|
y

'
A

Freescale Semiconductor
Application Note

Document Number: AN3975
Rev. 1, 06/2010

1.MX35 Accelerated 2D Graphics
Optimizing 2D Graphics with OpenVG and i.MX35

by Multimedia Application Division
Freescal e Semiconductor, Inc.
Austin, TX

This application note describes optimizing 2D graphicswith
OpenVG™ and i.MX35.

Vector graphicsand flash-based content areamust in today”s
fast-paced embedded world. Thei.MX35 includes AMD’s
2160 GPU, which specializesin the use and optimization of
2D vector-based graphics.

1 OpenVG Overview

OpenV G isastandard created by the Khronos Group (who
also created OpenGL® and OpenGL ES), for the need of a
powerful low-level 2D vector graphics API. There are many
applications that can take advantage of accelerated 2D
graphics (for example, portable mapping and GPS
applications, portable media players, high end 2D
accelerated games, advanced user interfaces, and screen
savers).

The OpenV G vector-based accel erated standard are used to
display many formats that are in the nature of vector
graphics, such as Flash, SVG, PDF, PostScript and vector
fonts. This standard makes use of severa functions that are
low-level, smilar to the OpenGL functions, but based on
Bezier curves, rather than polygons.

© 2010 Freescale Semiconductor, Inc. All rights reserved.

IS L A

~

Contents

OpenVG OVEIVIEW ..o vvi i 1
Vector Graphics and User Interface 5
Running Pre-Built OpenVG Binariesin Linux 6
Getting Started with OpenVGandEGL 7
Bringing Everything Together 1
Developing OpenV G Applicationsin WinCE with

Microsoft Visual Studio2008 13
ConClUSION ..o oo 16
RevisionHistoryo it 16

freescale"

semiconductor

\
Y

4
A

OpenVG Overview

The OpenV G API usesthe OpenGL API syntax wherever possible, which helps the experienced OpenGL
programmers to learn OpenV G with more ease.

Unlike OpenGL, which uses triangles to simulate lines, OpenV G uses the more efficient native
vector-based rendering. OpenV G uses effects such as dithering and blending that enhancesits curveswith
anti-aliasing. OpenV G can also implement complex effects such as Gaussian blur. Font rendering is
similar to OpenGL, but instead of rendering aseries of trianglesfor the font shape, OpenV G usesthe curve
information to draw the fonts.

OpenV G implements autility library called Video Graphics Unit (VGU), which contains features, such as
high level geometric primitives (for example, triangles, circles) and functions for handling images and
imagefilters.

The OpenV G pipeline consists of eight stages as shown in Figure 1. The programmer has absol ute control
over each stage and a better performance is achieved by using alow-level APl (OpenVG).

OpenVG Pipelines

V)
T

Definition of path, transformation,
stroge amﬁ palsm?

—
=

ion

[Stroked path generation
[Transformation
I
[Rasteriza
[I
I
[Paint Generation

—
Clipping and Masking
—

Image Interpolation
T

ending

—— N AN AN N N N

Figure 1. Stages of OpenVG Pipeline

1.1 Drawing and Storing Bitmaps
Bitmaps are drawn by assigning a color value to each pixel in a picture at a given fixed resolution.

For 24 bpp color depth:
8 hitsfor alpha = 32 bpp — (8 bitsfor R, 8 bitsfor G, 8 bitsfor B, 8 bitsfor A)

Bitmap is useful for photographs and pictures with many details.

i.MX35 Accelerated 2D Graphics, Rev. 1

2 Freescale Semiconductor

OpenVG Overview

Figure 2 shows an enlarged portion of a bitmap image.

N/

Figure 2. Enlarged Portion of a Bitmap Image

1.2 Drawing and Storing Vectors
The key points of vector graphicsisthat the vector graphics are drawn and stored as a mathematical vector
formula. The instructions for how to get to a point are as follows:

1. Draw alineor acurve.

2. Paint the line with a stroke and apply colors.

Each vector and fill is assigned a color value. Instead of assigning color to each separate pixel, the color
is assigned by segments. The color value ranges from 0b0000 (black) to 0b1111 (white).

The sceneisredrawn from vector information of each frame, which is called rendering, and the rendering
occurs as fast as the graphics processing unit (GPU). See i.MX35 Graphics Core Specification for
performance numbers. This approach makesvector graphicsindependent of the screen resol ution, because
the formula and instructions are performed by each frame for any given screen size and resolution.

Another important point isthat if zooming is not needed, the image stays in the screen buffer. Vector
graphics dataalso saves memory because thereis no need to storeimages and animation frames as bitmaps
and series of bitmaps for animation. Animation is performed by interpolation between key frames.

i.MX35 Accelerated 2D Graphics, Rev. 1

Freescale Semiconductor 3

N

OpenVG Overview

Figure 3 shows an enlarged portion of a vector image.

Figure 3. Enlarged Portion of a Vector Image

Figure 4 shows a comparison between a vector image and a bitmap image.

o

Vector zoom Bitmap zoom

Figure 4. Comparison between Vector Image and Bitmap Image

i.MX35 Accelerated 2D Graphics, Rev. 1

4 Freescale Semiconductor

b -

Vector Graphics and User Interface

We can avoid pixelated images and | oss of quality whilezooming and upscaling the images and fonts using
vector zoom as shown in Figure 5.

| | Lorem ipsum dolor si
SR S aliguet, nulla eget se
picaral masse, ot ven felis dapibus orci. Pr
' Praesent vel dolor.
placerat massa. ut ve

Lorem ipsum dolor si

et Ui Soa somy aliquet, nulla eget se
placerar massa, ot von felis dapibus orci. Pr

Praesent vel dolor. Q
placerat massa, ut ve

Figure 5. Comparison between Fonts with Bitmaps and Fonts with Vectors

Vectors can be created using artistic tools such as Corel DRAW® and Adobe Illustrator. This content can
be converted to a set of OpenV G callsor to aconvenient intermediate formatslike .QVG and .SVG. AMD
toolsinclude a QV G converter and a viewer that has features such as fast vector drawing, fast matrix
transformations (scale, rotate, shear, perspective), and fast alpha blend.

2 Vector Graphics and User Interface

Figure 6 shows an example of an end-user experience with OpenV G, using aWV GA display whichis
supported by thei.MX35. This application combines every OpenV G feature to achieve a high-impact user
interface (Ul).

Video decoded with HW codec. - % Supperl for blending, ‘ﬂ
Composition/windowing through | \ MOrphm_g. transparency, il
a composition APL | Y perspective A
| % transformation, etc,.. {"]
1) 1

Full support for
UL skinning

- N Graphics UI elements created Clear, zoomable
Graphics with AMD * | with Flash and exported to fonts with full font
| OpenVG hardware | native format management

Figure 6. An End-User Experience with OpenVG

i.MX35 Accelerated 2D Graphics, Rev. 1

Freescale Semiconductor 5

h -

g |

Running Pre-Built OpenVG Binaries in Linux

Figure 7 shows a combined good-quality Ul with some multimedia features such as audio and video
player, that has endless possibilities for the mass-market.

Gradient fills and

Seamless transition =
polygon layering

between 2D and 3D

Mirroring and

Curves and arbitrary | transparency
polygons without “| Font hinting and
triangle tessellation antialising for crisp,

easily readable text

Figure 7. Ul with Multimedia Features

3 Running Pre-Built OpenVG Binaries in Linux

The tiger application created by the Khronos group provides an OpenV G demo aong with the OpenvVG
driver.
To run the tiger application complete the following steps:

1. Boot Linux® on thei.MX35 PDK and load the GPU module.

root@freescale$ insmod gpu z160
2. Run the tigersample binary.

root@freescale $./tiger

A tiger image generated using OpenV G is shown on the PDK screen.

i.MX35 Accelerated 2D Graphics, Rev. 1

6 Freescale Semiconductor

Getting Started with OpenVG and EGL

Figure 8. Tiger Image on the PDK Screen

4 Getting Started with OpenVG and EGL

The following sections gives an overview of Embedded-System Graphics Library (EGL) and how to
initialize and deinitialize EGL ™.

4.1 EGL Overview

EGL handles graphics context management, surface and buffer binding, and rendering synchronization.
EGL aso enables high-performance, accelerated, mixed-mode 2D and 3D rendering using other Khronos
OpenV G and OpenGL APIs.

EGL can be implemented on multiple operating systems (such as, embedded Linux, WinCE, and
Windows®) and native window systems (X and Microsoft Windows). Implementations would also allow
rendering into specific types of EGL surfaces through other supported native rendering APIs, such as Xlib
or GDI. EGL provides the following features:

* Mechanismsto create rendering surfaces (Windows, pbuffers, pixmaps) onto which client APIs
can be drawn and shared.

» Methods to create and manage graphics contexts for client APIs.

» Ways to synchronize drawing by client APIs as well as native platform rendering APIs.
EGL itself isindependent of definitions and concepts specific to any native Windows system or rendering
API to acertain extent. However, there are afew places where native concepts must be mapped into

EGL -specific concepts, including the definition of the display on which graphics are drawn, and the
definition of native windows.

i.MX35 Accelerated 2D Graphics, Rev. 1

Freescale Semiconductor 7

V¥ ¢
i

Getting Started with OpenVG and EGL

Figure 9 shows the overall EGL structure and how the EGL structureis used to create graphics contexts
and surfaces to higher level API”s, such as OpenV G and OpenGL ES.

Opeva @gEs

. EGL 1.2 enables advanced,
Graphics context' Surface/buffer | | | renderingtechniques that
{".

EGL 1.2

h-
ZDandgng;a_ ics
Figure 9. The EGL Structure

4.2 Initializing EGL and Creating a Rendering Context

Most EGL callsinclude an EGLDisplay parameter. This parameter represents the abstract display on
which graphics are drawn. In most environments a display corresponds to a single physical screen.

The EGL Config describes the depth of the color buffer components and the types, quantities and sizes of
the ancillary buffers for an EGL Surface. If the EGL Surface is awindow, then the EGL Config describing
it may have an associated native visua type.

Thefollowing example showsthe names of ecrcont ig attributes. These may be passed to eg1choosecontig
to specify required attribute properties.

static const EGLint s configAttribs[] =

{

EGL_RED SIZE, 5,
EGL_GREEN SIZE, 6,

EGL_BLUE SIZE, 5,

EGL_ALPHA SIZE, O,

EGL_LUMINANCE SIZE, EGL DONT CARE,
EGL_SURFACE_TYPE, EGL VG COLORSPACE LINEAR BIT,
EGL_SAMPLES, O,

EGL_NONE

}i
EGL_RED SIZE, EGL_GREEN STZE, EGL BLUE_ s1zE, and ecL_arpua s1ze give the depth of the color in bits.
EGL_SURFACE_TYPE ISamask indicating the surface types that can be created with the corresponding
EGLConfig and cr_sampres iSthe number of samples per pixel.

The procedureto initialize EGL and create a rendering context is described below.

42.1 Initialization

Before calling other EGL functions, initiaization must be performed once for each display. A display is
obtained by calling:
EGLDisplay eglGetDisplay (NativeDisplayTypedisplay id)

The type and format of display 1D are implementation-specific, and the display ID describes a specific
display provided by the system EGL. For example, an EGL implementation under X Windows would
require display 1D to be an X Display, while an implementation under Microsoft Windows would require

i.MX35 Accelerated 2D Graphics, Rev. 1

8 Freescale Semiconductor

Getting Started with OpenVG and EGL

display 1D to beaWindows Device Context. If display ID iSEGL DEFAULT_DISPLAY, adefault display
is returned.

Toinitialize EGL on adisplay, cal:

EGLBoolean eglInitialize (EGLDisplay dpy, EGLint *major, EGLint *minor)

The function returns EGL_TRUE on success, and updates major and minor with the major and minor
version numbers of the EGL implementation. The function does not update major and minor when they
are NULL.

Thefunction returnsEGL_FAL SE onfailure and does not update major and minor. The function generates
EGL_BAD_DISPLAY error if the dpy argument does not refer to avalid EGL Display. The function aso
generatesan EGL NOT _INITIALIZED error if EGL isnot initialized for an otherwise valid dpy.

A sample code is shown below:

egldisplay = eglGetDisplay (EGL DEFAULT DISPLAY) ;
eglInitialize (egldisplay, NULL, NULL) ;

assert (eglGetError () == EGL_SUCCESS) ;

eglBindAPI (EGL_OPENVG API);

In the sample code shown, eg1sindar1 () Setsagiven stateto the Current Rendering API which inthiscase
isOpenVG

4.2.2 Configuration

As mentioned before, EGL Config describes the format, type and size of the color buffers and ancillary
buffers for an EGL Surface. If the EGL Surface is awindow, then the EGL Config describing it may have
an associated native visual type.

Names of EGL Config attributes may be passed to egichooseconfig() t0 specify required attribute
properties as shown below:

EGLBoolean eglChooseConfig(EGLDisplay dpy, const EGLint *attrib list,
EGLConfig *configs, EGLint config size,
EGLint *num config) ;

A sample code is shown below:

eglChooseConfig(egldisplay, s _configAttribs, &eglconfig, 1, &numconfigs) ;
assert (eglGetError () == EGL_SUCCESS) ;
assert (numconfigs == 1) ;

4.2.3 Rendering Contexts and Drawing Surfaces
The following sections describes the process of creating EGL Surfaces and rendering contexts.

423.1 EGL Surfaces

One of the purposes of EGL isto provide a means to create an OpenV G context and associate it with a
surface. EGL defines several types of drawing surfaces collectively referred to as EGL Surfaces.

i.MX35 Accelerated 2D Graphics, Rev. 1

Freescale Semiconductor 9

Getting Started with OpenVG and EGL

To create an on-screen rendering surface, first create a native platform window with attributes
corresponding to the desired EGL Config.

Using aplatform-specific type (called as NativeWindowType), refer to a handle to the native window, and
then call:

EGLSurface eglCreateWindowSurface (EGLDisplay dpy,
EGLConfig config, NativeWindowType win,
const EGLint *attrib list);
The egicreatenindowsurface function creates an onscreen ecLsurface and returnsits handle. Any EGL
rendering context created with a compatible ecrconfig can be used to render into this surface.

4.2.3.2 Rendering Contexts
To create a Rendering Context, call the following function:

EGLContext eglCreateContext (EGLDisplay dpy, EGLConfig config,
EGLContext share context,
const EGLint *attrib list);
If eglcreatecontext function isa success, this function initializes the rendering context to the initial
OpenV G state and returns its handle. The handle can be used to render to any compatible EGL Surface.
Currently no attributes are recognized, therefore, attriv_1ist ISNULL or empty (first attribute being
EGL_NONE).

4.2.4 Binding Context and Surfaces
To make a context current, call the following function:

EGLBoolean eglMakeCurrent (EGLDisplay dpy,EGLSurface draw,
EGLSurface read, EGLContext ctx);
The eg1Makecurrent function binds ctx to the current rendering thread and to the draw and read surfaces.
Note that the same ecrsurrace is specified for both draw and read. The egimakecurrent function returns
EGL_FALSE onfailure. If draw or read are not compatible with ctx, then an EGL_BAD_MATCH error
is generated.

The implementation is shown in the sample code below:

eglsurface = eglCreateWindowSurface (egldisplay, eglconfig, open("/dev/fbo",
O RDWR), NULL);

assert (eglGetError () == EGL_SUCCESS) ;

eglcontext = eglCreateContext (egldisplay, eglconfig, NULL, NULL) ;
assert (eglGetError () == EGL_SUCCESS) ;

eglMakeCurrent (egldisplay, eglsurface, eglsurface, eglcontext);
assert (eglGetError () == EGL_SUCCESS) ;

4.3 EGL Deinitialization

Deinitializing EGL is asimple process and is shown in the example below:

eglMakeCurrent (egldisplay, EGL_NO_ SURFACE, EGL NO_SURFACE, EGL NO_CONTEXT) ;
assert (eglGetError () == EGL_SUCCESS) ;
eglTerminate (egldisplay) ;

i.MX35 Accelerated 2D Graphics, Rev. 1

10 Freescale Semiconductor

Bringing Everything Together

assert (eglGetError () == EGL_SUCCESS) ;
eglReleaseThread() ;

To deinitialize, cal egiMakecurrent () With EcL._No_surFace and EGL_NO_CONTEXT.
To release resources associated with the use of EGL and OpenV G on adisplay, call the following function:

EGLBoolean eglTerminate (EGLDisplay dpy) ;

Termination marks all EGL -specific resources associated with the specified display for deletion.

The egiTerminate function returns EGL_TRUE on success. If the apy argument does not refer to avalid
EGLDisplay, EGL_FALSE isreturned and an EGL_BAD_DISPLAY error is generated.

EGL maintains a small amount of per-thread state, including the error status returned by egl GetError, the
currently bound rendering API defined by egIBindAPI, and the current contexts for each supported client
APIL.

Toreturn EGL to its state at thread initialization, call the following function:

EGLBoolean eglReleaseThread(void) ;

EGL_TRUE isreturned on success, and the following actions are taken:

» For each client API supported by EGL, if there is a currently bound context, that context is
released. Thisisequivalent to calling egimakecurrent With ctx Set t0 seL_wo_contexT and both
draw and read set tO EcL, NO SURFACE.

» The current rendering API isreset to its value at thread initialization.

* Any additional implementation-dependent per-thread state maintained by EGL is marked for
deletion as soon as possible.

5 Bringing Everything Together
For arendering loop, which has either finite or infinite number of frames, use the sample code below:

int main (void)

{

init(); //all EGL initialization code is here
while (currentFrame < 100)

{

EGLint width = 0;
EGLint height = 0;
eglQuerySurface (egldisplay, eglsurface, EGL WIDTH, &width) ;
eglQuerySurface (egldisplay, eglsurface, EGL HEIGHT, &height) ;
render (width, height) ;
currentFrame++ ;

}

deinit (); //all deInit code is here

return O;

}
To query an attribute associated with an EGL Surface call the following function:

EGLBoolean eglQuerySurface (EGLDisplay dpy, EGLSurface surface, EGLint attribute,EGLint
*value) ;

i.MX35 Accelerated 2D Graphics, Rev. 1

Freescale Semiconductor 11

Bringing Everything Together

In the sample code above, the arguments swidth and sheight Store the values of width and height values.
The width and height values are then used in the render call, where the actual drawing occurs.

5.1 Building OpenVG Applications in Linux

The procedure to build the OpenV G programs on the Linux host is as follows:
1. Specify the application name and destiny directory.

Sexport APPNAME= <user application name>
Sexport DESTDIR= <user destiny directorys>

2. Specify the OpenV G program source code name

Sexport VGSOURCES= <user source code names>

3. Specify the Libraries location and headers location.
The Freescale sample code must contain the OpenV G libraries and headers.

Sexport VGINCLUDE= <OpenVG Headers Directory>
Sexport VGLIB = <OpenVG Libraries Directorys

Table 1 showsthe OpenV G related headers and libraries.
Table 1. OpenVG Related Headers and Libraries

OpenVG Related Headers OpenVG Related Libraries

EGL/eglext.h libbb2d.so

EGL/egl.h libcsi.so

EGL/eglplatform.h libgsl.so

VG/ext.h libpannel2.so

VG/ftvg_utils.h libc2d.so

VG/openvg.h libegl13.s0

VG/vgu.h libOpenVG.so

— libres.so

4. Build the application using the makefile provided with the FSL OpenV G sample code.
Smake
5. Deploy the application.
Copy the resultant binary contained in the destiny directory to the i.MX35 and run the destiny
directory on the i.M X35 PDK.

root@freescale$ insmod gpu z160
root@freescale $./<users application name>

5.2 Building Tiger Sample Application
In the Linux host, in the directory of the extracted package call the following function:

Sexport APPNAME=tigersample
$export DESTDIR=./bin
Sexport VGSOURCES="tiger.c main.c"

i.MX35 Accelerated 2D Graphics, Rev. 1

12 Freescale Semiconductor

Developing OpenVG Applications in WinCE with Microsoft Visual Studio 2008

$export VGINCLUDE=./include
$export VGLIB =./1lib
Smake

Copy the resultant binary contained in the destiny directory to the i.MX35.
In thei.MX51 PDK call the following function:

root@freescale$ insmod gpu z160
root@freescale $./<users application name

6 Developing OpenVG Applications in WinCE with
Microsoft Visual Studio 2008

The procedure to develop OpenV G applications in WinCE with Microsoft Visual Studio 2008 is as
follows:

1. Openthei.MX35 BSP Solution, in the Solution Explorer tab, |eft-click on Subprojects and click
the option Add New Subproject as shown in Figure 10.

ool Sohution X35 305-POKE_S-MobilityZ' (1 project)
S) PMXIS-305-PDK]_S-Mobility
& ciwinceso

5 [PLATFORM
+ [ARUBABOARD
%1 [COMMON
(3 CEVICEEMULATOR
4~ * Wwindows Embedded CE Subproject Wizard 21

l "’ Auto-generated subproject files

‘What kind of Windows Embedded CE apphcation would you bke to create?

" An empty subproject
A simple Windows Embedded CE apphication

H % (3 50 (ewcuded from buld) A typical "Hello World® applcation
. COMMON
% (% DRIVERS

@ G

il PRIVATE
[PuBUC
P Favortes
= (4 Parameter Fles
[Frevscale LMCKS 205 ARMVAL (Active)
B 500
g In
Add M Subprogect...
Add Evinting Subprerect...

Set Subproject Bulld Order.

<previous | 1o [[Croeh | conca |

Y sokubon Explores [5} Class Yiews | “Froperties

Figure 10. i.MX35 BSP Solution and Windows Embedded CE Subproject Wizard Screenshot

2. Inthewizard that appears, select A smple Windows Embedded CE application and click
Finish as shown in Figure 10.

i.MX35 Accelerated 2D Graphics, Rev. 1

Freescale Semiconductor 13

PR 4

Developing OpenVG Applications in WinCE with Microsoft Visual Studio 2008

3. Inthewizard that appears, type the name of the project and click Finish as shownin Figure 11.

Windows Embedded CE Subproject Wizard _ﬂﬂ

:} Sedect name, lacation and template
EERS I L
Hovailable templates: Subproject name: = [=] Subprojects ||
[rggheion | Btz = E|Mﬁwrw{C=MIMWIWW!
(WCE Consowe Aopication - [Inchude files Build i
i o G e
WCE LI Dt Lk Ly - WINCESOOI0SDegnefOcss-305-PLKY_SHubd [[Resource files s E
= ;Jijmﬁes [§ Open
€4 [2_DrawTriangle.cpp
& 02_DrawTriange.rc Open Wit
[5] postink. bat Rad Y
[3] prefink.bat .
) Readve.txt Set Subproject Buid Order...
€4 Stdafx.cpp r ind i =
. A | ,3 Findin Fies. !
T | | &) Explore
c) Soluti 33 Class View | i
Qs ten Bplorer SRRIHET Rpe = Show in Favarites 1
Fired Results |
Prevens J Nt > I Firigh I Careel I

Figure 11. Selecting an Application

4. After typing aname for the project, in the Solution Explorer tab, select and right-click the newly
created project, and then select Properties (Figure 11).

5. Inthe C/C++ tab, select Include Directories and then, copy and paste the directory path where
the VG/EGL header files are located (openvg .h, vgu.h, egl .h) asshown in Figure 12.

Editing €\, WINCEBOD), 05D esigns|iMX35-305-PDE 1 _5-Mobility'|02_ DrawTriangle) sources 21l
Glabal Block General C/C++ |Link | Managed Code |
D ebug [rfoimation Debug info in FOE -
DLL Contairs Resouces Only Ne
DLL Entiy Foint _DliManCRT Stastup
Enception Handling Mot enablad
Ewecutable Ertn Pairt wirtd anCA TS tartup
Extemal C Exceptaons Engbled

Genarate Biowse Inlomation Mo
%35 dirver-binanes\D penv GE in'unclude]

MASH assembly is SaleSEH aware (st Mo

Optimization Preference Size

Pracompiled fles es

Precompied Header File Namea Sidbix peh =l
Include Duectories

Specifies addilional dieciornes that contain haadar files by listing ditectony names that
do not conitain spaces, separsted by semicolons. Do not inchude a braling semicolon.

DK I Cancel

Figure 12. Wizard with C/C++ Tab

i.MX35 Accelerated 2D Graphics, Rev. 1

14 Freescale Semiconductor

Developing OpenVG Applications in WinCE with Microsoft Visual Studio 2008

6. SelecttheLink tab andinthe Additional Librariesfield copy and paste the directory path where
the OpenV G or EGL librariesfor the linker islocated (amags11dd.1ib, 1ibEGL.1ib, 1ibgsl.1ib,
libgsluser.lib, 1ibOpenvG.1ib) asshown in Figure 13.

2
El Mizc
Fired Base Addiess al.it o
Additional Libraries
Specifies additional lbranes to link to your taiget executable, DLL, oo static Sbrary.

1]4 I Caneel

Figure 13. Wizard with the Link Tab

6.1 Initializing EGL in WinCE

Toinitialize EGL, open the yourprojectname. cpp file and follow the instructions above. The differenceis
that awindow handler isgiven to the function egicreatewindowsurface () @ shown inthe example below:

eglsurface = eglCreateWindowSurface (egldisplay, eglconfig, hWnd, O RDWR), NULL);

6.2 Bringing Everything Together in WinCE

Finally, call the Initialize() function and Render() function in an infinite loop until the user closes the
screen, this can be done in the WinMain() function as shown below:

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine,
int nCmdShow)

{

MyRegisterClass (hInstance) ;
if (!InitInstance (hInstance, nCmdShow))

return FALSE;

Initialize() ;
// Run the main loop until the user closes the window
while (TRUE) {
MSG msg;
if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
{
if (msg.message == WM_QUIT)
return FALSE;

}

TranslateMessage (&msg) ;
DispatchMessage (&msg) ;
// Update and render the application

i.MX35 Accelerated 2D Graphics, Rev. 1

Freescale Semiconductor 15

Conclusion

Render () ;
// Present the scene
eglSwapBuffers(g eglDisplay, g eglSurface);

}

return TRUE;

NOTE
See the prawrrinagle.cpp file for a complete implementation in WinCE.

To compilethe functions, right click on the project and then select Rebuild. This must compile and create
an .exe file. Deploy the .exeto thei.M X35 PDK board.

7 Conclusion

OpenV G is ahigh-performance 2D API, created for embedded devices with hardware acceleration with a
good set of third-party tools. OpenV G enables devel opers to create eye-catching and appealing GUI's,
games and Infotainment applications.

OpenVG and i.MX35 is aperfect combination for devel opers who want the most out of their hardware.
Thei.MX35 WinCE 6.0 release includes full support for Visual Studio 2005 devel opment, allowing afast
development in awell known environment.

8 Revision History

Table 2 provides arevision history for this application note.

Table 2. Document Revision History

Rev. .
Number Date Substantive Change(s)
1 06/2010 |In Section 3, “Running Pre-Built OpenVG Binaries in Linux,” changed:
¢ i.MX51 PDK to i.MX35 PDK
e ./tigersampleto ./tiger
0 01/2010 |Initial Release

i.MX35 Accelerated 2D Graphics, Rev. 1

16 Freescale Semiconductor

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

i.MX35 Accelerated 2D Graphics, Rev. 1

Freescale Semiconductor 17

-

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

i.MX35 Accelerated 2D Graphics, Rev. 1

18 Freescale Semiconductor

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

i.MX35 Accelerated 2D Graphics, Rev. 1

Freescale Semiconductor 19

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road

Tempe, Arizona 85284

1-800-521-6274 or

+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064

Japan

0120 191014 or

+81 35437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F

No. 118 Jianguo Road

Chaoyang District

Beijing 100022

China

+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor
Literature Distribution Center

1-800 441-2447 or

+1-303-675-2140

Fax: +1-303-675-2150

LDCForFreescaleSemiconductor
@hibbertgroup.com

Document Number: AN3975
Rev. 1
06/2010

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo, CodeWarrior, ColdFire, PowerQUICC,
StarCore, and Symphony are trademarks of Freescale Semiconductor, Inc.
Reg. U.S. Pat. & Tm. Off. CoreNet, QorlQ, QUICC Engine, and VortiQa are
trademarks of Freescale Semiconductor, Inc. All other product or service
names are the property of their respective owners. ARM is the registered
trademark of ARM Limited.

© 2010 Freescale Semiconductor, Inc.

B POWERED

ARM
freescale"

semiconductor

	i.MX35 Accelerated 2D Graphics
	1 OpenVG Overview
	Figure 1. Stages of OpenVG Pipeline
	1.1 Drawing and Storing Bitmaps
	Figure 2. Enlarged Portion of a Bitmap Image

	1.2 Drawing and Storing Vectors
	Figure 3. Enlarged Portion of a Vector Image
	Figure 4. Comparison between Vector Image and Bitmap Image
	Figure 5. Comparison between Fonts with Bitmaps and Fonts with Vectors

	2 Vector Graphics and User Interface
	Figure 6. An End-User Experience with OpenVG
	Figure 7. UI with Multimedia Features

	3 Running Pre-Built OpenVG Binaries in Linux
	Figure 8. Tiger Image on the PDK Screen

	4 Getting Started with OpenVG and EGL
	4.1 EGL Overview
	Figure 9. The EGL Structure

	4.2 Initializing EGL and Creating a Rendering Context
	4.2.1 Initialization
	4.2.2 Configuration
	4.2.3 Rendering Contexts and Drawing Surfaces
	4.2.3.1 EGL Surfaces
	4.2.3.2 Rendering Contexts

	4.2.4 Binding Context and Surfaces

	4.3 EGL Deinitialization

	5 Bringing Everything Together
	5.1 Building OpenVG Applications in Linux
	Table 1. OpenVG Related Headers and Libraries

	5.2 Building Tiger Sample Application

	6 Developing OpenVG Applications in WinCE with Microsoft Visual Studio 2008
	Figure 10. i.MX35 BSP Solution and Windows Embedded CE Subproject Wizard Screenshot
	Figure 11. Selecting an Application
	Figure 12. Wizard with C/C++ Tab
	Figure 13. Wizard with the Link Tab
	6.1 Initializing EGL in WinCE
	6.2 Bringing Everything Together in WinCE

	7 Conclusion
	8 Revision History
	Table 2. Document Revision History

