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Getting Started: Creating a Project

1 Getting Started: Creating a Project

Before you can debug a board, you must provide the CodeWarrior IDE with information about the target
processor, debug environment, and programming environment. The IDE stores this information in a
CodeWarrior project. Before performing most functions with the IDE, you must create a project specific
to the board you are debugging.

1.1 Using the EPPC New Project Wizard

Use the steps below to create a simple CodeWarrior project.

First, select File > New from the IDE’s menu bar to display the New dialog box. (See Figure 1.)

Figure 1. The New Dialog Box
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In this dialog box, select EPPC New Project Wizard, enter a name and file location for your project, and
click OK. The EPPC New Project Wizard starts and displays its first page. (See Figure 2.)
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Figure 2. New Project Wizard — Linker Page
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Getting Started: Creating a Project

On this page, you must select the Freescale PowerPC EABI Linker to perform hardware debugging. you
select the EPPC Linux GNU Linker instead, the next wizard page does not present the option to select the
Power Architecture device you are using. This is a common mistake because the wizard’s default linker
selection is the EPPC Linux GNU Linker. The EPPC Linux GNU Linker is only used to generate Linux

applications and kernel loadable modules.

The next wizard page (Figure 3) lets you select the processor being debugged. In this example, we selected
the MPC8377 processor. Under the column for boards, you can either select one of the Freescale
development boards listed or select Generic if you are attaching to a custom board, such as a new customer
design. If you select a Freescale development board, the new project automatically points to the
appropriate target initialization file (. cfg file). Section 2.1 discusses the . cfg file.

Figure 3. New Project Wizard — Target Page
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Getting Started: Creating a Project

The last two wizard pages let you select the C or C++ programming language and the debug probe you
will use to attach to your board. In this example, we use the USB TAP debug probe, which is provided with
many of the PowerQUICC development boards.

At this point, you have created your project and are ready to start debugging.

1.2  Project Settings

Your project should now be displayed on the left side of the CodeWarrior IDE’s main window. The actual
project information is stored in an .mcp file in the location specified in the New Project Wizard. You can
see detailed project settings by selecting the leftmost icon (see below) in the project window. Subsequent
sections of this guide discuss key settings required for hardware debugging.

Figure 4. The Project Window and the Target Settings Window
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Using Target Initialization Files

2 Using Target Initialization Files

2.1 Understanding the Target Initialization File (.cfg) File

One important setting in your project’s configuration is the target initialization file, also known as the . cfg
file. When connecting to a board via a USB TAP or similar JTAG-based COP interface, you have the option
to download an initialization file containing commands that perform basic target device configuration. To
use a . cfg file, you make settings in the EPPC Debugger Settings target settings panel. To display this
panel, select EPPC Debugger Settings from the list of panels on the left side of the Target Settings window.
(See Figure 5.)

Figure 5. The EPPC Debugger Settings Panel of the Target Settings Window
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In the EPPC Debugger Settings panel, you can select whether to use a target initialization file, and also
define the particular . cfg file to use. If you selected one of the Freescale development boards when you
created your project, as we did with the 8377RDB, the correct . c£fg file is automatically selected. Your
CodeWarrior product includes a variety of . cfg files created for Freescale development and

evaluation boards.

You can also modify an existing . c£fg file or create one of you own that is customized for your board’s
settings. The . cfg file is a plain text file, which can set up basic device interfaces like the base address of
the memory map, local access windows, and the DDR and local bus memory controller settings. Figure 6
shows a portion of the . c£fg file for an 8377RDB board.
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Using Target Initialization Files

Figure 6. Example Target Initialization (.cfg) File for the 8377RDB Board
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Important: If you are connecting to a board that is already running and do not want to overwrite its
configuration and setup, uncheck the “Use Target Initialization File” option. Otherwise, the existing

board’s device configuration will be overwritten by the commands in the . cfg file.
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Using Target Initialization Files

The . cfg file is useful in the initial stages of debugging a new board. This file provides an easy way to set
up the memory controllers and ensure that accesses to DDR and flash memory are working properly.
However, if you are debugging a problem with a board that is running software, you should probably
disable the . cfg file, so you can view the issue using the actual software settings made by the board’s BSP.

2.2 Configuring the Reset Configuration Word for the PQ2Pro

The PowerQUICC II Pro (MPC83xx) device reads a reset configuration word to initialize many important
device settings. In many cases, this reset configuration word is stored in flash or some other non-volatile
memory on the customer’s board. However, you can also use your CodeWarrior tools to provide the reset
configuration word information over the JTAG interface viaa USB TAP. This feature is enabled via a JTAG
initialization file and is especially useful for initial hardware debugging.

To select a JTAG initialization file, first display the Remote Debugging panel of the Target Settings
window. (See Figure 7.) Next, click the Edit Connection button to display the CodeWarrior USB TAP
dialog box. You must click “OK” when asked if you would like to continue in order to open this dialog
box. As shown below, you can check the box next to “Use JTAG Configuration file”, and then select the
appropriate configuration file. Freescale provides JTAG configuration files for most of its PQ2 and PQ2Pro
development boards as part of the CodeWarrior installation. You can also edit this text file to change the
reset configuration word settings if necessary.

Figure 7. Remote Debugging Panel and CodeWarrior USB TAP Dialog Box
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Using Target Initialization Files

Note that you should also make sure that the box beside “Reset Target on Launch” is checked, so that the
device is reset when you connect to the board. This is necessary to ensure that the reset configuration
settings from the specified JTAG configuration file are applied.

You can modify the reset configuration word file as desired to test different reset configuration options.
The file is a text file (Figure 8) with the values for the high and low reset configuration word included in
parenthesis.

Figure 8. Example JTAG Configuration File
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CodeWarrior Board Connection Options

3 CodeWarrior Board Connection Options

The CodeWarrior IDE offers multiple options for connecting to a board via a JTAG debug probe. Choosing
the correct option is critical because you can easily overwrite settings on the board that you wish to
maintain. Three of the most common connection options are covered below, along with the main actions
the debugger takes when started under each option.

3.1 Project > Debug

To use this option, either select “Debug” from the IDE’s “Project” menu or click the green triangle with a
bug icon under it in the project window. This option is the most intrusive to the system and causes the
debugger to perform these tasks:

* Reset the target

* Load ELF/ DWARF symbols

* Load the target initialization file (. cfg)

* Download project code

» Halt the target
If you want to attach to a board that is already running software in order to debug and observe, this is not
the best connection option. You can disable the “Reset Target on Launch” option and/or the Target

Initialization File option by modifying your projects debugger settings; however, even with both these
options disabled, the debugger still downloads program code to the board.

3.2 Debug > Connect

To use this option. select “Connect” from the IDE’s “Debug” menu. This option is similar to the option
discussed above, except that project code is not downloaded to the board. This option causes the debugger
to perform these tasks:

* Reset the target
* Load the target initialization file (. cfg)
* Halt the target

Once again, you can disable “Reset Target on Launch” and/or the use of a target initialization file by
modifying your project’s debugger settings.

3.3 Debug > Attach to Process

To use this option, select “Attach to Process” from the IDE’s “Debug” menu. Use this option if you want
to attach to a running board with minimal interruption. This option causes the debugger to perform
these tasks:

* Load ELF / DWARF symbols
* Leave the target running

Note that once the debugger is attached, you must halt the target before the debugger can access memory
locations or registers.

Hardware Debugging Using the CodeWarrior IDE — Application Note
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4 Displaying Memory and Registers

Once you are connected to the target, most debugging involves displaying internal register settings or
memory locations in the memory map of the processor. Before the debugger can display memory, the
processor must be halted. If the processor is running, click the red box in the Debugger window (Figure 9)
to break and halt execution. Do not click the red “X” because this button kills the thread and disconnects
the debugger from the target.

Figure 9. The Break Button of the Debugger Window
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4.1 Displaying Memory

Once the processor is halted, the easiest way to display memory is by selecting “View Memory” from the
IDE’s “Data” menu. The Memory window opens. This window can display a range of addresses along with
the contents of these addresses. You can type any starting address into the text box labeled “Display” to
change the range of addresses shown. Also, you can write a new value to any memory location displayed
by typing over the value shown. Changed memory values are highlighted in red. (See Figure 10.)

Also note that your CodeWarrior project must have the same memory offsets defined as the software on
the board being debugged. If the CSSRBAR or IMMR values are not set correctly between the . cfg file
and the board under test, the register display will not show correct values.
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Figure 10. The Memory Window
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4.2  Setting Breakpoints and Watchpoints

You can also use the Memory window to set breakpoints and watchpoints. To set a breakpoint from this
window, change the “View” selection to “Disassembly,” “Source” or “Mixed.” In these views, the Memory
window displays the assembly language, C language, or mixed assembly/C language statements at the
specified address range. Just as you can set breakpoints in the Debugger window, you can set breakpoints
in the Memory window by right-clicking on a statement and selecting “Set Breakpoint” from the context
menu that appears.

Note that there are two types of breakpoints: hardware and software. There are a limited number of
hardware breakpoints available — the number varies depends on the processor you are using. Software
breakpoints modify the code at the location of the breakpoint, while hardware breakpoints use built-in
debug functions of the processor core and therefore do not modify the code. If you are setting a breakpoint
in flash memory, the CodeWarrior debugger automatically uses a hardware breakpoint because code in
flash memory cannot be easily modified.

The debugger shows a hardware breakpoint as a blue diamond, while software breakpoints (which are the
default if you select “Set Breakpoint™) are shown as a red circle. (See Figure 11.)
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Figure 11. Display of Hardware and Software Breakpoints
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You can also set watchpoints from the Memory window. Watchpoints stop execution if the value of any of
the memory locations selected changes. To set a watchpoint, highlight the values in the Memory window
that you want to monitor, then right-click and select “Set Watchpoint” from the context menu that appears.
Alternatively, you can select “Set Watchpoint” from the IDE’s “Debug” menu.

4.3 Displaying Registers

The CodeWarrior debugger has several useful features for displaying the target processor’s internal
registers. Although the Memory window can display many of the memory-mapped registers, the Register
window includes register names and breaks them into categories. To display the Register window, select
“Registers” from the IDE’s “View” menu. Once open, this window displays all of the processor’s internal
registers, organized by category. (See Figure 12.)

For example, you can find the settings for the DDR memory controller by expanding the “DDR Memory
Controller Memory Map” heading. All of the associated DDR registers are shown along with their current
values. As with the Memory window, you can change the displayed register values by selecting and
overwriting the values shown. Any changed values are highlighted in red.

Another useful feature is the “Register Details” window, which provides a detailed description of each of
the bit fields of the selected register. To display this window, right-click on a register and select “Register
Details” from the context menu that appears. Once the Register Details window is open, you can select
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individual fields to display a more complete explanation. You can also use this window to change values
in a register.

Figure 12. The Register Window and the Register Details Window
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5 Using the Command Window

The Command window provides another useful method for communicating with a target device. To
display this window, select “Command Window” from the IDE’s “View” menu. (See Figure 13.) The
debugger must be connected to the target before you can use the Command window to access the target.

From the Command window, you can enter a variety of commands at the prompt. Type “help” to display
a complete list of commands and usage options. “Mem” is a commonly used command for reading and
writing memory. You can also use the “Display” command to display register and memory contents.

Figure 13. The Command Window
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There are several advantages to using the Command window in a debug session:

* If you use the Command window to read and write memory, the target does not have to be halted.
Instead, the debugger briefly halts the target to perform a memory access, and then immediately
resumes execution of the target. In contrast, if you use the Memory window or the Register window,
the target must be halted by clicking the break button.

* The Command window displays a history of the commands you issue and their results. Further, you
can capture this history in a log file using the “log” command, thereby preserving the results for
analysis. This feature is extremely useful for capturing memory dumps that reflect the state of a
device while debugging. You can then send these dumps to others for discussion and analysis.
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* You can perform a simple access to the target via the Command window, which is a good way to
ensure that the board is still alive and that the JTAG connection is still in place. With the
CodeWarrior IDE alone, sometimes the target gets reset, but the open thread in the IDE is not aware
that the JTAG connection has been lost until you attempt to communicate with the board. You may
be waiting for a breakpoint to be hit, while the connection to the target has actually been lost.
Trying a simple access via the Command window lets you verify that the connection is still valid.

e With the Command window, you can specify and perform memory reads and writes as 8-, 16-, or
32-bit accesses.
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An Example Debug Session

6 An Example Debug Session

Let’s use an example to show how your CodeWarrior tools can be used to debug a customer board.

Problem: A production MPC8347-based board is randomly resetting at certain temperatures in the
customer system. After the problem occurs, the COP port cannot be used to reliably access the processor.
Attempts to reproduce the problem on a standalone board, outside of the production shelf, have been
unsuccessful.

Strategy: We need to have the CodeWarrior debugger attached to the board via the USB TAP when the
problem occurs. The hypothesis is that a machine check condition is occurring on the board, which is
causing the MPC8347 to enter a checkstop condition and reset. To trigger on the occurrence of the machine
check, we must change the settings so that a machine check condition causes an interrupt rather than
resetting the board. Then, we can set a breakpoint within the machine check interrupt routine at offset
0x200. Once we hit the breakpoint, we can display memory and register settings to determine the cause of
the error. In our setup, the MPC8347-based is board plugged into the customer shelf with the USB TAP
attached. The shelf must be in a temperature chamber to recreate the issue, while the computer running the
CodeWarrior IDE is outside of the chamber, but communicates with the board via the USB TAP.

Debug Steps
1. Use the EPPC New Project Wizard to create a simple MPC8347 project.
2. Ensure that the USB TAP is properly connected to the customer board.
3. Ensure that the customer board is running properly.
4. Attach to the MPC8347 device using the “Attach to Process” option.
A Debugger window opens, but code continues to execute on the customer board.

b

Click the red square in the Debugger window.

The processor halts.

Select Data > View Memory to display the Memory window.

Display the memory at location 0x200 (the machine check interrupt service routine).
Select “Disassembly” in the Memory window so you can see the assembly language code.

N 2

Set a breakpoint in the interrupt service routine at a point after SRR0 and SRR1 have been saved.

Because the breakpoint itself causes an interrupt, interrupting before the return address and context
are saved is not recoverable.

10. Click “Run” (the green triangle) to resume execution.
At this point, everything is set to capture the machine check interrupt if it occurs.

11. In the IDE, open the Command window and read a memory location periodically to ensure that you
are still connected and that the processor is still alive.

With this type of problem, it is possible that the board could reset without any indication to the
CodeWarrior debugger that the connection was lost.

Assuming the hypothesis regarding the machine check is correct, the breakpoint will eventually be
hit and the processor will halt.

Hardware Debugging Using the CodeWarrior IDE — Application Note
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12. Once halted, examine register settings and memory to identify the cause of the problem.

13. If needed, use the Command window along with the "log" command to capture a memory or
register dump for later analysis.
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