
Freescale Semiconductor
Application Note

Document Number: AN3631
Rev. 0, 03/2008

Contents

USB Device Overview . 2
1.1 Endpoint Queue Head (dQH) 2
1.2 Endpoint Transfer Descriptor (dTD) 4
USB Device Example . 7

2.1 USB Device Initialization . 7
2.2 Device Enumeration . 9
Additional Information . 13

Simplified Device Data
Structures for the High-End
ColdFire Family USB Modules
by: Melissa Hunter

Applications
Microcontroller Solutions Group
Some of the high-end ColdFire products (such as the
MCF532x, MCF537x, MCF5253, and MCF5445x
devices) contain an EHCI-compatible host or
dual-role/OTG USB controller. The dual-role module
can be used as a USB host, a USB device, or as an
On-the-Go device. When the dual-role module is used as
a device, it uses data structures to control USB data
movement. These data structures are similar in some
ways to the embedded host controller interface (EHCI)
data structures that are used when operating in host
mode.

The purpose of this application note is to discuss a
simplified version of the device mode data structures
used by the dual-role USB controller. This document
also walks through a real-world example to show how
the USB controller is programmed and to provide
examples of how the data structures are used.

This document is intended as a guide for developing a
simple driver for communicating with a USB host. The
simplified version of the data structures discussed in this

1

2

3

© Freescale Semiconductor, Inc., 2008. All rights reserved.

USB Device Overview
document do not support all of the capability of the USB controller. To simplify the data structures,
isochronous transfers are not discussed. Transfer sizes are also restricted to smaller than 4 KB. When using
the full data structures discussed in the device reference manual, both isochronous traffic and transfers
larger than 4 KB are supported.

1 USB Device Overview
For device operations, the USB module uses two different types of data structures — endpoint queue heads
(dQHs) and endpoint transfer descriptors (dTDs).

One dQH is defined for each endpoint and each direction. For example, there is one dQH used for endpoint
0 OUT transactions and a second dQH used for endpoint 0 IN transactions. These dQHs are stored in
memory as an eight element array as shown in Figure 1.

Figure 1. Endpoint Queue Head Diagram

1.1 Endpoint Queue Head (dQH)
There is one dQH used for each direction of each endpoint as shown in Figure 1. The dQH defines the max
packet length along with other options for the endpoint. When a packet is transferred, the overlay area of
the dQH acts as a staging area for the dTD so the device controller can access needed information with
minimal latency.

Figure 2 shows a simplified dQH structure where the fields relating to isochronous transactions and large
transfers (transfers that require more than one buffer pointer) have been removed or set to static values.
This is a simplified version of the dQH structure specified in the device reference manual.

Endpoint QH1 - Out

Endpoint QH0 - In

Endpoint QH0 - Out

ENDPOINTLISTADDR Endpoint Queue Heads

Transfer
Buffer

Transfer Buffer
Pointer

Transfer
Buffer

Transfer
Buffer

Transfer
Buffer

Transfer Buffer
Pointer

Endpoint
Transfer

Descriptors

Endpoint QH1 - In

Endpoint QH2 - Out

Endpoint QH2 - In

Endpoint QH3 - Out

Endpoint QH3 - In

ENDPOINTLISTADDR + 0x040

ENDPOINTLISTADDR + 0x080

ENDPOINTLISTADDR + 0x0C0

ENDPOINTLISTADDR + 0x100

ENDPOINTLISTADDR + 0x140

ENDPOINTLISTADDR + 0x180

ENDPOINTLISTADDR + 0x1C0

(dTDs)
Simplified Device Data Structures for the High-End ColdFire Family USB Modules, Rev. 0

Freescale Semiconductor2

USB Device Overview
1.1.1 Endpoint Capabilities/Characteristics (Offset = 0x0)

The first longword of the dQH specifies static information about the endpoint. In other words, this
information does not change over the lifetime of the endpoint.

1.1.2 Current dTD Pointer (Offset = 0x4)

This longword is the address in memory of the dTD that is currently being processed. This field is written
by the device controller when it reads in the dTD. Software does not need to initialize this longword when
creating a new dQH.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 offset

0 0 zlt 0 0 Maximum Packet Length ios 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0x00

Current dTD Pointer 0 0 0 0 0 0x04

Next dTD Pointer T 0x08

dTD Overlay Area

0x0C

0x10

0x14

0x18

0x1C

0x20

0x24

Setup Buffer Bytes 3–0 0x28

Setup Buffer Bytes 7–4 0x2C

Device controller read/write; all others read-only.

Figure 2. Endpoint Queue Head Layout (dQH)

Table 1. Endpoint Capabilities/Characteristics

Bit Name Description

31–30 — Write as 00.

29 zlt Zero length termination select. Clearing this bit indicates that zero length packets will be
used to terminate transfers that are a multiple of the max packet size as per the USB
specification. For regular operation this bit must be cleared.

28–27 — Write as 00.

26–16 Maximum
Packet Length

Set to the maximum packet size in bytes of the associated endpoint. The maximum value
this field may contain is 0x400 (1024).

15 ios Interrupt on setup. If this bit is set, the device controller will issue an interrupt whenever a
setup packet is received on this endpoint. This bit is only used for control endpoints.

14–0 — Write as 0x000.
Simplified Device Data Structures for the High-End ColdFire Family USB Modules, Rev. 0

Freescale Semiconductor 3

USB Device Overview
1.1.3 dTD Overlay Area (Offset = 0x8–0x20)

The eight longwords in this area are a working copy of the dTD that is currently being processed or was
last processed. When a transfer is in progress, the controller will write incremental status information to
the dTD overlay area. When the transfer is complete, the results are written back to the original dTD
location (the address pointed to by the current dTD pointer).

These values are initialized by the device controller when it copies in the current dTD, so software does
not need to initialize these fields. The one exception is the next dTD pointer. This value should be
initialized by software whenever a new chain of dTDs needs to be processed (the current linked list is
complete or has been flushed). Software should initialize the next dTD pointer to the address of the first
dTD to be processed for the endpoint (with the T bit cleared to indicate a valid pointer). After this is done
the endpoint can be primed.

1.1.4 Setup Buffer (Offset = 0x28–0x2C)

The USB device controller manages setup packets differently than other packets. Whenever a setup packet
is received, the incoming data is stored in a dedicated 8-byte setup buffer. The setup buffer is used only for
OUT (host to device) control endpoints. Refer to the USB OTG controller chapter of the processor user’s
manual for more information on the procedure for reading the setup buffer.

1.2 Endpoint Transfer Descriptor (dTD)
A dTD is used to define an actual data movement for a single transfer. In particular, it provides the quantity
of data to be sent or received and the location of the data. The dTDs are processed as a singly linked list.
The next dTD pointer in the dQH should be initialized to point to the first dTD in the linked list, and then
the endpoint can be primed to start processing of the first dTD. After the first dTD is processed, the
controller will use the next dTD pointer in the first dTD to find the second dTD. The controller will
continue traversing the linked list until a dTD with an invalid next dTD pointer is reached or the endpoint
is flushed to abandon processing of the current dTD. dTDs must be aligned on 32-byte boundaries.

Figure 3 shows the simplified structure for a dTD. This is a simplified version of the dTD defined in the
processor reference manual that can be used to transfer up to 4 KB of data.
Simplified Device Data Structures for the High-End ColdFire Family USB Modules, Rev. 0

Freescale Semiconductor4

USB Device Overview
1.2.1 Next dTD Pointer (Offset = 0x0)

The first longword of a dTD is a pointer to the next valid dTD, if the T bit is zero. This pointer is used to
create a singly linked list of dTDs.

1.2.2 dTD Token (Offset = 0x4)

The second longword of a dTD contains attributes for the transfer, including the number of bytes to read
or write and the status of the transaction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 offset

Next dTD Pointer 0 0 0 0 T 0x00

0 Total Bytes ioc 0 0 0 0 0 0 0 Status 0x04

Buffer Pointer (Page 0) 0x08

0000_0000_0000_0000_0000_0000_0000_0000 0x0C

0000_0000_0000_0000_0000_0000_0000_0000 0x10

0000_0000_0000_0000_0000_0000_0000_0000 0x14

0000_0000_0000_0000_0000_0000_0000_0000 0x18

Device controller read/write; all others read-only.

Figure 3. Endpoint Transfer Descriptor (dTD)

Table 2. Next dTD Pointer

Bit Name Description

31–5 Next dTD
Pointer

This field contains the physical memory address of the next dTD to be processed. The field
corresponds to memory address signals[31:5], respectively.

4–1 — Write as 0000.

0 T Terminate. This bit indicates to the device controller that there are no more valid entries in
the queue.
0 = Pointer is valid (points to a valid transfer element descriptor).
1 = Pointer is invalid.
Simplified Device Data Structures for the High-End ColdFire Family USB Modules, Rev. 0

Freescale Semiconductor 5

USB Device Overview
1.2.3 dTD Buffer Page Pointer (Offset = 0x8)

The dTD buffer page pointer is used to specify the memory address of the data buffer for the transfer.

Table 3. dTD Token

Bit Name Description

31 — Write as 0.

30–16 Total Bytes Total Bytes. This field specifies the total number of bytes to be moved with this transfer descriptor.
This field is decremented by the number of bytes actually moved during the transaction, but only if
there is successful completion of the transaction.

The maximum value software may store in this field is 4K (0x1000). This is the maximum number of
bytes a single page pointer can access. The device controller can accommodate larger transfers
using multiple page pointers, but for the purposes of this application note the transfer size is limited
to 4 KB, to help simplify the data structures.

If the value of this field is zero when the device controller fetches this transfer descriptor (and the
active bit is set), the device controller executes a zero-length transaction and retires the transfer
descriptor.

For OUT transfers the total bytes must be evenly divisible by the maximum packet length. For IN
transfers it is not a requirement for total bytes to be an even multiple of the maximum packet length.

15 ioc Interrupt on Complete. If this bit is set, it specifies that when this dTD is completed, the device
controller should issue an interrupt.

14–8 — Write as 0000000.

7–0 Status This field is used by the device controller to communicate individual command execution states back
to the device controller driver software. This field contains the status of the last transaction
performed on the dTD. The bit encodings are:

Bit Status Field Description

7 Active. Set by software to indicate that the dTD has been initialized and is ready
to use. Enable the execution of transactions by the device controller.

6 Halted. Set by the device controller during status updates to indicate a serious
error has occurred at the device/endpoint addressed by this dTD. Any time a
transaction results in the halted bit being set, the active bit is also cleared.

5 Data Buffer Error. Set by the device controller during status update to indicate the
device controller is unable to maintain the reception of incoming data (overrun) or
is unable to supply data fast enough during transmission (underrun).

4 Reserved.

3 Transaction Error. Set by the device controller during status update in case the
device did not receive a valid response from the host (time-out, CRC, bad PID).

2–0 Reserved.
Simplified Device Data Structures for the High-End ColdFire Family USB Modules, Rev. 0

Freescale Semiconductor6

USB Device Example
2 USB Device Example
The following subsections will walk through a working USB device software example. We will discuss
the “m5329evb_usb_dev_mouse_test” demo code in the MCF532XSC.zip file available on the ColdFire
website (http://www.freescale.com/coldfire). This example code is designed to configure the USB module
for device mode, enumerate as USB mouse, and then send offset information to a PC host that will move
the cursor in a rectangular pattern.

2.1 USB Device Initialization
The initialization below is used in the sample code. It is similar to the device initialization sequence in the
reference manual, but some chip-level initialization has been added and optional steps have been omitted.

1. Poll for a valid VBUS.
2. Initialize the USB clock divider in the CCM. (This step is needed because the PLL speed was

changed during the system initialization for the EVB.)
3. Set USBMODE register to enable device mode operation and big endian mode, and to disable setup

lockouts (0x0000_000E).
4. Allocate memory to use for the device endpoint list, and initialize the EPLISTADDR to point to

this memory.

Table 4. dTD Buffer Pointer

Bit Name Description

31–0 Buffer Pointer Buffer Pointer. Indicates the physical memory address for the data buffer to be used by the
dTD. The device controller actually uses the first part of the address (bits 31–12) as a
pointer to a 4 KB page, and the lower part of the address (bits 11–0) as an index into the
page. The host controller will increment the index internally, but will not increment the page
address. This is what determines the 4 KB transfer size limitation used for this application
note.

This also means that the data buffer cannot span the 4 KB page boundary. For applications
where most of the transfers are small, then runtime buffer alignment can be avoided
entirely by careful placement of the heap. If the heap space (used to allocate memory for
dQHs, dTDs, and data buffers) starts at the beginning of a 4 KB page and the application
will not require more than 4 KB worth of data structures and buffers at a time, then the data
buffer alignment is not a concern.

If more than 4 KB is needed for data structures and data buffers, then there are a couple
of ways to avoid a data buffer crossing a 4 KB page boundary.
• One option is to force all of the data buffers to a 4 KB page alignment; however, this

does not make for a very efficient use of memory, unless most transfers are near to 4
KB.

• Another option is to align each data buffer to its own size. For example, a 16 byte
transfer would be aligned to a 16-byte line address. This will allow for much more
efficient use of memory for most applications. This does add a small amount of code
overhead to manage the alignment.

This field contains the physical memory address of the next dTD to be processed. The field
corresponds to memory address signals[31:5], respectively.
Simplified Device Data Structures for the High-End ColdFire Family USB Modules, Rev. 0

Freescale Semiconductor 7

USB Device Example
5. Initialize EPCR0 to enable receive and transmit as a control endpoint (0x00800080). This is
actually the default value for the register, so this step can be skipped.

6. Create two dQHs. One will be used for EP0-OUT, and one for EP0-IN.
7. Put the controller into a run state by setting USBCMD[RS].
8. Set UOCSR[BVLD] to indicate that a valid VBUS signal has been detected and the controller is

ready to respond to enumeration by the host. This step is not needed for the MCF5253.

2.1.1 EP0-OUT dQH

Figure 4 shows the simplified dQH layout. Immediately below each line are the actual values used in the
example software to initialize a QH for endpoint 0 OUT transactions. Only the first three longwords are
shown, because the remaining fields do not need to be initialized by software when creating the dQH. The
example software will clear the unshown fields to make reading dQH values easier when debugging.

2.1.1.1 EP-OUT dQH Endpoint Capabilities/Characteristics (Offset = 0x0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 offset

0 0 zlt 0 0 Maximum Packet Length ios 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0x00

0x0040_0000

Current dTD Pointer 0 0 0 0 0 0x04

0x0000_0000

Next dTD Pointer T 0x08

0x0000_0001

Figure 4. Endpoint 0-OUT Queue Head Values

Table 5. EP0-OUT Example Endpoint Capabilities/Characteristics

Bit Name Description

31–30 — Write as 00.

29 zlt This bit is cleared to enable zero length packet termination.

28–27 — Write as 00.

26–16 Maximum
Packet Length

The maximum packet length chosen for the example software is 64 bytes (0x40).

15 ios The example software will use polling to determine when a setup packet is received, so
interrupt on setup is disabled by clearing this bit.

14–0 — Write as 0x000.
Simplified Device Data Structures for the High-End ColdFire Family USB Modules, Rev. 0

Freescale Semiconductor8

USB Device Example
2.1.1.2 EP0-OUT dQH Current dTD Pointer (Offset = 0x4)

2.1.1.3 EP0-OUT dQH Next dTD Pointer (Offset = 0x8)

2.1.2 EP0-IN dQH

The dQH used for EP0-IN uses the same values as the dQH for EP0-OUT. The maximum packet length is
set to 0x40 and the other settings are also the same.

2.2 Device Enumeration
After a connection to the host is established, the host will begin the process of enumerating the device. A
request for the first eight bytes of the device descriptor should be the first USB packet that the host sends
to the device.

The following subsections discuss in detail how the example code receives and responds to this first device
descriptor request from the host. The process for handling the rest of the enumeration process, and then
transmitting data on other endpoints after enumeration, is somewhat similar to that used for the initial
device descriptor request. For more examples, please refer to the sample code.

2.2.1 Read the Setup Packet from the Host

The USB device controller manages setup packets differently than other USB packets. Instead of using a
dTD that points to a buffer where the payload of the setup packet is stored, the packet is stored in a buffer
at the end of the dQH data structure. This way the device controller does not need an active endpoint
transfer descriptor (dTD) to accept a setup packet at any time.

So after a connection to the host is established, one of the first things the sample code does is poll the
EPSETUPSR, waiting for indication that a setup packet has been received. After reception of a setup

Table 6. EP0-OUT Example Current dTD Pointer

Bit Name Description

31–5 Current dTD
Pointer

The current dTD pointer field will be written by the USB controller as it traverses a linked
list of dTDs. Software should not write this field, so it is cleared in this example.

4–0 — Write as 00000.

Table 7. EP0-OUT Example Next dTD Pointer

Bit Name Description

31–5 Next dTD
Pointer

At this point there are no dTDs, so the next dTD pointer is cleared for now. It will be
initialized by software after dTDs are ready to be processed.

4–1 — Write as 0000.

0 T The T bit is set, indicating that the next dTD pointer value is not valid.
Simplified Device Data Structures for the High-End ColdFire Family USB Modules, Rev. 0

Freescale Semiconductor 9

USB Device Example
packet is detected, a specific procedure must be used to read the packet and ensure that the data is not
corrupted. This sequence is documented in the reference manual, but is also included below.

1. Write a 1 to clear the corresponding bit in the EPSETUPSR.
2. Set the setup tripwire bit (USBCMD[SUTW]).
3. Read the contents of the setup buffer in the dQH and copy into a local buffer.
4. Wait for the USBCMD[SUTW] bit to set.
5. Clear the USBCMD[SUTW] bit.
6. Wait for the corresponding EPSETUPSR bit to clear.

After the software has read the setup packet, it checks the value to ensure that it is a GET DESCRIPTOR
request for the first eight bytes of the device descriptor, as expected.

2.2.2 Send the Device Descriptor to the Host

Now that the GET DESCRIPTOR request for the first eight bytes of the device descriptor has been
received, the software needs to prepare some dTDs to respond to the host’s request. To respond to the
request the device needs to send the first eight bytes of the device descriptor, then receive a zero byte
packet from the host. This means that two different dTDs are needed — one IN/transmit dTD and one
OUT/receive dTD.

2.2.2.1 IN dTD

The IN dTD is used to transmit eight bytes of the device descriptor to the host. Figure 5 shows the
simplified dTD layout along with the actual values used in the example software to initialize a dTD to
transmit the device descriptor to the host.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 offset

Next dTD Pointer 0 0 0 0 T 0x00

0xDEAD_0001

0 Total Bytes ioc 0 0 0 0 0 0 0 Status 0x04

0x0008_0080

Buffer Pointer (Page 0) 0x08

0x4001_BA08

Figure 5. Example IN Endpoint Transfer Descriptor (dTD)
Simplified Device Data Structures for the High-End ColdFire Family USB Modules, Rev. 0

Freescale Semiconductor10

USB Device Example
2.2.2.1.1 IN dTD Next dTD Pointer (Offset = 0x0)

2.2.2.1.2 IN dTD Token (Offset = 0x4)

2.2.2.1.3 IN dTD Buffer Page Pointer (Offset = 0x8)

2.2.2.2 OUT dTD

The OUT dTD is used to receive the host’s response after transmitting the device descriptor. It is expected
that the host will respond by sending a zero length packet. Figure 6 shows the simplified dTD layout, along
with the actual values used in the example software to initialize a dTD to receive the host response.

Table 8. IN dTD Example of Next dTD Pointer

Bit Name Description

31–5 Next dTD
Pointer

This is the only IN dTD needed to complete the full GET DESCRIPTOR transaction, so a
dummy value is used. This value was selected to make it easy to identify the last dTD in a
linked list.

4–1 — Write as 0000.

0 T The T bit is set, indicating that the next dTD pointer value is not valid.

Table 9. IN dTD Example of dTD Token

Bit Name Description

31 — Write as 0.

30–16 Total Bytes The host has requested eight bytes of the device descriptor, so this field is set to 0x8.

15 ioc This bit is cleared to disable a request for interrupt. Instead, the example software will request an
interrupt at the end of the OUT packet, to indicate the completion of the full GET DESCRIPTOR
transaction.

14–8 — Write as 0000000.

7–0 Status 0x80 marks the dTD as active and ready for the device controller hardware to process.

Table 10. IN dTD Example of dTD Buffer Pointer

Bit Name Description

31–0 Buffer Pointer The device descriptor is in a buffer at location 0x4001_BA08. This is the data that will be
sent to the host during the next IN request.
Simplified Device Data Structures for the High-End ColdFire Family USB Modules, Rev. 0

Freescale Semiconductor 11

USB Device Example
2.2.2.2.1 OUT dTD Next dTD Pointer (Offset = 0x0)

2.2.2.2.2 OUT dTD Token (Offset = 0x4)

2.2.2.2.3 OUT dTD Buffer Page Pointer (Offset = 0x8)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 offset

Next dTD Pointer 0 0 0 0 T 0x00

0xDEAD_0001

0 Total Bytes ioc 0 0 0 0 0 0 0 Status 0x04

0x0040_8080

Buffer Pointer (Page 0) 0x08

0x4001_B878

Figure 6. Example OUT Endpoint Transfer Descriptor (dTD)

Table 11. OUT dTD Example of Next dTD Pointer

Bit Name Description

31–5 Next dTD
Pointer

This is the only OUT dTD needed to complete the full GET DESCRIPTOR transaction, so
a dummy value is used. This value was selected to make it easy to identify the last dTD in
a linked list.

4–1 — Write as 0000.

0 T The T bit is set, indicating that the next dTD pointer value is not valid.

Table 12. OUT dTD Example of dTD Token

Bit Name Description

31 — Write as 0.

30–16 Total Bytes For OUT endpoints, the total bytes field must always be set to a multiple of the maximum packet
length for the endpoint. Because a zero length packet is expected, the dTD needs to be able to
accommodate at least one packet from the host, so the total bytes field is set equal to the maximum
packet length (0x40).

15 ioc This bit is set to enable a request for interrupt. The USBSTS[UI] bit will be set when the OUT
completes, to allow software to detect when the full GET DESCRIPTOR transaction has finished.

14–8 — Write as 0000000.

7–0 Status 0x80 marks the dTD as active and ready for the device controller hardware to process.

Table 13. OUT dTD Example of dTD Buffer Pointer

Bit Name Description

31–0 Buffer Pointer 0x4001_B878 is the address of the buffer allocated to hold the data transmitted by the host.
Simplified Device Data Structures for the High-End ColdFire Family USB Modules, Rev. 0

Freescale Semiconductor12

Additional Information
2.2.2.3 Using the dTDs

After the dTDs have been created and initialized, there are two important steps needed to allow the device
controller to begin processing them. First, the next dTD pointer field of the corresponding dQH must be
written with the address of the appropriate dTD. The EP-IN dQH next dTD pointer is written with the
address of the IN dTD, and the EP-OUT dQH next dTD pointer is written with the address of the OUT
dTD.

The endpoints also need to be primed. The IN endpoint is primed by writing a 1 to the EPPRIME[PETB]
field, and the OUT endpoint is primed by writing a 1 to the EPPRIME[PERB] field. When the endpoint is
primed, the device controller will fetch the dTD pointed to by the next dTD field, and copy the contents
into the dTD overlay area of the dQH. For transmit endpoints, priming will also cause the device controller
to fetch the first part of the transmit buffer.

3 Additional Information
Here are some additional resources that can be used to find more information on the MCF532x processor
and USB. The reference manuals are available at www.freescale.com. The USB specification is available
at www.usb.org.

• MCF5329 Reference Manual
• MCF5373 Reference Manual
• MCF54455 Reference Manual
• MCF5253 Reference Manual
• Universal Serial Bus Specification
Simplified Device Data Structures for the High-End ColdFire Family USB Modules, Rev. 0

Freescale Semiconductor 13

Document Number: AN3631
Rev. 0
03/2008

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2008. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

http://www.freescale.com
http://www.freescale.com/epp

	1 USB Device Overview
	1.1 Endpoint Queue Head (dQH)
	1.1.1 Endpoint Capabilities/Characteristics (Offset = 0x0)
	1.1.2 Current dTD Pointer (Offset = 0x4)
	1.1.3 dTD Overlay Area (Offset = 0x8-0x20)
	1.1.4 Setup Buffer (Offset = 0x28-0x2C)

	1.2 Endpoint Transfer Descriptor (dTD)
	1.2.1 Next dTD Pointer (Offset = 0x0)
	1.2.2 dTD Token (Offset = 0x4)
	1.2.3 dTD Buffer Page Pointer (Offset = 0x8)

	2 USB Device Example
	2.1 USB Device Initialization
	2.1.1 EP0-OUT dQH
	2.1.2 EP0-IN dQH

	2.2 Device Enumeration
	2.2.1 Read the Setup Packet from the Host
	2.2.2 Send the Device Descriptor to the Host

	3 Additional Information

