
Freescale Semiconductor
Application Note

Document Number: AN3614
Rev. 0, 05/2008

Contents

Introduction . 1
Requirements . 1
Acronyms and Abbreviations. 2
Overview of the MPC5510 Family 2

4.1 Comparison of Z0 and Z1 Cores 3
Dual Core Considerations . 7

5.1 Semaphores . 8
Principles of Virtual PWM Module 9

6.1 Mathematics of PWM Signal Generation. 9
Dual Core Aspects of Code . 11

7.1 Compiling the Dual Core Code 12
7.2 Initializing the Z0 Core. 12
7.3 Configuring External Interrupts for Z0 12
7.4 Sharing Data Between Cores 13
Results. 14

Designing Code for the MPC5510
Z0 Core

by: Daniel McKenna
MCD Applications Engineering, EKB
1 Introduction
One of the powerful features of the MPC5510 family of
microcontrollers is its secondary Z0 core. This core, once
out of reset, can function independently of the primary
Z1 core and can be used for a range of tasks, such as
running gateway functions between communications
networks, managing I/O processing, creating virtual
peripherals, or simply reducing the load on the primary
core by carrying out tasks required by the system.

This application note describes the features of the Z0
core, discusses the aspects of these features that should
be considered when creating code for a dual core device,
and demonstrates, through the creation of a virtual PWM
peripheral, how to set up and produce dual core code.

2 Requirements
To make use of the software, the following hardware and
software components are required:

• MPC5510 microcontroller

1
2
3
4

5

6

7

8

© Freescale Semiconductor, Inc., 2008. All rights reserved.

Acronyms and Abbreviations
• An evaluation board or device platform to run the device
• A hardware interface between the computer and the evaluation board. Tested interfaces:

— Lauterbach Datentechnik Power Debug Interface
— P&E Microcomputer Systems USB Multilink

• A compiler for the application code. Projects are included for:
— Wind River Compiler V5.5.1.0
— Freescale CodeWarrior for MPC55xx V2.2

• A software tool for debug. Tested software:
— Lauterbach Datentechnik Trace32 Build 11389
— P&E Microcomputer Systems ICDPPCNEXUS Debugger V1.13

The CodeWarrior compiler and integrated P&E software debugger are included with the MPC5510
evaluation boards.

3 Acronyms and Abbreviations

4 Overview of the MPC5510 Family
The MPC5510 family is a set of 32-bit MCUs aimed at the next generation of automotive body and
gateway applications. The devices are built on the proven Power Architecture, and are based on the
successful, power-train targeted, MPC5500 family of microcontrollers. These cost-efficient
microcontrollers provide excellent performance whilst minimizing power consumption with the
introduction of numerous low power modes.

CRP clock, reset and power (control module)

GPIO general purpose input/output

INTC interrupt controller (module)

IOP input/output processor

ISR interrupt service routine

MCU microcontroller unit

MMU memory management unit

PIT periodic interrupt timer

PWM pulse width modulation

SIU system integration unit

VLE variable length encoding (instruction set)
Designing Code for the MPC5510 Z0 Core, Rev. 0

Freescale Semiconductor2

Overview of the MPC5510 Family
All members of the family come with Power Architecture Book E compliant primary core – the e200z1,
with the majority also coming with a secondary IOP – the e200z0. This application note is aimed only at
the dual core devices.

4.1 Comparison of Z0 and Z1 Cores
When the part is brought out of reset, only Z1 is active; Z0 remains in reset until it is activated by Z1. Once
both cores are running, they are standalone and can operate independently of each other; for example, Z0
will continue to operate if Z1 is disabled. Thus, both cores require their own code, their own main function
in code, and have autonomous stacks.

4.1.1 Instruction Sets

The main difference between the cores is in the instruction sets they execute; Z1 can use the base Power
Architecture Book E set and the extended Variable Length Encoded (VLE) set. Z0 is compatible with the
VLE instruction set only.

VLE makes use of both 16-bit and 32-bit instructions, giving a greater code density with minimal or no
loss of performance. VLE instructions can be recognized in mnemonics by their compulsory prefix.

• All 16-bit VLE instructions are prefixed by “se_”; for example, se_addi
• All 32-bit VLE instructions are prefixed by “e_” ;for example, e_add16i

Table 1 compares the different “add immediate” instructions. Notice the format of the 16-bit VLE
instruction: as there are fewer bits available, the source and destination must be the same register, and the
distance to the data must be between 1 and 32. If this proves to be unsuitable, the 32-bit VLE instruction
can be used instead.

A compiler switch decides if VLE or Book E code is generated from a source file. This can generally be
changed on a file by file basis.

The Z1 core contains a memory management unit (MMU) that is used to define different sections of
memory. One of the key parameters it sets is whether the memory section contains Book E or VLE code.
Hence, it is possible for the Z1 core to alternate between Book E and VLE code. This means that there is
no requirement to convert existing libraries to VLE code. As the Z0 core is compatible with VLE only, it
does not require an MMU.

Table 1. Comparison of Add Immediate between Instruction Sets

Type Mnemonic Description

Book E addi rD, rA, SIMM rD = destination register
rA = source register
SIMM = signed 16-bit data

16-bit VLE se_addi RX, OIM5 rX = source and destination register
OIM5 = 5 bit immediate offset (0-31)

32-bit VLE e_add16i RT, RA, SI RT = destination register
RA = source register
SI = signed 16-bit index
Designing Code for the MPC5510 Z0 Core, Rev. 0

Freescale Semiconductor 3

Overview of the MPC5510 Family
The MMU is also responsible for selecting the endianness of the memory section. Z1 can use either big
endian or little endian; Z0 is big endian only.

4.1.2 Access to Shared Resources

Both cores have access to all memory and peripherals along with the other “bus masters” (FlexRay
controller and eDMA). The crossbar switch is used to control access and arbitration. The Z1 core has an
additional direct link to the flash memory, allowing it to gain instant access without first going through the
crossbar switch. This reduces the access time and allows both cores to access different flash locations
simultaneously.

The Z1 core is based on the Harvard architecture, having individual instruction and data buses, whereas
the Z0 core is based on the Von Neumann architecture, having a single, combined data/instruction bus.
(Variations of the Z0 core do exist on non MPC5510 family devices that are based on the Harvard
architecture. This application note focuses on the MPC5510’s Z0.)

Each core has its own set of interrupts. Table 2 shows which interrupts are available on each core:

External interrupts (IVOR4s) can be routed to Z0, Z1, or both cores, on an individual basis.

IVOR12 corresponds to the watchdog timer, which is present in core Z1 only. However, it is envisaged
that the watchdog in the Miscellaneous Control Module (MCM) will be used by most customers, as it has
more features. Upon watchdog timeout, this can either generate an external interrupt (an IVOR4) or
perform a system reset, resetting both cores.

Both cores run at the same speed, from the same clock source, set up in the System Integration Unit (SIU).

Table 2. Interrupts Available on Each Core

Core Interrupt Type IVOR # Z1 Z0

Critical Input IVOR0 X X

Machine Check IVOR1 X X

Instruction Storage IVOR3 X X

External Input IVOR4 X X

Alignment IVOR5 X X

Program Interrupt IVOR6 X X

Floating Point Unavailable IVOR7 X

System Call IVOR8 X X

Decrementer IVOR10 X

Fixed-Interval Timer IVOR11 X

Core Watchdog Timer IVOR12 X

Data TLB Error (MMU) IVOR13 X

Instruction TLB Error (MMU) IVOR14 X

Debug IVOR15 X X
Designing Code for the MPC5510 Z0 Core, Rev. 0

Freescale Semiconductor4

Overview of the MPC5510 Family
4.1.3 Core Registers

Figure 1 and Figure 2 show the registers in the Z0 core and Z1 core, respectively.

Figure 1. Registers in Z0 Core

SPR General

Exception Handling/Control Registers
Save and Restore

Machine State
MSR

PVR

Processor Control Registers

SUPERVISOR Mode Program Model

SPRG0

SPRG1

SPR 272

SPR 273

SRR0

SRR1

CSRR0

CSRR1

DSRR0

DSRR1

SPR 26

SPR 27

SPR 58

SPR 59

SPR 574

SPR 575

Processor ID

PIR SPR 286

Interrupt Vector Prefix

IVPR SPR 63

Debug Registers2

Debug Control

DBCR0

DBCR1

DBCR2

SPR 308

SPR 309

SPR 310

Instruction Address
Compare

IAC1

IAC2

IAC3

IAC4

SPR 312

SPR 313

SPR 314

SPR 315

Data Address Compare

DAC1

DAC2

SPR 316

SPR 317

1 - These e200-specific registers may not be
supported by other Power Architecture
processors

2 - Optional registers defined by the Power
Architecture Book E

Processor Version

Hardware Implementation
Dependent1

HID0

HID1

SPR 1008

SPR 1009

SPR 9

General-Purpose
Registers

Count Register

CTR

SPR 8

Link Register

LR

Condition Register

CR
GPR0

GPR1

GPR31

SPR 1

XER

XER

General Registers

SPR 287

Debug Status

DBSR SPR 304

System Version1

SVR SPR 1023

ESR SPR 62

Exception Syndrome

Data Exception Address

DEAR SPR 61

Machine Check
Syndrome Register

MCSR SPR 572

Memory Management Registers

Process ID

PID0 SPR 48

Configuration (Read-only

MMUCFG SPR 1015

Cache Registers

SPR 515

Cache Configuration
(Read-only)

L1CFG0
Designing Code for the MPC5510 Z0 Core, Rev. 0

Freescale Semiconductor 5

Overview of the MPC5510 Family
Figure 2. Registers in Z1 Core

SPR General

Exception Handling/Control Registers
Save and Restore

Machine State
MSR

PVR

Processor Control Registers

SUPERVISOR Mode Program Model SPRs

Decrementer

Timers
Time Base (write only)

SPRG0

SPRG1

SPRG2

SPRG3

SPRG4

SPRG5

SPRG6

SPRG7

SPR 272

SPR 273

SPR 274

SPR 275

SPR 276

SPR 277

SPR 278

SPR 279

SRR0

SRR1

CSRR0

CSRR1

DSRR01

DSRR11

SPR 26

SPR 27

SPR 58

SPR 59

SPR 574

SPR 575

TBL SPR 284

TBU SPR 285

DEC SPR 22

Processor ID

PIR SPR 286

DECAR SPR 54

Interrupt Vector Prefix

IVPR SPR 63

Debug Registers2

Context Control1

Debug Control

DBCR0

DBCR1

DBCR2

 DBCR31

SPR 308

SPR 309

SPR 310

SPR 561

Instruction Address
Compare

IAC1

IAC2

IAC3

IAC4

SPR 312

SPR 313

SPR 314

SPR 315

Data Address Compare

DAC1

DAC2

SPR 316

SPR 317

1 - These e200-specific registers may not be supported by
other Power Architecture processors

2 - Optional registers defined by the Power Architecture
Book-E architecture

Control and Status

TCR SPR 340

TSR SPR 336

Processor Version

Hardware Implementation
Dependent1

HID0

HID1

SPR 1008

SPR 1009

Cache Registers

SPR 9

General-Purpose
Registers

Count Register

CTR

SPR 8

Link Register

LR

Condition Register

CR
GPR0

GPR1

GPR31

SPR 515

Cache Configuration
(Read-only)

L1CFG0

SPR 1

XER

XER

General Registers

SPR 256

User SPR

USPRG0

SPR 287

Debug Status

DBSR SPR 304

Debug Counter1

DBCNT SPR 562

CTXCR

ALTCTXCR

SPR 560

SPR 568System Version1

SVR SPR 1023

ESR SPR 62

Exception Syndrome

Data Exception Address

DEAR SPR 61

Machine Check
Syndrome Register

MCSR SPR 572

BTB Control1

SPR 1013BUCSR

BTB Register

MMU Assist1

Memory Management Registers

MAS0

MAS1

MAS2

MAS3

MAS4

MAS6

SPR 624

SPR 625

SPR 626

SPR 627

SPR 628

SPR 630

Process ID

PID0 SPR 48

Control & Configuration

 SPR 1012

 SPR 1015

SPR 688

SPR 689

MMUCSR0

MMUCFG

TLB0CFG

TLB1CFG
Designing Code for the MPC5510 Z0 Core, Rev. 0

Freescale Semiconductor6

Dual Core Considerations
• The Z0 core does not have the timing registers present on the Z1 core, including the TBU and TBL
time-of-day registers and the decrementer.

• Of the General/User Special Purpose Registers (SPRG0:7/USPRG0) present on the Z1 core, the
Z0 core has only SPRG0:1.

• The Z0 core does not have the branch target buffer used in the Z1 core to accelerate the execution
of loops.

5 Dual Core Considerations
Writing code for a dual core MCU requires a different approach to that required for a standard single core
MCU. This section discusses how to approach the problem, and shows how the MPC5510 family features
can help simplify code development.

As both cores are independent, two separate startup files (crt0.s) are required — one for each core. These
assign values to global variables, set up both stacks and both small data areas, then set each program
counter to the location of the main function on each core. The Z1 core must also write to all of the SRAM,
to initialize error correction syndrome.

Designers have a range of options when splitting code between cores, and a vast amount of literature is
available discussing a variety of scenarios. Examples include:

• Using the secondary core solely to deal with interrupts
• Using the secondary core to carry out a standalone function, for example, to act as a gateway

between LIN and CAN networks or to act as a virtual module, using software to simulate another
module (SCI, DSPI, etc.)

• Putting a computationally intensive function (Manchester decoding, for example) on the secondary
core, and having the primary core call it when necessary.

• Using the secondary core to error check the processes being carried out by the primary core.
• Carefully splitting the code between the cores to ease the load on the primary core.

If two cores have access to the same peripheral/memory locations, it is vitally important to avoid race
conditions and ensure data coherency. For example, if both cores have to increment a single variable
(count), ideally the following would happen:

1. Z0 copies variable count from memory to register (count = 0)
2. Z0 increments count in register (count = 1)
3. Z0 copies count back to memory (count = 1)
4. Z1 copies variable count from memory to register (count = 1)
5. Z1 increments count in register (count = 2)
6. Z1 copies count back to memory (count = 2)

So, the value stored in memory would be 2, as expected. However, should both cores access the variable
at the same time, the following could happen:

1. Z0 copies variable count from memory to register (count = 0)
2. Z1 copies variable count from memory to register (count = 0)
Designing Code for the MPC5510 Z0 Core, Rev. 0

Freescale Semiconductor 7

Dual Core Considerations
3. Z0 increments count in register (count = 1)
4. Z1 increments count in register (count = 1)
5. Z0 copies count back to memory (count = 1)
6. Z1 copies count back to memory (count = 1)

In this instance, the value would be stored in memory incorrectly as 1. Clearly, this causes errors in the
code and must be avoided. To prevent this from happening, the MPC5510 family contains a semaphore
mechanism ,which can be used in software to control each core’s access to shared resources.

5.1 Semaphores
On the MPC5510 family, semaphores are a set of sixteen hardware enforced gates, each of which can take
one of three states:

• Unlocked
• Locked by Z1
• Locked by Z0

Semaphores can be represented by the state machine shown in Figure 3.

Figure 3. Semaphore State Machine

Semaphores are software enforced, and the designer can assign one to a shared resource. When a core
requires access to the resource, it should attempt to lock the appropriate gate. If the lock is successful, the
core then has sole access to the resource; if not, the resource is currently in use by the other core. If the
semaphore was locked to the other core, the designer can either enter a loop, continuously trying to lock
the gate until it is successful, or make use of the notification interrupt, to maximize performance. If
enabled, the notification interrupt is automatically generated when a gate becomes unlocked, allowing the
core to continue executing other code rather than continually polling the semaphore.

GATEn = 00

GATEn = 10
GATEn = 01

GATEn = 00

Semaphore

00

1001

locked to Z0

Semaphore
Unlocked

Semaphore
locked to Z1
Designing Code for the MPC5510 Z0 Core, Rev. 0

Freescale Semiconductor8

Principles of Virtual PWM Module
The correct use of semaphores ensures data coherency in memory and ensures that peripherals work as
expected.

The generation of dual core code is demonstrated in the following sections by setting up a virtual PWM
module on the Z0 core and using the Z1core to alter the parameters of individual waveforms.

6 Principles of Virtual PWM Module
On MPC5510 devices, PWM is usually achieved using the easily configurable eMIOS module. However,
it is sometimes desirable to expand upon the number of available PWM outputs. The Z0 core is an ideal
means of creating additional unique PWM signals with no loading on the primary core (Z1).

The virtual PWM module generates signals by using the Z0 core in conjunction with the Periodic Interrupt
Timer (PIT) module and the System Integration Unit (SIU).

The PIT module is configured to trigger a periodic interrupt at a pre-defined period. This interrupt is routed
to the Z0 core via the Interrupt Controller, which then executes an interrupt service routine (ISR) stored in
memory. The ISR configures the output on utilized I/O pins, based on the user-supplied parameters of each
PWM signal. Thus, the resolution of the PWM signal depends on the PIT timeout period; that is, a shorter
timeout period leads to more interrupts over the period of the wave — leading to a higher resolution.

An overview of the setup can be seen in Figure 4.

Figure 4. Overview of Virtual PWM Implementation

6.1 Mathematics of PWM Signal Generation

6.1.1 Periodic Interrupt Timer

To create a signal to drive an LED at 160 Hz (period = 6.25 ms) with a resolution of 0.5% (that is, 200
interrupts per period), an interrupt is required every 6.25 ms/200 = 31.25 μs.

PIT
Initialized by Z0.

Generates
interrupts at
predefined

periods

Interrupt
Controller
Steers PIT

interrupts to the Z0
core

Z0 Core
Executes Interrupt
Service Routine

stored in memory

ISR
Contains

algorithm to
generate PWMs

PWM Signals
Output on GPIO

pins and
connected to
LEDs/Lamps
Designing Code for the MPC5510 Z0 Core, Rev. 0

Freescale Semiconductor 9

Principles of Virtual PWM Module
The PIT interrupt timer should be initialized to 31.25 μs. For example, with a system clock of 64 MHz
(period = 15.625 ns), the timer reset value must be set to 31.25 μs/15.625 ns = 2000.

6.1.2 Signal Parameters

Each PIT channel can be used to generate a large number of PWM signals. Each of these signals must have
the following parameters declared:

6.1.3 PIT Interrupt Service Routine

The ISR code is run every time a PIT interrupt occurs. It compares the count value to the period and duty
values, toggling the relevant pin, if necessary. It then decrements the count value.

A flow chart of the PWM algorithm is shown in Figure 5.

Period The number of counts (or PIT interrupts) contained in the period of the wave.

Duty The count value at which the signal changes from low to high.

Counter Initially holds the starting value for the count; from then on it holds the current
count value. The starting value for each waveform can be varied, to prevent poor
EMC behavior resulting from many pins toggling at once.

Pad The GPIO port on which the signal is generated.
Designing Code for the MPC5510 Z0 Core, Rev. 0

Freescale Semiconductor10

Dual Core Aspects of Code
Figure 5. Flowchart of PWM Algorithm

7 Dual Core Aspects of Code
This section considers the dual core aspects of the code, discussing its compilation, its initialization on the
Z0 core, the configuration of interrupts, and how the semaphores are set up.

PIT
Interrupt

Clear PIT
Interrupt Flag

For all PWM
channels

If
count == 0

If
count == duty

Set
output to 0

Reset count
(count = period)

Set
output to 1

Decrement
count

Next
channel

Exit
ISR

True

False

FalseTrue

True False
Designing Code for the MPC5510 Z0 Core, Rev. 0

Freescale Semiconductor 11

Dual Core Aspects of Code
7.1 Compiling the Dual Core Code
When compiling the code for both cores a choice has to be made whether to have individual output files
for each core, or a combined output file that contains the code for both cores. In some cases, the linker
dictates which method must be used; in other cases, the decision is left to the programmer. A brief
overview of the advantages of each approach follows:.

One file:
• Can be easier to manage boundaries and flash programming as only one linker file is required
• Common code and variables can be shared easily between the two cores, in the same way as they

would be shared across multiple *.C files.

Two Files:
• The code on each core can be a completely separate entity. Thus, it is easy to split the cores between

different programming groups or even companies.
• Having separate linker files for each core can be easier to manage than a single large linker file

containing two stacks and small data areas.

For our example, the code compiled using WindRiver has two separate output files, whereas the
Codewarrior compiled code has a single output file. Both compilers use the VLE instruction set for both
cores.

7.2 Initializing the Z0 Core
When the device powers up from reset, only the Z1 core is activated. The Z1 core sets up the clock as
required and then brings the Z0 core out of reset, by writing the Z0 code start location to the Z0VEC
register in the Clock, Reset and Power Control (CRP) Module. When the Z0 core is brought out of reset,
the value of the Z0VEC register is loaded to the program counter, and execution begins immediately.

Figure 6. Code to Initialize Z0 Core

When both cores are running, it is possible to disable either core (but not both) by setting the reset bit in
ZnVEC. This is an extremely useful power-saving feature, as the Z0 core need be brought out of reset only
for as long as required. When only one core is running, any attempt to set its own reset bit is blocked.

7.3 Configuring External Interrupts for Z0
This section discusses the interrupt possibilities on the Z0 core. Full details of how to set up interrupts on
the MPC5510 family, and an explanation of software and hardware based interrupt vectors, are available
in the 5510 Cookbook.

The word “external” denotes that the interrupt occurred external to the core; that is, caused by a peripheral
or triggered by software. As discussed in the PWM sections above, the code requires a PIT interrupt that

CRP.Z0VEC.R=0x4000A000; /* Bring Z0 out of reset
and set Program Counter
to 0x4000A000 */
Designing Code for the MPC5510 Z0 Core, Rev. 0

Freescale Semiconductor12

Dual Core Aspects of Code
can be serviced by the Z0 core. As is the case with interrupts on the Z1, the Z0 requires its own prolog and
epilog code, ISR vector table, and IVOR table.

The code sets up the IVPR base address as it would on Z1, loading the value to the IVPR core register.

The Interrupt Controller (INTC) module is then set up as in the Z1 case, using the registers for Z0 (those
ending in PRC1), rather than those ending in PRC0. For our example, Z0 is configured for software
interrupts as shown in Figure 7.

Figure 7. Code To initialize interrupts on Z0

The final step is to set the enable interrupts bit in the Machine State Register (MSR) in the core, thereby
completing the configuration of the Z0 core to receive interrupts. Individual interrupts can then be directed
to Z0, Z1, or both cores by using the Priority Select Register (PSR) in the INTC module.

7.4 Sharing Data Between Cores
To demonstrate how to maintain data coherency whilst sharing variables between cores, an extra feature
has been added to the code to give the Z1 core the ability to periodically alter the parameters of the PWM
signals.

The parameters for each PWM waveform are stored in a structure that is shared between both cores. The
Z1 core accesses this structure intermittently and adjusts the duty cycle of the first signal. The Z0 core

0 1 2 3 4 5 6 7

R
PRC_SEL

0 0
PRIO

W

Reset 0 0 0 0 0 0 0 0

PRC_SEL defines the interrupt destination.
 • 00: Interrupt request sent to processor 0 (e200z1)
 • 01: Interrupt request sent to both processors
 • 10: Reserved
 • 11: Interrupt request sent to processor 1 (e200z0)

PRIO determines the interrupt priority.
 • 0 is the lowest priority (effectively disabled); 15 is the highest.

Figure 8. Interrupt Priority Select Register

/* Initialize INTC for software vector mode */
INTC.MCR.B.HVEN_PRC1 = 0;

/* Use the default vector table entry offsets of 4
bytes */
INTC.MCR.B.VTES_PRC1 = 0;

/* Set INTC ISR vector table base addr. */
INTC.IACKR_PRC1.R =
(uint32_t)&IntcIsrVectorTable[0];
Designing Code for the MPC5510 Z0 Core, Rev. 0

Freescale Semiconductor 13

Results
makes use of the structure only during the PIT ISR. To avoid race conditions, a semaphore must be used
to designate which core has control of the structure of PWMs.

If the interrupt occurs and Z0 cannot obtain the semaphore, there is a small chance that the accuracy of the
signal might deteriorate temporarily; however, as the parameters of the signal are being altered at this point
and the signal will change anyway, this can be ignored.

The Z1 core requires control of the structure only while it is making alterations to the values.

Figure 9 shows a flow chart of how semaphores can be locked.

Figure 9. Flowchart of Lock Semaphore Process

A semaphore should be released by the core to which it is locked; however, a reset mechanism is available
to allow a semaphore to be released by either core, should the need arise.

8 Results
Figure 10 shows an oscilloscope capture of the PWM outputs with four different unique PWMs being
generated.

Attempt to
lock gate

Read gate. Was
ownership obtained?

True

False

Control of
resource obtained
Designing Code for the MPC5510 Z0 Core, Rev. 0

Freescale Semiconductor14

Results
Figure 10. Scope Capture of Four PWM Outputs
Designing Code for the MPC5510 Z0 Core, Rev. 0

Freescale Semiconductor 15

Document Number: AN3614
Rev. 0
05/2008

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
The Power Architecture and Power.org word marks and the Power and Power.org logos
and related marks are trademarks and service marks licensed by Power.org

© Freescale Semiconductor, Inc. 2008. All rights reserved.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	2 Requirements
	3 Acronyms and Abbreviations
	4 Overview of the MPC5510 Family
	4.1 Comparison of Z0 and Z1 Cores
	4.1.1 Instruction Sets
	4.1.2 Access to Shared Resources
	4.1.3 Core Registers

	5 Dual Core Considerations
	5.1 Semaphores

	6 Principles of Virtual PWM Module
	6.1 Mathematics of PWM Signal Generation
	6.1.1 Periodic Interrupt Timer
	6.1.2 Signal Parameters
	6.1.3 PIT Interrupt Service Routine

	7 Dual Core Aspects of Code
	7.1 Compiling the Dual Core Code
	7.2 Initializing the Z0 Core
	7.3 Configuring External Interrupts for Z0
	7.4 Sharing Data Between Cores

	8 Results

