 add d5,d7,d7
]
 add d6,d7,d0

 [asrr #8,d0
 move.w #3,d1
]
 [impyuu d0,d1,d2
 impysu d0,d1,d3
]
 aslw d3,d3
 add d2,d3,d0
 bmset #$4,sr.l
 nop
 nop
 [pop d6
 pop d7
]
asm_end
}
#endif

3.5 Local Peak Removal
The local peak removal routine checks all the local peaks against the threshold and eliminates the local peaks
below the threshold. This routine is written in in-line assembly format with a C interface. It requires 2608 cycles
and has a code size of 78 bytes.

Example 6. Local Peak Whacking

#if NOOPT
short removepeak(long *mag, short *idx, long threshold, short no){
 unsigned short i,ii=0;
 for (i=0 ; i<no ; i++){
 if (mag[i] > threshold){
 mag[ii] = mag[i];
 idx[ii] = idx [i];
 ii++;
 }
 }
 return(ii);
}
#else
asm short removepeak(long *mag, short *idx, long threshold, short no)
{
asm_header
.arg
 _mag in $r0;
 _idx in $r1;
 _threshold in $d5;
 _no in $r4;
Path Searcher for a WCDMA Rake Receiver, Rev. 3

14 Freescale Semiconductor

Results
 return in $d0;
.reg $d0,$d1,$d2,$d4,$d5,$r0,$r1,$r2,$r3;
asm_body
 [tfra r0,r2 ; mag
 tfra r1,r3 ; idx
 clr d4 ; ii = 0
]
here%C:
 [doen0 r4 ; loop no
 dosetup0 lp0%C
]
 [move.l (r0)+,d0 ; mag[i] - d0
 move.w (r1)+,d1 ; idx[i] - d1
]
 loopstart0
lp0%C:
 cmpgt d5,d0 ; mag[i] > threshold
 [move.l (r0)+,d0 ; mag[i] - d0
 move.w (r1)+,d1 ; idx[i] - d1
 tfr d0,d2
 tfr d1,d3
]
 [ift inc d4 ; ii++
 move.l d2,(r2)+ ; mag[ii]
 move.w d3,(r3)+ ; idx[ii]
]
 loopend0
 tfr d4,d0
asm_end
}
#endif

4 Results
A total of 16 frames of data generated at 3dB SNR without multiple access interference (MAI) was used to test the
routine. The length of autocorrelation, P, is set to 320, the frame to be average, M, is set to 8, and number of taps
(window size) of autocorrelation, N, is set to 2560. Table 1 shows the code size and approximate cycle per frame of
each function of the path searcher. The code size for the whole path searcher routine is 1688 bytes. Figure 3 shows
the power delay profile in the sixteenth frame.

Table 1. Code Size and Approximate Cycle Count

Function Approximate Cycles/Frame Code Size (Bytes)

Full complex autocorrelation 839231 242

Fast complex autocorrelation 260703 256

Fine complex autocorrelation 20992 264

Non-coherent average 505 112

Local peak search 2078 90

Compute threshold 106 120

Local peak removal 2608 78

Table 2 shows the overall number of MIPS required by full and fast path searcher.
Path Searcher for a WCDMA Rake Receiver, Rev. 3

Freescale Semiconductor 15

Results
Table 2. MIPS Required For Path Searcher Algorithm

Path Searcher Approximate Cycles/Frame MIPS

Full search 844796 84.4

Fast search 328211 32.8

:

0 50 100 150 200 250 300
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

|m
ag

|2

T
s
 or T

c
/4

Power Delay Profile

Figure 3. Power Delay Profile in the Sixteenth Frame

In the channel simulation, the path delays are set to [10 25 317] for the three paths. Table 3 shows the delay index
from the SC140 core.

Table 3. Peak Return from the Path Searcher Algorithm

Frame Delay Index

1 10,318

2 10,317

3 10,25,28,317

4 10,25,317

5 10,25,317

6 10,25,317

7 10,25,317

8 10,25,317

9 10,25,317

10 10,25,317

11 10,25,317

12 10,25,317
Path Searcher for a WCDMA Rake Receiver, Rev. 3

16 Freescale Semiconductor

Fine Tuning
5 Fine Tuning
Some parameters in the path searcher can be adjusted in a trade-off between complexity and performance. Such
adjustments allow deployment of wireless systems in different channel scenarios. These parameters are as follows:

• Length of the autocorrelation (P). Adjustment of the length mainly depends on the power delay profile
of a particular channel scenario. The distribution of delays of received signal can be approximated by
the exponential function. The earlier the signal comes in, the stronger the signal is. The delay also
spread depends on the environment type. For example, delay spread in an urban area is larger than that
in a suburban area. The AUTO_LEN, which controls the length of the autocorrelation in the code,
should be adjusted depending on the expected delay spread. The AUTO_LEN set in this path searcher
is 320 taps, which allow path searcher to catch a delay up to 20 µs.

• Tap (window size) of the autocorrelation (N). Can be adjusted in the step size of 256. The larger the
number of tap of the autocorrelation, the bigger the processing gain and the more robust it is in
eliminating interference. However, it increases the MIPS linearly. It can be used to adjust the system
load by increasing and decreasing the length.

• Number of “frames” in the power delay profile to be averaged (M). The frame is used to adjust the
average of the power delay profile. It depends on how fast a path changes in the environment. If the
position of path stays almost the same for a long time, the “frame” should be increased so that it rejects
the spurious peak. If a mobile unit moves quickly from one place to another, the delay of each path
would probably change. In this case, the frame should be short so that its adaptive rate is faster.

Usually, finger management controls these parameters in the path searcher for good decoding performance, on the
basis of an heuristic approach or statistics collected in real time.

6 References
[1] E. Bejjani, J.-F. Bouquier, and B. de Cacqueray. “Adaptive Channel Delay Selection for WCDMA Mobile

System.” In Proceedings of IEEE VTC 1999, pp. 203-207, Amsterdam, Netherlands, 1999.
[2] H. Elders-Boll. “Simplified Interference-Based Threshold Rule for Delay Selection in DS-CDMA

Systems.” PPIMRC 2000. The 11th IEEE International Symposium, Volume 1, pp. 77–81, 2000.
[3] J. G. Proakis. Digital Communications, McGraw-Hill, 4th edition, 2000.
[4] Lee, W. C. Y. Mobile Communications Design Fundamentals, 2nd ed. New York: Wiley, 1993.
[5] StarCore Multisample Programming Technique Application Note (STCR140MLAN/D).

13 10,25,317

14 10,25,317

15 10,25,317

16 10,25,317

Table 3. Peak Return from the Path Searcher Algorithm (Continued)

Frame Delay Index
Path Searcher for a WCDMA Rake Receiver, Rev. 3

Freescale Semiconductor 17

References
NOTES:
Path Searcher for a WCDMA Rake Receiver, Rev. 3

18 Freescale Semiconductor

References
NOTES:
Path Searcher for a WCDMA Rake Receiver, Rev. 3

Freescale Semiconductor 19

AN2252

Information in this document is provided solely to enable system and software implementers to
use Freescale Semiconductor products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits or integrated circuits based on
the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Freescale
Semiconductor assume any liability arising out of the application or use of any product or
circuit, and specifically disclaims any and all liability, including without limitation consequential
or incidental damages. “Typical” parameters which may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different applications and
actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the
Freescale Semiconductor product could create a situation where personal injury or death may
occur. Should Buyer purchase or use Freescale Semiconductor products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. StarCore
is a trademark of StarCore LLC. All other product or service names are the property of their
respective owners.

© Freescale Semiconductor, Inc. 2002, 2005.

How to Reach Us:
Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations not listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GMBH
Technical Information Center
Schatzbogen 7
81829 München, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T. Hong Kong
+800 2666 8080

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com
Rev. 3
3/2005

	1 Received Model
	2 Path Searcher
	2.1 Complex Autocorrelation
	2.2 Non-Coherent Averaging
	2.3 Local Peak Search
	2.4 Compute Threshold
	2.5 Local Peak Removal

	3 Implementation in StarCore
	3.1 Complex Autocorrelation
	3.2 Non-Coherent Averaging
	3.3 Find Local Peak
	3.4 Compute Threshold
	3.5 Local Peak Removal

	4 Results
	5 Fine Tuning
	6 References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

