
Freescale Semiconductor
Application Note

Document Number: AN3627
Rev. 0, 04/2008

Contents

Overview . 1
MPC551x Dual-Core Architecture 2

2.1 The e200z1 Core. 2
2.2 The e200z0 Core. 3
2.3 Typical Applications. 3
Flash Boot Sequence . 4

3.1 Review of the Reset Control Half Word (RCHW)
and Boot Assist Module (BAM) 4

3.2 Basic Dual-Core Flash Boot — Program Flow 4
Reset Vector Registers . 5

4.1 Z1 Reset Vector Register (CRP_Z1VEC) 6
4.2 Z0 Reset Vector Register (CRP_Z0VEC) 6
Examples of Dual-Core Initialization Code 6

5.1 Linker Configuration . 7
5.2 e200z1 Initialization. 8
5.3 e200z1 Main Loop. 9
5.4 e200z0 Initialization. 9
5.5 e200z0 Main Loop. 10
Summary . 10

Basic Multicore Initialization
For the MPC5516G/E and MPC5514G/E Devices
by: Bill Terry

32-Bit Automotive Applications
Microcontroller Solutions Group
1 Overview
Several devices in the MPC551x family implement a
dual-core architecture, using the e200z1 and e200z0
cores. This application note describes the minimal
software requirements for initializing the device and for
bringing both cores to an operating status.

Simple example code is provided to illustrate the
initialization procedure — however, the specifics of a
particular application may require unique initializations
that are not discussed in this example. The intent is to
provide the engineer with an understanding of the boot
process, the initialization process, and their
requirements. The example code included in this
application note is intended as a guide, and may not be
appropriate for an actual application.

The example given in this application note is for a typical
application booting from flash memory. Serial boot
mode is not discussed.

1
2

3

4

5

6

© Freescale Semiconductor, Inc., 2008. All rights reserved.

MPC551x Dual-Core Architecture
2 MPC551x Dual-Core Architecture
The MPC5516G/E and MPC5514G/E devices incorporate two cores from the eSys family of cores — the
e200z1 (main core) and the e200z0 (auxiliary or I/O core). This dual-core architecture has the benefit of
providing lower power consumption, increased processing power, and reduced electromagnetic
interference. Here are the key concepts of this architecture that the software engineer must understand:

• The e200z1 core is the main core. At reset, it is the core that executes the Boot Assist Module
(BAM) and typically manages the primary initialization of system resources.

• The e200z0 is the secondary or I/O core. At initial power on reset (POR), it is held in reset by
default. It must be specifically enabled by code that is executing on the e200z1 core.

• The e200z1 core may execute the Variable Length Encoded (VLE) instruction set, or classic Power
Architecture instruction set. However, the e200z0 only executes the VLE instruction set.
Regardless of which instruction set each core is executing, the process of bringing both cores out
of reset and up to operating status does not change.

• Each of the two cores can access all system memory and peripherals, unless otherwise configured
by the Memory Protection Unit (MPU). See the MPC551x Reference Manuals for details of the
MPU.

Figure 1 illustrates the high level system architecture for the MPC5516G/E dual-core microcontroller.

Figure 1. MPC5516G Architecture

2.1 The e200z1 Core

Here is a list of some of the key features of the e200z1 core:
• 32-bit Power Architecture Book E programming model
• Single-issue 32-bit CPU
• VLE APU for reduced code footprint
• In-order execution and retirement
• Precise exception handling

e200z0 e200z1

Flash

Memory
SRAMPeripherals / EBI

Crossbar
Basic Multicore Initialization, Rev. 0

Freescale Semiconductor2

MPC551x Dual-Core Architecture
• Branch processing unit
— Dedicated branch address calculation adder
— Branch acceleration using Branch Target Buffer

• Support for independent instruction and data accesses to different memory subsystems, such as
SRAM and flash memory via independent instruction and data BIUs.

• Load/store unit
— 1-cycle load latency
— Fully pipelined
— Big- and little-endian support
— Misaligned access support
— Zero load-to-use pipeline bubbles for aligned transfers

2.2 The e200z0 Core

Here is a list of some of the key features of the e200z0:
• 32-bit Power Architecture Book E VLE-only programmer model
• Single-issue 32-bit CPU
• VLE APU for reduced code footprint
• In-order execution and retirement
• Precise exception handling
• Branch processing unit

— Dedicated branch address calculation adder
• Support for instruction and data access via a unified 32-bit Instruction/Data BIU
• Load/store unit

— 1-cycle load latency
— Fully pipelined
— Big-endian support only
— Misaligned access support
— Zero load-to-use pipeline bubbles for aligned transfers

2.3 Typical Applications
The multi-core architecture used in the MPC551x family is an asymmetric implementation. In other words,
the two cores are not identical, and typically the e200z0 core will be used as a co-processor, or I/O
processor. In a symmetric multi-core architecture both cores (assuming a two-core architecture) are
typically identical. Many times there is an Operating System (OS) in place that may delegate tasks to each
core dynamically during execution, depending on the current status of resources and the requirements of
the application at any given time.
Basic Multicore Initialization, Rev. 0

Freescale Semiconductor 3

Flash Boot Sequence
The MPC551x dual-core devices do not require an OS for efficient operation. In a typical application, the
e200z1 core would run the main control loop, and the e200z0 core is configured for specific tasks, such as
generating multiple pulse width modulation (PWM) channels, or collecting multiple channels of input data
from an external device.

3 Flash Boot Sequence

3.1 Review of the Reset Control Half Word (RCHW) and Boot Assist
Module (BAM)

As in other members of the MPC55xx family, the MPC551x devices incorporate a reset control half word
(RCHW) and the Boot Assist Module (BAM). The BAM is ROM code that executes during a power-on
reset (POR) sequence. The RCHW is a programmed memory location that controls how the BAM operates
during the POR. The RCHW bit definition is shown in Figure 2. A brief discussion of the these two
features is given here. For complete details refer to the MPC551x RM.

At reset the BAM executes and searches for a valid RCHW at the lowest 32-bit address in certain defined
flash memory spaces. If the BAM locates a valid RCHW as indicated by an RCHW[BOOTID] value of
0x5A, the WTE, PS0, and VLE bits are read to determine further conditional BAM program operation.

Based on the RCHW value, the BAM configures the memory management unit (MMU) to a default
configuration that is suitable for use by many applications without modification. This configuration can
optionally perform other initializations as well, such as configuring VLE mode and enabling the watchdog
timer. When the BAM completes execution, program control branches to the low-level user initialization
code.

Only the e200z1 core executes BAM code. At a POR, the e200z0 core is held in reset until enabled by the
application code running on the e200z1 core.

3.2 Basic Dual-Core Flash Boot — Program Flow
This section contains a description of the basic flow of control during a dual-core boot. The key concept
to understand is that in the case of the MPC551x devices, a dual-core boot is nothing more than a typical
single core boot on the e200z1 core, with additional code that prepares the e200z0 for operation and
releases it from reset. A flow chart of the boot sequence is shown in Figure 3.

ADDRESS

0x0000_0000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Reserved WTE PS0 VLE Boot ID

Figure 2. Reset Configuration Half Word
Basic Multicore Initialization, Rev. 0

Freescale Semiconductor4

Reset Vector Registers
Figure 3. Flash Boot Sequence — Dual-Core Operation

4 Reset Vector Registers
There are two Reset Vector registers, Z1 Reset Vector Register (CRP_Z1VEC) and Z0 Reset Vector
Register (CRP_Z0VEC). These two registers respectively control the starting address of code execution at
a core reset for the e200z1 and e200z0 cores. The function of these registers, and how they affect a boot
into dual-core operation, is described in the next subsections.

Power-On Reset BAM Executes

RCHW Found?

yes

no
Serial Boot

BAM sets up MMU and other initializa-
tion, then branches to startup code.

Either tool-provided crt0.s file or user
start code executes, setting up the C
environment for the e200z1 core,
branch to main().

main() runs on e200z1 core, setting up
the start address of e200z0 core exe-
cution and releasing the e200z0 from
reset.

e200z1 core is now operational and
typically runs main control loop.

User e200z0 start code executes, set-
ting up the C environment for the
e200z0 core (if required), branch to
z0_main().

z0_main() runs on e200z0 core, exe-
cuting I/O or other desired functions.

e200z1 Core

e200z0 Core
Basic Multicore Initialization, Rev. 0

Freescale Semiconductor 5

Examples of Dual-Core Initialization Code
4.1 Z1 Reset Vector Register (CRP_Z1VEC)
The CRP_Z1VEC bit definitions are shown in the register diagram below.

The Z1VEC value determines the initial program counter for the Z1 on exiting reset. On POR, the value
contained in the register defaults to 0xFFFF_FFFD, so that the Z1 fetches VLE code from the BAM
starting at address 0xFFFF_FFFC. The Z1RST bit is cleared by default at POR, allowing the Z1 core to
exit reset.

4.2 Z0 Reset Vector Register (CRP_Z0VEC)
The CRP_Z0VEC bit definitions are shown in the register diagram below.

The Z0VEC value determines the initial program counter for the Z0 upon exiting reset. On POR, the value
contained in the register defaults to 0xFFFF_FFFE. The Z0RST bit is set by default at POR, so the Z0 core
remains in a reset state until initially released from reset by the Z1 core.

When the e200z1 core is ready to start the e200z0 core, the e200z0 start address is written to the
CRP_Z0VEC register, and the Z0RST bit is cleared. These two operations can be performed as a single
32-bit write.

Note that the two LSBs on both the CRP_Z0VEC and the CRP_Z1VEC registers are not used as part of
the reset vector. This means that the actual address where execution begins must be word-aligned in both
cases.

5 Examples of Dual-Core Initialization Code
This section contains a linker descriptor file and source code that will perform an initialization and startup
of the e200z1 and e200z0 cores. This example code has been assembled, compiled, and linked using the
Green Hills Systems MULTI 5.0.3 development environment, and tested on the MPC5516 EVB available

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

Z1 START ADDRESS

Z1

R

S

T

V

L

EW

Reset 1 0 1

Figure 4. CRP_Z1VEC

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

Z0 START ADDRESS

Z0

R

S

T

0

W

Reset 1 0

Figure 5. CRP_Z0VEC
Basic Multicore Initialization, Rev. 0

Freescale Semiconductor6

Examples of Dual-Core Initialization Code
from Freescale. The compiler, assembler, and linker file syntax may differ slightly depending on the tool
set used — however, the essential structure and function are applicable.

Note also that this example is linked as a single .elf image. With most compilers that support the dual-core
MPC5516 devices (and other dual-core devices) it is also possible to create separate .elf files for each core.
This example does not discuss that method, and the software engineer should consult the documentation
for his compiler if multiple .elf files are a requirement of the application or development process.

5.1 Linker Configuration
This is an example of a linker configuration file. Note that in this example stack space has been designated
in the MEMORY section for both cores. Depending on the intended function of the z0 core, z0 stack space
may not be required.
/* --

FREESCALE HEADER??????

 ---*/

MEMORY
{

rchw: org = 0x0, len = 8
flash_memory: org = ., len = 1M - 8
dram_memory: org = 0x40000000, len = 64k-8k /* 64k - 8k bytes of stack space RAM */
stack_z0: org = 0x4000e000, len = 4k /* 4k z0 stack */
stack_z1: org = ., len = 4k /* 4k z1 stack */

}

DEFAULTS {
 heap_reserve = 4k
 stack_reserve = 4K

}

SECTIONS
{
 /* RAM SECTIONS */
 .PPC.EMB.sdata0 ABS : > dram_memory
 .PPC.EMB.sbss0 CLEAR ABS : > .
 .sdabase ALIGN(16) : > .
 .sdata : > .
 .sbss : > .
 .data : > .
 .bss : > .
 .heap ALIGN(16) PAD(heap_reserve) : > .
 .stack_z1 ALIGN(16) PAD(stack_reserve) : > .
 .stack_z0 ALIGN(16) PAD(stack_reserve) : > .

 /* ROM SECTIONS */
 .text : > flash_memory
 .vletext : > .
 .syscall : > .
 .rodata : > .
 .sdata2 : > .
 .secinfo : > .
 .fixaddr : > .
 .fixtype : > .
Basic Multicore Initialization, Rev. 0

Freescale Semiconductor 7

Examples of Dual-Core Initialization Code
 .CROM.PPC.EMB.sdata0 CROM(.PPC.EMB.sdata0): > .
 .CROM.sdata CROM(.sdata) : > .
 .CROM.data CROM(.data) : > .

/* Definitions of identifiers used by the z1_crt0.s and z0_crt0.s */
__HEAP_START= ADDR(.bss)+SIZEOF(.bss);
__SP_INIT= ADDR(stack_z1)+SIZEOF(stack_z1);
__HEAP_END= ADDR(dram_memory)+SIZEOF(dram_memory);
__SP_END= ADDR(stack_z1);
__DATA_ROM= ADDR(.sdata2)+SIZEOF(.sdata2);
__DATA_RAM= ADDR(.data);
__DATA_END= ADDR(.sdata)+SIZEOF(.sdata);
__BSS_START= ADDR(.sbss);
__BSS_END= ADDR(.bss)+SIZEOF(.bss);
__SP_INIT_Z0 = ADDR(stack_z0) + SIZEOF(stack_z0);
__SP_END_Z0 = ADDR(stack_z0);

}

5.2 e200z1 Initialization
This section contains a very simple example of the typical function of the crt0.s file that is included as part
of most compilers. This code illustrates the basic function required to configure the Power Embedded
Application Binary Interface (EABI) environment. In some cases the tool vendor will recommend the use
of the vendor provided crt0.s initialization code, to ensure that the C environment is configured correctly
for that vendor’s compiler. Consult the documentation provided with your development tools.

define RCHW
.globl __start

 .section .rchw
.long 0x015a0000 # define the RCHW value, VLE bit is set

 .long __start # define the __start address

.section .vletext, "avx" # syntax to locate this code in .vletext section

.vle # tell assembler this is VLE code
z1 start point, RCHW vector points here
__start:

e_lis r1, __SP_INIT@ha # Initialize stack pointer r1 to
 e_or2i r1, __SP_INIT@l # value in linker command file.
 e_lis r13, _SDA_BASE_@ha # Initialize r13 to sdata base
 e_or2i r13, _SDA_BASE_@l # (provided by linker).
 e_lis r2, _SDA2_BASE_@ha # Initialize r2 to sdata2 base
 e_or2i r2, _SDA2_BASE_@l # (provided by linker).

e_stwu r0,-64(r1) # Terminate z1 stack.

e_bl init_SRAM # initialize SRAM (this code is not included
 # in this example

#
Insert other initialize code here.
#

e_b main
Basic Multicore Initialization, Rev. 0

Freescale Semiconductor8

Examples of Dual-Core Initialization Code
5.3 e200z1 Main Loop
This is sample code that illustrates the procedure for releasing the z0 core from reset and pointing it to the
appropriate initialization code. The while(1) loop contains code to flash an LED on the MPC5516 EVB to
indicate that the z1 core is running the main loop code.
#include "mpc5516.h"

extern void _start_z0(void); /* this is the z0 start up code */

void main(void){
unsigned int temp = 0;

 /* start z0 core by writing address of z0 start code to CRP.Z0VEC.R.
 This write also clears the Z0RST bit which releases the z0 core from
 reset. */
CRP.Z0VEC.R = (unsigned int)_start_z0;

/* Flash LED on PB0 of EVB to indicate z1 core is functioning in main loop */
SIU.PCR[16].R =0x0200;

 while(1){
 for(temp = 0; temp <100000; temp++);

 SIU.PGPDO0.R = 0x0000;
 for(temp = 0; temp <100000; temp++);
 SIU.PGPDO0.R = 0x8000;

 };

} /* END of main */

5.4 e200z0 Initialization
This section contains a very simple example of the basic function required to configure the Power
Embedded Application Binary Interface (EABI) environment for the z0 core. Depending on the intended
function of the z0 core, some parts of this configuration may not be required.

z0 core start code
 .globl _start_z0

.section .vletext, "axv" # syntax to locate this code in .vletext section
 .vle # tell assembler this is VLE code

.align 2 # this function must be word aligned
 # See Section 4.2, on page 4.2

main.c on z1 core writes the address of this label to the Z0
_start_z0:
 e_lis r1, __SP_INIT_Z0@ha # Initialize stack pointer r1 to
 e_or2i r1, __SP_INIT_Z0@l # value in linker command file.
 e_lis r13, _SDA_BASE_@ha # Initialize r13 to sdata base
 e_or2i r13, _SDA_BASE_@l # (provided by linker).
 e_lis r2, _SDA2_BASE_@ha # Initialize r2 to sdata2 base
 e_or2i r2, _SDA2_BASE_@l # (provided by linker).

 e_stwu r0,-64(r1) # Terminate z0 stack.

#
Insert other initialization code here.
#

 e_b z0_main
Basic Multicore Initialization, Rev. 0

Freescale Semiconductor 9

Summary
5.5 e200z0 Main Loop
This is sample code that illustrates a typical z0_main loop. In this example, the while(1) loop contains code
to flash an LED on the MPC5516 EVB to indicate that the z0 core is running the main loop code.
#include "mpc5516.h"

void z0_main(){

unsigned int temp = 0;

 /* Flash LED on PC0 of EVB to indicate z0 core is functioning in main loop */
SIU.PCR[32].R =0x0200;

while(1){
for(temp = 0; temp <100000; temp++);
SIU.PGPDO1.R = 0x80000000;
for(temp = 0; temp <100000; temp++);
SIU.PGPDO1.R = 0x00000000;

 };

} /* END of z0_main */

6 Summary
Initializing and starting both cores on the MPC5516G/E devices involves minimal modification and
additions to the code required for a normal single core boot. This application note has described the
initialization flow during a POR reset, and illustrated the software requirements with simple, but
functional, sample initialization code and a linker descriptor file.

The example shown here is not intended to be a template for an application, but rather to illustrate in an
easy-to-understand manner the process of a dual-core boot. Many of the Freescale tool partners support
the dual-core devices in the MPC5516 family. The software engineer should always refer to the
documentation for his or her particular compiler for complete information regarding configuring and
building applications for dual-core devices.
Basic Multicore Initialization, Rev. 0

Freescale Semiconductor10

THIS PAGE IS INTENTIONALLY BLANK
Basic Multicore Initialization, Rev. 0

Freescale Semiconductor 11

Document Number: AN3627
Rev. 0
04/2008

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
The Power Architecture and Power.org word marks and the Power and Power.org logos
and related marks are trademarks and service marks licensed by Power.org

© Freescale Semiconductor, Inc. 2008. All rights reserved.

http://www.freescale.com
http://www.freescale.com/epp

	1 Overview
	2 MPC551x Dual-Core Architecture
	2.1 The e200z1 Core
	2.2 The e200z0 Core
	2.3 Typical Applications

	3 Flash Boot Sequence
	3.1 Review of the Reset Control Half Word (RCHW) and Boot Assist Module (BAM)
	3.2 Basic Dual-Core Flash Boot - Program Flow

	4 Reset Vector Registers
	4.1 Z1 Reset Vector Register (CRP_Z1VEC)
	4.2 Z0 Reset Vector Register (CRP_Z0VEC)

	5 Examples of Dual-Core Initialization Code
	5.1 Linker Configuration
	5.2 e200z1 Initialization
	5.3 e200z1 Main Loop
	5.4 e200z0 Initialization
	5.5 e200z0 Main Loop

	6 Summary

