
Freescale Semiconductor
Application Note

AN3205
Rev. 0, 06/2006

Table of Contents
1 PowerPC MPC5554 and eTPU Advantages and

Features ..2
2 Target Motor Theory ..4
3 System Concept ..7
4 Software Design ..17
5 Implementation Notes41
6 Microprocessor Usage42
7 Summary and Conclusions43
8 References ..43
9 Revision History ..44

AC Induction Motor Volts per Hertz
Control with Speed Closed Loop,
Driven by eTPU on MPC5500
Covers MPC5500 and all eTPU-Equipped Devices
by: Milan Brejl, Michal Princ and Petr Uhlir

System Application Engineers
Roznov Czech System Center
This application note describes the design of a 3-phase
AC induction motor (ACIM) speed closed loop Volts per
Hertz control drive based on Freescale’s PowerPC
MPC5500 microprocessor. The application design takes
advantage of the enhanced time processing unit (eTPU)
module, which is used as a motor control co-processor.
The eTPU completely handles the motor control
processing, eliminating the microprocessor overhead for
other duties.

The application is designed for driving medium power
three-phase AC induction motors and is targeted for
applications in both industrial and appliance fields (e.g.
washing machines, compressors, air conditioning units,
pumps, or simple industrial drives).

It serves as an example of an AC motor control system
design using a Freescale microprocessor with the eTPU.
It also illustrates the usage of dedicated motor control
eTPU functions that are included in the AC motor
control eTPU function set.

This application note also includes basic motor theory,
system design concept, hardware implementation, and
microprocessor and eTPU software design, including the
FreeMASTER visualization tool.
© Freescale Semiconductor, Inc., 2006. All rights reserved.

PowerPC MPC5554 and eTPU Advantages and Features
Figure 1. Using MPC5554DEMO, 3-Phase AC/BLDC High-Voltage Power Stage,
Inline Optoisolation Box, and 3-Phase AC Induction Motor

1 PowerPC MPC5554 and eTPU Advantages and
Features

1.1 PowerPC MPC5554 Microcontroller
The MPC5554 microcontroller belongs to a family of next generation powertrain microcontrollers based
on the PowerPC Book E architecture. Featuring two 32-channel eTPU engines, 32 Kbytes of cache,
64 Kbytes of internal SRAM, 2 Mbytes of internal Flash memory, a 64-channel eDMA controller, 3
FlexCAN modules, 3 UARTs and four DSPI modules, the MPC5554 has been designed for applications
that require complex, real-time control.
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor2

PowerPC MPC5554 and eTPU Advantages and Features
This 32-bit device is based on the PowerPC core operating at a frequency up to 132 MHz. On-chip modules
include:

• High-performance 32-bit PowerPC Book E-compliant core
• Memory management unit (MMU) with 24-entry fully associative translation look-aside buffer

(TLB)
• 2 MB of embedded Flash memory with error correction coding (ECC)
• 64 KB on-chip L2 static RAM with ECC
• 32 KB of cache that can be configured as additional RAM
• Nexus IEEE-ISTO 5001 class multicore debug capabilities
• Two enhanced time processor units (eTPUs)
• 64-channel enhanced direct memory access (eDMA) controller
• Interrupt controller (INTC) capable of handling 286 selectable-priority interrupt sources
• Frequency modulated phase-locked loop (FMPLL) to assist in electromagnetic interference (EMI)

management
• Enhanced queued analog-to-digital converter (eQADC)
• Four deserial serial peripheral interface (DSPI) modules
• Three controller area network (FlexCAN) modules
• Two enhanced serial communication interface (eSCI) modules
• Eighty-eight channels of timed I/O
• Crossbar switch (XBAR)
• Enhanced modular I/O system (eMIOS)

For more information, refer to Reference 1.

1.2 eTPU Module
The eTPU is an intelligent, semi-autonomous co-processor designed for timing control, I/O handling,
serial communications, motor control, and engine control applications. It operates in parallel with the host
CPU. The eTPU processes instructions and real-time input events, performs output waveform generation,
and accesses shared data without the host CPU’s intervention. Consequently, the host CPU setup and
service times for each timer event are minimized or eliminated.

The eTPU on the MPC5554 microcontroller has two engines with up to 32 timer channels for each. In
addition, it has 16 Kbytes of code memory and 3 Kbytes of data memory that stores software modules
downloaded at boot time and can be mixed and matched as required for any specific application.

The eTPU provides more specialized timer processing than the host CPU can achieve. This is partially due
to the eTPU implementation, which includes specific instructions for handling and processing time events.
In addition, channel conditions are available for use by the eTPU processor, thus eliminating many
branches. The eTPU creates no host CPU overhead for servicing timing events.

For more information, refer to Reference 9.
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor 3

Target Motor Theory
2 Target Motor Theory
.

Figure 2. 3-Phase AC Induction Motor

The AC induction motor is a rotating electric machine designed to operate from a 3-phase source of
alternating voltage. For variable speed drives, the source is normally an inverter that uses power switches
to produce approximately sinusoidal voltages and currents of controllable magnitude and frequency.

A cross-section of a two-pole induction motor is shown in Figure 2. Slots in the inner periphery of the
stator accommodate 3-phase winding a,b,c. The turns in each winding are distributed so that a current in
a stator winding produces an approximately sinusoidally-distributed flux density around the periphery of
the air gap. When three currents that are sinusoidally varying in time, but displaced in phase by 120° from
each other, flow through the three symmetrically-placed windings, a radially-directed air gap flux density
is produced that is also sinusoidally distributed around the gap and rotates at an angular velocity equal to
the angular frequency, ωs, of the stator currents.

The most common type of induction motor has a squirrel cage rotor in which aluminum conductors or bars
are cast into slots in the outer periphery of the rotor. These conductors or bars are shorted together at both
ends of the rotor by cast aluminum end rings, which also can be shaped to act as fans. In larger induction
motors, copper or copper-alloy bars are used to fabricate the rotor cage winding.

As the sinusoidally-distributed flux density wave produced by the stator magnetizing currents sweeps past
the rotor conductors, it generates a voltage in them. The result is a sinusoidally-distributed set of currents
in the short-circuited rotor bars. Because of the low resistance of these shorted bars, only a small relative
angular velocity (ωr) between the angular velocity (ωs) of the flux wave and the mechanical angular
velocity (ω) of the two-pole rotor is required to produce the necessary rotor current. The relative angular
velocity is called the slip velocity. The interaction of the sinusoidally-distributed air gap flux density and
induced rotor currents produces a torque on the rotor. The typical induction motor speed-torque
characteristic is shown in Figure 3.

Squirrel-cage AC induction motors are popular for their simple construction, low cost per horsepower and
low maintenance (they contain no brushes, unlike DC motors). They are available in a wide range of power
ratings. With field-oriented vector control methods, AC induction motors can fully replace standard DC
motors, even in high-performance applications.

�

b c'

a' a

c b'

Stator
Rotor
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor4

Target Motor Theory
Figure 3. Speed-Torque Characteristic of an AC Induction Motor

2.1 Digital Control of an AC Induction Motor
In adjustable speed applications, AC motors are powered by inverters. The inverter converts DC power to
AC power at the required frequency and amplitude. Figure 4 illustrates a typical 3-phase inverter.

Figure 4. 3-Phase Power Stage

3-Phase
AC Motor

Ph. A Ph. C

Ph. B

C

+ DC-Bus

- DC-Bus

+

AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor 5

Target Motor Theory
The inverter consists of three half-bridge units where the upper and lower switches are controlled
complimentarily, meaning when the upper one is turned on, the lower one must be turned off, and vice
versa. Because the power device’s turn-off time is longer than its turn-on time, some dead time must be
inserted between turning off one transistor of the half-bridge, and turning on its complementary device.
The output voltage is mostly created by a pulse width modulation (PWM) technique. The 3-phase voltage
waves are shifted 120o to one another, thus a 3-phase motor can be supplied.

2.2 Volts per Hertz Control
The Volt pet Hertz control methods is the most popular method of scalar control that controls the
magnitude of the variable like frequency, voltage, or current. The command and feedback signals are DC
quantities that are proportional to the respective variables.

This scheme is defined as a Volts per Hertz control because the voltage applied command is calculated
directly from the applied frequency to maintain the air-gap flux of the machine constant. In steady state
operation, the machine air-gap flux is approximately related to the ratio Vs/fs, where Vs is the amplitude
of motor phase voltage and fs is the synchronous electrical frequency applied to the motor. The control
system is illustrated in Figure 5. The characteristic is defined by the base point of the motor. Below the
base point, the motor operates at optimum excitation because of the constant Vs/fs ratio. Above this point
the motor operates under-excited because of the DC-bus voltage limit.

Figure 5. Volts per Hertz Control Method

2.3 Quadrature Encoder
The ACIM motor application uses the quadrature encoder for rotor position sensing. The quadrature
encoder output consists of three signals. Two phases, A and B, represent the rotor position, and an index
pulse defines the zero position. All quadrature encoder signals are depicted in Figure 6.

voltage [V]

boost voltage

frequency [Hz]base

base
point

frequency

boost
point

base voltage

0
0

AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor6

System Concept
Figure 6. Quadrature Encoder Output Signals

3 System Concept

3.1 System Outline
The system is designed to drive a 3-phase AC induction motor in speed closed loop. The application meets
the following performance specifications:

• Speed closed loop scalar control of a three phase general purpose induction motor
• Targeted at PowerPC MPC5554DEMO evaluation board (MPC554DEMO)
• Control technique incorporates:

— Volts per Hertz control
— Both directions of rotation
— 4-quadrant operation
— Maximal speed 3000 RPM at input power line 230 V AC

• FreeMASTER control interface (speed set-up, start/stop switch)
• FreeMASTER monitor

— FreeMASTER graphical control page (required speed, actual motor speed, start/stop status,
fault status)

— FreeMASTER control scope (observes required and actual speeds, applied voltage)
— Detail description of all eTPU functions used in the application (monitoring of channel

registers and all function parameters in real time)
• DC-bus break
• DC bus over-current fault protection

3.2 Application Description
A standard system concept is chosen for the motor control function (see Figure 7). The system
incorporates the following hardware:

• Evaluation board MPC5554DEMO
• Interface board with UNI-3
• 3-phase AC/BLDC high-voltage power stage

one revolution

position counter values

Phase A

Phase B

Index

4
0

9
4

4
0

9
5

0 1 2 4
0

9
4

4
0

9
5

0 1 2
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor 7

System Concept
• Inline optoisolation box
• 3-phase AC induction motor Type AM40V, EM Brno s.r.o., Czech Republic
• Load type SG 40N, EM Brno s.r.o, Czech Republic
• Quadrature encoder BHK 16.05A 1024-I2-5, Baumer Electric, Switzerland

The eTPU module runs the main control algorithm. The 3-phase PWM output signals for a 3-phase inverter
are generated, using Volts per Hertz control algorithm, according to feedback signals from quadrature
encoder, and the input variable values, provided by the microprocessor CPU. The DC-bus voltage is
sampled by on-chip analog-to-digital converter (eQADC module). The transfer of measured samples from
eQADC to eTPU DATA RAM is provided by the eDMA module.

Figure 7. System Concept

The system processing is distributed between the CPU and the eTPU, which both run in parallel. The CPU
performs these tasks:

• Periodically scans FreeMASTER interface. Based on the user input, it handles the application
state machine and calculates the required speed, which is passed to the eTPU.

• Periodically reads application data from eTPU data RAM in order to monitor application
variables.

• In the event of an overcurrent fault, the PWM outputs are immediately temporarily disabled by
the eTPU hardware. Then, after an interrupt latency, the CPU disables the PWM outputs
permanently and displays the fault state.

• Periodically, with a period of 50us, the eDMA transfers eQADC conversion command from eTPU
data RAM into eQADC and the results of conversion is transferred from eQADC into eTPU data
RAM.

The eTPU performs these tasks:
• Six eTPU channels (PWMF) generate PWM output signals.
• Three eTPU channels (QD) process quadrature encoder signals.
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor8

System Concept
• One eTPU channel (BC) controls the DC-bus break.
• One eTPU channel (ASAC) triggers the on-chip AD convertor and preprocess the sampled

values.
• One eTPU channel (PWMMAC) internally synchronizes the PWM outputs and calculate

duty-cycles for individual phases from (alpha/beta) or (angle/amplitude) reference frames.
• One eTPU channel (SC) internally calculates the actual motor speed and controls a speed closed

loop. The actual motor speed is calculated based on the QD position counter and QD last edge
time. The required speed is provided by the CPU and passed through a ramp. The speed PI control
algorithm processes the error between the required and actual speed. The PI controller output is
passed to the ACIMVHZ eTPU function as a newly corrected value of the required motor speed.

• One eTPU channel (ACIMVHZ) internally performs simple V/Hz control. The ACIMVHZ
calculates applied voltage vector components based on required speed (omega) and defined V/Hz
ramp. The ACIMVHZ outputs, either alpha and beta vector components or angle and amplitude
are passed to the PWM generator.

3.2.1 User Interface
The application is interfaced by the FreeMASTER running on a PC connected to the MPC5554DEMO via
an RS232 serial cable. The on/off switch on the FreeMASTER control page affects the application state
and enables and disables the PWM phases. When the switch is in the off-position, no voltage is applied to
the motor windings. When the on/off switch is in the on-position, the motor speed can be controlled by the
speed gauge on the FreeMASTER control page. The FreeMASTER also displays real-time values of
application variables and their time behavior using scopes.

FreeMASTER software was designed to provide an application-debugging, diagnostic, and demonstration
tool for the development of algorithms and applications. It runs on a PC connected to the MPC5554DEMO
via an RS232 serial cable. A small program resident in the microprocessor communicates with the
FreeMASTER software to return status information to the PC and process control information from the
PC. FreeMASTER software, executing on a PC, uses part of Microsoft Internet Explorer as the user
interface.

Note, that FreeMASTER version 1.2.31.1 or higher is required. The FreeMASTER application can be
downloaded from http://www.freescale.com. For more information about FreeMASTER, refer to
Reference 8.

3.3 Hardware Implementation and Application Setup
As previously stated, the application runs on the PowerPC MPC5554 microprocessor using:

• MPC5554DEMO evaluation board
• Interface board with UNI-3
• 3-phase AC/BLDC high-voltage power stage
• Inline optoisolation box, which is connected between host computer and the controller board
• 3-phase AC induction motor Type AM40V, EM Brno s.r.o., Czech Republic
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor 9

htttp://www.freescale.com

System Concept
• Quadrature encoder BHK 16.05A 1024-I2-5, Baumer Electric, Switzerland
• Power supply for MPC5554DEMO evaluation board, 9-12V DC, minimum 2.7 Amps
• Power supply for 3-phase AC induction motor, 230V AC

Figure 8 shows the connection of these parts. All system parts are supplied by Freescale and documented
according to references.

3.3.1 PowerPC MPC5554 Evaluation Board (MPC5554DEMO)
The MPC5554 demonstration board shows an example of a minimum configuration for a MPC5554
system with the addition of external SRAM and a few optional peripherals. This board is not intended to
be a full evaluation board for the MPC5554, but shows a minimal system for learning about the new
MPC5500 family of products. The demo board shows an example of connecting the MPC5554 to the
MC33394 Power Supply IC, and connectivity to other basic optional circuits (configuration for
non-default boot operation and CAN, LIN, and RS-232 transceivers). The demo board also provides
access to all pins of the MPC5554 and has some inputs that can be connected to MPC5554 for
demonstration purposes. For more information, refer to Reference 2.

Table 1 lists all MPC5554DEMO jumper settings used in the application.

Figure 8. Connection of Application Parts
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor10

System Concept
3.3.2 Flashing the MPC5554DEMO
The eSys Flasher utility can be used for programming code into the flash memory on the
MPC5554DEMO. Check for correct setting of switches and jumpers.Here is the flashing procedure:

1. Run Metrowerks MPC55xx V1.5b2 and open the project. Choose the Intflash target and compile
the application. A file simple_eflash.elf.S19, which will be loaded into flash memory, is created in
the project directory bin.

2. Run the eSysFlasher application. In the Target Configuration window select the type of the BDM
Communication as P&E Wiggler. Click OK to close the window.

3. Go to the Program section by clicking the “Program Flash” button (see Figure 9). Select the
Binary Image, set Address as 0x0 and check the “Verify after program” option (see Figure 10).
Press the “Program” and select intflash.bin file. Finally, press “Open” button at the bottom of the
window to start loading the code into the flash memory.

4. If the code has been programmed correctly, remove the BDM interface and push the RESET
button on the MPC5554Demo. The application should now run from the flash.

Table 1. . MPC5554DEMO Jumper Settings

Jumper Setting CAN_SEL Setting CONFIG SWITCH Setting

JP1 - 1
JP1 - 2

JP2
JP3
JP4
JP5

VRH_EN
SRAM_SEL

VSTBY_SWITCH

1 - 2
1 - 2

1 - 2 3
1 - 2

1 - 2 3
1 - 2
1 - 2

1 - 2 3
ON

1
2
3
4
5
6

1 2
1 2
1 2
1 2
1 2
1 2

1
2
3
4
5
6

ON
OFF
ON
OFF
ON
OFF
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor 11

System Concept
Figure 9. eSysFlasher Target Configuration Window

The eSYS Flasher application can be downloaded from http://www.freescale.com

Figure 10. eSys Flasher Program Window

3.3.3 Interface Board with UNI-3
This board connects the power stage with a motor to the MPC5554DEMO board and can be used by
software and hardware developers to test programs and tools. It supports algorithms that use Hall sensors,
LEM sensors, encoder feedback, and back-EMF (electromotive force) signals for sensors control. Input
connections are made via connectors on the bottom side of the board and headers on the MPC5554DEMO
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor12

http://www.freescale.com

System Concept
board. Output connections are made via 40-pin UNI-3 connector and expansion headers. Power
requirements are met by input connectors. For more information, refer to Reference 3.

Figure 11. Interface Board with UNI-3

3.3.4 Setting Overcurrent Level
The over-current fault signal is connected to the eMIOS output disable input pin (eMIOS 21) that enables,
together with a proper eTPU configuration, handling the fault by eTPU hardware. This connection is part
of the MPC5554. To enable handling the fault also by a software, the fault signal, available on eMIOS 21
pin generates interrupt request to the CPU in case of a fault.

The over-current level is set by the trimmer R24 (I_SEN) on the interface board with UNI-3 (see
Figure 12). Reference 3 describes what voltage must the trimmer define for the over-current comparator.

the
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor 13

System Concept
Figure 12. Overcurrent Level Trimmer on Interface Board with UNI-3 (R24)

3.3.5 3-Phase High Voltage AC/BLDC Power Stage Board
The 3-phase high voltage AC/BLDC power stage board provides together with optoisolation and
controller boards, a platform for the software development of a wide variety of control algorithms for
miscellaneous 3-phase drives: AC induction, brushless DC (BLDC), permanent magnet, and synchronous
motors. Control techniques and algorithms can be written and tested without the need to design and build
a power stage. This allows you to design the application optimal system with significant time and overall
cost savings. The power stage senses a variety of feedback signals suitable for different motor control
techniques. It measures all the three phase currents, dc-bus current, dc-bus voltage, back EMF voltages
with zero cross sensing, PFC inductor current, and input line zero crossing for PFC. The power module
temperature is measured as well. All the analog signals are accommodated to be directly sampled by the
MCU's or DSP's AD converter. The 3-phase high voltage AC/BLDC power stage consists of two modules:
power module and power stage. The power stage contains sensing and control circuitry and interface
connectors. The power module is mounted on a heatsink and contains power devices, which needs to
dissipate heat. The main power stage features are:

• Capable of supplying 3-phase AC induction, synchronous, permanent magnet and brushless DC
motors

• 1-phase bridge rectifier
• dc-bus brake IGBT and brake antiparallel diode
• Power and signal connectors for external PFC board
• 3-phase bridge inverter (6-IGBT’s)
• Individual phase and dc bus current sensing shunts with Kelvin connections
• Power stage temperature sensing
• IGBT gate drivers
• Current and temperature signal conditioning
• 3-phase back-EMF voltage sensing and zero cross detection circuitry
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor14

System Concept
• Low-voltage on-board power supplies
• Cooling fan
• UNI-3 motor control interface

For more information, refer to Reference 4.

Figure 13. 3-Phase AC/BLDC High Voltage Power Stage Board

3.3.6 Inline Optoisolation Box
Freescale’s embedded motion control series in-line optoisolation box links JTAG and RS-232 signals from
a workstation to a controller connected to a high-voltage power stage. The box isolates the workstation,
and peripherals that may be attached to the workstation, from dangerous voltages that are present on the
power stage. The in-line optoisolation box’s galvanic isolation barrier also isolates signals from high noise
in the power stage and provides a noise-robust systems architecture. The in-line optoisolation box can be
used mainly during the development phase of high-voltage and power applications such as electrical
drives, power convertors, high voltage systems etc. You can use the in-line optoisolation box to connect
your PC to wide range of MCU/DSP EVM boards.

For more information, refer to Reference 5.

3.3.7 AC Induction Motor with BLDC Motor Brake and Quadrature
Encoder

The used AC induction motor-brake set incorporates a 3-phase AC induction motor AM40V and attached
BLDC motor brake SG 40N. Detailed motor-brake specifications are listed in the following Table 2. For
more motor specifications, refer to Reference 6.
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor 15

System Concept
Quadrature encoder BHK 16.05A 1024-I2-5 is attached to the motor to scan and encode shaft movement.
The basic encoder features are as follows:

• Three channel quadrature output with index pulse
• Resolution 1024 counts per revolution
• -20°C to 85°C operating temperature
• TTL compatible
• Single 5-V supply

For more quadrature encoder specifications, refer to Reference 7.

Figure 14. AC Induction Motor with BLDC Motor Brake and Quadrature Encoder

Table 2. Motor—Brake Specifications

Set Manufactured EM Brno, Czech Republic

Motor Specification: Motor Type: AM40V
3-Phase AC Induction Motor

Pole-Number: 4

Nominal Speed: 1300 rpm

Nominal Voltage: 3 x 200 V

Nominal Current: 0.88 A

Brake Specification: Brake Type: SG40N
3-Phase BLDC Motor

Nominal Voltage: 3 x 27 V

Nominal Current: 2.6 A

Pole-Number: 6

Nominal Speed: 1500 rpm
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor16

Software Design
3.3.8 Power Supply
The MPC5554DEMO board is powered by a 12-V/1.2-A power supply, and the 3-phase high voltage
AC/BLDC power stage board is powered by a 230-V power supply. The application is scaled for this
230-V power supply.

4 Software Design
This section describes the software design of the ACIM Volts per Hertz control drive application. The
system processing is distributed between the CPU and the eTPU, which run in parallel. The CPU and eTPU
tasks are described in these terms:

• CPU
— Software flowchart
— Application state diagram
— eTPU application API

• eTPU
— eTPU block diagram
— eTPU timing

The CPU software uses several ready-to-use Freescale software drivers. The communication between the
microprocessor and the FreeMASTER on PC is handled by software included in freemaster_protocol.c/.h
files. The eTPU module uses the general eTPU utilities, eTPU function interface routines (eTPU function
API), and eTPU application interface routines (eTPU application API). The general utilities, included in
the etpu_util.c/.h files, are used for initialization of global eTPU module and engine settings. The eTPU
function API routines are used for initialization of the eTPU channels and interfacing each eTPU function
during run-time. An eTPU application API encapsulates several eTPU function APIs. The use of an eTPU
application API eliminates the need to initialize each eTPU function separately and to handle all eTPU
function initialization settings, thus ensuring the correct cooperation of eTPU functions.
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor 17

Software Design
Figure 15. eTPU Project Structure

4.1 CPU Software Flowchart
After reset, the CPU software initializes interrupts and pins. The following CPU processing is incorporated
in two periodic timer interrupts, one periodical eTPU channel interrupt, and two fault interrupts.
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor18

Software Design
Figure 16. CPU Software Flowchart

4.1.1 Timer Interrupt Service Routine
The timer interrupt is handled by the timer_isr function. These actions are performed periodically, in
timer_isr:

• Handle the application state machine.
The application state diagram is described in detail below.

• Service the status LED by the ApplicationButtonsAndStatusLed function.
• Read the data structure through the eTPU application API routine.

fs_etpu_app_acimvhzsl1_get_data (see 4.3).

4.1.2 FreeMASTER Interrupt Service Routine
The FreeMASTER interrupt service routine is called FMSTR_Isr. This function is implemented in
freemaster_protocol.c.

4.1.3 eTPU Channel Interrupt Service Routine
This interrupt, which is raised every PWM period by the PWMMAC eTPU function running on eTPU
channel 7, is handled by the etpu_ch7_isr function. This function calls FMSTR_Recorder, implemented in
freemaster_rec.c, enabling the configuration of application variable time courses with a PWM-period time
resolution.

RESET

Initialize peripherals

Enable interrupts

wait

Handle application state machine

Service Status LED

Read application data structure

Timer Interrupt

Handle overcurrent fault

Fault Interrupt

FreeMASTER Dispatcher

FreeMASTER Timer Interrupt

FreeMASTER Recorder

eTPU Channel Interrupt

Handle eTPU global exception

eTPU Global Exception Interrupt
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor 19

Software Design
4.1.4 Fault Interrupt Service Routine
The over-current fault interrupt, which is raised by eMIOS input function running on eMIOS channel 21,
is handled by the emios_isr function. These actions switch the motor off:

• Reset the required speed.
• Disable the generation of PWM signals.
• Switch the Fault LED on.
• Enter APP_STATE_MOTOR_FAULT.
• Set FAULT_OVERCURRENT.

4.1.5 eTPU Global Exception Interrupt Service Routine
The global exception interrupt is handled by the etpu_globalexception_isr function. These situations can
cause this interrupt assertion:

• Microcode Global Exception is asserted.
• Illegal Instruction Flag is asserted.
• SCM MISC Flag is asserted.

These actions switch the motor off:
• Reset the required speed.
• Disable the generation of PWM signals.
• Enter APP_STATE_GLOBAL_FAULT.
• Based on the eTPU global exception source, set FAULT_MICROCODE_GE,

FAULT_ILLEGAL_INSTR, or FAULT_MISC.

4.2 Application State Diagram
The application state diagram consists of seven states (see Figure 17) that are controlled by the power
on/off switch placed on FreeMASTER control page. After reset, the application goes firstly to
APP_STATE_INIT. Where the on/off switch is in the off position, the APP_STATE_STOP follows,
otherwise the APP_STATE_MOTOR_FAULT is entered and the on/off switch must be turned off to get
from APP_STATE_MOTOR_FAULT to APP_STATE_STOP. Then the cycle between
APP_STATE_STOP, APP_STATE_ENABLE, APP_STATE_RUN, and APP_STATE_DISABLE can be
repeated, depending on the on/off switch position. APP_STATE_ENABLE and APP_STATE_DISABLE
states are introduced to ensure the safe transitions between the APP_STATE_STOP and
APP_STATE_RUN states. Where the over-current fault interrupt is raised (see red line on Figure 17), the
APP_STATE_MOTOR_FAULT is entered. This fault is cleared by moving the on/off switch to the off
position and thus entering the APP_STATE_STOP. Where the eTPU global exception interrupt is raised
(see gray line on Figure 17), the APP_STATE_GLOBAL_FAULT is entered. The global fault is cleared
by moving the on/off switch to the off position and thus entering the APP_STATE_INIT.
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor20

Software Design
Figure 17. Application State Diagram

The next paragraphs describe the processing in each of the application states.

4.2.1 APP_STATE_INIT
This state is passed through only. It is entered either after a reset, or after the
APP_STATE_GLOBAL_FAULT. These actions initialize (re-initialize) the application:

• Disable over_current interrupt.
• Call my_system_etpu_init routine for eTPU module initialization.
• Calibrate eQADC.
• Set destination addresses for eDMA1.
• Set source address for eDMA47.
• Get eTPU functions DATA RAM addresses for FreeMASTER.
• Get the addresses of channel configuration registers for FreeMASTER.
• Initialize FreeMASTER.
• Call my_system_etpu_start routine for eTPU Start. At this point, the CPU and the eTPU

run in parallel.
• Depending on the on/off switch position, enter APP_STATE_STOP or

APP_STATE_MOTOR_FAULT.

ON/OFF switch

moved OFF

APP_STATE_ENABLE

APP_STATE_RUN

APP_STATE_

MOTOR_FAULT

APP_STATE_DISABLE

APP_STATE_STOP

reset

APP_STATE_INIT

ON/OFF switch

moved OFF

ON/OFF switch

moved ON

APP_STATE_

GLOBAL_FAULT

ON/OFF switch

moved OFF

over-current

fault interrupt
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor 21

Software Design
4.2.1.1 Initialization and Start of eTPU Module
The eTPU module is initialized using the my_system_etpu_init function. Later, after initialization
of all other peripherals, the eTPU is started by my_system_etpu_start. These functions use the
general eTPU utilities and eTPU function API routines. Both the my_system_etpu_init and
my_system_etpu_start functions, included in acimvhzsl1_etpu_gct.c file, are generated by
the eTPU Graphical Configuration Tool. The eTPU Graphical Configuration Tool can be downloaded
from http://www.freescale.com/etpu. For more information, refer to Reference 17.

The my_system_etpu_init function first configures the eTPU module and motor settings. Some of
these settings include:

• Channel filter mode = three-sample mode
• Channel filter clock = etpuclk div 64

The input signals (from quadrature encoder) are filtered by channel filters. The filter settings
guarantee minimum delay of input transition recognition

• TCR1 source = etpuclk div 2
• TCR1 prescaler = 1

The TCR1 internal eTPU clock is set to its maximum rate of 64 MHz (at 128-MHz system clock),
corresponding to the 16ns resolution of generated PWM signals.

• TCR2 source = etpuclk div 8
• TCR2 prescaler = 2

The TCR2 internal eTPU clock is set to a rate of 8 MHz (at 128-MHz system clock). The TCR2
clock settings are optimized for motor speed calculation precision.

After configuring the module and engine settings, the my_system_etpu_init function initializes the
eTPU channels.

Channel 1 - quadrature decoder (QD) - phase A channel
Channel 2 - quadrature decoder (QD) - phase B channel
Channel 3 - quadrature decoder (QD) - index channel
Channel 5 - ACIM V/Hz control (ACIMVHZ)
Channel 6 - speed controller (SC)
Channel 7 - PWM master for AC motors (PWMMAC)
Channel 8 - PWM full range (PWMF) - phase A - base channel
Channel 9 - PWM full range (PWMF) - phase A - complementary channel
Channel 10 - PWM full range (PWMF) - phase B - base channel
Channel 11 - PWM full range (PWMF) - phase B - complementary channel
Channel 12 - PWM full range (PWMF) - phase C - base channel
Channel 13 - PWM full range (PWMF) - phase C - complementary channel
Channel 15 - break controller (BC)
Channel 29 - analog sensing for AC motors (ASAC)
These eTPU channels are initialized by the fs_etpu_app_acimvhzsl1_init eTPU
application API function (see 4.3).
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor22

http://www.freescale.com/etpu

Software Design
The application settings are as follows:
— PWM phases-type is full range complementary pairs
— PWM frequency 20 kHz
— PWM dead-time 500 ns
— Motor speed range 4000 RPM
— Base frequency 50 Hz
— Boost voltage percentage 10%
— DC Bus voltage 230 V
— DC Bus voltage range 618 V
— Number of motor pole pairs 2
— Speed controller update frequency 1 kHz
— Speed PI controller parameters:

Controller gain is 1, and
Integral time constant is 1 ms
The controller parameters were experimentally tuned.

— Speed ramp parameters:
1000 ms to ramp up from zero to the maximum speed.

— Number of quadrature encoder position counter increments per one revolution 4096
— Break controller mode—PWM-based breaking signal is generated in case of over-voltage.
— Break control signal polarity is active high.
— DC-bus voltage level, at which break control signal is ON, is 130% of the nominal DC-bus

voltage
— DC-bus voltage level, at which break control signal is OFF, is 110% of the nominal DC-bus

voltage
— ASAC function triggers A/D converter on low-high edge
— DC-bus voltage measurement time, including A/D conversion time and eDMA transfer time,

is 8µs
— p_ASAC_result_queue pointer contains the address to eTPU DATA RAM, where the result

queue is transferred.
— The samples in result queue are shifted left by 10 bits to achieve bit alignment corresponding

to 24-bit fractional format, which is used by eTPU functions.
— DC-bus voltage sample offset within ASAC_result_queue is 0
— ASAC EWMA filter time constant is 1000 µs

The my_system_etpu_start function first applies the settings for the channel interrupt enable and
channel output disable options, then enables the eTPU timers, thus starting the eTPU.
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor 23

Software Design
Figure 18. eTPU Configuration Using the eTPU Graphical Configuration Tool

4.2.1.2 Initialization of FreeMASTER Communication
Prior to the FreeMASTER initialization, it is necessary to set pointers to the eTPU functions data RAM
bases and configuration register bases. Based on these pointers, which are read by FreeMASTER during
the initialization, the locations of all eTPU function parameters and configuration registers are defined.
This is essential for correct FreeMASTER operation.
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor24

Software Design
FreeMASTER consists of software running on a PC and on the microprocessor, connected via an RS-232
serial port. A small program resident in the microprocessor communicates with the FreeMASTER on the
PC to return status information to the PC, and processes control information from the PC. The
microprocessor part of the FreeMASTER is initialized by FMSTR_Init() function.

4.2.2 APP_STATE_STOP
In this state, the PWM signals are disabled and the motor is off. The motor shaft can be rotated by hand,
which enables you to explore the functionality of the quadrature decoder (QD) eTPU function, watch
variables produced by the QD, and see QD signals in FreeMASTER. When the on/off switch on
FreeMASTER control page is turned on, the application goes through APP_STATE_ENABLE to
APP_STATE_RUN.

4.2.3 APP_STATE_ENABLE
This state is passed through only. These actions switch the motor drive on:

• Reset the required speed.
• Enable overcurrent interrupt.
• Enable the generation of PWM signals by calling the fs_etpu_app_acimvhzsl1_enable

application API routine.

If the PWM phases were successfully enabled, the eMIOS channel 21 is configured as input, interrupt on
falling edge, and APP_STATE_RUN is entered. Where the PWM phases were not successfully enabled,
the application state does not change.

4.2.4 APP_STATE_RUN
In this state, the PWM signals are enabled and the motor is on. The required motor speed can be set using
the speed gauge on the FreeMASTER control page. The latest value is periodically written to the eTPU.

When the on/off switch on FreeMASTER control page is turned off, the application goes through
APP_STATE_DISABLE to APP_STATE_STOP.

4.2.5 APP_STATE_DISABLE
This state is passed through only. These actions switch the motor drive off:

• Reset the required speed.
• Disable the generation of PWM signals.

If PWM phases were successfully disabled, APP_STATE_STOP is entered. Where PWM phases were not
successfully disabled, the application state remains the same.
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor 25

Software Design
4.2.6 APP_STATE_MOTOR_FAULT
This state is entered after the over-current fault interrupt service routine. The application waits until the
on/off switch is turned off. This clears the fault and the application enters the APP_STATE_STOP.

4.2.7 APP_STATE_GLOBAL_FAULT
This state is entered after the eTPU global exception interrupt service routine. The application waits until
the on/off switch is turned off. This clears the fault and the application enters the APP_STATE_INIT.

4.3 eTPU Application API
The eTPU application API encapsulates several eTPU function APIs. The eTPU application API includes
CPU methods that enable initialization, control, and monitoring of an eTPU application. The use of eTPU
application API functions eliminates the need to initialize and set each eTPU function separately, and
ensures correct cooperation of the eTPU functions. The eTPU application API is device independent and
handles only the eTPU tasks.

To shorten the eTPU application names, abbreviated application names are introduced. The abbreviations
include:

• Motor type (DCM = DC motor, BLDCM = brushless DC motor, PMSM = permanent magnet
synchronous motor, ACIM = AC induction motor, SRM = switched reluctance motor, SM =
stepper motor)

• Sensor type (H = Hall sensors, E = shaft encoder, R = resolver, S = Sincos, X = sensorless)
• Control type (OL = open loop, PL = position loop, SL = speed loop, CL = current loop, SVC =

speed vector control, TVC = torque vector control)

Based on these definitions, the ACIMVHZSL1 is an abbreviation for ‘ACIM with quadrature encoder and
speed Volts per Hertz control’ eTPU motor-control application. As there can be several applications like
this, the number 1 denotes the first such application in order.

The ACIMVHZSL1 eTPU application API is described in the following paragraphs. There are 5 basic
functions added to the ACIMVHZSL1 application API. The routines can be found in the
etpu_app_acimvhzsl1.c/.h files. All ACIMVHZSL1 application API routines will be described in order
and are listed below:

• Initialization function:
int32_t fs_etpu_app_acimvhzsl1_init(

 acimvhzsl1_instance_t * acimvhzsl1_instance,

 uint8_t PWM_master_channel,

 uint8_t PWM_phaseA_channel,

 uint8_t PWM_phaseB_channel,

 uint8_t PWM_phaseC_channel,

 uint8_t QD_phaseA_channel,

 uint8_t QD_index_channel,

 uint8_t SC_channel,
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor26

Software Design
 uint8_t ACIMVHZ_channel,

 uint8_t BC_channel,

 uint8_t ASAC_channel,

 uint8_t PWM_phases_type,

 uint32_t PWM_freq_hz,

 uint32_t PWM_dead_time_ns,

 int32_t speed_range_rpm,

 uint32_t speed_ramp_time_ms,

 uint8_t vhz_base_freq,

 uint8_t vhz_boost_voltage_perc,

 int32_t dc_bus_voltage_mv,

 int32_t dc_bus_voltage_range_mv,

 uint8_t pole_pairs,

 uint32_t SC_freq_hz,

 int32_t SC_PID_gain_permil,

 int32_t SC_I_time_const_us,

 uint32_t QD_pc_per_rev,

 uint8_t BC_mode,

 uint8_t BC_polarity,

 uint8_t BC_u_dc_bus_ON_perc,

 uint8_t BC_u_dc_bus_OFF_perc,

 uint8_t ASAC_polarity,

 uint24_t ASAC_measure_time_us,

 uint32_t *ASAC_result_queue,

 uint8_t ASAC_bit_shift,

 uint8_t ASAC_u_dcbus_queue_offset,

 uint32_t ASAC_filter_time_constant_u_us)

• Change operation functions:
int32_t fs_etpu_app_acimvhzsl1_enable(

 acimvhzsl1_instance_t * acimvhzsl1_instance,

 uint8_t PWM_modulation_type)

int32_t fs_etpu_app_acimvhzsl1_disable(

 acimvhzsl1_instance_t * acimvhzsl1_instance)

void fs_etpu_app_acimvhzsl1_set_speed_required(

 acimvhzsl1_instance_t * acimvhzsl1_instance,

 int32_t speed_required_rpm)

• Value return functions:
void fs_etpu_app_acimvhzsl1_get_data(

 acimvhzsl1_instance_t * acimvhzsl1_instance,

 acimvhzsl1_data_t * acimvhzsl1_data)
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor 27

Software Design
4.3.1 int32_t fs_etpu_app_acimvhzsl1_init(...)
This routine initializes the eTPU channels for the AC induction motor with quadrature encoder and speed
closed loop application. This function has these parameters:

• acimvhzsl1_instance (acimvhzsl1_instance_t*) - This is a pointer to acimvhzsl1_instance_t
structure, which is filled by fs_etpu_app_acimvhzsl1_init. This structure must be
declared in the user application. Where there are more instances of the application running
simultaneously, there must be a separate acimvhzsl1_instance_t structure for each one.

• PWM_master_channel (uint8_t) - This is the PWM master channel number. 0-31 for ETPU_A
and 64-95 for ETPU_B.

• PWM_phaseA_channel (uint8_t) - This is the PWM phase A channel number. 0-31 for
ETPU_A and 64-95 for ETPU_B. In case of complementary signals generation
(PWM_phases_type=FS_ETPU_APP_ACIMVHZSL1_COMPL_PAIRS) the complementary
channel is a channel one higher.

• PWM_phaseB_channel (uint8_t) - This is the PWM phase B channel number. 0-31 for
ETPU_A and 64-95 for ETPU_B. In case of complementary signals generation
(PWM_phases_type=FS_ETPU_APP_ACIMVHZSL1_COMPL_PAIRS) the complementary
channel is a channel one higher.

• PWM_phaseC_channel (uint8_t) - This is the PWM phase C channel number. 0-31 for
ETPU_A and 64-95 for ETPU_B. In case of complementary signals generation
(PWM_phases_type=FS_ETPU_APP_ACIMVHZSL1_COMPL_PAIRS) the complementary
channel is a channel one higher.

• QD_phaseA_channel (uint8_t) - This is the quadrature decoder phase A channel number. 0-31
for ETPU_A, and 64-95 for ETPU_B.

• QD_phaseB_channel (uint8_t) - This is the quadrature decoder phase B channel number. 0-31
for ETPU_A, and 64-95 for ETPU_B.

• QD_index_channel (uint8_t) - This is the quadrature decoder index channel number. 0-31 for
ETPU_A, and 64-95 for ETPU_B.

• SC_channel (uint8_t) - This is the speed controller channel number. 0-31 for ETPU_A, and
64-95 for ETPU_B.

• ACIMVHZ_channel (uint8_t) - This is the ACIM V/Hz Controller channel number. 0-31 for
ETPU_A and 64-95 for ETPU_B.

• PWM_phases_type (uint8_t) - This parameter determines the type of all PWM phases. This
parameter should be assigned a value of:
FS_ETPU_APP_ACIMVHZSL1_SINGLE_CHANNELS, or
FS_ETPU_APP_ACIMVHZSL1_COMPL_PAIRS.

• PWM_freq_hz (uint32_t) - This is the PWM frequency in Hz.
• PWM_dead_time_ns (uint32_t) - This is the PWM dead-time in ns.
• speed_range_rpm (int32_t) - This is the maximum synchronous motor speed in rpm.
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor28

Software Design
• speed_ramp_time_ms (uint32_t) - This parameter defines the required speed ramp time in ms.
A step change of required speed from 0 to speed_range_rpm is slowed down by the ramp to take
the defined time.

• vhz_base_freq (uint8_t) - This parameter defines the motor base frequency in Hz. This
parameter should be assigned a value of 50 (50Hz) or 60 (60Hz).

• vhz_boost_voltage_perc (uint8_t) - This parameter defines the motor boost voltage as a
percentage of base voltage. This parameter should be assigned a value of 0 to 100.

• dc_bus_voltage_mv (int32_t) - This is the DC-bus voltage in mV.
• pole_pairs (uint8_t) - This is the number of motor pole-pairs.
• SC_freq_hz (uint32_t) - This is the speed controller update frequency in Hz. The assigned value

must be equal to the PWM_freq_hz divided by 1, 2, 3, 4, 5, ...
• SC_PID_gain_permil (int32_t) - This is the speed PI controller gain in millesimals.
• SC_I_time_const_us (int32_t) - This is the speed PI controller integral time constant in µs.
• QD_qd_pc_per_rev (uint24_t) - This is the number of QD position counter increments per one

revolution.
• BC_mode (uint8_t) - This is the function mode. This parameter should be assigned a value of:

FS_ETPU_APP_ACIMVHZSL1_BC_MODE_ON_OFF, or
FS_ETPU_APP_ACIMVHZSL1_BC_MODE_PWM.

• BC_polarity (uint8_t) - This is the BC output polarity. This parameter should be assigned a value
of: FS_ETPU_APP_ACIMVHZSL1_BC_ON_HIGH, or
FS_ETPU_APP_ACIMVHZSL1_BC_ON_LOW.

• BC_u_dc_bus_ON_perc (uint8_t) - This is the proportion between U_DC_BUS, above which
the BC output is ON, and the nominal U_DC_BUS, expressed in percentage (usually about
130%).

• BC_u_dc_bus_OFF_perc (uint8_t) - This is the proportion between U_DC_BUS, below which
the BC output is OFF, and the nominal U_DC_BUS, expressed in percentage (usually about
110%).

• ASAC_polarity (uint8_t) - This is the polarity to assign to the ASAC function. This parameter
should be assigned a value of: FS_ETPU_APP_ACIMVHZSL1_ASAC_PULSE_HIGH or
FS_ETPU_APP_ACIMVHZSL1_ASAC_PULSE_LOW.

• ASAC_measure_time_us (uint24_t) - Time from the first (triggering) edge to the second edge,
at which the result queue is supposed to be ready in the DATA_RAM (in us). This value depends
on the A/D conversion time and DMA transfer time.

• ASAC_result_queue (uint32_t *) - Pointer to the result queue. Result queue is an array of 16-bit
words that contains the measured values.

• ASAC_bit_shift (uint8_t) - This parameter defines how to align data from the result queue into
fract24 (or int24). This parameter should be assigned a values of:
FS_ETPU_APP_ACIMVHZSL1_ASAC_SHIFT_LEFT_BY_8,
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor 29

Software Design
FS_ETPU_APP_ACIMVHZSL1_ASAC_SHIFT_LEFT_BY_10,
FS_ETPU_APP_ACIMVHZSL1_ASAC_SHIFT_LEFT_BY_12, or
FS_ETPU_APP_ACIMVHZSL1_ASAC_SHIFT_LEFT_BY_16.

• ASAC_queue_offset (uint8_t) - Position of the U_DC_BUS sample in the result queue. Offset is
defined in bytes.

• ASAC_filter_time_constant_us (uint32_t) - This is the time constant of an EWMA filter which
applies when processing the DC-bus voltage samples, in us.

4.3.2 int32_t fs_etpu_app_acimvhzsl1_enable(...)
This routine sets the PWM modulation type and enable the generation of PWM signals.
This function has these parameters:

• acimvhzsl1_instance (acimvhzsl1_instance_t *) - This is a pointer to acimvhzsl1_instance_t
structure, which was filled by fs_etpu_app_acimvhzsl1_init function during initialisation.

• PWM_modulation_type (uint8_t) - This is the required PWM modulation type. This parameter
should be assigned a values of:
FS_ETPU_APP_ACIMVHZSL1_MOD_SIN - Pure sinewave modulation, or
FS_ETPU_APP_ACIMVHZSL1_MOD_SIN3H - Sinewave modulation with third harmonic
injection, or
FS_ETPU_APP_ACIMVHZSL1_MOD_SVMSTD - Standard space Vector Modulation, or
FS_ETPU_APP_ACIMVHZSL1_MOD_SVMU0N - U0N Space Vector Modulation, or
FS_ETPU_APP_ACIMVHZSL1_MOD_SVMU7N - U7N Space Vector Modulation.

4.3.3 int32_t fs_etpu_app_acimvhzsl1_disable (...)
This routine disables the generation of PWM signals. It has these parameter:

• acimvhzsl1_instance (acimvhzsl1_instance_t*) - This is a pointer to acimvhzsl1_instance_t
structure, which is filled by fs_etpu_app_acimvhzsl1_init function.

4.3.4 void fs_etpu_app_acimvhzsl1_set_speed_required(...)
This routine sets the required motor speed. This function has these parameters:

• acimvhzsl1_instance (acimvhzsl1_instance_t*) - This is a pointer to acimvhzsl1_instance_t
structure, which is filled by fs_etpu_app_acimvhzsl1_init function.

• speed_required_rpm (int32_t) - This is the required synchronous speed of the motor in rpm.
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor30

Software Design
4.3.5 void fs_etpu_app_acimvhzsl1_get_data(...)
This routine gets the application state data. This function has these parameters:

• acimvhzsl1_instance (acimvhzsl1_instance_t*) - This is a pointer to acimvhzsl1_instance_t
structure, which is filled by fs_etpu_app_acimvhzsl1_init function.

• acimvhzsl1_data (acimvhzsl1_data_t*) - This is a pointer to acimvhzsl1_data_t structure of
application state data, which is updated.

4.4 eTPU Block Diagram
The eTPU functions used in ACIM Volts per Hertz control drive are located in the AC motor-control set
of eTPU functions (set4 - AC motors). The eTPU functions within the set serve as building blocks for
various AC motor-control applications. The next paragraphs describe the functionality of each block.

Figure 19. Block Diagram of eTPU Processing

4.4.1 PWM Generator (PWMMAC+PWMF)
The generation of PWM signals for AC motor-control applications with eTPU is provided by two eTPU
functions:

• PWM—master for AC motors (PWMMAC)
• PWM—full range (PWMF)

The PWM master for AC motors (PWMMAC) function calculates sine wave or space vector modulation
resulting in PWM duty cycles, and updates the three PWM phases. The phases are driven by the PWM full
range (PWMF) function, which enables a full (0% to 100%) duty-cycle range.
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor 31

Software Design
The PWMF function generates the PWM signals. The PWMMAC function controls three PWMF
functions, three PWM phases, and does not generate any drive signal. The PWMMAC can be executed
even on an eTPU channel not connected to an output pin.

Figure 20. Functionality of PWMMAC+PWMF

For more details about the PWMMAC and PWMF eTPU functions, refer to Reference 12.

4.4.2 Quadrature Decoder (QD)
The quadrature decoder eTPU function set processes signals generated by a shaft encoder in a motion
control systems. It uses two channels to decode a pair of out-of-phase encoder signals and to produce a
24-bit bi-directional position counter, together with direction information, for the CPU. An additional
input channels can also be processed. The index channel receives a pulse on each revolution. Based on the
actual direction, a revolution counter is incremented or decremented on the index pulse. A further
additional input channel can indicate a home position, but it is not used in this application.

alpha / angle

PWMMAC
beta / amplitude

update updateupdate no updateno update

new input values new input values

PWMF

polarity: active-high OR active-low

variable PWM periods

center-aligned OR edge-aligned
single channel OR complementary pair

PWMF

PWMF
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor32

Software Design
For more details about the QD eTPU function, refer to Reference 10.

4.4.3 Analog Sensing for AC Motors (ASAC)
The analog sensing for AC motors eTPU function (ASAC) is useful for pre-processing analog values that
are measured by the AD converter and transferred to the eTPU data memory by DMA transfer. The ASAC
function is also useful for triggering the AD converter and synchronizing other eTPU functions.

All the above mentioned ASAC features are utilized in the application. The ASAC is initialized to run in
PWM synchronized mode, e.g. the first ASAC edge is synchronized with the beginning of the PWM
period. Simultaneously, the ASAC manages to synchronize the SC function by generating the link to the
SC channel every 20th ASAC period and to synchronize the ACIMVHZ function by generating the link to
the ACIMVHZ channel each ASAC period.

The ASAC function preprocesses the DC-bus voltage analog values and passes the adjusted values as an
input to the ACIMVHZ and BC functions. Processing of the DC-bus voltage sample includes bit shifting,
dc-offset removing, and filtering.

For more details about the ASAC eTPU function, refer to Reference 13.

direction QD

position_counter

last_edge_tcr

revolution_counter QD_INDEX

QD_HOME
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor 33

Software Design
Figure 21. Functionality of ASAC

In order to ensure periodic sampling and the quick transfer of the measured data from the AD converter to
the eTPU data RAM, several peripheral modules are used, see Figure 22:

• On-chip analog to digital converter (eQADC) is used for sampling of the analog values. Sampling
of analog values is triggered by an eTRIG signal generated internally by the ASAC eTPU
function running on eTPU channel 29.

• 2 direct memory access (eDMA) channels are used:
— eDMA channel 47 transfers a 32-bit eQADC conversion command from the eTPU data RAM

(p_ASAC_command_queue) to the EQADC_CFPR2 (CFIFO push register 2) of the eQADC
module. The eDMA channel 47 transfer is initiated by a DMA request generated by ASAC
eTPU function.

— eDMA channel 1 transfers the 16-bits DC bus voltage sampling result from the
EQADC_RFPR0 (result FIFO pop register 0) to the eTPU data RAM. The DMA channel 1
transfer is initiated by a DMA request generated by eQADC module after the conversion is
finished.

ASAC

ADC result queue

Pre-processed analog values

DMA
transfer AD converter

ia + ib + ic = 0sector

- offset

bit shift

filter

- offset

bit shift

d

filter

ADC trigger ADC trigger

link to outer
 loop controller

link to inner
 loop controller

link to inner
 loop controller

...

dtc

- offset

bit shift

b

filter

... ...

- offset

bit shift

a

filter

... ...

c

dtc dtc
dtc_a
dtc_b
dtc_c

d

AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor34

Software Design
Figure 22. Analog Values Sampling, Cooperation of eTPU, eDMA and eQADC Modules

eDMA and eQADC settings are made using the Quick Start Configuration Tool, refer to Reference 18.

4.4.4 ACIM Volts per Hertz (ACIMVHZ)
The ACIM Volts per Hertz eTPU function does not process input or output signals. Its purpose is to control
another eTPU function’s input parameter. The ACIMVHZ function can be executed even on an eTPU
channel not connected to an output pin. The purpose of the ACIMVHZ function is to perform the simple
V/Hz control of the AC induction motor. The ACIMVHZ eTPU function performs the calculation of the
output applied voltage vector components in this order:

• Optionally passes the required speed through the speed ramp
• Updates applied voltage amplitude using V/Hz ramp
• Eliminates DC-bus ripples
• Updates angle of the output vector
• Determines sin(theta), cos(theta), α and β in case of α, β vector components calculation mode

The ACIMVHZ calculates applied voltage vector components based on the required speed (omega) and
the defined V/Hz ramp.

CHAN 47

ETPU DATA RAM

p_ASAC
result_queue

p_ASAC
command_queue

CHAN 1

.

.

.

.

.

.

.

.

.

ETPU_A_CH29 = ASAC

EQADC_CFPR2

EQADC_RFPR0

1x32bits

1x16bits

eDMA

DMA
request

EQADC_CFIFO2

EQADC_RFIFO0

PWM period

eTRIG

ADC1

ADC0
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor 35

Software Design
For more details about the ACIMVHZ eTPU function, refer to Reference 14.

4.4.5 Speed Controller (SC)
The speed controller eTPU function does not process input or output signals. It controls another eTPU
function’s input parameter. The SC function can be executed even on an eTPU channel not connected to
an output pin. The SC function includes a general PID controller algorithm. The controller calculates its
output based on two inputs: a measured value and a required value. The measured value (the actual motor
speed) is calculated based on inputs provided by the QD function. The required value is an output of the
speed ramp, whose input is a SC function parameter, and can be provided by the CPU or another eTPU
function. In the motor-control eTPU function set, this function mostly provides the speed outer-loop.

Figure 23. Functionality of SC

For more details about the SC eTPU function, refer to Reference 11.

4.4.6 Break Controller (BC)
The purpose of the break controller (BC) eTPU function is to eliminate DC-bus overvoltage when a motor
is driven in the generating mode. The BC function generates the DC-bus break control signal (see
Figure 24) based on the actual DC-bus voltage.

SinCos

RippleElim

amplitude

angle

sine

cosine

voltage

angle

voltage

theta =

theta + omega*T

ACIMVHZ

u_dc_bus

alpha = voltage * sine

beta = voltage * cosine

alpha

beta

V

Hz
time

requested_value
omega

applied_voltage

SC

time

requested_value

PI controller

ramp

time_difference

position_counterscaling_factor * position_difference

last_edge_time
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor36

Software Design
Figure 24. Functionality of BC

The described application uses the PWM mode of the BC function. In this mode, the BC function switches
softly using a PWM signal. The u_dc_bus_ON and u_dc_bus_OFF thresholds define a ramp (see
Figure 25). When the DC-bus voltage is lower than u_dc_bus_OFF, the control signal is turned off.
Between the u_dc_bus_OFF and u_dc_bus_ON thresholds, a PWM signal with a duty-cycle linearly
increasing from 0% to 100% is generated. Above the u_dc_bus_ON threshold, the control signal is turned
on.

The functionality of the BC is shown in Figure 26, Figure 27, and Figure 28. Signal 1 (dark blue line)
represents the DC-bus voltage, signal 2 (light blue line) reflects the DC-bus break control signal generated
by the BC.

Figure 25. PWM Mode of the Break Controller Function

H-BRIDGE

AC

DC

AC/DC
DC-bus

DC-bus break
control signal

Duty_cycle

100%

0%
U_dc_busU_dc_bus_OFF

U_dc_bus_ON
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor 37

Software Design
Figure 26. Oscilloscope Screenshot Showing DC-Bus Voltage Course
when a Motor Reaches to Generating Mode (Without Action of Break Controller)

Figure 27. Oscilloscope Screenshot Showing Functionality of the Break Controller
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor38

Software Design
Figure 28. Oscilloscope Screenshot Showing Functionality of the Break Controller in Detail
(Zoom of DC-Bus Break Control Signal)

For more details about the BC eTPU function, refer to Reference 15.

4.5 eTPU Timing
eTPU processing is event-driven. Once an event service begins, its execution cannot be interrupted by
another event service. The other event services have to wait, which causes a service request latency. The
maximum service request latency, or worst case latency (WCL), differs for each eTPU channel. The WCL
is affected by the channel priority and activity on other channels. The WCL of each channel must be kept
below a required limit. For example, the WCL of the PWMF channels must be lower than the PWM period.

A theoretical calculation of WCLs, for a given eTPU configuration, is not a trivial task. The motor control
eTPU functions introduce a debugging feature that enables the user to check channel latencies using an
oscilloscope, and eliminates the necessity of theoretical WCL calculations.

As mentioned earlier, some eTPU functions are not intended to process any input or output signals for
driving the motor. These functions turn the output pin high and low, so that the high-time identifies the
period of time in which the function execution is active. An oscilloscope can be used to determine how
much the channel activity pulse varies in time, which indicates the channel service latency range. For
example, when the oscilloscope time base is synchronized with the PWM periods, the behavior of a tested
channel activity pulse can be described by one of these cases:

• The pulse is asynchronous with the PWM periods. This means that the tested channel activity is
not synchronized with the PWM periods.

• The pulse is synchronous with the PWM periods and stable. This means that the tested channel
activity is synchronous with the PWM periods and is not delayed by any service latency.
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor 39

Software Design
• The pulse is synchronous with the PWM periods, but its position varies in time. This means that
the tested channel activity is synchronous with the PWM periods and the service latency varies in
this time range.

Figure 29. Oscilloscope Screenshot of eTPU Timing

Figure 29 explains the application eTPU timing. The oscilloscope screen-shot depicts a typical situation
described below. A live view on the oscilloscope screen enables the you to see the variation of SC,
ACIMVHZ, PWMMAC, and ASAC activity pulses.

The yellow signal (1) is generated by the speed controller (SC) eTPU function. Its pulses determine the
activity of the SC. The pulse width determines the time necessary to calculate the motor speed from the
QD position counter and QD last edge time, calculate the required speed ramp, and apply the PI controller
algorithm. This calculation is performed periodically at a 1-kHz rate, which is every 20th PWM period.

The blue (2) signal is generated by the ACIM Volts per Hertz control (ACIMVHZ) eTPU function. The
ACIMVHZ update is performed every PWM period.

The violet signal (3) is generated by the PWM master for AC motors (PWMMAC) eTPU function. Its
pulses determine the activity of the PWMMAC. Immediately after ACIMVHZ update is finished, a narrow
PWMMAC pulse occurs. These pulses determine the service time of an ACIMVHZ request to update the
applied motor voltage vector. This service includes also the calculation of space vector modulation. Apart
from these pulses, a wider pulses signal the actual update for the next PWM period.

The green signal (4) corresponds to the analog sensing for AC motors (ASAC) eTPU function. This signal
triggers the AD converter on the first (low-high) edge. The ASAC pulse width determines the time
necessary to sample the DC-bus voltage analog value and transfer the sampled values to the eTPU data

PWM period

SC

PWMMAC

ASAC

ACIMVHZ

PWM period
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor40

Implementation Notes
memory. ASAC starts measured samples preprocessing at the time of the second edge when samples are
supposed to be ready in the eTPU data memory.

The ASAC thread executed on the first ASAC edge requests SC update every 20th period, by sending a
link to the SC channel. Consequently, the SC requests BC update (not displayed on the oscilloscope
screen). Both SC and BC updates are finished prior to the ASAC second edge. The ASAC thread executed
on the second edge requests ACIMVHZ update. The ACIMVHZ requests PWMMAC to update the
applied motor voltage vector. All of these ASAC, SC, BC, and ACIMVHZ activities have to be finished
prior to the start of PWMMAC update. If they are not finished, the PWMMAC update is postponed to the
next PWM period. The update starts an update_time prior to the end of the period frame, so that the update
is finished by the end of the period frame, even in the worst case latency case. Reference 16 describes how
to set the update_time value.

5 Implementation Notes

5.1 Scaling of Quantities
The ACIM Volts per Hertz control algorithm running on eTPU uses a 24-bit fractional representation for
all real quantities except time. The 24-bit signed fractional format is mostly represented using 1.23 format
(1 sign bit, 23 fractional bits). The most negative number that can be represented is -1.0, whose internal
representation is 0x800000. The most positive number is 0x7FFFFF or 1.0 - 2-23.

This equation shows the relationship between real and fractional representations:

Eqn. 1

where:
Fractional value is a fractional representation of the real value [fract24]
Real value is the real value of the quantity [V, A, RPM, etc.]
Real quantity range is the maximal range of the quantity, defined in the application [V, RPM, etc.]

Some quantities are represented using 3.21 format (3 signed integer bits, 21 fractional bits) to eliminate
the need of saturation to range (-1, 1). The most negative number that can be represented is -4.0, whose
internal representation is 0x800000. The most positive number is 0x7FFFFF or 4.0 - 2-21. In this format,
the components of applied motor voltage vector are passed from ACIMVHZ to PWMMAC.

5.2 Speed Calculation
The speed controller (SC) eTPU function calculates the angular motor speed using pc_sc and last_edge
parameters of the QD eTPU function. This equation applies:

Eqn. 2

where:
omega_actual [fract24] is the actual angular speed as a fraction of the maximum speed range

Fractional Value Real Value
Real Quatity Range
---=

omega_actual position_difference
time_difference

-- scaling_factor⋅=
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor 41

Microprocessor Usage
position_difference [int24] is the difference between the updated value of QD position counter and
the previous value, which was captured by SC in the previous SC period. In fact the
position_difference is readable from pc_sc parameter of the QD function. After SC reads the new
updated value it resets this pc_sc parameters which ensures that the position_difference is available
in the pc_sc parameter next time SC reads it.
time_difference [int24] is the difference between the updated value of QD last_edge and the
previous value, which was captured by SC in the previous SC period
scaling_factor is pre-calculated using the following equation:

Eqn. 3

where:
etpu_tcr_freq [Hz] is a frequency of the internal eTPU timer (TCR1 or TCR2) used
omega_max [RPM] is a maximal speed range
pc_per_rev is a number of QD position counter increments per one revolution

The internal eTPU timer (TCR1 or TCR2) frequency must be set so that the calculation of omega_actual
both fits into the 24-bits arithmetic and its resolution is sufficient.

6 Microprocessor Usage
Table 3 shows how much memory is needed to run the application.

The eTPU module usage in terms of time load can be easily determined based on these facts:
• According to Reference 12, the maximum eTPU load produced by PWM generation is 1384

eTPU cycles per one PWM period. The PWM frequency is set to 20kHz, thus the PWM period is
6400 eTPU cycles (eTPU module clock is 128 MHz, at 128 MHz CPU clock).

• According to Reference 10, the contribution of QD function to the overall eTPU time load can be
calculated. It depends on the number of shaft encoder pulses (1024) and the motor speed
(maximum 3000 rpm). The maximum eTPU busy time per one encoder pulse is 720 eTPU cycles.

• According to Reference 14, the ACIM Volts per Hertz control calculation takes 146 eTPU cycles.
The calculation is performed every PWM period.

• According to Reference 11, the speed controller calculation takes 310 eTPU cycles. The
calculation is performed every 20th PWM period.

Table 3. Memory Usage in Bytes

Memory Available Used

Flash 2M 39 912

RAM 64K 3 492

eTPU code RAM 16K 9 800

eTPU data RAM 3K 1 144

scaling_factor 30 256 etpu_tcr_freq⋅ ⋅
omega_max pc_per_rev⋅
--=
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor42

Summary and Conclusions
• According to Reference 15, the BC maximum eTPU load per one update in slave PWM switching
mode is 64 eTPU cycles, and the BC maximum eTPU load per one PWM edge is 20 eTPU cycles.
The BC update is performed every 20 PWM periods. PWM frequency of the DC-bus break
control signal is 10 kHz, which means that the BC-PWM update is performed every 2 PWM
periods.

• According to Reference 13, the ASAC maximum eTPU load takes 54+96 eTPU cycles (both the
first and then the second edge processing is performed). The ASAC function processing is
executed every PWM period.

The values of eTPU load by each of the functions are influenced by compiler efficiency. The above
numbers are given for guidance only and are subject to change. For up to date information, refer to the
information provided in the latest release available from the Freescale web site.

The peak of the eTPU time load occurs within the PWM period when the speed controller and the break
controller calculations take place. This peak value must be kept below 100%, which ensures that all
processing fits into the PWM period, no service latency is longer than the PWM period, and thus the
generated PWM signals are not affected.

Table 4 shows the eTPU module time load in several typical situations. For more information, refer to
Reference 16.

7 Summary and Conclusions
This application note provides a description of the demo application ACIM Volts per Hertz control. The
application also demonstrates usage of the eTPU module on the PowerPC MPC5554, which results in a
CPU independent motor drive. Lastly, the demo application is targeted at the MPC5500 family of devices,
but it could be easily reused with any device that has an eTPU.

8 References

Table 4. eTPU Time Load

Situation
Average

Time Load [%]
Peak Time Load

Within PWM Period [%]

Motor Speed 100 RPM
(1707 QD pulses per second)

27.7 33.3

Motor Speed 3000 RPM
(51200 QD pulses per second)

53.3 58.8

Table 5. References

1. MPC5554 Reference Manual, MPC5554RM

2. MPC5554DEMO User’s Manual, MPC5554DEMO EVBUM

3. Interface Board with UNI-3 User’s Manual

4. 3-phase AC/BLDC High Voltage Power Stage User’s Manual
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor 43

Revision History
9 Revision History
Table 6 provides a revision history of this document.

5. Freescale Embedded Motion In-Line Optoisolation Box User’s
Manual, MEMCILOBUM

6. 3-Phase AC Induction Motor AM40V, EM Brno, web page:
http://www.embrno.cz

7. Quadrature Encoder BHK 16.05A 1024-I2-5, Baumer Electric, web
page: http://www.baumerelectric.com

8. FreeMASTER web page, http://www.freescale.com, search keyword
“FreeMASTER”

9. Enhanced Time Processing Unit Reference Manual, ETPURM

10. “Using the Quadrature Decoder (QD) eTPU Function,” AN2842

11. “Using the Speed Controller (SC) eTPU Function,” AN2843

12. “Using the AC Motor Control PWM eTPU Functions,” AN2969

13. “Using the Analog Sensing for AC Motors (ASAC) eTPU Function,”
AN2970

14. “Using the ACIM Volts per Hertz Control (ACIMVHZ) eTPU
Function,” AN2971

15. “Using the Break Controller (BC) eTPU Function,” AN2845

16. “Using the AC Motor Control eTPU Function Set (set4),” AN2968

17. eTPU Graphical Configuration Tool, http://www.freescale.com,
search keyword “ETPUGCT”

18. MPC5550 Quick Start User’s Manual

Table 6. Revision History

Revision Location(s) Substantive Change(s)

Rev. 0 This is the first released version of this document.

Table 5. References (continued)
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor44

http://www.baumerelectric.com
http://www.embrno.cz
http://www.freescale.com
http://www.freescale.com

Revision History
AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500, Rev. 0

Freescale Semiconductor 45

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and
software implementers to use Freescale Semiconductor products. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.

Freescale Semiconductor reserves the right to make changes without further
notice to any products herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale
Semiconductor, Inc. All other product or service names are the property
of their respective owners.© Freescale Semiconductor, Inc. 2004. All rights
reserved.

AN3205
Rev. 0
06/2006

	AC Induction Motor Volts per Hertz Control with Speed Closed Loop, Driven by eTPU on MPC5500
	1 PowerPC MPC5554 and eTPU Advantages and Features
	1.1 PowerPC MPC5554 Microcontroller
	1.2 eTPU Module

	2 Target Motor Theory
	2.1 Digital Control of an AC Induction Motor
	2.2 Volts per Hertz Control
	2.3 Quadrature Encoder

	3 System Concept
	3.1 System Outline
	3.2 Application Description
	3.2.1 User Interface

	3.3 Hardware Implementation and Application Setup
	3.3.1 PowerPC MPC5554 Evaluation Board (MPC5554DEMO)
	3.3.2 Flashing the MPC5554DEMO
	3.3.3 Interface Board with UNI-3
	3.3.4 Setting Overcurrent Level
	3.3.5 3-Phase High Voltage AC/BLDC Power Stage Board
	3.3.6 Inline Optoisolation Box
	3.3.7 AC Induction Motor with BLDC Motor Brake and Quadrature Encoder
	3.3.8 Power Supply

	4 Software Design
	4.1 CPU Software Flowchart
	4.1.1 Timer Interrupt Service Routine
	4.1.2 FreeMASTER Interrupt Service Routine
	4.1.3 eTPU Channel Interrupt Service Routine
	4.1.4 Fault Interrupt Service Routine
	4.1.5 eTPU Global Exception Interrupt Service Routine

	4.2 Application State Diagram
	4.2.1 APP_STATE_INIT
	4.2.1.1 Initialization and Start of eTPU Module
	4.2.1.2 Initialization of FreeMASTER Communication

	4.2.2 APP_STATE_STOP
	4.2.3 APP_STATE_ENABLE
	4.2.4 APP_STATE_RUN
	4.2.5 APP_STATE_DISABLE
	4.2.6 APP_STATE_MOTOR_FAULT
	4.2.7 APP_STATE_GLOBAL_FAULT

	4.3 eTPU Application API
	4.3.1 int32_t fs_etpu_app_acimvhzsl1_init(...)
	4.3.2 int32_t fs_etpu_app_acimvhzsl1_enable(...)
	4.3.3 int32_t fs_etpu_app_acimvhzsl1_disable (...)
	4.3.4 void fs_etpu_app_acimvhzsl1_set_speed_required(...)
	4.3.5 void fs_etpu_app_acimvhzsl1_get_data(...)

	4.4 eTPU Block Diagram
	4.4.1 PWM Generator (PWMMAC+PWMF)
	4.4.2 Quadrature Decoder (QD)
	4.4.3 Analog Sensing for AC Motors (ASAC)
	4.4.4 ACIM Volts per Hertz (ACIMVHZ)
	4.4.5 Speed Controller (SC)
	4.4.6 Break Controller (BC)

	4.5 eTPU Timing

	5 Implementation Notes
	5.1 Scaling of Quantities
	5.2 Speed Calculation

	6 Microprocessor Usage
	7 Summary and Conclusions
	8 References
	9 Revision History

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

