
Freescale Semiconductor
Application Note

Document Number: AN3396
Rev. 1, 02/2011

Contents
Introduction . 1
Overview of Decimation. 2
System Overview. 2
Subsystems Overview . 3

4.1 eMIOS Subsystem. 3
4.2 eTPU Subsystem. 5
4.3 eDMA Subsystem . 6
4.4 eQADC Subsystem . 10
Software Source . 12
Build Structure . 12
Conclusion. 13
Glossary . 14

MPC5500: A Decimation Solution
with Zero CPU Loading
by: Geoff Emerson

David McMenamin
MCD Applications
East Kilbride, Scotland
1 Introduction
The MPC5500 microcontroller family provides a
flexible feature set enabling a wide range of automotive
and industrial applications to be realized. This
application note describes a system created using some
of these powerful features to perform decimation with no
CPU loading during run time. The principles presented
by this application note could also be applied in realizing
other systems.

This application note describes a system that performs
eQADC result data decimation. The decimation is
achieved using zero CPU bandwidth at run time. Data
produced by an analog-to-digital converter is moved to a
coprocessors memory where this data can be processed.
The processed data is then moved back to system RAM.
The component parts of the system (eQADC, eDMA,
eTPU, and eMIOS) as they pertain to the decimation
system are described. The interaction between these
subsystems is also described. The particular system
described is a simple averaging decimation system.
However, because the decimation calculations are
performed by software on the eTPU coprocessor, a more
complex filtering system could be implemented if
desired. The example software referred to and used in the
development of this application note is downloadable
from www.freescale.com.

1
2
3
4

5
6
7
8

© Freescale Semiconductor, Inc., 2007, 2011. All rights reserved.

Overview of Decimation
2 Overview of Decimation
Decimation is the process of effectively reducing the data rate. This is achieved by filtering and then down
sampling results from a system. In this example, decimation is performed on the results of the eQADC.

To prevent aliasing when performing decimation, the highest frequency of the sampled signal must be less
than half the post decimation sampling rate to ensure compliance with the Nyquist sampling theorem. If
this is not the case, the incoming signal or captured results must be low-passed filtered prior to sampling
to ensure it complies. Violating the Nyquist criteria results in aliasing of the signal.

Decimation can be performed to reduce the sampling rate so it can be used as an input to a slower system
or to simply reduce the volume of data that has to be processed. The decimation factor is the ratio of the
number of samples in to the number of samples out.

3 System Overview
Four subsystems (peripheral modules and coprocessor) are configured at system initialization by the CPU:
eMIOS, eQADC, eTPU, and eDMA. These modules can then interact and operate independently of the
CPU to realize the decimation system.

The eMIOS generates a regular sampling pulse that triggers the eQADC. The eQADC operates as
instructed by commands stored in system RAM and supplied by the eDMA. The eDMA performs all data
moves between the subsystem modules and system RAM. Two eDMA channels are used. One, Channel
0, provides conversion commands to the eQADC. A second, Channel 1, moves the data within the system.
Channel 1 performs a chain of different transfers by reconfiguring itself using the scatter gather processing
functionality built into the eDMA. This is covered in more detail in Section 4.3, “eDMA Subsystem”. The
eTPU performs the decimation computation. An overview of the decimation system is shown in Figure 1.

Figure 1. Decimation System Overview

eMIOS

eQADC

eDMA
CH 0

System RAM

eDMA
CH 1

eDMA
CH 1

Input
Signal

Command
FIFO

eQADC
Commands

System RAM

eQADC
Results
Store

eTPU
Parameter

RAM

eTPU
 engine

eDMA
CH 1

ADC Trigger

System RAM

Decimated
Results
Store

Scatter
Gather

Scatter Gather

Scatter
Gather

Data Move

eTPU Function

eDMA Self Reconfiguration
MPC5500: A Decimation Solution with Zero CPU Loading, Rev. 1

Freescale Semiconductor2

Subsystems Overview
4 Subsystems Overview
The decimation system consists of four subsystems described below.

4.1 eMIOS Subsystem
The eMIOS generates a regular pulse within the decimation system that triggers the analog-to-digital
converter to sample at a regular frequency.

4.1.1 Overview of the eMIOS Hardware

The eMIOS is an evolution of the previously implemented MIOS module present in other Freescale
products, such as the MPC500 family. The eMIOS module provides the ability to generate and measure
timed events in various ways.

The MPC5500 features up to 24 eMIOS channels. Each of the 24 unified channels is identical and can
operate independently of the other channels to provide a timed input or output function. Each eMIOS
channel pin is multiplexed with GPIO functionality. The device pin must be configured so the eMIOS
functionality is selected.

Each channel has its own counter used for reference when generating and measuring timed events. This
counter is driven by a clock that can be scaled at module and channel level. Channel counters have a
resolution of 24 bits. Up to four counter buses can be used to share a common time reference between the
unified channels. Each unified channel supports a range of timing modes including: input pulse width
measurement, output pulse width, and frequency modulation and output pulse width modulation. For full
details on the module and the modes supported, refer to the relevant MPC5500 family member reference
manual.

4.1.2 Triggering the eQADC

Within the decimation system, the eMIOS generates an output pulse width and frequency modulated
(OPWFM) signal. The rising edge of this signal triggers the eQADC. When triggered, the eQADC
performs a conversion and generates a result based on the command words present in a command FIFO.

The OPWFM signal is configured to have a frequency of 200 kHz. This is generated from an 80 MHz
system frequency and a time base generated by the internal counter of the channel. In the example software
provided, eMIOS channel 10 is used. The eMIOS channel’s internal counter is driven at the system
frequency of 80 MHz. This is achieved by configuring the eMIOS module prescaler and the channel
prescaler to be 1. The period of the OPWFM signal is set to be 400 counts of the internal counter at 80 Mhz.
This results in 200 kHz frequency. The duty cycle of the signal is configured to be 50 percent by setting
the output to toggle at 200 counts of the internal counter. The resulting output signal is shown in Figure 2.
The signal toggle count values (Duty and Period) are written to the A and B registers of the eMIOS
channel. The output signal changes when the internal counter matches these values. On a match with the
B register, the internal counter is also reset. In the example, the EDPOL bit in the eMIOS channel is left
in its default state, which is 0. When the internal counter matches the A register, the output goes low. When
it matches the B register, the output goes high.
MPC5500: A Decimation Solution with Zero CPU Loading, Rev. 1

Freescale Semiconductor 3

Subsystems Overview
Figure 2. eMIOS OPWFM Output Signal for Triggering the eQADC

The eMIOS channel 10 output is routed internally to the eQADC module. This is configured in the eQADC
trigger input select register, which is located within the system integration unit (SIU). The code to
configure this register is shown below:

 SIU.ETISR.R = 0x00200000; //emios10 drives the trigger

4.2 eTPU Subsystem

The eTPU subsystem is composed of the eTPU hardware along with the eTPU function software. These
are described in the following sections.

4.2.1 Overview of the eTPU Hardware

The eTPU is a second-generation coprocessor module available on Freescale microcontrollers. It is based
on its successful predecessor, the TPU. While the intended application of the eTPU is primarily time
critical applications (e.g. engine or motor control), it is flexible enough to allow the micro-engine to be
used to perform calculations unrelated to any timing functionality. The channel and timer hardware, which
would typically be used to drive timed outputs or capture input signals, is not used in this particular system.
Consequently, this hardware is not described here. The micro-engine is used to perform the decimation
calculations.

An eTPU micro-engine has 32 timer channels associated with it. Many MPC5500 family members have a
single or dual engine eTPU. Function code is executed by the micro-engine in response to an eTPU
channel requesting service. One means of requesting service is by a host service request (HSR). This is
achieved by setting the appropriate bit field in the host interface of the eTPU channel to be serviced. In the
example decimation system, the eDMA writes to the host service request register.

C
ha

nn
el

 in
te

rn
al

C

ou
nt

er

C
ha

nn
el

 O
ut

pu
t

E
D

P
O

L
=

 0

ADC Triggered ADC Triggered ADC Triggered

400

200

A Match B Match A Match B Match A Match B Match
MPC5500: A Decimation Solution with Zero CPU Loading, Rev. 1

Freescale Semiconductor4

Subsystems Overview
Function code resides in the eTPU’s shared code memory and is placed there at system initialization by
software running on the host CPU. Function code is associated with a particular eTPU channel by
populating the channel function select bit field in the channel’s configuration register.

Functions may store and retrieve parameters from parameter RAM (PRAM). In the example decimation
system, parameters in PRAM are accessed by the eDMA controller and by the eTPU decimation function.

For more information regarding the eTPU, refer to http://www.freescale.com/etpu.

4.2.2 Example eTPU Decimation Function

The decimation scheme chosen for the example decimation system is a simple averaging scheme. More
complex schemes could be realized using the eTPU’s multiply accumulate and divide unit (MDU). The
MDU is an autonomous resource in the micro-engine that can carry out sequential multiply,
multiply-accumulate fractional multiplication, and divide operations in parallel to the eTPU RISC core
executing other non-MDU microinstructions.

When called by a host service request, the example eTPU decimator function simply sums four values
stored in PRAM and then divides the sum by four. The result is then written to a different location in
PRAM. This result is called the decimated value.

The example function is also responsible for maintaining a copy of the destination address parameter of
the transfer control descriptor (TCD) used to move the decimated value from eTPU PRAM to the
decimated value result queue (referred to as Decimator_Ping_Pong). The destination address pointer is
incremented each time the function is called. If the pointer exceeds the allocated queue space, it is reset to
the start of the queue.

The example function’s single entry point is called using a host service request.

4.2.3 Parameter RAM Layout.

The Bytecraft eTPUC compiler optimizes how the function parameters are arranged in PRAM. Version
1.0.7.30 of the Bytecraft compiler has chosen the following arrangement for the function’s parameters.

Table 1. eTPU DRAM Layout

Address Variable Variable

eTPU Channel base address (int16) Input_Values[0] (int16) Input_Values[1]

eTPU Channel base address + 4 (int16) Input_Values[2] (int16) Input_Values[3]

eTPU Channel base address + 8 (int16) Input_Values[4] (int16) Input_Values[5]

eTPU Channel base address +12 (int16) Input_Values[6] (int16) Input_Values[7]

eTPU Channel base address + 16 (int16) Decimated_value (int16) Timestamp

eTPU Channel base address + 20 (int32) TCD_Daddr

eTPU Channel base address + 24 (int24) Tcd_Doff

eTPU Channel base address + 28 (uint32) Ping_Pong_Address

eTPU Channel base address + 32 (int16) Ping_Pong_Length
MPC5500: A Decimation Solution with Zero CPU Loading, Rev. 1

Freescale Semiconductor 5

http://www.freescale.com/etpu

Subsystems Overview
Input_Values[0,2,4,6] are the result of the ADC conversion result. Input_Values[1,3,5,7] are the
corresponding time stamp for each conversion.

The Bytecraft eTPUC compiler uses #pragma statements to write the layout information for these
parameters to a file called etpu_decimate_auto.h. This file is used by application code to access the PRAM
locations.

4.3 eDMA Subsystem
The eDMA performs all run time data moves within the system. Two eDMA channels are used. Channel 0
is used to provide conversion commands to the eQADC module, and Channel 1 is used to move data
around the system. Because Channel 1 is used to do multiple data transfers, it reconfigures itself between
transfers using the scatter gather processing feature of the eDMA.

4.3.1 Overview of the eDMA Hardware

An eDMA controller provides the ability to move data from one memory mapped location to another. After
it is configured and initiated, the eDMA controller operates in parallel with and independently from the
central processing unit (CPU), performing data transfers that would otherwise have to be managed by the
CPU. This results in reduced CPU loading and a corresponding increase in system performance. Figure 3
illustrates the basic functionality provided by an eDMA controller.

Figure 3. eDMA Basic Functionality

MPC5500 devices feature up to 64 eDMA channels. Each channel can be independently configured with
the details of the transfer sequence to be executed. These details are specified in the channel transfer
control descriptor (TCD) memory array.

In this example, eDMA transfers are activated in two ways:

• Events occurring in peripheral modules and off chip assert an eDMA transfer request.

• Software activation.

Peripheral module interrupt flags can be configured to cause an interrupt or an eDMA request. Each eDMA
channel is linked to a specific source.

DMA

Source

0x11112222

0x33334444

0x55556666

0x77778888

0x9999AAAA

0xBBBBCCCC

0xDDDDEEEE

Destination

0x9999AAAA

0x9999AAAA

DMA Transfer Request
Channel x

DMA Reads
Source Data

DMA writes
Source Data to
the destination

e.g. RAM

e.g.
eQADC

Command Que

Channel x
TCD
MPC5500: A Decimation Solution with Zero CPU Loading, Rev. 1

Freescale Semiconductor6

Subsystems Overview
Each channel can generate an interrupt to indicate it has partially completed or fully completed a transfer.
Interrupts can also be generated to indicate a transfer error has occurred. Scatter/gather processing is
supported by each of the channels. This feature allows a channel to automatically load a new TCD into its
registers. Multiple TCD descriptors can, therefore, be used with a single channel with no extra load on the
CPU at run time.

To allow the eDMA and the CPU to operate simultaneously, a multi-master bus architecture is
implemented. The MPC5500 multi-master bus has multiple master and slave nodes. The cross-bar switch
forms the heart of this multi-master architecture. It links each master to the required slave device. If two
masters attempt to access the same slave, an arbitration scheme eliminates bus contention.

4.3.2 Transfer Control Descriptors Description.

Channel 0 transfer control descriptor is configured such that every time the channel is triggered by the
eQADC command FIFO fill flag, the eDMA reads a command word stored in system RAM and writes it
to the push register for the command word within the eQADC. The eQADC is triggered by the eMIOS that
causes the eQADC to trigger the eDMA to provide a new command word each time space becomes
available on the FIFO. Sixty four command words, each 32-bits in length, are passed to the FIFO in this
example. The command words are stored in system RAM in an array called CQUEUE. The eDMA wraps
back to the beginning of the array after it has passed the last array member to the eQADC. Channel 0 TCD1
below lists the configuration used for Channel 0’s TCD.

Table 2. Channel 0 TCD

TCD name TCD_ADC_CQ

Purpose Move 64 x commands from
CQUEUE to PUSHR

Trigger Command FIFO Fill Flag

Source Address CQUEUE

Destination Address PUSHR

Source / Destination Modulo off

Source size 0x2  32-bits

Source address offset 0x4  32 bits

Destination Address offset 0

Nbytes – transferred each trigger 0x4  32 bits

Last source address adjust –4 bytes x 64 = –256 bytes

Citer 64

Biter 64

dsize 0x2 32

Half way interrupt Off

Major loop interrupt Off

Channel Linking Off

Scatter Gather Off
MPC5500: A Decimation Solution with Zero CPU Loading, Rev. 1

Freescale Semiconductor 7

Subsystems Overview
Channel 1 is used to perform four different transfers. A separate transfer control descriptor is used for each
of these transfers. The four different transfers are performed by enabling scatter gather processing. After
the eDMA has completed one transfer, as defined by the TCD, it loads the TCD for the next transfer. The
order the scatter gather processing uses the TCDs is shown in Figure 4.

Figure 4. TCD Scatter Gather Flow

TCD P1 is processed first. It is used to move four eQADC results and corresponding timestamps into the
eTPU’s PRAM memory. Each transferred set consists of a 16-bit timestamp and a 16-bit conversion result.
This results in 8 × 16 bits being moved. Data is moved each time the eDMA is triggered by the eQADC
RPOP flag. After this channel has been triggered eight times (four results and four timestamps), the major
loop is complete and scatter gather processing takes place.

TCD Q1 is then used to move the resultant decimated value, which has been previously calculated by the
eTPU, from the eTPU’s PRAM to the result array in System RAM. This transfer is triggered when the
scatter gather processing updated the start bit in the eDMA channel. After the transfer has been performed,
scatter gather processing loads TCD R1. Table 2 shows the settings used for TCD P1 and TCD Q1.

Table 3. Channel 1 TCD P1 and Q1

TCD name TCD P1 TCD Q1

Purpose Move eQADC results and
timestamps to eTPU Parameter

RAM

Move decimation result from
Parameter RAM into System

RAM

Trigger eQADC RPOP Flag Software from P1

Source Address Result Pop Register Parameter RAM

Destination Address eTPU Rqueue System RAM

Source / Destination Modulo off Off

Source size 0x1  16-bits 0x1  16-bits

Source address offset 0 0

Destination Address offset 0x2  16 bits 0

Nbytes – transferred each trigger 0x2  16 bits 0x2  16 bits

Last source address adjust 0 0

Citer 8 1

Biter 8 1

Dsize 0x1  16-bits 0x1  16-bits

Half way interrupt Off Off

Major loop interrupt Off Off

Channel Linking Off Off

Scatter Gather On TCD Q1 On TCD R1

TCD P1

TCD Q1

TCD R1

TCD S1 Scatter

Gather

Scatter Scatter

Scatter Gather

Gather Gather
MPC5500: A Decimation Solution with Zero CPU Loading, Rev. 1

Freescale Semiconductor8

Subsystems Overview
TCD R1 is used to update the destination address of TCD Q1. The latter defines the location where the
next decimated result is stored in the results array. This location address has been calculated by the eTPU
decimation function. This transfer is triggered when the scatter gather processing updated the start bit in
the eDMA channel. The updated destination address is used next time TCD Q1 is loaded and the channel
is triggered. After it is complete, R1 scatter gathers to TCD S1.

TCD S1 triggers the eTPU host service request. This host service request causes code to be executed on
the eTPU that performs the decimation calculation and manages the destination address for TCD Q1. The
DMA transfer is triggered when the scatter gather process updates the start bit. After this has completed,
TCD P1 is loaded (by scatter gather processing) to start the cycle again.

NOTE
Ideally, TCD_Q1 would reside in eTPU PRAM and its destination address
would be maintained by the eTPU decimation function. However, on all of
the currently available MPC5500 family members, peripheral bridge A is
configured so PRAM supports 32 bits accesses. The eDMA requires 64 bit
accesses to correctly load a TCD. The workaround for this issue was to
insert an additional scatter gather step using TCD_R1 that copies the
destination address calculated by the eTPU decimation function from
PRAM to TCD_Q1's destination address location is system RAM.

Table 4. Channel 1 TCD R1 and S1

TCD name TCD R1 TCD S1

Purpose Update destination address of
TCD Q1

Write the eTPU host service
request

Trigger Software from Q1 Software from R1

Source Address RAM Parameter RAM

Destination Address TCD Q1 Host Service Request

Source / Destination Modulo off Off

Source size 0x4 32-bits 0x4  32-bits

Source address offset 0 0

Destination Size 0x4  32 bits 0x4  32-bits

Nbytes – transferred each trigger 0x4  32-bits 0x4  32 bits

Last source address adjust 0 0

Citer 8 1

Biter 8 1

dsize 0x2 32-bits 0x2  32-bits

Half way interrupt Off Off

Major loop interrupt Off Off

Channel Linking Off Off

Scatter Gather On TCD S1 On TCD P1
MPC5500: A Decimation Solution with Zero CPU Loading, Rev. 1

Freescale Semiconductor 9

Subsystems Overview
4.4 eQADC Subsystem
The enhanced queued analog-to-digital converter (eQADC) converts analog voltages to a digital
representation of those voltages. Conversions produce 16 bit digital results and optionally timestamp
information. The eQADC has six command FIFOs and six result FIFOs, all with eDMA support. Each
command FIFO can be supplied with command messages from a queue in system RAM. Command
messages may contain configuration commands or conversion commands. Conversion commands produce
results sent to a selected result FIFO. Values from the result FIFO may, in turn, be transferred to a queue
in system RAM under eDMA control.

Prior to being configured for use with command messages from a command queue in system RAM, the
eQADC is initialized under eDMA control with command messages (configuration commands) that write
to internal registers in the eQADC to enable the eQADC, set up the eQADC clock, conversion speed and
timebase counter register. These configuration commands produce no results data.

In the example decimation system, a single command FIFO and a single result FIFO are used. The eQADC
has two converters. In the example decimation system, only one of the converters, ADC0, is used. The
basic movement of commands and results data is shown below.

Figure 5. Basic Data Flow in the eQADC Sub-system

The eQADC’s command FIFO has eDMA flags associated with it. One of these, the command FIFO fill
flag, can signal to the eDMA that the CFIFO is not full. When this happens, the eDMA copies the next
value in the command queue into the CFIFO push register. Commands propagate through the command
FIFO before being used by the ADC converter.

When a conversion is triggered, a conversion command message is taken from the command FIFO and an
analog-to-digital conversion is performed according to the instructions contained in the conversion
command message. The result is sent to the selected results FIFO. In the example decimation system,
timestamps are enabled so each conversion results in 2 × 16 bit values being sent to the results FIFO. The
first value is the digital representation of the analog voltage that has been sampled. The second value is the
timestamp that is the value of a timebase register at the time of the conversion.

Timestamp[0]

Result[0]

Timestamp[1]

Result[1]

Timestamp[2]

Result[2]

Timestamp[3]

Result[3]

Cqueue[0]
Result Queue in eTPU

Parameter RAM

Command FIFO Result FIFO

Command FIFO
PUSH Register

Results FIFO
POP Register

DMA control

DMA control

Cqueue[1]

Cqueue[2]

Cqueue[62]

Cqueue[63]

ADC0
MPC5500: A Decimation Solution with Zero CPU Loading, Rev. 1

Freescale Semiconductor10

Software Source
The EQADC result FIFO also has eDMA flags associated with it. One of these, the result FIFO drain flag,
can be used to signal to the eDMA that the result FIFO has new data ready to be copied to a queue in system
RAM. In the example decimation system, the eDMA copies results data from the result FIFO pop register
to a queue in eTPU parameter RAM

The eQADC conversions are configured to be triggered by the rising edge of an eMIOS signal. This
signal’s generation is dealt with in Section 4.1, “eMIOS Subsystem”.

The eQADC has five internal reference voltages that can be converted. When Channels 40 to 43 are
specified in the conversion command, a voltage is converted as shown in Table 5. VRH and VRL are
externally provided reference voltages.

In the example decimation system, the command queue consists of a sequence of 64 commands, which
each convert one of the five internal eQADC voltages. The 64 commands produce 64 results that produce
16 decimated values when subsequently decimated with a decimation factor of four. In the example
decimation system, a test case was used where sequences of the five internal voltages were converted. This
meant the decimated values could be tested to ensure the decimation system was behaving as expected. In
an application, the channel being converted would be connected to an external sensor.

5 Software Source
The software source for this example decimation system is available from Freescale in AN3396SW.zip.
To create this build, several other software packages are required. These are AN2864SW (etpu utility
functions) and mpc5500r19.zip (This is release 1.6 of mpc5500 device header files; files with a later
revision will also be suitable.). The files listed in Section 6, “Build Structure,” are the minimum set of files
required to create the example decimator system. These software releases are available from
www.freescale.com.

Table 5. EQADC Channel Versus Converted Voltage

Channel Converted voltage

40 VRH

41 VRL

42 (VRH-VRL)/2

43 0.75 * (VRH-VRL)

44 0.25 * (VRH-VRL)
MPC5500: A Decimation Solution with Zero CPU Loading, Rev. 1

Freescale Semiconductor 11

Build Structure
6 Build Structure
The example application contains the files shown. For the makefiles that come with the software release
to work, they must be placed in these directories.

• decimate_software – AN3396SW

• decimate – API to decimate eTPU function and example application code

— decimator_project.h – definitions used in the application software

— decimate_etpu_example.c – example application

— dma_init_for_eqadc_config.c – eDMA initialization for use with eQADC configuration
routines.

— eqadc_init.c – initialization routines for eQADC

— etpu_decimate.h – eTPU decimation function API header file.

— etpu_decimate.c – eTPU decimation function API routines.

— crt0.s – assembly startup file

— MPC5534_intram.dld – Linker file

— makefile – makefile

• etpu_decimate_function etpuc sources and image file

— etpuc.h – Standard include file for eTPU code.

— etpuc_common.h – Standard include file for eTPU code.

— etpuc_decimate.c – C source for the eTPU FPM function.

— etpuc_decimate_function.c – Top level file for decimation function.

— etpu_decimate_function.h – Image of eTPU code for host CPU (generate by eTPU compiler).

— etpuc_decimate_function.cod – Debug information for the function.

— etpuc_decimate_function.lst – Assembler listing file.

— makefile – A makefile used to build the eTPUC code.

• mpc5500 - mpc5500r19.zip – device header files.

— mpc5534.h – Register and bit field definitions for MPC5534.

— mpc5534_vars.h – Variables that define some features of the MPC5534.

— typedefs.h – Defines all of the data types for the mpc5534 header file.

• utils - AN2864SW – etpu utility functions

— etpu_struct.h – contains a structure that defines the eTPU module.

— etpu_util.c – contains the utilities functions.

— etpu_util.h – This file contains function prototypes and defines for utility functions.

— makefile – Makefile to build utility functions.

— readme.txt.

Although this application note refers to MPC5534 and the software build in particular uses the device
header file, the example decimation system software provided runs on any
MPC553x/MPC555x/MPC556x family member, except for the MPC5561, which has no eTPU.
MPC5500: A Decimation Solution with Zero CPU Loading, Rev. 1

Freescale Semiconductor12

Conclusion
7 Conclusion
Two eDMA channels are used in the example decimation system. One channel is used to supply the
eQADC with commands. A second channel is used to move the eQADC results data to eTPU parameter
RAM. This second channel is also used to copy the decimated value to a results array in system RAM,
write the eTPU host service request register, and copy the results array pointer from eTPU parameter RAM
to system RAM. With the eMIOS triggering conversions every 5 us and the system configured to average
four eQADC results, 12 percent of the bandwidth of the eDMA is used by this second channel. This
bandwidth figure was derived theoretically and was also confirmed using measurements taken using
Nexus Trace on MPC5534 silicon.

For comparison, an interrupt driven system was created using the CPU only to perform the same
decimation function, including all data moves. The CPU bandwidth consumed by this system was eight
percent. The CPU system performed decimation on batches of 200 samples.

This application note has shown the flexible feature set available in MPC5500 devices can be used to
completely offload computational data processing tasks such as decimation from the CPU, which frees it
up to do other tasks. The versatile eDMA module can be used to create complex chains of data movement
between modules using self programming via the scatter gather function.

8 Glossary
Here is a list of potentially new terms and definitions.

eTPU – enhanced Time Processing Unit

eMIOS – enhanced Modular I/O Subsystem

eQADC – enhanced Queued analog-to-digital Converter

ADC – analog-to-digital Converter

RAM – Random Access Memory

TCD – Transfer Control Descriptor

CPU – Central Processing unit

OPWFM – Output Pulse Width and Frequency Modulation

PRAM – Parameter RAM

SIU – System Integration Unit

TPU – Time Processing Unit

MDU – Multiply Accumulate and Divide Unit

RISC – Reduced Instruction Set Computer

FIFO – First In First Out
MPC5500: A Decimation Solution with Zero CPU Loading, Rev. 1

Freescale Semiconductor 13

Revision History
9 Revision History
Table 6. Revision History

Version Changes

Rev. 0 First public version of this document.

Rev. 1 • In Table 3, TCD Q1 column, changed “Software from A1” to “Software from P1” and “On TCD X1” to “On
TCD R1.”

 • In Table 3, TCD P1 column, changed “On TCD B1” to “On TCD Q1.”
 • In Table 4, changed “Q1” in the table title to “S1” and the “TCD Q1” column heading to “TCD S1.”
MPC5500: A Decimation Solution with Zero CPU Loading, Rev. 1

Freescale Semiconductor14

THIS PAGE IS INTENTIONALLY BLANK
MPC5500: A Decimation Solution with Zero CPU Loading, Rev. 1

Freescale Semiconductor 15

Document Number: AN3396
Rev. 1
02/2011

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2007, 2011. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	2 Overview of Decimation
	3 System Overview
	4 Subsystems Overview
	4.1 eMIOS Subsystem
	4.1.1 Overview of the eMIOS Hardware
	4.1.2 Triggering the eQADC

	4.2 eTPU Subsystem
	4.2.1 Overview of the eTPU Hardware
	4.2.2 Example eTPU Decimation Function
	4.2.3 Parameter RAM Layout.

	4.3 eDMA Subsystem
	4.3.1 Overview of the eDMA Hardware
	4.3.2 Transfer Control Descriptors Description.

	4.4 eQADC Subsystem

	5 Software Source
	6 Build Structure
	7 Conclusion
	8 Glossary
	9 Revision History

