
Freescale Semiconductor
Application Note

Document Number: AN3335
Rev. 1, 11/2006

Contents

Introduction . 1
Overview . 2

2.1 Features and Operation. 2
2.2 Background Debug Controller 4
2.3 Communication Details. 8
Hardware and Software Set-up . 9
Application Tutorial . 10

4.1 Debug . 10
4.2 Setting Breakpoints . 12
Setting Triggers . 15
Conclusion. 19
References . 19
Glossary . 19

Introduction to HCS08
Background Debug Mode
by: Steven McLaughlin

Applications Engineer
East Kilbride, Scotland
1 Introduction
This application note outlines background debug mode
(BDM) on Freescale Semiconductor’s 8-bit
microcontrollers, primarily the S08 and RS08 cores. The
beginning of this application note focuses on defining
BDM, its functions, and operation. Also included in this
document are a step-by-step guide and examples of
in-circuit debugging using a P&E microcomputer
systems BDM pod with CodeWarrior™.

By using the background debug hardware on the
S08/RS08, traditional in-circuit emulators (ICE) that
require external components are unnecessary; this allows
a reduction in hardware costs.

The S08 and RS08 family differs from many of its peers
by providing a background debug mode, which consists
of the background debug controller (BDC), and for the
S08 only, the debug module (DBG).

When the BDC is programmed with non-intrusive and/or
active-background commands, the background

1
2

3
4

5
6
7
8

© Freescale Semiconductor, Inc., 2006. All rights reserved.

Overview
communications are controlled between the host and target MCU, allowing access to the target MCU
address and data buses. Through built-in debug hardware, this is a valuable and cost-effective tool that
accelerates time-to-market.

2 Overview
To debug the MCU using the background debug method, the following equipment is required:

• Host PC, complete with appropriate CodeWarrior software
• Target MCU and board
• BDM pod (does not require separate power supply) and appropriate USB connecting cable.

Figure 1 illustrates the BDM pod with its USB cable. This connects the two pieces of hardware.

NOTE
The pod contains two indicator LEDs to confirm connection to the PC and
target MCU.

Figure 1. BDM Pod

2.1 Features and Operation
The target board is connected to a host PC via a BDM interface pod (Figure 2). The connection on the
target board is a custom 6-pin connector (only 4 pins are used) and communication is carried out via the
BKGD pin. The RESET signal allows for a direct connection for the host to initiate a target system reset,
if required.

Figure 2. Connection Between Host PC and MCU Using BDM

Host PC

BDM Pod

Target board with
6-pin connector
Introduction to HCS08 Background Debug Mode, Rev. 1

Freescale Semiconductor2

Overview
The pins on the custom 6-pin connector are described as follows:

Figure 3. BDM Connector Pins

The BKGD pin is a pseudo open-drain pin with an on-chip pullup, that is, no external pullup resistor is
required for noise immunity. This pin provides a single-wire debug interface to the target MCU; however,
this PIN can also access the RAM, on-chip flash, and other non-volatile memories such as EEPROM—this
depends what BDM commands are made: active background or non-intrusive commands (see Section 2.2,
“Background Debug Controller”).

As the debug facility consists of hardware logic, the BDC does not need to use the CPU or its instructions,
allowing the BDC to access internal memory even while the program runs.

BDC features:
• Single dedicated pin for mode selection and background communications – BKGD pin
• BDC registers not located in memory map
• SYNC command to determine target communicates rate
• Non-intrusive commands for memory access
• Active background mode commands for CPU register access
• GO and TRACE1 commands
• BACKGROUND command can wake CPU from stop or wait modes
• One hardware address breakpoint built into BDC
• Oscillator runs in stop mode if BDM is enabled.

DBG features:
• Two trigger comparators:

— Two address and read/write (R/W) or
— One full address + data + R/W

• Flexible 8-word by 16-bit first-in, first-out (FIFO) for capture information:
— Change of flow addresses or
— Event data only

• Two types of breakpoints
— Tag breakpoints for instruction opcodes
— Force breakpoints for any address access

BKGD 1

NC 5

NC 3

2 GND

4 RESET (VPP on RS08)

6 VDD
Introduction to HCS08 Background Debug Mode, Rev. 1

Freescale Semiconductor 3

Overview
• Nine trigger modes
— A only
— A or B
— A then B
— A and B data (full mode)
— A but not B data (full mode)
— Event-only B (store data)
— A then event-only B (store data)
— Inside range (A address B)
— Outside range (address < A or address > B)

2.2 Background Debug Controller
The BDC is responsible for communication via the single BKGD pin. The main advantage—compared to
earlier 8-bit devices—is that this method does not interfere with normal application processes because it
does not use memory or locations in the memory map, and it does not share on-chip peripherals.

These commands are sent serially from the PC to the BKGD pin, MSB first, using a custom BDC
communications protocol. Commands do not affect the real-time operation of the program even as the
program runs. Table 1 summarizes the BDC commands.

In BDC there are 30 (21 for RS08) commands divided into two groups:
• Active background mode commands — User program is not running. Background command

causes MCU to enter active background mode. The CPU registers can be written/read and allow
you to trace one instruction at a time.

• Non-Intrusive Commands — User program running. Allow the MCU to be read/written to and
allow access to the status and control registers.

Table 1. BDC Command Summary (BDCSCR)

RS08 Commands S08 Commands mode Description

SYNC SYNC non-intrusive
Request a timed reference

pulse to determine target BDC
communication speed

ACK_ENABLE ACK_ENABLE non-intrusive
Enable handshake; issues an
ACK pulse after the command

is executed

ACK_DISABLE ACK_DISABLE non-intrusive Disable handshake; command
does not issue an ACK

BACKGROUND BACKGROUND non-intrusive Enters active background
mode if enabled

READ_STATUS READ_STATUS non-intrusive Read BDC status from
BDCSCR
Introduction to HCS08 Background Debug Mode, Rev. 1

Freescale Semiconductor4

Overview
WRITE_CONTROL WRITE_CONTROL non-intrusive Write BDC status from
BDCSCR

READ_BYTE READ_BYTE non-intrusive Read a byte from target
memory

READ_BYTE_WS READ_BYTE_WS non-intrusive Read a byte and report status

__ READ_LAST non-intrusive Re-read byte from address just
read and report status

WRITE_BYTE WRITE_BYTE non-intrusive Write a byte to target memory

WRITE_BYTE_WS WRITE_BYTE_WS non-intrusive Write a byte and report status

READ_BKPT READ_BKPT non-intrusive Read BDCBKPT breakpoint
register

WRITE_BKPT WRITE_BKPT non-intrusive Write BDCBKPT breakpoint
register

GO GO active background mode
Go to execute the user

application program starting at
the address currently in the PC

TRACE1 TRACE1 active background mode
Trace 1 user instruction at the
address in the PC, then return

to active background mode

__ TAGGO active background mode Same as GO but enable
external tagging

READ_A READ_A active background mode Read accumulator (A)

__ READ_CCR active background mode Read condition code register
(CCR)

READ_CCR_PC __ active background mode Read CCR PC

__ READ_PC active background mode Read program counter (PC)

__ READ_HX active background mode Read H and X register pair
(H:X)

Table 1. BDC Command Summary (BDCSCR) (continued)

RS08 Commands S08 Commands mode Description
Introduction to HCS08 Background Debug Mode, Rev. 1

Freescale Semiconductor 5

Overview
Related to the BDC are the status and control registers (BDCSCR) and the breakpoint register
(BDCBKPT). BDCSCR is an 8-bit register which contains the ENBDM bit, bit-7, which is required to

__ READ_SP active background mode Read stack pointer (SP)

READ_SPC __ active background mode Read shadow program counter
(SPC)

__ READ_NEXT active background mode
Increment H:X by one, then
read memory byte located at

H:X.

__ READ_NEXT_WS active background mode
Increment H:X by one, then
read memory byte located at
H:X. Report status and data

READ_BLOCK __ active background mode Blocks of data read from target
memory

WRITE_A WRITE_A active background mode Write accumulator (A)

__ WRITE_CCR active background mode Write CCR

WRITE_CCR_PC -- active background mode Write CCR PC

__ WRITE_PC active background mode Write PC

__ WRITE_HX active background mode Write H:X

__ WRITE_SP active background mode Write SP

WRITE_SPC __ active background mode Write SPC

__ WRITE_NEXT active background mode
Increment H:X by one, then

write memory byte located at
H:X.

__ WRITE-NEXT_WS active background mode
Increment H:X by one, then

write memory byte located at
H:X. Report status

WRITE_BLOCK __ active background mode Blocks of data written from
target memory

Table 1. BDC Command Summary (BDCSCR) (continued)

RS08 Commands S08 Commands mode Description
Introduction to HCS08 Background Debug Mode, Rev. 1

Freescale Semiconductor6

Overview
initiate active background mode. The 16-bit BDCBKPT register holds the address for the hardware
breakpoint in the BDC.

Figure 4 and Figure 5 illustrate each bit of the status and control register. The BDCSR register is not held
in the user memory map. Because the register can only be accessed by the debugger, it avoids enabling the
BDM unintentionally while the user program runs.

The benefits and operation of the RS08 BDC and HCS08 are the same. The only main difference is that
the DVF and CLKSW bits are not present in the RS08 BDCSCR register.

Figure 4. HCS08 BDC Status and Control Register (BDCSCR)

Figure 5. RS08 BDC Status and Control Register (BDCSCR)

Table 2. BDC Status and Control Register (BDCSCR) Summary

Bit Name Function
State

0 1

7
ENBDM – Enable

BDM
Written to 1 by debug host when

debugging

BDM cannot be made
active (non-intrusive

commands only)

Active BDM allows active
background mode

commands

6
BDMACT –

background active
status

Read only status bit BDM inactive BDM active

5
BKPTEN – BDC

breakpoint enable
If 0 BDC breakpoint disabled and
FTS and BDCBKPT are ignored

BDC breakpoint disabled BDC breakpoint enabled

4
FTS – Force/Tag

select

If 1 breakpoint requested
whenever CPU address bus

matched BDCBKPT register. If 0
match between CPU address bus
and BDCBKPT register causes
fetched opcode to be tagged.

Tag opcode at breakpoint
address and enter active
background mode if CPU
attempts to execute that

instruction

Breakpoint match forces
active background mode at
next instruction boundary.
Introduction to HCS08 Background Debug Mode, Rev. 1

Freescale Semiconductor 7

Overview
2.3 Communication Details
Communication with the target MCU through the BDC is carried out by one of two methods:

• Hardware method—The RESET pin is released after the BKGD pin, reset pins are pulled low, and
BKGD pin is released. The MCU enters active background mode.

• Software method—There is no initial reset of the MCU. Non-intrusive command can be sent to the
MCU, where it is possible to enter active background mode this way (Table 2).

To indicate the beginning of each bit time, a falling edge from the BDC serial interface is generated on the
BKGD pin. Data transfers MSB first at 16 BDC clock cycles per bit. Note the BDC clock speed; the BDM
pod requires knowing the target MCU clock speed.

The clock frequency derives from the bus-rate clock or a fixed-frequency alternative clock source (the state
of bit-3, CLKSW of the BDCSCR register defines this). The preferred clock source for general debugging
occurs when the MCU is reset in normal mode (CLKSW = = 0 – selects alternative clock source). On the
other hand, assigning a 1 to CLKSW selects the bus clock as the BDC clock source. This setting is
commonly used when programming the flash memory because the bus clock can run at the highest bus
frequency, ensuring the fastest flash programming times. Usually, this setting should not be used for
general debugging: there is no way to know whether the application program will not change the clock
generator settings.

3
CLKSW – Select
source for BDC
Comms clock

If reset in normal mode, CLKSW
forced 0 and selects alternative
frequency source as BDC clock.
When reset in background mode,
CLKSW forced 1 selecting BDC

clock.

Derivative specific fixed
alternative frequency

source
CPU bus clock

2
WS – Wait or stop

status

When CPU is in wait stop mode,
most BDC commands cannot
function. The BACKGROUND
command can force CPU into

active background mode – BDC
commands work. Host would

therefore issue READ_STATUS
command to check BDMACT=1

Target CPU is running user
application code or is in
active background mode
(was not in wait or stop
mode when background

became active)

Target CPU is in wait or stop
mode, or a BACKGROUND

command was used to
change from wait or stop

mode to active background
mode.

1
WSF – Wait or stop

failure status

Status bit set if memory access
command failed due to target
CPU executing WAIT or STOP

instruction

Memory access did not
conflict with a WAIT or

STOP instruction

Memory access command
failed because CPU entered

WAIT or STOP mode

0
DVF – Data valid

failure status

Status bit set if memory access
command failed due CPU

executing slow memory access

Memory access did not
conflict with slow memory

access

Memory access command
failed as CPU was not

finished with sow memory
access.

Table 2. BDC Status and Control Register (BDCSCR) Summary (continued)
Introduction to HCS08 Background Debug Mode, Rev. 1

Freescale Semiconductor8

Hardware and Software Set-up
3 Hardware and Software Set-up
The software used to configure the device is CodeWarrior Development Studio. The following
step-by-step guide demonstrates how to connect the debugger pod to an evaluation board (EVB). The
procedure of connecting the debugger to the EVB and using the software will be the same for the majority
of devices. The BDM pod used is a P&E Microcomputer USB multilink (Figure 1). The evaluation board
is connected to a host PC through a USB port. To implement the hardware, follow these steps only if
CodeWarrior is installed:

1. Power the EVB with the required power.
2. Make sure the on-off switch on the EVB is in the ON position.
3. Insert one end of USB cable into a free USB port on the PC.
4. Insert the other end of the USB cable into the BDM pod. Installation Window (Figure 6) should

appear if this is the first time the pod is used with the PC. Follow the automatic installation.
5. Attach the female socket of the BDM connection to the 6-pin connector on the EVB.

NOTE
The colored wire corresponds to pin 1 (BKGD) and, therefore, should
connect to the pin marked or 1.

Figure 6. Installation Window
Introduction to HCS08 Background Debug Mode, Rev. 1

Freescale Semiconductor 9

Application Tutorial
Figure 7. BDM 6-Pin Connections1

4 Application Tutorial
This tutorial is based on inserting breakpoints and trigger points using the HC(S)08 CodeWarrior IDE and
a MC9S08GB60 DEMO board.

4.1 Debug
The first stage is to debug the program. Click the highlighted button (Figure 8).

After the debugger runs (and no errors or warnings have appeared), the ICD connection assistant window
shows that the BDM debugger module was detected. Generally, the interface and port pull-down menus
do not need changed.

1. Colored wire corresponds to Pin 1
Introduction to HCS08 Background Debug Mode, Rev. 1

Freescale Semiconductor10

Application Tutorial
Figure 8. Main Compiler Window1

1. Debug button is circled
Introduction to HCS08 Background Debug Mode, Rev. 1

Freescale Semiconductor 11

Application Tutorial
Figure 9. ICD Connection Assistant Window Followed by Program Load Confirmation

4.2 Setting Breakpoints
Breakpoints are added into the software by right-clicking next to the instruction and selecting, set
breakpoint. A red arrow appears, indicating the breakpoint position and where the compiler will halt.
Because there are three hardware comparators, only three breakpoints (only applicable on MCUs with the
DBG module) with no triggers can be used at any one time. Figure 10 illustrates using a breakpoint.
Introduction to HCS08 Background Debug Mode, Rev. 1

Freescale Semiconductor12

Application Tutorial
Figure 10. Red Arrows Indicate Set Breakpoints

Figure 11 illustrates the run and step function (C-step and assembly step) within the program.

Figure 11. Run- and Step-Through Functions

Delete breakpoints by right clicking on the line they are on and select, delete breakpoint (Figure 12).
Introduction to HCS08 Background Debug Mode, Rev. 1

Freescale Semiconductor 13

Application Tutorial
Figure 12. Delete Breakpoint
Introduction to HCS08 Background Debug Mode, Rev. 1

Freescale Semiconductor14

Setting Triggers
5 Setting Triggers
NOTE

This section applies to only MCUs with the DBG module. Setting a trigger
(Figure 13) is similar to setting a breakpoint: right click next to the
instruction and select, set trigger address A (or B). The trigger is represented
by a red uppercase letter A or B. This action takes the 16-bit address
associated with the instruction A or B and sets it in the corresponding
hardware comparator.
Introduction to HCS08 Background Debug Mode, Rev. 1

Freescale Semiconductor 15

Setting Triggers
Figure 13. Setting Trigger

1. The trigger can be modified from its default settings. Click on the triggered instruction to select
trigger settings. The on-chip debug system allows you to select whether to begin or end recording
data on the trigger point (Figure 14).
Introduction to HCS08 Background Debug Mode, Rev. 1

Freescale Semiconductor16

Setting Triggers
Figure 14. Modify Trigger Settings

2. In this case, one comparator is set to execute a single, 16-bit address trigger with the A-only
condition. You can set a dual 16-bit address trigger, where two comparators are set at separate
16-bit addresses with one of the following conditions requiring to be satisfied: A or B, inside A or
B, outside A or B, A then B. Trigger B would be set in exactly the same way as trigger A. When
both triggers are set, the conditions between the two addresses can be adjusted by scrolling through
trigger settings (Figure 15)

Figure 15. Trigger A and B Settings

3. In BDM mode, the trigger settings allow the user to request that software-execution halt returns the
CPU to a background state. In normal mode, the user code can initiate the on-chip debug system,
run the software, and perform a software interrupt following a successful trigger that can be used
for ROM patching.
Introduction to HCS08 Background Debug Mode, Rev. 1

Freescale Semiconductor 17

Setting Triggers
Figure 16. Setting 16-bit Address

4. When setting an 8-bit data trigger, you must select the type of memory access (read/write).
Figure 16 illustrates how to select the 16-bit address: right click on the desired memory location in
the memory map window by selecting, set trigger address A then write access. The trigger is
marked by a dashed underline.

5. To set the 8-bit data value completing the trigger, right click on the memory window and change
the trigger settings to memory access at address A and value on data bus match. This prompts for
a value. The value should be altered in the match value box (Figure 17).

Figure 17. Setting 8-bit Data Value

6. To delete the triggers, right click on the location marked by a trigger. Select delete trigger (in the
same manner as deleting a breakpoint [Figure 12]).
Introduction to HCS08 Background Debug Mode, Rev. 1

Freescale Semiconductor18

Conclusion
6 Conclusion
The BDM is a unique on-chip debug system that improves existing application debugging techniques. It
eliminates the need for expensive external emulators and allows for real-time emulation of MCU functions
with no limitations on operating voltage or frequency.

A few of the advantages provided by the BDC:
• Non-intrusive debugging through one single pin
• System does not interfere with normal application resources
• Does not use your memory or memory locations in the memory map
• BDC in active or stop mode

Overall, the BDC leads to reduced development time, cost, and debugging techniques.

7 References
AN2104 — Using Background Debug Mode for the M68HC12 Family, by Timothy J. Airaudi

AN2497 — HCS08/RS08 Background Debug Mode versus HC08 Monitor Mode, by Kazue Kikuchi and
John Suchyta, updated by Inga Harris.

AN2596 — Using the HCS08 Family On-Chip In-Circuit Emulator (ICE), by Eduardo Montañez

AC127 — Creating your own BDM Pod, by Donnie Garcia (Orlando FTF 2006 Presentation)

HCS08RMv1 — HCS08 Family Reference Manual Volume 1

Freescale S08 Training Workshop Presentation

8 Glossary
BDC — Background debug controller

BDCBKPT — BDC breakpoint register

BDCSCR — BDC status and control register

BDM — Background debug mode

CCR — Condition code register

DBG — Debug Module

EEPROM — Electrically Erasable Programmable Read-Only Memory

EVB — Evaluation board

FIFO — First in first out

H:X — H and X register pair

ICE — In-circuit emulator
Introduction to HCS08 Background Debug Mode, Rev. 1

Freescale Semiconductor 19

Glossary
MSB — Most significant bit

NC — Not connected

PC — Program counter

R/W — Read/Write

SP — Stack pointer

SPC — Shadow program counter
Introduction to HCS08 Background Debug Mode, Rev. 1

Freescale Semiconductor20

THIS PAGE IS INTENTIONALLY BLANK
Introduction to HCS08 Background Debug Mode, Rev. 1

Freescale Semiconductor 21

Document Number: AN3335
Rev. 1
11/2006

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2006. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	2 Overview
	2.1 Features and Operation
	2.2 Background Debug Controller
	2.3 Communication Details

	3 Hardware and Software Set-up
	4 Application Tutorial
	4.1 Debug
	4.2 Setting Breakpoints

	5 Setting Triggers
	6 Conclusion
	7 References
	8 Glossary

