Freescale Semiconductor Document Number: AN3830

: . Revision: 0
Application Note 02/2009

Hardware Debugging
Using the CodeWarrior™ IDE

By Freescale FAE Team

This application note provides a practical guide to using CONTENTS
Freescale’s CodeWarrior IDE to debug hardware.

Focusing on PowerQUICC processors, this document

covers many of the key features available in the IDE to Contents

assist in bring-up and troubleshooting of a new board. 1 Getting Started: Creating a Project......... 2
2 Using Target Initialization Files 5

Some of the topics covered are: 3 CodeWarrior Board Connection Options ... 9

» Setting up a CodeWarrior project 4 Displaying Memory and Registers. 10
5 Using the Command Window 14

* Hardware connection options 6 An Example Debug Session 16

* Understanding the .cfg file

* Displaying memory and registers
* Using the Command window

* Capturing data

This guide is not a substitute for the extensive
documentation available in your CodeWarrior
installation or from the help menu. Rather, this document
is meant to be a practical user’s guide, describing the
main features needed when debugging hardware and
highlighting common errors. Also note that this
document refers to CodeWarrior for Power Architecture
Processors 8.x in its descriptions.

© Freescale Semiconductor, 2008-2009. All rights reserved. &

>* freescale*

semiconductor

Getting Started: Creating a Project

1 Getting Started: Creating a Project

Before you can debug a board, you must provide the CodeWarrior IDE with information about the target
processor, debug environment, and programming environment. The IDE stores this information in a
CodeWarrior project. Before performing most functions with the IDE, you must create a project specific
to the board you are debugging.

1.1 Using the EPPC New Project Wizard

Use the steps below to create a simple CodeWarrior project.

First, select File > New from the IDE’s menu bar to display the New dialog box. (See Figure 1.)

Figure 1. The New Dialog Box

Project | Fie | Object |

{8 Empty Project Project name:

q {BIEFFC New Froject Wizard [2377_Test

i Extemal Build Wizard

Location:

ID:"-.C".*-.-'siuﬁ"-—.E3.7.7_Tee-1 Set...l

Addito Froject ————
Project:
| B

QK I Cancel |

In this dialog box, select EPPC New Project Wizard, enter a name and file location for your project, and
click OK. The EPPC New Project Wizard starts and displays its first page. (See Figure 2.)

Hardware Debugging Using the CodeWarrior IDE — Application Note

2 Freescale Semiconductor

b -

g |

Figure 2. New Project Wizard — Linker Page

EPPC Mew Project Wizard - Linker

Select the Linker.

Linkers

EPPC Linwe GNU Linker
Freescale PowerPC EABI Linker

—

< Back I MNead = I

Cancel |

Getting Started: Creating a Project

On this page, you must select the Freescale PowerPC EABI Linker to perform hardware debugging. you
select the EPPC Linux GNU Linker instead, the next wizard page does not present the option to select the
Power Architecture device you are using. This is a common mistake because the wizard’s default linker
selection is the EPPC Linux GNU Linker. The EPPC Linux GNU Linker is only used to generate Linux

applications and kernel loadable modules.

The next wizard page (Figure 3) lets you select the processor being debugged. In this example, we selected
the MPC8377 processor. Under the column for boards, you can either select one of the Freescale
development boards listed or select Generic if you are attaching to a custom board, such as a new customer
design. If you select a Freescale development board, the new project automatically points to the
appropriate target initialization file (. cfg file). Section 2.1 discusses the . cfg file.

Figure 3. New Project Wizard — Target Page

EPPC New Project Wizard - Target

Select processor and board

g6 | 85 83 |82 | B | Porock| 52 |
Processors :I Boards
PowerPC 8343 83/ MDS
PowerPC 8347 83 /& RDB
PowerPC 8345 el IS5
PowerPC 8358 Generic
PowerPC 8360
q PowerPC 8377
PowerPC 8378
PowerPC 8379 =
1] I C 4| |+
™ Presert detailed wizard
< Back et > Cancel

Hardware Debugging Using the CodeWarrior IDE — Application Note

Freescale Semiconductor

Getting Started: Creating a Project

The last two wizard pages let you select the C or C++ programming language and the debug probe you
will use to attach to your board. In this example, we use the USB TAP debug probe, which is provided with
many of the PowerQUICC development boards.

At this point, you have created your project and are ready to start debugging.

1.2 Project Settings

Your project should now be displayed on the left side of the CodeWarrior IDE’s main window. The actual
project information is stored in an .mcp file in the location specified in the New Project Wizard. You can
see detailed project settings by selecting the leftmost icon (see below) in the project window. Subsequent
sections of this guide discuss key settings required for hardware debugging.

Figure 4. The Project Window and the Target Settings Window

% Freescale CodeWarrior =]]
Fle Edit Vew Search Project Debug Tools MWindow Help

At E2sv-><haA AN ENER s ERERA

==
B377_Testmcp] 7~
[% pebug version By E5 =0
Fies | Link Ordler | Targets|
3 .
= lﬁ gizme | Cade Dl > @ ug Version Settings [8377_Test.mcp] :
M= 0 i I Targe! Selfings Panls [EFFE Debugger Setfings
« /01 Serial (L4RT 0] flfoge st Pl __
¢ gﬂiﬁin[‘e] i 0. . E:,'E“ S}E”"’Cem Processar Fami:[F3n B Target 05 [BareBoard ~
; L C/Ces Warings
8 'E‘U”:‘fgr S ommeneie 8 g . : i EPPC Assembler Taiget Frocesser [6377 - ™ SMP Target
(3 Documentatian i 0. = Code Generation [¥ Use Taraet Intialization Fil

i Global Optimizations
i EPPC Processor [owerPC_EABI_Support\Initislization_Files\PU2\6374ADB_nit oy _ Browse..

“ EPPC Disassembler
Linker ’7|_ Use Memon Configuration Fil

s EPPC Linker I Browse.

“ EPPC Linker Dptimi,
Progiam Download Options

Editor

“- Custom Keywords
= Debugger Inilial L aunch Successive Runs

i+ Other Executables Exscutable [¢ Executable v

i Debugger Setlings Constant Dats [V Constart Data @

i Remole Debugging Initialized Data [v Initialized Data v

i Debugger FIC Setti.. Uninitislized Data [~ | Urinitialized Data[—

| EPPC Dbugger 5. =

I~ Verify Memory Wiites
™ Stop on esit point

Factary Settings | Aevet | mport Panel.. | Espot Panel.. |

concel | | el |

iles 0 1}

Hardware Debugging Using the CodeWarrior IDE — Application Note

4 Freescale Semiconductor

Using Target Initialization Files

2 Using Target Initialization Files

2.1 Understanding the Target Initialization File (.cfg) File

One important setting in your project’s configuration is the target initialization file, also known as the . cfg
file. When connecting to a board via a USB TAP or similar JTAG-based COP interface, you have the option
to download an initialization file containing commands that perform basic target device configuration. To
use a . cfg file, you make settings in the EPPC Debugger Settings target settings panel. To display this
panel, select EPPC Debugger Settings from the list of panels on the left side of the Target Settings window.
(See Figure 5.)

Figure 5. The EPPC Debugger Settings Panel of the Target Settings Window

{ @ Debug Version Settings [8377_Test.mcp] 2]
B Target Settings Panels H EPPC Debugger Settings
o CAC++Wamings < o : =
.. EPPT fssembler Processor Famlly.IBS:-:H vI T arget DS.IEareB oard J
= Code Generation Target Proces o |A3z7 ii [~ SMP Target
Global Optimizationg —Iv Use Target Initialization File —ll
i EPPC Processo >
H . e e . . . =
----- EFPPC Dizazzemble owerPC_EABL_Supporthlnitialization_Files\PR24837xRDE_init.cfg Bruwse.d/
= Linker :
i EPPC Lirker —[Use Memary Configuration File

‘. EPPC Lirker Optimi

= Editar " I Brovise, . I

L Cuztom Kewords

— Program Download Options

= Debugger : :
i Other Executables |mitial Launch | Succezsive Bunz :: WS MENTE A=
; St it poink
o Debuager Settlngs Executable v Executable [v el ol
Remate DE'JUE'E"”E_' Congtant Data v Conztant Data [
- Debugger MIC Setti Initialized Data [Initialized D ata [
E L Debuoger . Uninitialized Data [~ | Uninitialized Data [~
i EPPC Exceptions 1|
Factary Settings Fewert |mpart Panel... | Export Panel... |
k. | Cancel | Apply |

In the EPPC Debugger Settings panel, you can select whether to use a target initialization file, and also
define the particular . cfg file to use. If you selected one of the Freescale development boards when you
created your project, as we did with the 8377RDB, the correct . c£fg file is automatically selected. Your
CodeWarrior product includes a variety of . cfg files created for Freescale development and

evaluation boards.

You can also modify an existing . c£fg file or create one of you own that is customized for your board’s
settings. The . cfg file is a plain text file, which can set up basic device interfaces like the base address of
the memory map, local access windows, and the DDR and local bus memory controller settings. Figure 6
shows a portion of the . c£fg file for an 8377RDB board.

Hardware Debugging Using the CodeWarrior IDE — Application Note

Freescale Semiconductor 5

3
4

y
A

Using Target Initialization Files

Figure 6. Example Target Initialization (.cfg) File for the 8377RDB Board

Freescale CodeWarrior - [B37xRDB_init.cfg]

Eile Edit View Search Project Debug Tools Window Help

=10l x|
=12 x|

Al x<xha A EeéNsEHERD

b -1} -m- - o' - Path: |C:"-—.Prog|an1 Files\Freescale"CodeWanior PA VB.8\PowerPC_EABI_SupportInitialization_Files\PQ2%83RDB_init.cfg

==t MMREassAddr O0xFF400000
CFG_RST SRC_0000

writereg HBAR 0xFF400000
CFG_REST_SRC 1101
tyritereg MBAR 0=zFFFO0O0D

change internal HMR ba=se from 0zff400000 (reset wvalue) to 0xe0000000
CFG_RST SRC_0000

writemem. 1 Oxff400000 Ox=0000000 # IMMREBAR = 0xe0000000
CFG_RST SRC 1101
#uritemem 1 Oxfff00000 Oxe0000000 # IMMRBAR = 0xes0000000

#==tMMRBa==Addr Ox=0000000
writereg HEAR Qxze0000000

b R b R R R R R R b R R B R R R
System Configuration — Local Access Windows
bk bk b b ok b b b e e b b b b

Local Bus Local Access Windows
AEER AR AR AR LR R AR RRER AR AR R RR
WINDOW 0 — FLASH

writemem.l 0x=0000020 0=xff800000 # LELAWBAROD — begining at 0xff000000
writemem.l 0Oxe0000024 0=30000016 ¥ LELAWARD — enable. size = 8HME

WINDOW 1 — WANWD

writemem.l Ox=0000028 O0xF9000000 # LELAWBAR]1 - begining st 0xf0000000
writemen.l Oxe000002= 0x80000018 # LELAWAR] — enable, size = 3ZKMB

PCI Local Access Windows

bbb bk sk g b kb g b b e 3

WINDOW 0

writemem.l Ox=0000060 O0x50000000 # PCILAVBAROD — begining st 0x50000000
writemem.l Ox=0000064 0x8000001c # PCILAWAROD — enable, =ize = 51ZHE

DDR Local Access Windows

bk oo bk b g b kb b b b e 3

WINDOW 0 — 1=t DDE SODIMH

writememn.l 0xe00000a0 0=00000000 # DDRLAVBARQ — begining at 0=00000000

#dyritemsn. 1l 0x=0000024 Ox8000001s
#ex MPCE3ITI9E-RDE
writemem.l 0Ox=00000a4 0=3000001b &

DDRELAWAROD - enable., size = 128MB

DDRLAVARD — enable, =size = 256MEB
bbb bk b b ok b b b R b b g b
DDR Controller Configuration

HEEER AR AR LR LR R AR AL BB RE R LR AR AR R R R R H R R A HLS

#ex MPCE3ITI9E-RDE
#LDRECDE
writemenm.l 0xE0000128 0=x30080001

#CLE_CHTL

bit 0 = 1 — S5_EH addres=s and command =ent to the DDR =ource synchronously
bit 5-7 = 2 — CLE_ADJST

#tyritemen. 1 0xE0002130 Ox02000000

tt MPCE3I79E-REDE

writemen.l 0xE0002130 0=x03000000

Line 1 Coll |]4]

&

i [=]

o

A

Important: If you are connecting to a board that is already running and do not want to overwrite its
configuration and setup, uncheck the “Use Target Initialization File” option. Otherwise, the existing

board’s device configuration will be overwritten by the commands in the . cfg file.

Hardware Debugging Using the CodeWarrior IDE — Application Note

Freescale Semiconductor

Using Target Initialization Files

The . cfg file is useful in the initial stages of debugging a new board. This file provides an easy way to set
up the memory controllers and ensure that accesses to DDR and flash memory are working properly.
However, if you are debugging a problem with a board that is running software, you should probably
disable the . cfg file, so you can view the issue using the actual software settings made by the board’s BSP.

2.2 Configuring the Reset Configuration Word for the PQ2Pro

The PowerQUICC II Pro (MPC83xx) device reads a reset configuration word to initialize many important
device settings. In many cases, this reset configuration word is stored in flash or some other non-volatile
memory on the customer’s board. However, you can also use your CodeWarrior tools to provide the reset
configuration word information over the JTAG interface viaa USB TAP. This feature is enabled via a JTAG
initialization file and is especially useful for initial hardware debugging.

To select a JTAG initialization file, first display the Remote Debugging panel of the Target Settings
window. (See Figure 7.) Next, click the Edit Connection button to display the CodeWarrior USB TAP
dialog box. You must click “OK” when asked if you would like to continue in order to open this dialog
box. As shown below, you can check the box next to “Use JTAG Configuration file”, and then select the
appropriate configuration file. Freescale provides JTAG configuration files for most of its PQ2 and PQ2Pro
development boards as part of the CodeWarrior installation. You can also edit this text file to change the
reset configuration word settings if necessary.

Figure 7. Remote Debugging Panel and CodeWarrior USB TAP Dialog Box

i @ Debug Version Settings [8313test. mcp] ﬂﬂ
IE Target Settings Fanel: | [} Femote Debugging
=N _Code Generation ;I

h e ~ Connection Settings
i Global Optimizations .
- EPPL Processor Connectior: [Cadsiwarrior USE TAP =l

Edit Connectian... I)

‘.. EPPC Disassembler Remote download path
= Linker I
i EPPC Linker
‘. EPPT Linkes Optimi... CodeWarrior USB TAP |
=~ Editor
£ Custam Keywords Mame: [Codetwanior UISB TAP
= Debunger Debuager [CCS EPPC Protocal Plugin.-~— +
i Other Evecutables L I = =l
[iebugger Settings C — Connection Type:lUSBTAF' j
Remote Debugging .
Debugger PIC Seti. |Use default Serial Mumber [v
EFPC Debuagger 5. USE TAP Sernial Humber [hex] I
EFPC Exceptions ;
L EPPC Trace Buffer — CEE s [
> Source Folder kap... LI L Interface Clock Frequency |8.31 tHz vl
Factory § Mem Read Delay ID
tem 'white Delay IU
[TAP Memory Buffer (hex) [0:00000000

[Do rot use fast download
[Enable Logging

¥ Feset Target on Launch
[~ Farce Shell Download

Factory Settings Revert Panel | Cancel Ok I

Hardware Debugging Using the CodeWarrior IDE — Application Note

Freescale Semiconductor 7

PR 4

Using Target Initialization Files

Note that you should also make sure that the box beside “Reset Target on Launch” is checked, so that the
device is reset when you connect to the board. This is necessary to ensure that the reset configuration
settings from the specified JTAG configuration file are applied.

You can modify the reset configuration word file as desired to test different reset configuration options.
The file is a text file (Figure 8) with the values for the high and low reset configuration word included in
parenthesis.

Figure 8. Example JTAG Configuration File

Freescale CodeWarrior - [B37xRDB_revl0 HROW jtag.tct] _|EI|5|
E File Edit View Search Project Debug Tools Window Help _|5||5|

AEEsH - ><xHhAa2 A MR sEHERD
b - {} - M- [o - Path:|C:\Program Files\Freescale'\C...\837%RDB_rev10_HRCW jtag bt <>

Boot low EI
E3o0 {1 13 {2 0=25040000) (3 Oxalel6c02) ﬂ

Line 1 Coll ||

B |4

Hardware Debugging Using the CodeWarrior IDE — Application Note

8 Freescale Semiconductor

CodeWarrior Board Connection Options

3 CodeWarrior Board Connection Options

The CodeWarrior IDE offers multiple options for connecting to a board via a JTAG debug probe. Choosing
the correct option is critical because you can easily overwrite settings on the board that you wish to
maintain. Three of the most common connection options are covered below, along with the main actions
the debugger takes when started under each option.

3.1 Project > Debug

To use this option, either select “Debug” from the IDE’s “Project” menu or click the green triangle with a
bug icon under it in the project window. This option is the most intrusive to the system and causes the
debugger to perform these tasks:

* Reset the target

* Load ELF/ DWARF symbols

* Load the target initialization file (. cfg)

* Download project code

» Halt the target
If you want to attach to a board that is already running software in order to debug and observe, this is not
the best connection option. You can disable the “Reset Target on Launch” option and/or the Target

Initialization File option by modifying your projects debugger settings; however, even with both these
options disabled, the debugger still downloads program code to the board.

3.2 Debug > Connect

To use this option. select “Connect” from the IDE’s “Debug” menu. This option is similar to the option
discussed above, except that project code is not downloaded to the board. This option causes the debugger
to perform these tasks:

* Reset the target
* Load the target initialization file (. cfg)
* Halt the target

Once again, you can disable “Reset Target on Launch” and/or the use of a target initialization file by
modifying your project’s debugger settings.

3.3 Debug > Attach to Process

To use this option, select “Attach to Process” from the IDE’s “Debug” menu. Use this option if you want
to attach to a running board with minimal interruption. This option causes the debugger to perform
these tasks:

* Load ELF / DWARF symbols
* Leave the target running

Note that once the debugger is attached, you must halt the target before the debugger can access memory
locations or registers.

Hardware Debugging Using the CodeWarrior IDE — Application Note

Freescale Semiconductor 9

) 4

Displaying Memory and Registers

4 Displaying Memory and Registers

Once you are connected to the target, most debugging involves displaying internal register settings or
memory locations in the memory map of the processor. Before the debugger can display memory, the
processor must be halted. If the processor is running, click the red box in the Debugger window (Figure 9)
to break and halt execution. Do not click the red “X” because this button kills the thread and disconnects
the debugger from the target.

Figure 9. The Break Button of the Debugger Window

{4 Freescale CodeWarrior . =[0| x|
Eile Edit View Search Project Debug Data Tools Window Help

LA EREE L L EE R 4 RS B NeR-N |

=

B8377_Test.mcp l

Iﬂ Debug Version j B ¥ ‘ 5‘ -

Files | Link. Elrderl Talgetsl

¢ | Fie | Code [Data |44
[#{] Source 200 98+ o+
EH{CT MEL 183K 22136 »
{7 Serial (UART] 2048 409
{3 Runtime 19464 2901 = -
[#{_] Linker Command File 1} 1}
{23 Config i} o«
-3 Documentation a 1

i @ debug.elf (core #0, chain position 0)

rEx OO EEE

Stac ﬂ @ Variables: Live | Walue | Location
== Mo s vasalier

[EYCYENENEREYTY

-

e
Source:

Program "debug.elf" is executing
Choose Break from the Debug menu to stop it

0 Line 1 Coll | Souce #4]

17 files 211K 25544

(|

4.1 Displaying Memory

Once the processor is halted, the easiest way to display memory is by selecting “View Memory” from the
IDE’s “Data” menu. The Memory window opens. This window can display a range of addresses along with
the contents of these addresses. You can type any starting address into the text box labeled “Display” to
change the range of addresses shown. Also, you can write a new value to any memory location displayed
by typing over the value shown. Changed memory values are highlighted in red. (See Figure 10.)

Also note that your CodeWarrior project must have the same memory offsets defined as the software on
the board being debugged. If the CSSRBAR or IMMR values are not set correctly between the . cfg file
and the board under test, the register display will not show correct values.

Hardware Debugging Using the CodeWarrior IDE — Application Note

10 Freescale Semiconductor

PR 4

Displaying Memory and Registers

Figure 10. The Memory Window

i Freescale CodeWarrior =101x|
Fie Edit Vew Search Project Debug Date Memory Tools Window Help
L= IR L E R R AL RS Y BEREN]
=l
=] X il it - X
8377_Testmep l i m debua.elf (core #0, chain position 0) ol x|
= v E x O EBEE
| % Debug version ey €5 >
Stack =] @ Yariables: Live | Walue. | Location [=1]
Files | Lirk Order | Targets | [start N i B42077357 | $GPR3T R
main
% | Fie [Code | Data [0 4 d
13 Source 280 93 e »om
mIMSL 183K 22138 «
I Serial [UART) 248 09 =
X Runtime 13464 2901 ¢+ m
3 Linker Command File i 0 = | |
] Conlig 0 0. = b=
Documentation 0 0« =
a [Souioe, Do T T o e - Gl
RN : o debug.elf Memory 1 1ol x|
{ Display: [0:000 View [Fandata 7]
[Addess | [§Hex 00000000:00001000
00000000 | |DEADEEEF A0437021 0AS60021 24470212
00000010 [[0az03062 25454545 10247480 DOZE300D
00000020 1803C130 40043020 03242153 30012110
00000030 09555000 COB011397 448AB0E2 17020620
00000040 000A6401 04401080 08181274 00803103
prir |ooooooso 08550012 00AQ42CC 98C2400A
+ 00000060 AC201003 00618500 1839F102 500C6083
== 00000070 03403000 70AADQB04 40020800 1CC0O5921
- whil |20000080 B8460A56F CO7291D1 40205D88 85A825CE
00000030 00548580 BFC56A19 00400485 C8745120
&) Line 24 000000AD | |0ADA4SEE DOBCSE0C 01283444 CO114084
00000080 26006280 AG61014F 02083004 500640C6
000000C0 014E42D2 46941804 00D33813 021B0O04A
00000000 2B002A69 BEFE4A00 91431418 60055404
000000EQ 421ED112 C3952004 CE146B04 11C12206
oononoea | loonnscos 70422429 onascat anaz10ss
word Size[32
: 17 files: 21K 25544
4

4.2 Setting Breakpoints and Watchpoints

You can also use the Memory window to set breakpoints and watchpoints. To set a breakpoint from this
window, change the “View” selection to “Disassembly,” “Source” or “Mixed.” In these views, the Memory
window displays the assembly language, C language, or mixed assembly/C language statements at the
specified address range. Just as you can set breakpoints in the Debugger window, you can set breakpoints
in the Memory window by right-clicking on a statement and selecting “Set Breakpoint” from the context
menu that appears.

Note that there are two types of breakpoints: hardware and software. There are a limited number of
hardware breakpoints available — the number varies depends on the processor you are using. Software
breakpoints modify the code at the location of the breakpoint, while hardware breakpoints use built-in
debug functions of the processor core and therefore do not modify the code. If you are setting a breakpoint
in flash memory, the CodeWarrior debugger automatically uses a hardware breakpoint because code in
flash memory cannot be easily modified.

The debugger shows a hardware breakpoint as a blue diamond, while software breakpoints (which are the
default if you select “Set Breakpoint™) are shown as a red circle. (See Figure 11.)

Hardware Debugging Using the CodeWarrior IDE — Application Note

Freescale Semiconductor 11

PR 4

Displaying Memory and Registers

Figure 11. Display of Hardware and Software Breakpoints

=lolx]

i Freescale CodeWarrior

Elle Edit View Search Project Debug Data Memory Tools Window Help

1t esEexbaa A meR s EEER

=]
8377_Testmep I i @ debug.elf (core #0, chain position 0)
z mx it
@ i Rev ¢ %> 5 UL |ERE
B Stack [2] @ Variables: Live | Value | Location
Files | Link Order | Targets | st - i BA2077357 $GPRIT
¥ | fis [Code | Data (% Jrimein
] Source 280 98 o e m|
= MsL 10K 2136 s o
E{] Senal [UART) 2048 403 =
-1 Runtime 19464 2901 < - =
{1 Linker Command File i} a =
#{_] Corfig i} a . =l =
#{3 Documentatian o 0 e =

i T : = debug.elf Memory 1

asm voil

Display: |main

ggf BB Source: D \CWsIiRE3??_TestSoucebmain.c
blr (S
00002398 00000000 do. 1 0=00000000 . Invalid ope 4]
0000239C: 00000000 de. 1 0=00000000 * Invalid opr
00002340 44000002 =c
00002344 4ES00020 blr
®O0002346: 9421FFF0 stwu rsp, —16(rsph
000023AC: 7FCOB02A6 mflr »l
30010014 +0_20(r
93E1000C ; +31, 12 (rsp
SEE00000 r31,0
000023BC: 3C600000 14 »3.0
000023C0: 386379ES i r3.r3, 31208
000023C4: 4CC63182 BB
000023CE: 48003DCY printf (0=6190)
000023CC: 4BFFFFDS system_call (0x23a0)
000023D0: 3BFFO001 i r3l.r31.1
000023D4: 4EFFFFFC b naint0x28 (0x23d0)
000023D8: 9421FFFQ rsp.-18 (rsp)

& Lined Coll__ 4

HW Breakpoint

SW Breakpoint

I

17 files 211K 25544

I 4

You can also set watchpoints from the Memory window. Watchpoints stop execution if the value of any of
the memory locations selected changes. To set a watchpoint, highlight the values in the Memory window
that you want to monitor, then right-click and select “Set Watchpoint” from the context menu that appears.
Alternatively, you can select “Set Watchpoint” from the IDE’s “Debug” menu.

4.3 Displaying Registers

The CodeWarrior debugger has several useful features for displaying the target processor’s internal
registers. Although the Memory window can display many of the memory-mapped registers, the Register
window includes register names and breaks them into categories. To display the Register window, select
“Registers” from the IDE’s “View” menu. Once open, this window displays all of the processor’s internal
registers, organized by category. (See Figure 12.)

For example, you can find the settings for the DDR memory controller by expanding the “DDR Memory
Controller Memory Map” heading. All of the associated DDR registers are shown along with their current
values. As with the Memory window, you can change the displayed register values by selecting and
overwriting the values shown. Any changed values are highlighted in red.

Another useful feature is the “Register Details” window, which provides a detailed description of each of
the bit fields of the selected register. To display this window, right-click on a register and select “Register
Details” from the context menu that appears. Once the Register Details window is open, you can select

Hardware Debugging Using the CodeWarrior IDE — Application Note

12 Freescale Semiconductor

Displaying Memory and Registers

individual fields to display a more complete explanation. You can also use this window to change values
in a register.

Figure 12. The Register Window and the Register Details Window

Freescale CodeWarrior o =[0| x|

Eile Edit View Search Project Debug Data Tools Window Help

i =4 RS EREREARLEY BER-N |
=

B8377_Test.mcp l

Iﬂ Debug Version j IB y ‘ 5‘ -

E =+ debug.elf
Files |L|nk u,de,| Ta'getgl B core #0, chain position o
; E} General Purpose Registers
¢ | Fie | Code [Data |44 B+ Floating Point Registers

| Value

i R Register
=~ Codewarrior USE TAP

[#{] Source 280 98 . B~ standard Special Purpose Registers

CaMsL 183K 22136 B~ Memory Management special Purpose Registers

Daeri?l (UART] 133;3 2;3? IH e300 Core Special Purpose Registers

gL;Ee‘TEnmmand File o o f: elockamadulen(Clack)

3 Corfig 0 0 s - DDR Memory Controller Memory Map (DDRMEMC)

3 Documentation 0 0 CSO_BNDS 0X0000000F

C51_BNDS 0x00000000

~ CSO0_CONFIG 0x80010102

~ C€51_CONFIG 0x00000000
TIMING_CFG_3 0x00000000

d - TIMING_CFG_0 0x00260802

= TIMING_CFG_1 0x3937D322

-~ TIMING_CFG_2 0X02984CCs8

[EYCYENENEREYTY

sl T

= 0XC3000000
0x00001000
Ox44400442

nvENNNCNNN

-~ DDR_SDRAM_CFG_2

DDR._SDRAM

- DDR_SDRAM :
1 - DDR_DATA_ Description File: |
i— Fiegister Name: TIMING_CFG_2 Fomst[Dermt =]
DDR_INIT_

~ DDR_IP_RE
~ DDR_IP_RE

- DATA_ERR_
DATA_ERR] |_po [4:2] = = [obom o @|HEAD_LAT+3;4 =
ECC_ERR_T MCAS-to-preamble override. Defines the number of DRZIM cycles between when;l
" CAPTWRED . yead i3 issued and when the corresponding DQS preamble is valid for the
-~ CAPTURE_D

memory controller. For these deccdings, RERD LAT is equal to the CAS
CAPTURE_E latency plus the additive latency.

ERR_DETEC

ERR_DISAS

ERR_INT_E
CAPTURE A

Revert I Read ‘wirite Reset Yalue Text ViEW.IAutD vl

17 files 211K 25544

Hardware Debugging Using the CodeWarrior IDE — Application Note

Freescale Semiconductor 13

PR 4

Using the Command Window

5 Using the Command Window

The Command window provides another useful method for communicating with a target device. To
display this window, select “Command Window” from the IDE’s “View” menu. (See Figure 13.) The
debugger must be connected to the target before you can use the Command window to access the target.

From the Command window, you can enter a variety of commands at the prompt. Type “help” to display
a complete list of commands and usage options. “Mem” is a commonly used command for reading and
writing memory. You can also use the “Display” command to display register and memory contents.

Figure 13. The Command Window
=Ioix]

Fle Edit View Search Project Debug Data Tools Window Help

=N IR N-FERE A EL B AERCN
1)

{ mdebug.clf (cof ;| m Command Window - Running, 0x0, 0x0, cpuPowerPCBig, debug.elf (state, tid, pid, cpu, target)
8377_Test. mcp I - =
% M X [femen 0xe0000000 64 =l

- 20000000 520000000 500000000 S00000000 00000000
% Dsbug Version MR SR - [Stesk___ | =0000010 500000000 500000000 $000000CO 500000000
. 0000020 §fe000000 $80000016 $e2300000 58000000e
Fies | Link Order | Targets | 20000030 5F00D0000 530000010 500000000 00000000
20000040 500000000 500000000 500000000 500000000
20000050 500000000 500000000 S00000000 S00000000
¢ | fie [Code [Dats MBI | 20000060 580000000 53000001c 560300000 580000013
{3 Source 260 98 ¢+ 20000070 500000000 500000000 $00000000 500000000
L3 MSL 183 22136 . 20000080 520000000 $8000001c $CO000000 S8000001c
= Serial (UART) 048 409 . 0000090 500000000 $00000000 $00000000 500000000
03 Runtime 19484 2901 .+ e 0000020 500000000 58000001b S00000000 500000000
15 Linker Cormmand File ! 0 €00000b0 500000000 500000000 00000000 500000000
: = 200000c0 500000000 500000000 500000000 00000000
51 (3 Config o a- £00000d0 500000000 500000000 500000000 500000000
(3 Dacumentation o 0. NI Source: 2000000 500000000 500000000 500000000 500000000
2000000 500000000 S00000000 S00000000 00000000
kidisplay gpro..gpr?
+ General Purpose Registers
GPRO=500000060 5P=50FF2fd48 GPR2=500000080 GPR3=520004500
GPR4=500000001 GPRS=500000000 GPRE=50FFF9488 GPR7=SOFFF6F14
Bi=mem 0x0100 64
100 $3aaD0001 560000000 548000010 500000000
110 53aa00002 $4800000c $3c80FF40 60000000
120 $7ca000aé $3c60e000 30000 590640000
130 548003049 548003755 0fe00 560840000
140 533ad0l4c 57cas03aé 54e500020 54500377d
150 $4800315d 57C0004ac 548003335 $7c0004ac
160 5480033cl 57c0004ac 5480036a5 57c0004ac
170 53c20e600 560210F00 538000000 59401FFfc
180 $9401fFfc 548000005 57dc802aé $800e37ad
190 $7dc07214 $3c60e000 $48003d6d 57ea3ab7s
1a0 $48004cz1 500000000 500000000 500000000
1b0 500000000 00000000 500000000 00000000
1c0 500000000 00000000 S00000000 S00000000
0.4 Line1 1d0 500000000 500000000 500000000 500000000
1e0 500000000 500000000 500000000 500000000
0_ 500000000 500000000 S00000000 S00000000
pi=mem 0x01f0 =asaSasas
Bimem 0x0100 64
100 $532a00001 560000000 548000010 00000000
110 53aa00002 $4800000c $3c80FF40 60000000
120 57caDD0a6 53c60e000 550630000 590640000
130 548003049 548003755 0fe00 560840000
130 $538ad0l4c 57cas03aé 54e800020 $4800377d
150 $4800315d $7c0004ac $48003335 57c0004ac
160 5480033cl 57c0004ac 5480036a5 57c0004ac
170 53c20e500 $60210f00 538000000 S9401FFfc
180 59401fffc 348000005 57dc802aé $800e37ad
190 57dc07714 53c60e000 548003d6d S7ea3abrs
1a0 $48004cz1 500000000 500000000 500000000
1b0 500000000 00000000 500000000 S00000000
1c0 500000000 500000000 500000000 500000000
1d0 500000000 500000000 500000000 00000000
le0 500000000 500000000 500000000 500000000
1f0 Sasasasas 500000000 500000000 S00000000

[ENFQCREN TR EY

Progran_'
Choose B

o
@
a

o
@
a

pe

jcommand complete
jabout - T ECR o S o |

Ghanoe EGeoistry

17 files 211K 25544

VA

There are several advantages to using the Command window in a debug session:

* If you use the Command window to read and write memory, the target does not have to be halted.
Instead, the debugger briefly halts the target to perform a memory access, and then immediately
resumes execution of the target. In contrast, if you use the Memory window or the Register window,
the target must be halted by clicking the break button.

* The Command window displays a history of the commands you issue and their results. Further, you
can capture this history in a log file using the “log” command, thereby preserving the results for
analysis. This feature is extremely useful for capturing memory dumps that reflect the state of a
device while debugging. You can then send these dumps to others for discussion and analysis.

Hardware Debugging Using the CodeWarrior IDE — Application Note

14 Freescale Semiconductor

Using the Command Window

* You can perform a simple access to the target via the Command window, which is a good way to
ensure that the board is still alive and that the JTAG connection is still in place. With the
CodeWarrior IDE alone, sometimes the target gets reset, but the open thread in the IDE is not aware
that the JTAG connection has been lost until you attempt to communicate with the board. You may
be waiting for a breakpoint to be hit, while the connection to the target has actually been lost.
Trying a simple access via the Command window lets you verify that the connection is still valid.

e With the Command window, you can specify and perform memory reads and writes as 8-, 16-, or
32-bit accesses.

Hardware Debugging Using the CodeWarrior IDE — Application Note

Freescale Semiconductor

15

|
y

'
A

An Example Debug Session

6 An Example Debug Session

Let’s use an example to show how your CodeWarrior tools can be used to debug a customer board.

Problem: A production MPC8347-based board is randomly resetting at certain temperatures in the
customer system. After the problem occurs, the COP port cannot be used to reliably access the processor.
Attempts to reproduce the problem on a standalone board, outside of the production shelf, have been
unsuccessful.

Strategy: We need to have the CodeWarrior debugger attached to the board via the USB TAP when the
problem occurs. The hypothesis is that a machine check condition is occurring on the board, which is
causing the MPC8347 to enter a checkstop condition and reset. To trigger on the occurrence of the machine
check, we must change the settings so that a machine check condition causes an interrupt rather than
resetting the board. Then, we can set a breakpoint within the machine check interrupt routine at offset
0x200. Once we hit the breakpoint, we can display memory and register settings to determine the cause of
the error. In our setup, the MPC8347-based is board plugged into the customer shelf with the USB TAP
attached. The shelf must be in a temperature chamber to recreate the issue, while the computer running the
CodeWarrior IDE is outside of the chamber, but communicates with the board via the USB TAP.

Debug Steps
1. Use the EPPC New Project Wizard to create a simple MPC8347 project.
2. Ensure that the USB TAP is properly connected to the customer board.
3. Ensure that the customer board is running properly.
4. Attach to the MPC8347 device using the “Attach to Process” option.
A Debugger window opens, but code continues to execute on the customer board.

b

Click the red square in the Debugger window.

The processor halts.

Select Data > View Memory to display the Memory window.

Display the memory at location 0x200 (the machine check interrupt service routine).
Select “Disassembly” in the Memory window so you can see the assembly language code.

N 2

Set a breakpoint in the interrupt service routine at a point after SRR0 and SRR1 have been saved.

Because the breakpoint itself causes an interrupt, interrupting before the return address and context
are saved is not recoverable.

10. Click “Run” (the green triangle) to resume execution.
At this point, everything is set to capture the machine check interrupt if it occurs.

11. In the IDE, open the Command window and read a memory location periodically to ensure that you
are still connected and that the processor is still alive.

With this type of problem, it is possible that the board could reset without any indication to the
CodeWarrior debugger that the connection was lost.

Assuming the hypothesis regarding the machine check is correct, the breakpoint will eventually be
hit and the processor will halt.

Hardware Debugging Using the CodeWarrior IDE — Application Note

16 Freescale Semiconductor

PR 4

An Example Debug Session

12. Once halted, examine register settings and memory to identify the cause of the problem.

13. If needed, use the Command window along with the "log" command to capture a memory or
register dump for later analysis.

Hardware Debugging Using the CodeWarrior IDE — Application Note

Freescale Semiconductor 17

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan

0120 191014 or +81 3 5437 9125
support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center

2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong

+800 2666 8080

support.asia @freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217
1-800-521-6274 or 303-675-2140
Fax: 303-675-2150

LDCForFreescaleSemiconductor @ hibbertgroup.com

Document Number: AN3830
Revision 0
02/2009

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information
in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical”
parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can
and do vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by customer’s
technical experts. Freescale Semiconductor does not convey any license under its patent rights nor
the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for
use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the Freescale
Semiconductor product could create a situation where personal injury or death may occur. Should
Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees,
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses,
and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
CodeWarrior™ is a trademark or registered trademark of Freescale Semiconductor, Inc. StarCore®
is a registered trademark of Freescale Semiconductor, Inc. in the United States and/or other
countries. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2008-2009. All rights reserved.

@,

>* freescale*

semiconductor

	1 Getting Started: Creating a Project
	1.1 Using the EPPC New Project Wizard
	1.2 Project Settings

	2 Using Target Initialization Files
	2.1 Understanding the Target Initialization File (.cfg) File
	2.2 Configuring the Reset Configuration Word for the PQ2Pro

	3 CodeWarrior Board Connection Options
	3.1 Project > Debug
	3.2 Debug > Connect
	3.3 Debug > Attach to Process

	4 Displaying Memory and Registers
	4.1 Displaying Memory
	4.2 Setting Breakpoints and Watchpoints
	4.3 Displaying Registers

	5 Using the Command Window
	6 An Example Debug Session

