|
y

'
A

Freescale Semiconductor
Application Note

Document Number: AN2844
Rev. 0, 04/2005

Using the Current Controller (CC)

eTPU Function

Covers the MCF523x, MPC5500, and all eTPU-equipped

Devices

by: Milan Brejl
System Application Engineer, Roznov Czech System Center
Andrey Butok
System Application Engineer, Kiev Embedded Software Lab

1 Introduction

The current controller (CC) enhanced time processor
unit (¢eTPU) function is one of the functions included in
the DC motor control eTPU function set (set3). This
application note is intended to provide simple C interface
routines to the CC eTPU function. The routines are
targeted at the MCF523x and MPC5500 families of
devices, but they could be easily used with any device
that has an eTPU.

2 Function Overview

The CC function is not intended to process an input or
output signal. The purpose of the CC function is to
control another eTPU function’s input parameter. The
CC function includes a controller algorithm. The
controller calculates its output based on two inputs: a
measured value and a desired value. The measured value
is usually provided by the analog sensing for DC motors
(ASDC) function, that preprocesses the measured analog
values. The desired value is a CC function parameter,

© Freescale Semiconductor, Inc., 2005. All rights reserved.

OO WN =

Table of Contents

INtroduCtion......cooo v 1
Function Overview..........ccccceevieienie e 1
Function Description.........ccccccviiveeeieie i, 2
C Level API for Function.........ccccceecvieeeeeiiiieneene 4
Example Use of Functioncccccoiinieiineenn. 11
Summary and Conclusionsccccvverveeieeenne. 13
freescale”

semiconductor

|
y

'
A

Function Description

and can be provided by the CPU or another eTPU function. In the motor-control eTPU function set, this
function mostly provides the current closed loop.

CC

|_actual

4Output { PID controller }

-

|_desired

| desired

Figure 1. Functionality of CC

The controller algorithm is a general proportional-integral-derivative (PID) algorithm. It can be configured
as PI or PID controller.

3 Function Description

The controller algorithm included in the CC function calculates the output according to the following
equations:

u(k) = up(k) + u (k) + up(k)
e(k) = w(k) —m(k)
up(k) = Gp*e(k)
u(k) = uy(k-1) + Gr*e(k)
up(k) = Gp*(e(k) - e(k-1))
Where:
u(k) — PID algorithm output (the output of CC) in step k.
up(k) — Proportional portion in step £.
u;(k) — Integral portion in step k.
up(k) — Derivative portion in step k.

e(k) — Input error in step k.

w(k) — Desired value in step £.
m(k) —Measured value in step £.
Gp — Proportional gain.

G; — Integral gain.

Gp — Derivative gain.

During CC initialization, if the derivative gain is set to zero an internal flag which enables the calculation
of derivative portion is cleared, resulting in a shorter calculation time.

The measured and desired values, as well as the gains, are applied with 24-bit precision. The integral
portion is stored with 48-bit precision. The gain range is from 0 to 256, with a precision of 0.0000305
(30.5e-6).

Using the Current Controller (CC) eTPU Function, Rev. 0

2 Freescale Semiconductor

Function Description

Like most of the motor-control eTPU functions, the CC function also supports checking the eTPU
latencies using an oscilloscope. The CC function channel, if connected to an output pin, turns the output
pin high and low, so that the high-time identifies the period of time in which the CC update is executed.

eTPU or CPU eTPU or CPU
Request Request

' .

Slave Mode

| Start Offset Period Period

A
\
[
Y
[
\

Master Mode

Figure 2. CC Updates in Slave Mode and Master Mode

The CC function update, in which the actual desired value and the measured value are taken and the control
signal is adjusted, can be executed periodically, or by another process:

¢ Master Mode

The CC update is executed periodically with a given period.
* Slave Mode

The CC update is executed by the Analog Sensing (ASDC) eTPU function, other eTPU function,
or by the CPU.

3.1 Interrupts

The CC function generates an interrupt service request to the CPU every n-th update. The number of
updates, after which an interrupt service request is generated, is a function parameter.

3.2 Performance

Like all eTPU functions, the CC function performance in an application is to some extent dependent upon
the service time (latency) of other active eTPU channels. This is due to the operational nature of the
scheduler.

The influence of the CC function on the overall eTPU performance can be expressed by the following
parameter:

* Maximum eTPU busy-time during one update period
This value, compared to the update period value, determines the proportional load on the eTPU
engine caused by the CC function.

Table 1 lists the maximum eTPU busy-times per update period in eTPU cycles that depend on the CC
mode and controller type.

Using the Current Controller (CC) eTPU Function, Rev. 0

Freescale Semiconductor 3

C Level API for Function

Table 1. Maximum eTPU Busy-times

Mode, Controller Type

Maximum eTPU Busy-time per
CC Period
[eTPU cycles]

Master Mode, PI Controller 150
Master Mode, PID Controller 160

Slave Mode, PI Controller 138
Slave Mode, PID Controller 148

The eTPU module clock is equal to the CPU clock on MPC5500 devices, as well as the peripheral clock,
(half of the CPU clock) on MCF523x devices. For example, the eTPU module clock is 132 MHz on a
132-MHz MPC5554, and one eTPU cycle takes 7.58ns; eTPU module clock is only 75 MHz on a

150-MHz MCF5235, and one eTPU cycle takes 13.33ns.

The performance is influenced by the compiler efficiency. The above numbers, measured on the code
compiled by eTPU compiler version 1.0.0.5, are given for guidance only and are subject to change. For up
to date information, refer to the information provided in the particular eTPU function set release available

from Freescale.

4 C Level API for Function

The following routines provide easy access to the CC function for the application developer. Use of these
functions eliminates the need to directly control the eTPU registers. There are 13 functions added to the
application programming interface (API). The routines can be found in the etpu cc.h and

etpu_cc. c files, which should be included in the link file along with the top level development file(s).

Using the Current Controller (CC) eTPU Function, Rev. 0

Freescale Semiconductor

C Level API for Function

Figure 3 shows the CC API state flow and lists API functions which can be used in each of its states.

fs_etpu_cc_init(...)

fs_etpu_cc_set_configuration (FS_ETPU_CC_PID_ON)

/%_etpu_cc_u pdate(...)
fs_etpu_cc_set pid_params(...)
fs_etpu_cc_set i desired(...)
fs_etpu_cc_set_i_measured(...)
fs_etpu_cc_set_integral_portion(...)
fs_etpu_cc_get i measured(...)

fs_etpu_cc_get_output(...)

\

\

Kﬁ_etpu_cc_get_configuration(.) /

I —

/%_etpu_cc_update(. ..)
fs_etpu_cc_set pid_params(...)
fs_etpu_cc_set i desired(...)
fs_etpu_cc_set i_measured(...)
fs_etpu_cc_set_integral_portion(...)
fs_etpu_cc_get i _measured(...)
fs_etpu_cc_get saturation_flag(...)
fs_etpu_cc_get_output(...)
fs_etpu_cc_get_error(...)
fs_etpu_cc_get integral_portion(...)

Q_etpu_cc_get_configuration(. ..) /

~

fs_etpu_cc_set_configuration (FS_ETPU_CC_PID_OFF)

Figure 3. CC API State Flow

All CC API routines will be described in order and are listed below:

* Initialization Function:

int32_t fs etpu cc_init(uint8_t
uint8_t
uint8_t
uint8_t
uint24 t
uint24 t
uint24_ t
cc_pid_params_t*
uint8_t
uintle_t
uint8_t

» Change Operation Functions:

channel,
priority,
mode,
configuration,
period,

start _offset,
services_per_irq,
p_pid _params,
output_chan,
output_offset,
link_chan)

int32_t fs_etpu _cc_update(uint8_t channel);
int32_t fs etpu _cc_set _configuration(uint8_t channel,

uint8_t configuration);

int32_t fs etpu cc_set pid params(uint8_t channel,
cc_pid_params_t* p_pid_params);

int32_t fs etpu cc_set i_desired(uint8_t

int32_t fs _etpu cc _set i_measured(uint8_t

channel,
fract24_t i_desired);
channel,
fract24_t i_measured);

Using the Current Controller (CC) eTPU Function, Rev. 0

Freescale Semiconductor

C Level API for Function

4.1

41.1

int32_t fs _etpu cc_set integral _portion(uint8 t channel,
fract24_t i_kl)
Value Return Functions:

fract24_t fs _etpu_cc get i_measured(uint8_t channel);
uint8_t fs_etpu_cc _get saturation_flag(uint8_t channel);
fract24_t fs_etpu_cc_get output(uint8_t channel);
fract24_t fs_etpu_cc_get _error(uint8_t channel);

fract24_t fs_etpu_cc _get integral_portion(uint8_t channel);
uint8_t fs_etpu_cc_get configuration(uint8_t channel);

Initialization Function

int32_t fs_etpu_cc _init(...)

This routine is used to initialize the eTPU channel for the CC function. This function has the following
parameters:

channel (uint8 t) - This is the CC channel number. This parameter should be assigned a value of
0-31 for ETPU_A, and 64-95 for ETPU_B.

priority (uint8_t) - This is the priority to assign to the CC function. This parameter should be
assigned a value of:

— FS_ETPU PRIORITY_ HIGH

— FS_ETPU PRIORITY MIDDLE

— FS_ETPU_ PRIORITY LOW

— FS_ETPU_ PRIORITY DISABLED

mode (uint8 t) -This is the function mode. This parameter should be assigned a value of:
— FS_ETPU_CC _MASTER

— FS _ETPU_CC_SLAVE

configuration (uint8 t) — This is the required configuration of CC. This parameter should be
assigned a value of:

— FS_ETPU_CC_PID_OFF (PID controller is disabled)
— FS_ETPU_CC_PID_ON (PID controller is enabled)

period (uint24 t) - This is the update period, as a number of TCR1 clocks. This parameter
applies in master mode only (mode=FS_ETPU CC MASTER).

start_offset (uint24_t) - This parameter is used to synchronize various eTPU functions. The first
CC update starts start_offset TCR1 clocks after initialization. This parameter applies in master
mode only (mode=FS ETPU CC MASTER).

services_per_irq (uint24 t) - This parameter defines the number of updates after which an
interrupt service request is generated to the CPU.

Using the Current Controller (CC) eTPU Function, Rev. 0

Freescale Semiconductor

C Level API for Function

* p_pid_params (cc_pid_params_t*) — This is the pointer to a cc_pid params_t structure. The
cc_pid_params_t structure is defined in etpu_cc.h:
typedef struct {
fract24 t P_gain;
fract24 t 1_gain;
fract24 t D _gain;
intl6_t positive limit;
intl6_t negative_ limit;
} cc _pid _params_t;
Where:
— P_gain (fract24_t) - This is the proportional gain and its value must be in the 24-bit signed
fractional format 9.15 that means in the range of (-256, 256).
0x008000 corresponds to 1.0
0x000001 corresponds to 0.0000305 (30.5e-6)
OX7FFFFF corresponds to 255.9999695

— 1 _gain (fract24_t) - This is the integral gain and its value must be in the 24-bit signed
fractional format 9.15 that means in the range of (-256, 256).

— D_gain (fract24_t) - This is the derivative gain and its value must be in the 24-bit signed
fractional format 9.15 that means in the range of (-256, 256). To switch off calculation of
derivative portion set this parameter to zero.

— positive limit (int16_t) - This is the positive output limit and its value must be in the 16-bit
signed fractional format 1.15 that means in the range of (-1, 1).

— negative_limit (int16_t) - This is the negative output limit and its value must be in the 16-bit
signed fractional format 1.15 that means in the range of (-1, 1).

* output_chan (uint8 t) — CC writes the PID output value to a recipient function input parameter.
This is the recipient function channel number. This parameter should be assigned a value of 0-31
forETPU_A, and 64-95 for ETPU B.

* output_offset (uint8_t) — CC writes the PID output to a recipient function input parameter. This
is the recipient function parameter offset. Function parameter offsets are defined in
etpu_<func> auto.h file.

* link_chan (uint8 t) — This is the channel number of a channel which receives a link after CC
updates output. For example, if CC updates PWM duty-cycles it should be a PWMMDC channel.
This parameter should be assigned a value of 0-31 forETPU_A, and 64-95 for ETPU_B.

Using the Current Controller (CC) eTPU Function, Rev. 0

Freescale Semiconductor 7

C Level API for Function

4.2 Change Operation Functions

4.2.1

int32_t fs_etpu_cc_update(uint8_t channel)

This function executes the CC update. It has the following parameter:

4.2.2

channel (uint8_t) - This is the current controller channel number. This parameter must be
assigned the same value as was assigned to the channel parameter in the initialization routine. If
there are more CCs running simultaneously on the eTPU(s), the channel parameter distinguishes
which CC function is accessed.

int32_t fs_etpu_cc_set_configuration(uint8_t channel,
uint8_t configuration)

This function changes the CC configuration. It has the following parameters:

4.2.3

channel (uint8 t) - This is the current controller channel number. This parameter must be
assigned the same value as was assigned to the channel parameter in the initialization routine. If
there are more CCs running simultaneously on the eTPU(s), the channel parameter distinguishes
which CC function is accessed.

configuration (uint8 t) — This is the required configuration of CC. This parameter should be
assigned a value of:

— FS_ETPU_CC_PID_OFF (PID controller is disabled)
— FS_ETPU_CC_PID_ON (PID controller is enabled)

int32_t fs_etpu_cc_set_pid_params(uint8_t channel,
cc_pid_params_t* p_pid_params)

This function changes the PID parameter values. It has the following parameters:

channel (uint8 t) - This is the current controller channel number. This parameter must be
assigned the same value as was assigned to the channel parameter in the initialization routine. If
there are more CCs running simultaneously on the eTPU(s), the channel parameter distinguishes
which CC function is accessed.

p_pid_params (cc_pid_params_t*) - This is the pointer to the PID control structure. The
cc_pid_params_t structure is defined in etpu_cc.h.

Using the Current Controller (CC) eTPU Function, Rev. 0

Freescale Semiconductor

C Level API for Function

4.2.4 int32_tfs_etpu_cc_set_i_desired(uint8_t channel,
fract24_t i_desired)

This function changes the desired value, as a portion of the maximum value. It has the following
parameters:

* channel (uint8 _t) - This is the current controller channel number. This parameter must be
assigned the same value as was assigned to the channel parameter in the initialization routine. If
there are more CCs running simultaneously on the eTPU(s), the channel parameter distinguishes
which CC function is accessed.

* i_desired (fract24 t) - Desired input value. The value must be in the range MIN24 to MAX24.

4.2.5 int32_tfs_etpu_cc_set_i_measured(uint8_t channel,
fract24_t i_measured)

This function changes the measured value, as a portion of the maximum value. It has the following
parameters:

* channel (uint8_t) - This is the current controller channel number. This parameter must be
assigned the same value as was assigned to the channel parameter in the initialization routine. If
there are more CCs running simultaneously on the eTPU(s), the channel parameter distinguishes
which CC function is accessed.

* i_measured (fract24_t) - Measured value. The value must be in the range MIN24 to MAX24.

4.2.6 int32_tfs_etpu_cc_set_integral_portion(uint8_t channel,
fract24_ti_k1)

This function sets the integral portion (usually used to set the integral portion to zero). It has the following
parameters
* channel (uint8 t) - This is the current controller channel number. This parameter must be
assigned the same value as was assigned to the channel parameter in the initialization routine. If
there are more CCs running simultaneously on the eTPU(s), the channel parameter distinguishes
which CC function is accessed.

* i Kkl (fract24_t) - This is the integral portion value in 24-bit signed fractional format 1.23, range
-L1).

Using the Current Controller (CC) eTPU Function, Rev. 0

Freescale Semiconductor 9

C Level API for Function

4.3 Value Return Function

4.3.1 fract24_t fs_etpu_cc_get_i_measured(uint8_t channel)

This function gets the measured value, as a portion of the maximum value. It has the following parameter:

* channel (uint8 _t) - This is the current controller channel number. This parameter must be
assigned the same value as was assigned to the channel parameter in the initialization routine. If
there are more CCs running simultaneously on the eTPU(s), the channel parameter distinguishes
which CC function is accessed.

The value of the measured current is returned as a fract24 tin the range (-1, 1). The actual current, in [A],
can be obtained by multiplying of the returned value by measurement range.

4.3.2 uint8_t fs_etpu_cc_get_saturation_flag(uint8_t channel)

This function returns the PID controller saturation flags. It has the following parameter:

* channel (uint8 _t) - This is the current controller channel number. This parameter must be
assigned the same value as was assigned to the channel parameter in the initialization routine. If
there are more CCs running simultaneously on the eTPU(s), the channel parameter distinguishes
which CC function is accessed.

The returned value can be one of the following:
— FS _ETPU CC _SATURATION NO (0) ... no saturation
— FS _ETPU _CC _SATURATION POS (1) ... saturation to positive limit
— FS _ETPU CC _SATURATION NEG (2) ... saturation to negative limit

4.3.3 fract24_t fs_etpu_cc_get_output(uint8_t channel)

This function returns the PID controller output. It has the following parameter:

* channel (uint8_t) - This is the current controller channel number. This parameter must be
assigned the same value as was assigned to the channel parameter in the initialization routine. If
there are more CCs running simultaneously on the eTPU(s), the channel parameter distinguishes
which CC function is accessed.

4.3.4 fract24_t fs_etpu_cc_get_error(uint8_t channel)

This function returns the PID controller error. It has the following parameter:

* channel (uint8 _t) - This is the current controller channel number. This parameter must be
assigned the same value as was assigned to the channel parameter in the initialization routine. If
there are more CCs running simultaneously on the eTPU(s), the channel parameter distinguishes
which CC function is accessed.

Using the Current Controller (CC) eTPU Function, Rev. 0

10 Freescale Semiconductor

Example Use of Function

4.3.5 fract24_t fs_etpu_cc_get_integral_portion(uint8_t channel)

This function returns the PID controller integral portion. It has the following parameter:

* channel (uint8_t) - This is the current controller channel number. This parameter must be
assigned the same value as was assigned to the channel parameter in the initialization routine. If
there are more CCs running simultaneously on the eTPU(s), the channel parameter distinguishes
which CC function is accessed.

4.3.6 uint8_t fs_etpu_cc_get_configuration(uint8_t channel)

This function returns the CC configuration. It has the following parameter:

* channel (uint8 _t) - This is the current controller channel number. This parameter must be
assigned the same value as was assigned to the channel parameter in the initialization routine. If
there are more CCs running simultaneously on the eTPU(s), the channel parameter distinguishes
which CC function is accessed.

The returned value can be one of the following:
— FS_ETPU_CC_PID_OFF (PID controller is disabled)
— FS_ETPU_CC_PID_ON (PID controller is enabled)

5 Example Use of Function

5.1 Demo Application

The usage of the CC eTPU function is demonstrated in the application “DC Motor with Speed and Current
Closed Loop, driven by eTPU on MCF523x”. For a detailed description of the demo, refer to AN2955. |

5.1.1 Function Calls

The CC function is configured to slave mode. The ASDC function triggers the DC-bus current sampling,
requests a DMA transfer of the conversion result to the eTPU DATA RAM, preprocess the obtained value
by removing the DC offset and aligning to 24-bit fractional format, and writes the result into the CC
parameter | MEASURED. A link from the ASDC function is sent to the CC function in turn, in order to
execute the CC update. The I DESIRED is provided by the SC function, which is used as an outer loop
controller. The CC controller output points to a PWMMDC input, so that it controls the duty-cycle of
PWM phases.

/***

* Parameters
xx /
uint8_t PWMMDC_channel
uint8_ t CC_channel
fract24 _t CC_P_gain
fract24 _t CC_I_gain

4;
0x080000; /* 1.0 */
0x000100; /* 0.0078125 */

Using the Current Controller (CC) eTPU Function, Rev. 0

Freescale Semiconductor 11

V¥ ¢
i

Example Use of Function

/***
*
- e
Initialize Current Controller
*
**/

/***

* 1) Define Current Controller PID Parameters

* XKk x AAAKXIAAXAIAAAXAIAAXAIAAAIAAAXAAAAIAddddhhhix

* The P-gain and I-gain are given by parameters. The D-gain is set to

* zero in order to have Pl-type speed controller.

* The positive and negative limits, which are set in 16-bit fractional
* format (1.15), can be adjusted in order to limit the speed controller
* output range, and also the integral portion range.

nnn /
cc_pid_params.P_gain = CC_P_gain;
cc_pid_params.l_gain = CC_I_gain;
cc_pid_params.D_gain = 0;
cc_pid_params.positive limit = OX7FFF;
cc_pid_params.negative_limit = 0x8000;
/ nn
* 2) Initialize CC channel
xx /

err_code = fs_etpu_cc_init(
CC_channel ,/* channel */
FS_ETPU_PRIORITY_LOW,/* priority */
FS_ETPU_CC_SLAVE,/* mode */
FS_ETPU _CC_PID _OFF,/* configuration */
0,/* period */
0,/* start offset */
0,/* services _per_irq */
&cc_pid_params,/* p_pid_params */
PWMMDC_channel ,/* output_chan */
FS_ETPU_PWMMDC_VOLTAGE_OFFSET,/* output_offset */
PWMMDC_channel/* link_chan */

);

/***

*

* Enable Current Controller

* - Reset PID integral portion and set PID on
*

**/
fs_etpu_cc_set_integral_portion(CC_channel, 0);
fs_etpu_cc_set_configuration(CC_channel, FS ETPU _CC _PID ON);

* Disable Current Controller
* - Set PID off and reset PID integral portion

Using the Current Controller (CC) eTPU Function, Rev. 0

12 Freescale Semiconductor

Summary and Conclusions

fs_etpu_cc_set_configuration(CC_channel, FS _ETPU CC PID _OFF);
fs_etpu_cc_set_integral_portion(CC_channel, 0);

6 Summary and Conclusions

This application note provides the user with a description of the current controller (CC) eTPU function.
The simple C interface routines to the CC eTPU function enable easy implementation of the CC in
applications. The demo application is targeted at the MCF523x family of devices, but it could be easily
reused with any device that has an eTPU.

References:
1. “The Essentials of Enhanced Time Processing Unit,” AN2353.
“General C Functions for the eTPU,” AN2864.
“Using the DC Motor Control eTPU Function Set (set3),” AN2958.
“DC Motor with Speed and Current Closed Loop, driven by eTPU on MCF523x,” AN2955.
Enhanced Time Processing Unit Reference Manual, ETPURM/D.
eTPU Graphical Configuration Tool, http://www.freescale.com/etpu, ETPUGCT.

SNk v

Using the Current Controller (CC) eTPU Function, Rev. 0

Freescale Semiconductor 13

THIS PAGE INTENTIONALLY LEFT BLANK

Using the Current Controller (CC) eTPU Function, Rev. 0

14

Freescale Semiconductor

THIS PAGE INTENTIONALLY LEFT BLANK

Using the Current Controller (CC) eTPU Function, Rev. 0

Freescale Semiconductor

15

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan

0120 191014 or +81 3 5437 9125
support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center

2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong

+800 2666 8080

support.asia @freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center
P.O. Box 5405

Denver, Colorado 80217

1-800-441-2447 or 303-675-2140

Fax: 303-675-2150

LDCForFreescaleSemiconductor @ hibbertgroup.com

Information in this document is provided solely to enable system and
software implementers to use Freescale Semiconductor products. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.

Freescale Semiconductor reserves the right to make changes without further
notice to any products herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

freescale"

semiconductor

Freescale™ and the Freescale logo are trademarks of Freescale
Semiconductor, Inc. All other product or service names are the property

of their respective owners.© Freescale Semiconductor, Inc. 2005. All rights
reserved.

Document Number: AN2844
Rev. 0
04/2005

	Using the Current Controller (CC) eTPU Function
	1 Introduction
	2 Function Overview
	3 Function Description
	3.1 Interrupts
	3.2 Performance

	4 C Level API for Function
	4.1 Initialization Function
	4.1.1 int32_t fs_etpu_cc_init(...)

	4.2 Change Operation Functions
	4.2.1 int32_t fs_etpu_cc_update(uint8_t channel)
	4.2.2 int32_t fs_etpu_cc_set_configuration(uint8_t channel, uint8_t configuration)
	4.2.3 int32_t fs_etpu_cc_set_pid_params(uint8_t channel, cc_pid_params_t* p_pid_params)
	4.2.4 int32_t fs_etpu_cc_set_i_desired(uint8_t channel, fract24_t i_desired)
	4.2.5 int32_t fs_etpu_cc_set_i_measured(uint8_t channel, fract24_t i_measured)
	4.2.6 int32_t fs_etpu_cc_set_integral_portion(uint8_t channel, fract24_t i_k1)

	4.3 Value Return Function
	4.3.1 fract24_t fs_etpu_cc_get_i_measured(uint8_t channel)
	4.3.2 uint8_t fs_etpu_cc_get_saturation_flag(uint8_t channel)
	4.3.3 fract24_t fs_etpu_cc_get_output(uint8_t channel)
	4.3.4 fract24_t fs_etpu_cc_get_error(uint8_t channel)
	4.3.5 fract24_t fs_etpu_cc_get_integral_portion(uint8_t channel)
	4.3.6 uint8_t fs_etpu_cc_get_configuration(uint8_t channel)

	5 Example Use of Function
	5.1 Demo Application
	5.1.1 Function Calls

	6 Summary and Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

