
Freescale Semiconductor
Application Note

AN2775
Rev. 2, 7/2004

CONTENTS

1 Tone Event Detection Basics2
1.1 Tone Event Detector Architecture2
1.2 Phase Detection With Frequency Offset

Compensation ...4
1.3 Summary of Theoretical Results6
2 Tone Event Detector on StarCore8
2.1 Automatic Level Control (ALC)8
2.2 Tone Indication ...9
2.3 Tone Indicator Counter ...9
2.4 Finding the Closest Reference Frequency Tone10
2.5 FIR Filtering Implementation10
3 Tone Events in Packet Telephony11
4 RFC2833 Overview ..11
4.1 Payload Format for Named Telephone Events12
4.2 Sending and Receiving Named Telephone Event

Packets ..15
4.3 Payload Format for Telephony Tones16
4.4 Multiple Tones and Named Events in One Packet ...17
5 Conclusion ..20
6 References ..21

Tone Event Detection in Packet
Telephony Using the StarCore™
SC140 Core
By Lúcio F. C. Pessoa, Wen W. Su, Ahsan U. Aziz, and Kim-chyan Gan
This application note is a continuation of the application note
AN2384/D [1], which presents the use of Teager-Kaiser (TK)
energy operators for detecting multi-frequency tones with high
accuracy and low cost. Key concepts presented in [1] are reused
in this discussion, but important new processing blocks are
added in order to handle a larger set of signaling tones, which
we call tone events. This document describes a low-complexity
tone event detection architecture that is both robust and suitable
for packet telephony systems with high channel density. The
proposed architecture is composed of:

• Multiple dependent tone detectors.

• A tone indication unit for selectively enabling the multiple
dependent tone detectors.

• A single tone detection control unit with error correction
capability.

• Common tone detection decision logic, regardless of the type
of modulation used.

• Multi-stage tone detection architecture to minimize
complexity.

• A multi-component tone detector that is independent of
magnitude modulations [1].

• An efficient phase detection method that is independent of the
carrier frequency offset and can function as a robust
frequency and magnitude detector.

This document presents an efficient algorithm for faster and
more reliable detection of tone events modulated by various
modulation schemes.
© Freescale Semiconductor, Inc., 2004. All rights reserved.

Tone Event Detection Basics
1 Tone Event Detection Basics
Tone event detection is an important application in digital telephony systems that use shared data and voice
communications over the telephone network. The International Telecommunication Union (ITU) has developed
standards for data transmission (V-series modem signals) over packet networks [2–4] that define inter-operation
between Public Switched Telephone Network (PSTN) and Internet Protocol (IP) networks. Prior to or during data
transmission, a series of tone events are exchanged, so that when a tone event is detected, specific actions must be
taken to initiate and maintain proper data communication over the IP network.

A tone event can include a single tone or a combination of multiple tone segments with different modulation
schemes. For example, a tone event may include a single frequency tone with an on/off amplitude modulation
(AM). Another tone event may include a dual frequency component tone followed by a single frequency tone. Yet
another tone event may include a single frequency tone with periodic phase changes. Furthermore, these tone
events may include more than one frequency component per segment of the signal with the same tone
characteristics. The challenge is to detect tone events reliably according to different modulation schemes, which
may include magnitude, frequency, phase, or any combination thereof.

The large number of signaling tones transmitted over digital telephony systems demands different types of tone
detectors to identify predetermined tone events. However, multiple independent tone detectors running in the
system can result in high complexity and possible event detection errors. One traditional approach to tone event
detection is based on Goertzel Filters [5], which efficiently estimates the Fourier transform of the signal at specific
frequencies. However, depending on the range of frequency values, the number of components, or timing, the
required processing and memory cost can spiral upwards as detection rates slow down. Furthermore, the use of
Goertzel Filters to detect tones with low-frequency components (as compared to the sampling rate) may require a
large number of samples, thus increasing processing time.

1.1 Tone Event Detector Architecture
The top-level structure of the tone event detector presented in this document is illustrated in Figure 1.

Figure 1. Top-Level Structure of the Proposed Tone Event Detector

A tone indicator selectively enables a bank of tone detectors only when the presence of a tone is indicated. If the
presence of a tone is not indicated, no tone detection is performed. This approach significantly reduces the
complexity of tone event detection because it uses a simplified method to indicate the tone presence and enable the
more complex tone detection algorithms only when needed. Furthermore, the decision logic and control unit can
use multiple tone event features to perform error correction efficiently when it detects tones with conflicting
specifications.

Tone
Indicator

Bank of
Dependent

Tone Detectors

Decision Logic
and

Control Unit

x(n)
mdet
Tone Event Detection in Packet Telephony Using the StarCore™ SC140 Core, Rev. 2

2 Freescale Semiconductor

Tone Event Detection Basics
Unneeded processing blocks are selectively disabled depending upon the characteristics of the input signal. The
underlying state machine controlling tone event detection defines the multiple-stage processing flow shown in
Figure 2. This flow includes (1) scanning the signal with a tone indicator, (2) identifying tone characteristics in one
or more stages, and (3) detecting a tone event with the identified tone characteristics. The fi, fd, and ID control
signals represent tone indication flag, tone detection flag, and tone identification tag, respectively.

Figure 2. State Diagram of Multi-stage Detection Flow

A power estimator (see Figure 3) searches for narrow-band input signals, x(n), that produce an output signal, P(n),
with small variance so that a tone is indicated when a small variance power signal is detected. This power estimator
generates P(n) = aP(n –1) + (1 – a) | x2 (n – k) – x(n)x(n – 2k)|.

Figure 3. Power Estimator for Tone Indication

To identify a tone, a set of dependent tone detectors is enabled according to the frequency characteristics of the
input signal. This set of detectors includes either a single component frequency detector, a single component phase
detector, or a multi-component frequency detector. The methods for frequency detection are similar to the approach
described in [1]. The subtle difference is that a first stage of tone indication is employed so that frequency/phase
detection occurs only if a tone is successfully indicated in the input signal.

Look for
a Tone

Identify
Tone

Detect
Tone Event

ID = 0

fd = 0

fi = 1

fd = 1 ID > 0

fi = 0

Z – k Z – k 1 – a++X

X

az – 1

x(n) P(n)
+

–

k a
Tone Event Detection in Packet Telephony Using the StarCore™ SC140 Core, Rev. 2

Freescale Semiconductor 3

Tone Event Detection Basics
1.2 Phase Detection With Frequency Offset Compensation
To detect modulated-in-phase tone events, an efficient method of single-component phase detection is proposed.
Since an input modulated-carrier signal may contain a frequency or phase offset, receivers of modulated-carrier
data signals typically contain frequency tracking loops. These loops are useful because frequency must be adjusted
accurately for differential coherent or incoherent reception. In addition, a Costas or other phase-locked loop for
coherent reception may require frequency aiding for acquisition purposes. Figure 4 depicts a frequency-tracking
loop in its simplest form. This loop consists of a frequency-difference detector (FDD) [6], a loop filter, and a
voltage-controlled oscillator (VCO).

Figure 4. Classical Example of a Frequency Tracking Loop

There are various frequency compensation techniques used with different types of signaling schemes. Although the
choice of frequency/phase offset detection and compensation scheme depends on the modulation scheme, the
techniques can be generalized to data aided (DA), non-data aided (NDA), decision directed (DD), timing aided,
and timing and data aided.

Most non-data and non timing-aided techniques have a fairly large frequency acquisition range but cannot achieve
a low error variance for the frequency estimate. A technique proposed in [7] can compensate for frequency offset
on the order of the symbol rate, but this feed-forward scheme requires a long acquisition time (200 bits) to achieve
a low variance. Other schemes achieve a low variance but the estimation range is small. Most closed loop
techniques use frequency difference detectors (FDD) [6]. An FDD measures the difference between the incoming
carrier frequency and the local reference. Although compensation methods depend largely on the modulation
scheme and the specific application, frequency difference detectors are the basic building-blocks for some
frequency tracking loops in digital links. The Costas loop, a widely used method for carrier tracking, relies on
feedback concepts related to a phase-lock loop (PLL) and offers an inherent ability to self-correct the phase (and
frequency) of the recovered carrier. Its main disadvantage is loop settling time. Many variants of Costas loops
address specific performance/complexity issues.

The proposed single-component phase detector depicted in Figure 5 can also be used for frequency and magnitude
detection. The input signal x(n) is processed as follows:

1. Generate a sinusoidal signal w(n) = 2co(n – 1)w(n – 1) – w(n – 2) to track the input carrier frequency.

2. Select a sample delay:

where Ω0 is the normalized nominal frequency of the signal detected.

3. Define X(n) = x(n) + jx(n – no), W(n) = w(n) + jw(n – no) and compute Z(n) = X(n)W(n)*.

4. Compute the received signal R(n) = bR(n – 1) + (1 – b)Z(n), 0 < b < 1.

Frequency Difference
Detector (FDD) Loop Filter

~

Input Signal Error

Control Voltage

π 2Ω0n0 =
Tone Event Detection in Packet Telephony Using the StarCore™ SC140 Core, Rev. 2

4 Freescale Semiconductor

Tone Event Detection Basics
5. Estimate the phase offset E(n) = R(n)R(n – 1)*.

6. Adjust co(n) = co(n – 1) + µ Imag{E(n)}.

Notice that c(n) and s(n) can be used for phase detection, for example, arctan[s(n) / c(n)]). You can use co(n) for
frequency detection, for example, cos(Ω). This structure is related to [9] and [10], but it presents some unique
advantages. Using ideas from [1], the signal magnitude can also be estimated as a function of the power estimator
P(n) and the coefficient co(n) by simply estimating the ratio P(n) / [1 – co(n)2].

Figure 5. New Architecture for Phase/Frequency/Magnitude Detection of Single-Component Tones

z –1

z –12z –1

z –1

z –1

z –1

µ

bz –1

1 – b

bz –1

1 – b

z –noz –no

x(n)

+

+

+

+

+ X

+

co (n)

X

X

X

X

s(n)

c(n)

X

X

+

w(n)

co (–1) no b µ

–

–

–

Tone Event Detection in Packet Telephony Using the StarCore™ SC140 Core, Rev. 2

Freescale Semiconductor 5

Tone Event Detection Basics
1.3 Summary of Theoretical Results
The main theoretical results for tone event detection are summarized as follows:

1. Any single frequency tone is mapped to a constant value via the modified TK energy operator:

where Ω = 2π f / fs, f is the tone frequency and fs is the sampling frequency, k = 1, 2, . . . (k = 1 in the
original definition of the TK operator).

If the tone frequency is known, the signal power can be estimated as P[x(n)] = [0.5 / sin2 (kΩ)] Ψk
[x(n)], where the frequency dependent correction factor is pre-computed.

2. For k = (l1 –l2) / 2, where l1 and l2 are two delay lags, the tone frequency and amplitude values are
indirectly estimated via the following ratios of TK operators:

3. For

For phase demodulation, the signal phase is conveniently estimated by:

Ψk [x(n)] = x2 (n – k) – x(n)x(n – 2k) = A2 sin2 (kΩ)

Ψk
1
2 (x(n –l1) + x(n –l2))

= cos2 (kΩ)ρΩ =
Ψk[x(n)]

Ψk[x(n)]

1 – ρΩ

= A
2ρA =

x(n) = Acos(Ωn + φ(n)), w(n) = 2c0 (n –1)w(n –1) – w(n –2), w(–1) = c0 (–1) = cos (Ω),

w(–2) = 2[c0 (–1)]2 –1 and n0 =

c(n) = ac(n –1) + (1 – a)[x(n)w(n) + x(n – n0)w(n – n0)] ≈ Acos(φ(n))

s(n) = as(n –1) + (1 – a)[x(n –n0)w(n) – x(n)w(n – n0)] ≈ Asin(φ(n))

c0 (n) = c0 (n – 1) + µ[c(n –1)s(n) –c(n)s(n –1)], 0 < µ < 1

s(n)

c(n)
≈ tan (φ(n)), 0 < α <1ρφ =

π
2Ω :

φ(n) = ϕ(n)
π
2

, where ϕ(n) = 1 + 2u(s(n)) + {1 –2[u(c(n)) + u(s(n))]}u(|c(n)| – |s(n)|)

and u() is the standard step function.

^

Tone Event Detection in Packet Telephony Using the StarCore™ SC140 Core, Rev. 2

6 Freescale Semiconductor

Tone Event Detection Basics
4. Multi-component tones

are decomposed via adaptive notch filters of the form:

5. Inverse functions are estimated using third-order polynomial approximation. More specifically,

Therefore, a ratio q = N / D is estimated by first normalizing the denominator to the range between 1/2
and 1, so that q ≈ N p(D’)2b+4, where D’ = D2b and b is the corresponding number of leading bits of the
normalization.

6. To improve immunity to noise, a low-pass filter (LPF) is used at various processing nodes of the

system. The preferred filter is a single-pole LPF of the form A(z) = (1 – a) / (1 –az–1), 0 < a < 1.

7. Frequency estimation is performed by computing ρΩ(n) and finding the closest frequency according

to predefined reference values ρ(l), l = 1, . . . , L. When the closest reference is found, the measure-
ments are validated by imposing a frequency tolerance constraint for the tone event being processed.
After a tone is validated, its identification (tone ID) is set for further processing.

8. Depending on the tone event, optional prefiltering may be needed to remove interference by noise or
guard tones.

9. To improve dynamic range of the detector, the input signal level can be adjusted via an automatic level
control device (ALC).

10. Depending on the frequency range of interest, sub-rate processing can be employed to reduce compu-
tational complexity, for example, the DTMF detector presented in [1].

Independent of the modulation scheme in use, the actual detection relies on common level-based decision logic,
and controlling parameters depend on the tone ID. The pseudo-code in Example 1 illustrates this process. It also
shows how to detect a known tone event segment.

x(n) = Σ
N

l = 1

Al
(m)

cos(Ωl
(m)

n + φl), m = 1, . . . , M

Hl
(m)

(z) = Γl
(m) Π

i ≠ l

1 –bi
(m)

z –1 + z –2

1 –rbi
(m)

z –1 + r2 z –2

, l = 1, . . . N

a0
– 0.224822998046875

a1
0.669525146484375

a2
– 0.73565673828125

a3
0.35321044921875

f(x) =
1

2x
≈ p(x) = 23 {a3 + x [a2 +x(a1 + xa0)]},

1

2
≤ x ≤ 1
Tone Event Detection in Packet Telephony Using the StarCore™ SC140 Core, Rev. 2

Freescale Semiconductor 7

Tone Event Detector on StarCore DSPs
Example 1. Integer Measurements, µ(n) (AM/FSK/DPSK) on a Per-Sample Basis and
Detect a Known Tone Event Segment

IF (µ(n)≠ µest)
nn++;
IF (nn > Nn)

np = nn;
nn = 0;
µest = µ(n);
Fd = 0;

END
ELSE

np++;
IF (np > Np)

IF (Fd = 0)
Fd = 1;
∆µ = (µest – µold) mod µmax;
µold = µest;

END
IF (np > Nd)

np = 0;
nn = 0;
Report µest and ∆µ;
Fd = 0;

END
END

END

The calculation of ∆µ is critical for DPSK demodulation but optional for AM/FSK demodulation.

2 Tone Event Detector on StarCore DSPs
The tone event detector is designed to identify a set of tones, including TTY, ANS, V.21, CNG, USB1, and so on.
Its expected functionality verification is to detect the correct tone event and not to signal any tone in its absence.
Since verification of functionality is not based on bit-exactness, we can more aggressively optimize code by
rearranging computation order and even changing computation precision. This section illustrates key optimization
strategies to boost code performance significantly. All techniques are tested with a highly efficient Metrowerks® C
compiler that takes maximum advantage of StarCore architectural features. The Metrowerks C compiler provides
intrinsic function access through prototype.h, which supports the basic ITU fixed-point operation, basop.h,
and to the fixed-point operation extensions.

2.1 Automatic Level Control (ALC)
An ALC can boost or decrease the signal level so that the processing signal is well contained within a
predetermined range. A simple ALC is a normalization process followed by a scaling process. It first searches for
the maximum absolute magnitude of the signal for the processing frame. The scaling factor is based on the
maximum absolute magnitude. The MAXM special instruction is used to compute the maximum absolute value. In
C programming, this instruction can be accessed by the L_maxm intrinsic function. In combination with loop
unrolling of four, a factor of eight speed-up can be achieved.
Tone Event Detection in Packet Telephony Using the StarCore™ SC140 Core, Rev. 2

8 Freescale Semiconductor

Tone Event Detector on StarCore DSPs
2.2 Tone Indication
The modified TK energy operator with low-pass (LP) filtering is as follows:

All variables (P(n),a,x(n)) have 16 bits. Using rounding along with the MAC instruction, the TK energy operator is
computed in three steps and the LP filter in two steps. The 32-bit resolution of intermediate values of P(n) is
rounded into 16-bit data in final computation. Rounding removes the bias (flooring by truncating) in the original
program, thus changing the internal state/memory of the program. Such optimization yields slightly different
results than alternative implementations, but all alternatives should pass the verification at the system level.
Table 1 shows details of the underlying DSP operations.

2.3 Tone Indicator Counter
If a valid tone is present, a constant level of TK energy value is obtained. To filter out the false tone indications, a
minimum duration of a constant level must be met. The duration is measured by a tone indicator counter. When the
tone indicator counter is larger than a minimum threshold, different tone event detectors should be invoked. The
following implementation invokes many checking steps, which usually involve branching.

if (TK energy is a constant level)
 if (tone_ind_count < MIN_TONE_COUNT_THRESHOLD)
 tone_ind_count++;
 else
 tone_ind_count = 0;
 if (tone_ind_count == MIN_TONE_COUNT_THRESHOLD)
 Invoke tone event detector algorithm

Changing the logic and using fixed-point instructions with saturation on the SC140 core, one checking step can be
eliminated, as follows.

if (TK energy is a constant level)
 tone_ind_count = add(tone_ind_count,1);
 else
 tone_ind_count = 0;
 if (tone_ind_count >= MIN_TONE_COUNT_THRESHOLD)
 Invoke tone event detector algorithm

The INC.F instruction is used to increase the counter with saturation, thus avoiding a test operation.

Table 1. Computation Steps of R(n)

Computation Output Resolution Instruction

A = x2(n – k) 32 bits MPY

B = A – x(n)x(n – 2k) 16 bits MACR

C = |B| 16 bits ABS

D = (1 – a) C 32 bits MPY

E = aP(n –1) + D 16 bits MACR

P(n) = aP(n –1) + (1 – a) | x2 (n –k) – x(n)x(n –2k)|
Tone Event Detection in Packet Telephony Using the StarCore™ SC140 Core, Rev. 2

Freescale Semiconductor 9

Tone Event Detector on StarCore DSPs
2.4 Finding the Closest Reference Frequency Tone
The ratio of energy operators, ρΩ, contains the frequency information of a signal. The minimum absolute distance
between ρΩ and a set of reference values yields the best match. The index of the best match reference values
corresponds to the frequency information. The conventional compare and select approach does not make efficient
use of the SC140 ALU units, since there is only one compare bit in the SC140 architecture. The optimized
approach uses the MIN and ADD instructions to find the minimum absolute value and its corresponding index
simultaneously. The absolute value of the distance is placed into the upper 16 bits of the register, and the index is
stored in the lower 16 bits. The conventional approach uses the CMPGT and TFRF instructions. Table 2 shows the
details of both approaches.

Both approaches have the same number of critical paths. The optimized search uses one less instruction and further
decouples the data dependency, allowing the compiler to perform more aggressive software pipelining.

2.5 FIR Filtering Implementation
During the detection of some tone events, such as the USB1 signal, an FIR filter may be used to eliminate unwanted
signals. The tone event detector processes the signals on a sample-by-sample basis, so multi-sampling optimization
is not viable. Moreover, filtering is not performed on a frame-by-frame basis, so it is difficult for the compiler to
generate circular buffering automatically. However, a pseudo circular buffer can be achieved by storing the fixed
filtering coefficient twice, similar to a periodic extension. The pseudo circular buffer increases code efficiency with
only a modest increase in memory use. In Figure 6, there are four fixed filtering coefficients. The multiply
accumulation starts from the first coefficient, indicated by the left arrow, to the last coefficient, indicated by the
right arrow. Repeating the FIR filter coefficients twice achieves a wrap-around mechanism without additional
checking.

Figure 6. Pseudo Circular FIR Processing.

Table 2. Details of the Frequency Search Implementation

Conventional Approach Optimized Approach Comments

SUB SUB ρΩ – ρk

ABS, INC ABS, INC | ρΩ – ρk |, k++

CMPGT, MIN ADD arg mink | ρΩ – ρk |

TFRF MIN

00 01 02 03 00 01 02 03Coefficients

Coefficients for
Second Sample

Coefficients for
First Sample Coefficients for

Third Sample
Tone Event Detection in Packet Telephony Using the StarCore™ SC140 Core, Rev. 2

10 Freescale Semiconductor

Tone Events in Packet Telephony
3 Tone Events in Packet Telephony
Table 3 summarizes typical tone events to be detected in packet telephony systems, along with the number of the
reference document listed in Section 6, References, on page 21.

Transporting these tone events over IP networks is the subject of ongoing development effort [2–4]. A well-known
example of a transport protocol for tone events is the IETF RFC2833 standard [20–21]. Because it is a relatively
simple specification, it is described in detail in the next section.

4 RFC2833 Overview
Procedures for using RFC2833-compliant packets are described in this section. The RFC2833 transport protocol is
a good example of a way to transmit tone events over IP networks. It defines two payload formats:

• One for carrying dual-tone multi-frequency (DTMF) digits and other line and trunk signals.

• One for general multi-frequency tones in real-time protocol (RTP) packets.

A gateway is a platform for handling communications between IP packet-based networks and circuit-switched
networks. It offers two options for handling DTMF digits and events. First, it can simply measure the frequency
components of the voice band signals and transmit this information to the RTP receiver [22]. In this mode, RTP
packets with tone representations are sent from an RTP sender to an RTP receiver. Second, a gateway can recognize
the tones and translate them into a name, such as a DTMF tone. The receiver then produces a tone signal. In this
mode, RTP packets with named tone events are sent from an RTP sender to an RTP receiver.

Gateways that send signaling events via RTP can transmit both named telephone events and the tone representation
as a single RTP session. Before the session starts, the RTP sender and the corresponding RTP receivers must agree
on the payload type to assign to each kind of payload so that an RTP receiver can interpret the payload data and
decode it to its corresponding audio sampled signal.

Table 3. Tone Events to Detect in Packet Telephony Systems

Event Reference

T.30 Calling Tone (CNG) [11]

V.25 Calling Tone (CT) [12]

V.25 Answering Tone (ANS) [12]

T.30 CED [11]

V.25 Answering Tone with Phase Reversal (ANS_PR) [12]

V.8 Answering Tone with Amplitude Modulation (ANSam) [13]

V.8 Answering Tone with Amplitude Modulation and Phase Reversal (ANSam_PR) [13]

V.22 Unscrambled Binary Ones (USB1) [14]

V.21 Channel 2 HDLC flag [15]

TIA/EIA-825 TTY tones [16–17]

V.8bis Initiate/Respond [18]

Q.24 Dual Tone Multiple Frequency (DTMF) [19]
Tone Event Detection in Packet Telephony Using the StarCore™ SC140 Core, Rev. 2

Freescale Semiconductor 11

RFC2833 Overview
If gateways send only one kind of RTP payload in a single RTP packet (either a named telephone event or tone
representation), the packet type (PT) field of the RTP header itself contains the payload type. If the gateway sends
an RTP packet containing both payload types, the PT field of the RTP header contains a dynamic payload type that
is assigned according to the RFC2198-style redundant payload type [23], which is also a point of agreement
between the RTP sender and RTP receiver(s) before the session starts. This assignment uses out-of-band means not
specified in the RFC2833. For each payload block within an RTP payload, the payload type is specified in the
block PT field of that payload block.

If a gateway cannot represent a tone, it should send the audio tones as regular RTP audio packets (for example, as
payload format PCMU) in addition to the named telephone event. If this feature is turned on, the block PT field in
the payload must be assigned the payload type assigned to the vocoder that encodes and decodes the audio signals.
The RTP receiver must be able to determine the kind of payload data it receives so that it can render (decode) the
data correctly.

The RTP transport is designed as a non-guaranteed transport system. The consequence of packet loss is greater for
the named telephone event packet than for the regular audio signal packet. Therefore, mechanisms on top of the
RTP transport mechanism help to ensure that important tone events such as DTMF signaling events are transferred
reliably from the RTP sender to the RTP receiver when a small fraction of packets are lost, duplicated, or delivered
too late. The error resilience issue is one of the most critical for RFC2833.

Events lasting longer than one event period are updated periodically so that the receiver can reconstruct the event
and duration if it receives the update packets with minimal delay, which is most helpful for long events. The last
event packet is transmitted a number of times (three times by default) if there is no subsequent event, which
improves reliability of delivery of the last event packet.

4.1 Payload Format for Named Telephone Events
DTMF digits and named telephone events are part of the audio stream. Therefore, to simplify the generation of
audio waveforms at a gateway, they must use the same sequence number and time-stamp base as the regular audio
channel. The default clock frequency is 8000 Hz, but the clock frequency can be redefined when the dynamic
payload type is assigned. Clock frequency is typically changed before the RTP session starts and how to change it
is outside the scope of RFC2833. The RTP timestamp reflects the measurement point for the current event duration
and extends forwards from that time. The marker bit indicates the beginning of a new event, such as the start of a
DTMF tone. The RTP receiver must be designed so that it remains functional when the packet with its mark bit set
is lost. The RFC2833 payload format is shown in Figure 7 and described in Table 4.

Figure 7. Format of the RFC2833 Payload for Named Telephone Events

Table 4. Components of the RFC2833 Payload Format

RFC2833 Payload
Component

Description

Event Events are decoded as shown in Table 5 through Table 8.

+-+
|

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
Event |E|R| Volume | Duration

0 1 2 3

|

Tone Event Detection in Packet Telephony Using the StarCore™ SC140 Core, Rev. 2

12 Freescale Semiconductor

RFC2833 Overview
E If set to a value of one, the end bit indicates that this packet contains the end of the
event. Thus, the duration parameter measures the complete duration of the event.

R This field is reserved for future use. The sender must set it to zero, and the receiver
must ignore it.

Volume For DTMF digits and other events representable as tones, this field describes the
power level of the tone, expressed in dBm0 after the sign is dropped. Power levels
range from 0 to –63 dBm0. The range of valid DTMF is from 0 to –36 dBm0 (must
accept); lower than –55 dBm0 must be rejected [19]. Thus, larger values denote
lower volume.

Duration Duration of this digit, in timestamp units. Thus, the event begins at the instant
identified by the RTP timestamp and lasts as long as indicated by this parameter.
The event may or may not have ended. For a sampling rate of 8000 Hz, this field is
sufficient to express event durations of up to approximately 8 seconds.

Table 5. Data and Fax Named Events

Event Encoding

DTMF 0–9 0–9

DTMF * 10

DTMF # 11

DTMF A–D 12–15

Flash 16

Answer tone (ANS) 32

Answer tone with phase reversal (/ANS) 33

Answer tone with AM modulation (ANSam) 34

Answer tone with AM modulation and phase reversal (/ANSam) 35

Calling tone (CNG) 36

V.21 channel 1,”0” bit 37

V.21 channel 1, “1” bit 38

V.21 channel 2, “0” bit 39

V.21 channel 2, “1” bit 40

CRdi 41

CRdr 42

CRe 43

ESi 44

ESr 45

MRdi 46

MRdr 47

MRe 48

CT 49

Table 4. Components of the RFC2833 Payload Format (Continued)

RFC2833 Payload
Component

Description
Tone Event Detection in Packet Telephony Using the StarCore™ SC140 Core, Rev. 2

Freescale Semiconductor 13

RFC2833 Overview
Table 6. E.182 [24] Line Events

Event Encoding

Off Hook 64

On Hook 65

Dial tone 66

PABX internal dial tone 67

Special dial tone 68

Second dial tone 69

Ringing tone 70

Special ringing tone 71

Busy tone 72

Congestion tone 73

Special information tone 74

Comfort tone 75

Hold tone 76

Record tone 77

Caller waiting tone 78

Call waiting tone 79

Pay tone 80

Positive indication tone 81

Negative indication tone 82

Warning tone 83

Intrusion tone 84

Calling card service tone 85

Payphone recognition tone 86

CPE alerting signal (CAS) 87

Off-hook warning tone 88

Ring 89

Table 7. Country-Specific Line Events

Event Encoding

Acceptance tone 96

Confirmation tone 97

Dial tone recall 98

End of three party service tone 99

Facilities tone 100

Line lockout tone 101

Number unobtainable tone 102

Offering tone 103
Tone Event Detection in Packet Telephony Using the StarCore™ SC140 Core, Rev. 2

14 Freescale Semiconductor

RFC2833 Overview
4.2 Sending and Receiving Named Telephone Event Packets
An audio source starts transmitting event packets as soon as it recognizes an event. It sends a packet at each
interval of 50 ms (or any other user-specified interval) or the packet interval for the audio codec used in this
session, if known. If an event continues for more than one period, the source generating the events sends a new
event packet with the RTP timestamp value corresponding to the beginning of the event and the duration of the

Permanent signal tone 104

Preemption tone 105

Queue tone 106

Refusal tone 107

Route tone 108

Valid tone 109

Waiting tone 110

Warning tone (end of period) 111

Warning Tone (PIP tone) 112

Table 8. Trunk Events

Event Encoding

MF 0–9 128–137

MF K0 or KP (start-of-pulsing) 138

MF K1 139

MF K2 140

MF S0 to ST (end-of-pulsing) 141

MF S1–S3 142–143

ABCD signaling (see below) 144–159

Wink 160

Wink off 161

Incoming seizure 162

Seizure 163

Unseize circuit 164

Continuity test 165

Default continuity tone 166

Continuity tone (single tone) 167

Continuity test send 168

Continuity verified 170

Loopback 171

Old milliwatt tone (1000 Hz) 172

New milliwatt tone (1004 Hz) 173

Table 7. Country-Specific Line Events (Continued)

Event Encoding
Tone Event Detection in Packet Telephony Using the StarCore™ SC140 Core, Rev. 2

Freescale Semiconductor 15

RFC2833 Overview
event increased correspondingly. The RTP sequence number is incremented by one for each packet. If there is no
new event in the last interval, the event is transmitted three times or until the next event is recognized to ensure that
the duration of the event is recognized correctly even if fewer than three of the last packets for an event are lost.

DTMF digits and events are sent incrementally so that the receiver does not have to wait for the completion of the
event. For example, tones that are two seconds long would otherwise incur a substantial delay. The transmitter
cannot determine whether event length is important and thus needs to transmit immediately and incrementally. The
incremental transmission mechanism avoids delay. This is important for some applications, such as gateways into
the PSTN, which are affected by both delays and event duration.

4.3 Payload Format for Telephony Tones
Instead of describing tones and events by name, it is sometimes preferable to describe them by their waveform
properties, speeding up recognition since waveform properties do not depend on recognizing durations or pauses.
In this method, the RTP timestamp reflects the measurement point for the current packet. The event duration
extends forwards from that time. The default timestamp rate is 8000 Hz, but other rates can be defined. The
timestamp rate does not affect the interpretation of the frequency. This format does not have a static payload type
number. It uses a RTP payload type number established dynamically and out-of-band. This payload format is
shown in Figure 8 and described in Table 9.

The RTP timestamp is updated for each packet generated, in contrast to the timestamp for packets carrying named
telephone events. The marker bit of the first RTP packet for a tone is set to 1. In subsequent packets for the same
tone, the marker bit is set to 0, and the RTP timestamp in each subsequent packet equals the sum of the timestamp
and the duration in the preceding packet.

Figure 8. Format of the RFC2833 Payload for Tones

Table 9. Components of the RFC2833 Payload for Tones Format

RFC2833 Payload
Component

Description

Modulation The modulation frequency, in Hz. The field is a 9-bit unsigned integer, allowing modulation
frequencies up to 511 Hz. If there is no modulation, this field has a value of zero.

T If the T bit is set (one), the modulation frequency is divided by three. Otherwise, the modulation
frequency is taken as is. This bit allows frequencies accurate to 1/3 Hz, since modulation
frequencies such as 16 2/3 Hz are in practical use.

+-+
|

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
Modulation |T| Volume | Duration

0 1 2 3

|R|R|R|R|
+-+

Frequency |R|R|R|R| Frequency

|R|R|R|R|
+-+

Frequency |R|R|R|R| Frequency

. . .

+-+

|R|R|R|R|
+-+

Frequency |R|R|R|R| Frequency

|

|

|

|

Tone Event Detection in Packet Telephony Using the StarCore™ SC140 Core, Rev. 2

16 Freescale Semiconductor

RFC2833 Overview
4.4 Multiple Tones and Named Events in One Packet
The two RFC2833 payload formats can be combined into a single payload using the method specified in RFC2198
[23]. That is, the payload portion of an RTP packet can contain multiple named telephone events or tone
representations or multiples of both. The RFC2198 method decomposes the payload portion of the RTP packet into
more than one (N) sub-level blocks of data. Each block specifies one named telephone event or one entity of
telephone tone representation. More specifically, each block consists of a block header and a block payload. For N
blocks, there is the block_header[i], block_payload[i] where i = 1–N. The order of these block headers and block
payloads is as follows:

With the exception the last block_header, all other block headers are in the following 4-byte format:

The last block header, block_header[N], is just one byte long.

Volume The power level of the tone, expressed in dBm0 after the sign is dropped, with a range from 0
to –63 dBm0. A preferred level range for digital tone generators is –8 dBm0 to –3 dBm0.

Duration The duration of the tone, measured in timestamp units. The tone begins at the instant identified
by the RTP timestamp and lasts for the duration value. The definition of duration corresponds
to that for sample-based codecs, where the timestamp represents the sampling point for the
first sample.

Frequency The frequencies of the tones to be added measured in Hz and represented as a 12-bit
unsigned integer. The field size is sufficient to represent frequencies up to 4095 Hz, which
exceeds the range of telephone systems. A value of zero indicates silence. A single tone can
contain any number of frequencies. Silence is represented by a zero frequency.

R This field is reserved for future use. The sender must set it to zero, the receiver must ignore it.

rtp_header

block_header[1]

block_header[N]

block_payload[1]

block_payload[N]

Table 9. Components of the RFC2833 Payload for Tones Format (Continued)

RFC2833 Payload
Component

Description

+-+
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

0 1 2 3

|F| Block PT | Timestamp Offset | Block Length |

+-+-+-+-+-+-+-+-+
0 1 2 3 4 5 6 7

+-+-+-+-+-+-+-+-+
|F| Block PT |
Tone Event Detection in Packet Telephony Using the StarCore™ SC140 Core, Rev. 2

Freescale Semiconductor 17

RFC2833 Overview
The F field of all block headers except the last must be set to 1; the F field of the last block header must be set to 0.
The block PT (payload type) indicates the payload type of the data stored in the corresponding block payload.
There are three choices for the block PT:

• Named telephone event payload type.

• Telephone tone representation payload type.

• Vocoder payload type (for example, PCMU).

The first two payload types are dynamic types determined by an out-of-band mechanism before the RTP session
starts. The vocoder payload is typically a static payload type defined by RFC3551 [25].

The value in the PT field of the RTP header for the RFC2198-style blocking method can be considered as a
redundant payload type. It indicates a set of block PTs for use by any blocks in an RTP packet. This redundant
payload type is established by out-of-band means before the RTP session starts. The block length is the size of the
corresponding block payload, in bytes. When the timestamp for the starting tone or audio data in block_payload[i],
i=1..N is computed, there is no alignment requirement to specify where each block payload starts.

The last block header, block_header[N], has neither the timestamp offset field nor the block length field because
the 32-bit RTP timestamp field specifies when the tone or audio starts, that is, when the receiver starts rendering the
tone or audio signal (the latter is the vocoder case). The start time for rendering the data in block_payload[i],
i=1–N–1, is the timestamp for the very first audio sample. This timestamp appears in the RTP header, minus the
always positive value in the timestamp offset field of block_header[i], where i=1–N–1.

The last block header does not contain the block length field because the length field in the header of the lower
transport layer—for example, the length field of the UDP header—implies where the payload ends. If the P
(padding) bit in the RTP header is set to 1, up to three bytes can be padded to the RTP payload at the end. The
number of padded bytes is indicated by the value of the last byte of the payload. If the P bit in the RTP header is
cleared to 0, there are no padding bytes. No more than one RTP packet can be included in the payload field of the
RFC2198 packet in the lower transport layer. Instead, multiple blocks should be used in a single packet.

Two examples from [21] illustrate how multiple blocks of named tone event blocks or telephone tone
representation blocks are packed into one RTP packet. The first example is a typical RTP packet, where the user is
just dialing the last digit of the DTMF sequence “911.” The first digit is 200 ms long (1600 timestamp units) and
starts at time 0, the second digit is 250 ms long (2000 timestamp units) and starts at time 800 ms (6400 timestamp
units), the third digit is pressed at time 1.4 s (11,200 timestamp units) and the packet is sent at 1.45 s (11,600
timestamp units). The frame duration is 50 ms. To make the parts recognizable, Figure 9 ignores byte alignment.
Timestamp and sequence number are assumed to be zero at the beginning of the first digit. The dynamic payload
types 96 and 97 are assigned for the redundancy mechanism and the telephone event payload, respectively.
Tone Event Detection in Packet Telephony Using the StarCore™ SC140 Core, Rev. 2

18 Freescale Semiconductor

RFC2833 Overview
Figure 9. Example RTP Packet After Dialing 911

If the gateway sends an RTP packet containing both payload types in the same packet, the PT field contains a
dynamic payload type that is assigned to the RFC2198-style redundant payload type. This is a point of agreement
between the RTP sender and the RTP receiver(s) before the session starts. This agreement is established via out-of-
band means outside the scope of the RFC2833. The dynamic payload types 96 and 97 are established by this
means.

In the second example, the RTP packet combines two tone payloads and one telephone event payload (see Figure
10). The payload types are chosen arbitrarily as 97 and 98, respectively, with a sample rate of 8 KHz. The
redundancy format has the dynamic payload type 96. The packet represents a snapshot of a U.S. ringing tone, 1.5
seconds (12,000 timestamp units) into the second on part of the 2.0/4.0 second cadence—that is, a total of 7.5
seconds (60,000 timestamp units) into the ring cycle. The 440 + 480 Hz tone of this second cadence starts at RTP
timestamp 48,000. Four seconds of silence precede it, but since RFC2198 has only a fourteen-bit offset, only 2.05
seconds (16383 timestamp units) can be represented. Although the tone sequence is not complete, the sender can
determine that this is indeed ringback and thus include the corresponding named event.

+-+
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

0 1 2 3

|
|

|
|

|
|

V=2|P|X|
2|0|0|

CC
0

|M|
|0|

PT
96

Sequence Number
28

+-+

|
|

|
|

+-+

|
|

|
|

Synchronization Source (SSRC) Identifier
0x5234a8

Timestamp
11200

+-+

|
|

|
|

Timestamp
11200

|
|

|
|

F|
1|

Block PT
97

Block Length
4

+-+

|
|

|
|

Timestamp
11200 - 6400 = 4800

|
|

|
|

F|
1|

Block PT
97

Block Length
4

+-+

|
|

|
|

|
|

F|
0|

Block PT
97

+-+

|
|

|
|

|
|

Digit
9

E R|
1 0|

Volume
7

|
|

Duration
1600

+-+

|
|

|
|

|
|

Digit
1

E R|
1 0|

Volume
10

|
|

Duration
2000

+-+

|
|

|
|

|
|

Digit
1

E R|
0 0|

Volume
20

|
|

Duration
400
Tone Event Detection in Packet Telephony Using the StarCore™ SC140 Core, Rev. 2

Freescale Semiconductor 19

Conclusion
Figure 10. Combining Tones and Events in a Single RTP Packet

5 Conclusion
Tone event detection is an effective way to enable successful communication of signaling tones over IP networks.
This application note considers tone event detection in packet telephony systems, in terms of both theory and
implementation on efficient tone event detection architecture. The RFC2833 transport protocol of tone events over
IP networks illustrates an important practical use of the proposed tone event detection method. Finally, selected
code optimization strategies are explored along with key parallel architectural features of the StarCore DSP core.
The robust tone event detector developed on StarCore can handle all the tone events described in Section 3, Tone
Events in Packet Telephony, on page 11. During testing with a large representative set of test vectors, this tone
event detector demonstrated the expected functionality in both real-time and file I/O tests, requiring less than 2
MCPS on average.

+-+
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

0 1 2 3

|
|

|
|

|
|

V|P|X|
2|0|0|

CC
0

|M|
|0|

PT
96

Sequence Number
31

+-+

|
|

|
|

+-+

|
|

|
|

Synchronization Source (SSRC) Identifier
0x5234a8

Timestamp
48000

+-+

|
|

|
|

Timestamp
16383

|
|

|
|

F|
1|

Block PT
98

Block Length
4

+-+

|
|

|
|

Timestamp
16383

|
|

|
|

F|
1|

Block PT
97

Block Length
8

+-+

|
|

|
|

|
|

F|
0|

Block PT
97

+-+

|

+-+

Modulation=0| |0| Volume=63 | Duration=16383

+-+

||0 0 0 0| Frequency=0 |0 0 0 0| Frequency=0

+-+

+-+

|Modulation=0| |0| Volume=5 | Duration=12000

+-+

||0 0 0 0| Frequency=440 |0 0 0 0| Frequency=480

+-+

| |Event=Ring |0|0| Volume=0 | Duration=28383
Tone Event Detection in Packet Telephony Using the StarCore™ SC140 Core, Rev. 2

20 Freescale Semiconductor

References
6 References
[1] V. Emiya, L. F. C. Pessoa, D. Vallot and D. Melles, Generic Tone Detection using Teager-Kaiser Energy

Operators on the StarCore SC140 core, Freescale application note AN2384/D, August 2003.

[2] ITU-T V.150.1, Procedures for the End-to-End Connection of V-series DCEs Over an IP Network, 2002.

[3] ITU-T V.151, Procedures for the End-to-End Connection of Analogue Text Telephones Over an IP Network,
initial draft, 2004.

[4] ITU-T V.152, Procedures for Supporting Voice-Band Data over IP Networks, initial draft, 2004.

[5] R. Beck, A. G. Dempster, and I. Kale, “Finite-precision Goertzel filters used for signal tone detection,” IEEE
Trans. Circuits and Systems-II: Analog and Digital Signal Processing, vol. 48, no. 6, pp.691-700, 2001.

[6] F. M. Gardner, “Properties of Frequency Difference Detectors,” IEEE Transactions on Communications, vol.
COM-33, pp. 131-138, February 1985.

[7] A. D’Andrea, A. Ginesi, and U. Mengali, “Digital Carrier Frequency Estimation for Multilevel CPM
Signals,” Proceedings ICC’95, Seattle, WA, pp. 1041-1045, June 1995.

[8] L. F. C. Pessoa, R. A. Dyba and P. He, “Joint Audio Power Estimation and Tone Indication in Network Echo
Cancellers,” in Global Signal Processing Expo and Conference (GSPx), 2003.

[9] M. J. Werter, “A Digital Phase-Locked Loop for Frequency Detection,” in Proc. of 38th Midwest Symposium
on Circuits and Systems, pp. 13-16, 1995.

[10] C. Dick, F. Harris, and M. Rice, “Synchronization in Software Radios - Carrier and Timing Recovery Using
FPGAs,” In IEEE Symposium on Field-Programmable Custom Computing Machines, pp. 195-204, 2000.

[11] ITU-T T.30, Procedures for Document Facsimile Transmission in the General Switched Telephone Network,
1996.

[12] ITU-T V.25, Automatic Answering Equipment and General Procedures for Automatic Calling Equipment on
the General Switched Telephone Network Including Procedures for Disabling of Echo Control Devices for
both Manually and Automatically Established Calls, 1996.

[13] ITU-T V.8, Procedures for Starting Sessions of Data Transmission Over the Public Switched Telephone
Network, 2000.

[14] ITU-T V.22, 1200 Bits per Second Duplex Modem Standardized for Use in the General Switched Telephone
Network and on Point-to-Point 2-Wire Leased Telephone Type Circuits, 1988.

[15] ITU V.21, 300 Bits per Second Duplex Modem Standardized for Use in the General Switched Telephone
Network and on Point-to-Point 2-Wire Leased Telephone Type Circuits, 1988.

[16] TIA/EIA/IS-840-A, Minimum Performance Standards for Text Telephone Signal Detector and Text
Telephone Signal Generator, 2001.

[17] TIA-825-A, A Frequency Shift Keyed Modem for Use on the Public Switched Telephone Network, 2003.

[18] ITU-T V.8bis, Procedures for the Identification and Selection of Common Modes of Operation between
DCEs and DTEs Over the Public Switched Telephone Network and Leased Point-to-Point Telephone Type
Circuits, 2000.

[19] ITU-T Q.24, Multifrequency Push-Button Signal Reception, 1988.

[20] IETF RFC2833, RTP Payload for DTMF Digits, Telephony Tones and Telephony Signals, 2000.

[21] IETF RFC2833bis, RTP Payload for DTMF Digits, Telephony Tones and Telephony SIgnals, 2004.

[22] IETF RFC3550, RTP: A Transport Protocol for Real-Time Applications, 2003.
Tone Event Detection in Packet Telephony Using the StarCore™ SC140 Core, Rev. 2

Freescale Semiconductor 21

References
[23] IETF RFC2198, RTP Payload for Redundant Audio Data, 1997.

[24] ITU-T E.182, Application of Tones and Recorded Announcements in Telephone Services, 1998.

[25] IETF RFC3551, RTP Profile for Audio and Video Conferences with Minimal Control, 2003.
Tone Event Detection in Packet Telephony Using the StarCore™ SC140 Core, Rev. 2

22 Freescale Semiconductor

References
NOTES:
Tone Event Detection in Packet Telephony Using the StarCore™ SC140 Core, Rev. 2

Freescale Semiconductor 23

AN2775
Rev. 2
6/2004

How to Reach Us:

USA/Europe/Locations not listed:
Freescale Semiconductor
Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-521-6274 or 480-768-2130

Japan:
Freescale Semiconductor Japan Ltd.
Technical Information Center
3-20-1, Minami-Azabu. Minato-ku
Tokyo 106-8573, Japan
81-3-3440-3569

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T. Hong Kong
852-26668334

Learn More:
For more information about Freescale
Semiconductor products, please visit
http://www.freescale.com

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information
in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters
which may be provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating parameters,
including “Typicals” must be validated for each customer application by customer’s technical experts.
Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as components
in systems intended for surgical implant into the body, or other applications intended to support or
sustain life, or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall
indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was
negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. StarCore is a
trademark of StarCore LLC. Metrowerks and CodeWarrior are registered trademarks of Metrowerks
Corp. in the U.S. and/or other countries.All other product or service names are the property of their
respective owners.

© Freescale Semiconductor, Inc. 2004.

	1 Tone Event Detection Basics
	1.1 Tone Event Detector Architecture
	1.2 Phase Detection With Frequency Offset Compensation
	1.3 Summary of Theoretical Results

	2 Tone Event Detector on StarCore DSPs
	2.1 Automatic Level Control (ALC)
	2.2 Tone Indication
	2.3 Tone Indicator Counter
	2.4 Finding the Closest Reference Frequency Tone
	2.5 FIR Filtering Implementation

	3 Tone Events in Packet Telephony
	4 RFC2833 Overview
	4.1 Payload Format for Named Telephone Events
	4.2 Sending and Receiving Named Telephone Event Packets
	4.3 Payload Format for Telephony Tones
	4.4 Multiple Tones and Named Events in One Packet

	5 Conclusion
	6 References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

