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IIC Slave on RS08KA2
by: Stanislav Arendarik

Application Engineer
Roznov, Czech Republic
1 Introduction
The IIC slave is a device connected to the IIC master 
device. The special IIC slaves can be the serial 
EEPROMs, real time clock modules, GPIO extenders 
etc. When the MCU is connected as the IIC slave it can 
serve as the various kind of peripherals in accordance to 
internal software.

This application note shows how to implement the IIC 
slave software module on Freescale’s MCU 
MC9RS08KA2. Then the MCU KA2 can be used as the 
IIC GPIO extender. Two standard GPIO pins are used as 
the SDA and SCL pins and the other free pins of the 
MCU are usable as standard GPIO pins. You can choose 
which pins will be used as the IIC bus pins. The PTA0 
and PTA1 are used in this example.

2 IIC Bus Summary
The IIC bus is a bidirectional, two-wire bus based on the 
wired AND (open drain) connection between master and 
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IIC Bus Summary
slave devices. For proper functionality the external pull-up resistors are used. The right values of these 
resistors are specified in the IIC Bus Specification from Philips and depend on the mode (speed) used. The 
standard usable values are from 1k5 to 10kΩ. Each transfer is originated by the master and acknowledged 
or answered by the slave. 

2.1 IIC Bus Terminology
• Transmitter — device that sends the data to the bus. A transmitter can be either a device that puts 

data on the bus of its own accord (master transmitter) or a response to a data request from another 
device (slave transmitter).

• Receiver — device that receives the data from the bus.
• Master — component that initializes a transfer, generates the clock signal and terminates the 

transfer. A master can be either a transmitter or a receiver.
• Slave — device addressed by the master. Can be receiver or transmitter.
• Multi-master — ability for more than one master to co-exist simultaneously on the bus without 

collision or data loss.
• Arbitration — prearranged procedure that authorizes only one master at a time to control the bus.
• Synchronization — prearranged procedure that synchronizes clock signals provided by two or 

more masters.
• SDA — data signal line (serial DAta).
• SCL — clock signal line (serial CLock).

SDA and SCL are bidirectional lines connected to a positive supply voltage via a current source or pull-up 
resistor. When the bus is free, both lines are high. Data on the IIC bus can be transferred at rates of up to 
100kbit/s in the standard mode, up to 400kbit/s in the fast mode or up to 3.4Mbit/s in the high speed mode. 
The number of devices connected to the bus depends only on the bus capacitance. The limit is 400pF.

2.2 Bit Transfer
The data on the SDA line must be stable during the clock’s high period. The high or low state of the SDA 
line can change only when the clock signal on the SCL line is low. See Figure 1.

2.3 START and STOP Conditions
Within the IIC-bus procedure, unique situations, defined as START and STOP conditions, arise (Figure 2). 
A high-to-low transition on the SDA line while the SCL line is high is the START condition, and a 
low-to-high transition on the SDA line while SCL is high is the STOP condition. The master always 
generates START and STOP conditions. The bus is released if both the SDA and SCL remain at high levels 
after STOP and before the START conditions.
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IIC Bus Summary
Figure 1. Bit Transfer

Figure 2. START and STOP Conditions

2.4 Bus Communication
The bus transfer protocol is based on the byte transfers followed by the acknowledge bit (ACK). The byte 
transfer starts with MSM to LSB. Each bit is clocked by SCL positive clock impulse. The ACK bit is 
clocked by the 9th SCL impulse. 

The master device originates every bus transfer, which sends the START condition to the bus. The next 
consecutive sequence bytes depends on the type of data transferred through the IIC bus. 

2.5 Control byte
The START condition is always followed by the control byte. The role of the control byte is to select and 
activate specific device types on the bus. See Figure 3 for the control byte’s structure. The first four bits 
represents the control code of the slave device. The next three bits represents the chip selects of the 
connected devices on the bus. These three bits can be used for multiple device operation. 

The 8th bit is the R/W (Read/Write) bit. This bit determines the requested operation for slave device. If 
this bit equals to “0” this means the “write” operation and “1” means the “read” operation. The last 9th bit 
is the ACK bit that, in this case, the slave always generates. 
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IIC Bus Summary
Figure 3. Control Byte Structure

2.6 Acknowledge
The acknowledge bit (ACK) is the low-level on the SDA line during the 9th pulse on the SCL line. The 
master always generates the SCL pulses. The receiver generates the ACK impulses. This means that in the 
write operation the slave device generates the ACK after each byte is transferred. In the READ operation, 
the slave generates the ACK bit after the master sends the control byte. The master generates the ACK bit 
after the first byte is transferred from the slave (if the next data bytes are requested by the master). The 
ACK bit is not generated when the last byte in the “read block” mode was transferred.

2.7 Read/Write format
They are two types of the data transfer on the IIC bus - read from the slave and write to the slave. 

When the read operation is executed, the first part of the communication protocol the master writes is the 
control byte with the R/W bit equal to 1 to the slave. Then the slave sends the ACK to the master. The next 
byte is the data byte sent by the slave. Then the master does not send the ACK bit (ACK=1); it does 
generate the STOP bit. Finally, the master and the slave release the bus. See Figure 4 for the read-operation 
structure.

When the write operation is executed, the data byte follows the control byte. This data byte contains the 
actual data which will be written to the slave. The slave generates both ACK bits. See Figure 5.

Figure 4. Read-Operation Structure
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IIC Bus Summary
Figure 5. Write-Operation Structure

2.8 IIC software for MCU
The main goal is to reach the highest possible communication speed by IIC; therefore, the whole software 
code is written in assembler. 

2.9 Initialization of the IIC
The main task is to set the right speed of the SCL clock signal. These clocks are based on the bus frequency. 
The internal ICS module can run at 16MHz to achieve the maximal bus frequency of 8MHz when the 
internal reference is trimmed. So the internal bus clocks is at 8MHz. The main state when the MCU is not 
active is WAIT state. The MCU leaves from this state by KBI interrupt. So the KBI interrupt on the “SCL” 
pin is activated before entering to WAIT state. After wake-up, the KBI interrupt is disabled. 

2.10 WRITE function
The write to slave will be discussed first. This will be done by send the start bit followed by the slave 
control byte with the R/W bit equal to “0”. The meaning of this byte’s contents and bits is discussed in the 
previous section. When the master sends the byte, the slave sends the ACK bit during the 9th SCL impulse. 
The master recognizes this ACK bit as the slave is ready to receive next byte. The next byte (second byte) 
is the data byte. The data will be written to the slave. This data byte is followed by the ACK sent by the 
slave. When the master receives the ACK bit, it generates the STOP bit. At this moment, the slave 
disconnects internally from the IIC bus, processes the write operation, then writes the transferred data to 
port A. The whole data byte is transferred, but only several bits are possible to write to the whole port; this 
depends on the GPIO pins configuration. Port A consists from PTA0-PTA5 and the IIC bus uses two bits 
of them. 

2.11 READ function
The read function is similar to the write function. The master sends the control byte but the R/W bit must 
be equal to 1. This is the read-from-slave function. The slave answers by ACK. The master must 
consecutively switch to receive mode and generate SCL pulses for the slave to receive data. When the 
master receives the whole byte (8 bits), it generates the 9th SCL pulse with ACK = 1 followed by the STOP 
bit. After the STOP bit is on the bus, the master and slave release the bus. The SDA & SCL lines stay 
inactive, which equals 1.

The read portA instruction on the RS08KA2 occurs when the first (control) byte with R/W = 1 is received 
by the slave. The actual portA data is read immediately and sent to the master as a data byte.
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Conclusion
3 Conclusion
The goal of this note is to explain how to implement the IIC slave module in Freescale’s MCU 
MC9RS08KA2. The RS08KA2 MCU serves in this case as the IIC slave 4-bit GPIO port extender. The 
whole software code example is also available on the MCU web page.

The whole application is tested with the MCU MC9S12DP256B with the internal IIC module configured 
for a speed of 100 kHz. 
IIC Slave on RS08KA2, Rev. 0
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Appendix A  
/******************************************************************************
*                                                                             *
* Freescale Semiconductor Inc.                                                *
* (c) Copyright 2004-2006 Freescale Semiconductor, Inc.                       *
* ALL RIGHTS RESERVED.                                                        *
*                                                                             *
*******************************************************************************/
;******************************************************************************
;* Example for RS08KA2 - IIC Slave; max speed 100kHz                          *
;*                       can serve as IIC 4-bit GPIO port                     *
;******************************************************************************
;; Include derivative-specific definitions
            INCLUDE 'derivative.inc'
;
; export symbols
;
            XDEF _Startup
            ABSENTRY _Startup

SCL_PIN  equ PTAD_PTAD0    ; SCL = PTA0;
SDA_PIN  equ PTAD_PTAD1    ; SDA = PTA1;

; MACRO Definitions:

SDA0:          MACRO
                 bclr   SDA_PIN,PTAD
               ENDM

SDA1:          MACRO
                 bset   SDA_PIN,PTAD
               ENDM

SDA:           MACRO
                 brclr SCL_PIN,PTAD,\1
                 brclr SDA_PIN,PTAD,\2
               ENDM

SCL0:          MACRO
                 bclr PTAD_PTAD0,PTAD
                 bset PTADD_PTADD0,PTADD
               ENDM
               
SCL1:          MACRO
                 bclr SCL_PIN,PTADD
               ENDM
IIC Slave on RS08KA2, Rev. 0
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Conclusion
WSCL1:         MACRO
                 brclr SCL_PIN,PTAD,\1
               ENDM

WSCL0:         MACRO
                 brset SCL_PIN,PTAD,\1
               ENDM

TX0:           MACRO
                 bclr SDA_PIN,PTAD
                 bset SDA_PIN,PTADD
               ENDM

; variable/data section

            ORG    RAMStart         ; Insert your data definition here
My_IIC_Addr:  DS.B   1
r_w           DS.B   1
RX_data:      DS.B   1
TX_data:      DS.B   1
bit_cnt_RX:   DS.B   1
bit_cnt_TX:   DS.B   1

; code section

            ORG    ROMStart
;-----------------------------------------------------------------------
_Startup:

;CONFIGURES SYSTEM CONTROL
            mov #HIGH_6_13(SOPT), PAGESEL  
            mov #$02, MAP_ADDR_6(SOPT)        ; Disables COP; 

;CONFIGURES CLOCK (FEI Operation Mode)
            mov #HIGH_6_13(NV_ICSTRM),PAGESEL  
            lda MAP_ADDR_6(NV_ICSTRM)         
            sta ICSTRM          ; Sets trimming value  
            clr ICSC1           ; Selects FLL as clock source 
                                ; and disables it in stop mode
            clr ICSC2           ; ICSOUT = DCO output frequency  
wait_clock:
            brset 2,ICSSC,wait_clock  ; Waits until FLL is engaged
            
;CONFIGURES PORT A            
            clr PTADD           ; PTA as inputs (OR outputs);
            clr PTAD            
IIC Slave on RS08KA2, Rev. 0
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Conclusion
            
;INITIALIZE VARIABLES
init_var:
            clra
            sta RX_data
            sta TX_data            
            sta bit_cnt_RX
            sta bit_cnt_TX
            sta r_w
            lda #$B0            ; own device IIC address 
                                ; in accordance to your requirements;
            sta My_IIC_Addr
;-----------------------------------------------------------------------
mainLoop:
            feed_watchdog
            lda PTAD            ; wait for IIC bus not active, 
                                ; then go to WAIT mode;

      and #$03
      cmp #$03
      bne mainLoop

;CONFIGURES KEYBOARD INTERRUPT MODULE             
            bclr 1,KBISC                    ; Disable KBI interrupt;
            mov #HIGH_6_13(PTAPE), PAGESEL
            mov #$03, MAP_ADDR_6(PTAPE)  ; Enables internal Pulling device
                                            ; on PTA0 & PTA1;
            bset KBIPE_KBIPE0,KBIPE         ; Enable KBI0 pin;
            
            bset KBISC_KBIE,KBISC           ; Enable KBI interrupt;
            bset KBISC_KBACK,KBISC          ; Clear the flag;
            
            wait            ; MCU in low power mode 
                            ; will wake-up by KBI interrupt;
                            ; instruction needs to be disabled for debug option;

      mov #HIGH_6_13(SIP1), PAGESEL 
      brset 4,MAP_ADDR_6(SIP1),Kboard ; Branch if KB interrupt pending

Kboard:         
      bclr KBISC_KBIE,KBISC           ; Disable KBI interrupt;
      bset KBISC_KBACK,KBISC          ; Clear the flag;
      feed_watchdog

            lda PTAD
            and #$03
            tsta                            ; START condition occured;
            bne Kboard
;********************************************************************************
            ;--------- start receive first byte ---------------------
            clra
IIC Slave on RS08KA2, Rev. 0
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            ;--------- receive bit7 ---------------------
bit17:
            SDA bit17,bit17a    ; wait for SCL=1, then read SDA
            add #$01            ; read SDA = 1
bit17a:     
            lsla                ; read SDA = 0
w17:
            WSCL0 w17           ; wait for SCL = 0;
            ;--------- receive bit6 ---------------------
bit16:
            SDA bit16,bit16a
            add #$01            ; read SDA = 1
bit16a:
            lsla                ; read SDA = 0
w16:
            WSCL0 w16
            ;--------- receive bit5 ---------------------
bit15:
            SDA bit15,bit15a
            add #$01            ; read SDA = 1
bit15a:
            lsla                ; read SDA = 0
w15:
            WSCL0 w15
            ;--------- receive bit4 ---------------------
bit14:
            SDA bit14,bit14a
            add #$01            ; read SDA = 1
bit14a:
            lsla                ; read SDA = 0
w14:
            WSCL0 w14            
            ;--------- receive bit3 ---------------------
bit13:
            SDA bit13,bit13a
            add #$01            ; read SDA = 1
bit13a:
            lsla                ; read SDA = 0
w13:
            WSCL0 w13
            ;--------- receive bit2 ---------------------
bit12:
            SDA bit12,bit12a
            add #$01            ; read SDA = 1
bit12a:
            lsla                ; read SDA = 0
w12:
IIC Slave on RS08KA2, Rev. 0
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            WSCL0 w12            
            ;--------- receive bit1 ---------------------
bit11:
            SDA bit11,bit11a
            add #$01            ; read SDA = 1
bit11a:
            lsla                ; read SDA = 0
w11:
            WSCL0 w11            
            ;--------- receive bit0 ---------------------
bit10:
            SDA bit10,bit10a
            inc r_w             ; read SDA = 1 -> bit RW = 1;
            
bit10a:                         ; read SDA = 0 -> bir RW = 0;
            
w10:
            WSCL0 w10
            ;--------- send SL_ACK ----------------------            
            TX0
sl_ack_1a:
            WSCL1 sl_ack_1a
            cmp My_IIC_Addr     ; compare valid own IIC address;
            bne go_back         ; go to start if not match;
sl_ack_1b:
            WSCL0 sl_ack_1b
            bclr SDA_PIN,PTADD  ; SDA = PTA1 as input;
            ;--------- read the PTA port ------------------------
            lda PTAD            ; read portA
            and #$30            ; mask bits 4 & 5;
            sta TX_data         ; save data;
            ;--------- end of read the PTA port -----------------
            bne go_back         ; go to start if not match;
            brclr 0,r_w,go1     ; go to receive next byte (RX_data);
            bra go_read_port    ; go to send (TX_data = PTA) to Master;
            
            ;--------- end of receive first byte -----------------
go_back:    
            clra
            sta PTADD
            jmp init_var        ; not valid device address -> go to WAIT state;

go_read_port:
            jmp read_port       ; read port A and send data to master;
;********************************************************************************
   ;------------------ start receive second byte --------------------------------
go1:
IIC Slave on RS08KA2, Rev. 0
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            clra
            ;--------- receive bit7 ---------------------
bit27:
            SDA bit27,bit27a    ; wait for SCL=1, then read SDA
            add #$01            ; read SDA = 1
bit27a:     
            lsla                ; read SDA = 0
w27:
            WSCL0 w27           ; wait for SCL = 0;
            ;--------- receive bit6 ---------------------
bit26:
            SDA bit26,bit26a
            add #$01            ; read SDA = 1
bit26a:
            lsla                ; read SDA = 0
w26:
            WSCL0 w26
            ;--------- receive bit5 ---------------------
bit25:
            SDA bit25,bit25a
            add #$01            ; read SDA = 1
bit25a:
            lsla                ; read SDA = 0
w25:
            WSCL0 w25
            ;--------- receive bit4 ---------------------
bit24:
            SDA bit24,bit24a
            add #$01            ; read SDA = 1
bit24a:
            lsla                ; read SDA = 0
w24:
            WSCL0 w24            
            ;--------- receive bit3 ---------------------
bit23:
            SDA bit23,bit23a
            add #$01            ; read SDA = 1
bit23a:
            lsla                ; read SDA = 0
w23:
            WSCL0 w23
            ;--------- receive bit2 ---------------------
bit22:
            SDA bit22,bit22a
            add #$01            ; read SDA = 1
bit22a:
            lsla                ; read SDA = 0
IIC Slave on RS08KA2, Rev. 0
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w22:
            WSCL0 w22            
            ;--------- receive bit1 ---------------------
bit21:
            SDA bit21,bit21a
            add #$01            ; read SDA = 1
bit21a:
            lsla                ; read SDA = 0
w21:
            WSCL0 w21            
            ;--------- receive bit0 ---------------------
bit20:
            SDA bit20,bit20a
            add #$01            ; read SDA = 1
bit20a:            
            
w20:
            WSCL0 w20
            ;--------- end of receive second byte -----------------
            
            ;--------- send SL_ACK ----------------------            
            TX0                 ; put 0 to SDA -> SL_ACK;
sl_ack_2a:
            WSCL1 sl_ack_2a
            sta RX_data         ; save received data byte;
sl_ack_2b:
            WSCL0 sl_ack_2b
            bclr SDA_PIN,PTADD  ; SDA = PTA1 as input;
            ;--------- receive STOP -------------------------------
w_stop:
            feed_watchdog
            lda PTAD
            and #$03
            cmp #$01            ; test for SDA = 0, SCL = 1;
            bne w_stop
fin_stop:
            feed_watchdog
            lda PTAD
            and #$03
            cmp #$03
            bne fin_stop        ; STOP condition occurred / SDA = SCL = 1 /;
            ;---------- end of IIC receive procedure ------------------
            lda RX_data
            and #$30
            sta PTAD
            lda #$30
            sta PTADD           ; write received data to PortA;
IIC Slave on RS08KA2, Rev. 0
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            jmp init_var        ; go to WAIT state;
            
;*******************************************************************************
            ;---------- Send data to Master -------------------------
read_port:   
            bset SDA_PIN,PTADD  ; SDA = PTA1 as output;
            ;--------- send bit7 ------------------------
            brclr 7,TX_data,tx07
            SDA1
tx07:
            WSCL1 tx07
tx07a:
            WSCL0 tx07a
            SDA0
            ;--------- send bit6 ------------------------
            brclr 6,TX_data,tx06
            SDA1
tx06:
            WSCL1 tx06
tx06a:
            WSCL0 tx06a
            SDA0
            ;--------- send bit5 ------------------------
            brclr 5,TX_data,tx05
            SDA1
tx05:
            WSCL1 tx05
tx05a:
            WSCL0 tx05a
            SDA0
            ;--------- send bit4 ------------------------
            brclr 4,TX_data,tx04
            SDA1
tx04:
            WSCL1 tx04
tx04a:
            WSCL0 tx04a
            SDA0
            ;--------- send bit3 ------------------------
            brclr 3,TX_data,tx03
            SDA1
tx03:
            WSCL1 tx03
tx03a:
            WSCL0 tx03a
            SDA0
            ;--------- send bit2 ------------------------
IIC Slave on RS08KA2, Rev. 0
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            brclr 2,TX_data,tx02
            SDA1
tx02:
            WSCL1 tx02
tx02a:
            WSCL0 tx02a
            SDA0
            ;--------- send bit1 ------------------------
            brclr 1,TX_data,tx01
            SDA1
tx01:
            WSCL1 tx01
tx01a:
            WSCL0 tx01a
            SDA0
            ;--------- send bit0 ------------------------
            brclr 0,TX_data,tx00
            SDA1
tx00:
            WSCL1 tx00
tx00a:
            WSCL0 tx00a
            SDA0
            ;--------- end of send data -----------------------
            bclr SDA_PIN,PTADD  ; SDA as input;

            ;--------- MS_ACK Time gap ----------------------            
ms_ack_rda:
            WSCL1 ms_ack_rda
ms_ack_rdb:
            WSCL0 ms_ack_rdb
            ;--------- end of SL_ACK --------------------------------
w_stop1:
            feed_watchdog
            lda PTAD
            and #$03
            cmp #$01            ; test for SDA = 0, SCL = 1;
            bne w_stop1
fin_stop1:
            feed_watchdog
            lda PTAD
            and #$03
            cmp #$03
            bne fin_stop1
            ;--------- end of IIC communication ----------------
            jmp init_var        ; go to WAIT state;

;*******************************************************************************
;*                 Startup Vector                                              *
;*******************************************************************************
            ORG   $3FFD

            JMP _Startup        ; Reset
IIC Slave on RS08KA2, Rev. 0
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