
Freescale Semiconductor
Application Note

© 2010 Freescale Semiconductor, Inc. All rights reserved.

This application note describes optimizing 2D graphics with
OpenVG™ and i.MX35.

Vector graphics and flash-based content are a must in today´s
fast-paced embedded world. The i.MX35 includes AMD´s
z160 GPU, which specializes in the use and optimization of
2D vector-based graphics.

1 OpenVG Overview
OpenVG is a standard created by the Khronos Group (who
also created OpenGL® and OpenGL ES), for the need of a
powerful low-level 2D vector graphics API. There are many
applications that can take advantage of accelerated 2D
graphics (for example, portable mapping and GPS
applications, portable media players, high end 2D
accelerated games, advanced user interfaces, and screen
savers).

The OpenVG vector-based accelerated standard are used to
display many formats that are in the nature of vector
graphics, such as Flash, SVG, PDF, PostScript and vector
fonts. This standard makes use of several functions that are
low-level, similar to the OpenGL functions, but based on
Bezier curves, rather than polygons.

Document Number: AN3975
Rev. 1, 06/2010

Contents
1. OpenVG Overview . 1
2. Vector Graphics and User Interface 5
3. Running Pre-Built OpenVG Binaries in Linux 6
4. Getting Started with OpenVG and EGL 7
5. Bringing Everything Together 11
6. Developing OpenVG Applications in WinCE with

Microsoft Visual Studio 2008 13
7. Conclusion . 16
8. Revision History . 16

i.MX35 Accelerated 2D Graphics
Optimizing 2D Graphics with OpenVG and i.MX35
by Multimedia Application Division

Freescale Semiconductor, Inc.
Austin, TX

i.MX35 Accelerated 2D Graphics, Rev. 1

2 Freescale Semiconductor

OpenVG Overview

The OpenVG API uses the OpenGL API syntax wherever possible, which helps the experienced OpenGL
programmers to learn OpenVG with more ease.

Unlike OpenGL, which uses triangles to simulate lines, OpenVG uses the more efficient native
vector-based rendering. OpenVG uses effects such as dithering and blending that enhances its curves with
anti-aliasing. OpenVG can also implement complex effects such as Gaussian blur. Font rendering is
similar to OpenGL, but instead of rendering a series of triangles for the font shape, OpenVG uses the curve
information to draw the fonts.

OpenVG implements a utility library called Video Graphics Unit (VGU), which contains features, such as
high level geometric primitives (for example, triangles, circles) and functions for handling images and
image filters.

The OpenVG pipeline consists of eight stages as shown in Figure 1. The programmer has absolute control
over each stage and a better performance is achieved by using a low-level API (OpenVG).

Figure 1. Stages of OpenVG Pipeline

1.1 Drawing and Storing Bitmaps
Bitmaps are drawn by assigning a color value to each pixel in a picture at a given fixed resolution.

For 24 bpp color depth:

8 bits for alpha = 32 bpp – (8 bits for R, 8 bits for G, 8 bits for B, 8 bits for A)

Bitmap is useful for photographs and pictures with many details.

i.MX35 Accelerated 2D Graphics, Rev. 1

Freescale Semiconductor 3

OpenVG Overview

Figure 2 shows an enlarged portion of a bitmap image.

Figure 2. Enlarged Portion of a Bitmap Image

1.2 Drawing and Storing Vectors
The key points of vector graphics is that the vector graphics are drawn and stored as a mathematical vector
formula. The instructions for how to get to a point are as follows:

1. Draw a line or a curve.

2. Paint the line with a stroke and apply colors.

Each vector and fill is assigned a color value. Instead of assigning color to each separate pixel, the color
is assigned by segments. The color value ranges from 0b0000 (black) to 0b1111 (white).

The scene is redrawn from vector information of each frame, which is called rendering, and the rendering
occurs as fast as the graphics processing unit (GPU). See i.MX35 Graphics Core Specification for
performance numbers. This approach makes vector graphics independent of the screen resolution, because
the formula and instructions are performed by each frame for any given screen size and resolution.

Another important point is that if zooming is not needed, the image stays in the screen buffer. Vector
graphics data also saves memory because there is no need to store images and animation frames as bitmaps
and series of bitmaps for animation. Animation is performed by interpolation between key frames.

i.MX35 Accelerated 2D Graphics, Rev. 1

4 Freescale Semiconductor

OpenVG Overview

Figure 3 shows an enlarged portion of a vector image.

Figure 3. Enlarged Portion of a Vector Image

Figure 4 shows a comparison between a vector image and a bitmap image.

Figure 4. Comparison between Vector Image and Bitmap Image

i.MX35 Accelerated 2D Graphics, Rev. 1

Freescale Semiconductor 5

Vector Graphics and User Interface

We can avoid pixelated images and loss of quality while zooming and upscaling the images and fonts using
vector zoom as shown in Figure 5.

Figure 5. Comparison between Fonts with Bitmaps and Fonts with Vectors

Vectors can be created using artistic tools such as CorelDRAW® and Adobe Illustrator. This content can
be converted to a set of OpenVG calls or to a convenient intermediate formats like .QVG and .SVG. AMD
tools include a QVG converter and a viewer that has features such as fast vector drawing, fast matrix
transformations (scale, rotate, shear, perspective), and fast alpha blend.

2 Vector Graphics and User Interface
Figure 6 shows an example of an end-user experience with OpenVG, using a WVGA display which is
supported by the i.MX35. This application combines every OpenVG feature to achieve a high-impact user
interface (UI).

Figure 6. An End-User Experience with OpenVG

i.MX35 Accelerated 2D Graphics, Rev. 1

6 Freescale Semiconductor

Running Pre-Built OpenVG Binaries in Linux

Figure 7 shows a combined good-quality UI with some multimedia features such as audio and video
player, that has endless possibilities for the mass-market.

Figure 7. UI with Multimedia Features

3 Running Pre-Built OpenVG Binaries in Linux
The tiger application created by the Khronos group provides an OpenVG demo along with the OpenVG
driver.

To run the tiger application complete the following steps:

1. Boot Linux® on the i.MX35 PDK and load the GPU module.

root@freescale$ insmod gpu_z160

2. Run the tigersample binary.

root@freescale $./tiger

A tiger image generated using OpenVG is shown on the PDK screen.

i.MX35 Accelerated 2D Graphics, Rev. 1

Freescale Semiconductor 7

Getting Started with OpenVG and EGL

Figure 8 shows a tiger image on a PDK screen.

Figure 8. Tiger Image on the PDK Screen

4 Getting Started with OpenVG and EGL
The following sections gives an overview of Embedded-System Graphics Library (EGL) and how to
initialize and deinitialize EGL™.

4.1 EGL Overview
EGL handles graphics context management, surface and buffer binding, and rendering synchronization.
EGL also enables high-performance, accelerated, mixed-mode 2D and 3D rendering using other Khronos
OpenVG and OpenGL APIs.

EGL can be implemented on multiple operating systems (such as, embedded Linux, WinCE, and
Windows®) and native window systems (X and Microsoft Windows). Implementations would also allow
rendering into specific types of EGL surfaces through other supported native rendering APIs, such as Xlib
or GDI. EGL provides the following features:

• Mechanisms to create rendering surfaces (Windows, pbuffers, pixmaps) onto which client APIs
can be drawn and shared.

• Methods to create and manage graphics contexts for client APIs.

• Ways to synchronize drawing by client APIs as well as native platform rendering APIs.

EGL itself is independent of definitions and concepts specific to any native Windows system or rendering
API to a certain extent. However, there are a few places where native concepts must be mapped into
EGL-specific concepts, including the definition of the display on which graphics are drawn, and the
definition of native windows.

i.MX35 Accelerated 2D Graphics, Rev. 1

8 Freescale Semiconductor

Getting Started with OpenVG and EGL

Figure 9 shows the overall EGL structure and how the EGL structure is used to create graphics contexts
and surfaces to higher level API´s, such as OpenVG and OpenGL ES.

Figure 9. The EGL Structure

4.2 Initializing EGL and Creating a Rendering Context
Most EGL calls include an EGLDisplay parameter. This parameter represents the abstract display on
which graphics are drawn. In most environments a display corresponds to a single physical screen.

The EGLConfig describes the depth of the color buffer components and the types, quantities and sizes of
the ancillary buffers for an EGLSurface. If the EGLSurface is a window, then the EGLConfig describing
it may have an associated native visual type.

The following example shows the names of EGLConfig attributes. These may be passed to eglChooseConfig
to specify required attribute properties.

static const EGLint s_configAttribs[] =
{

EGL_RED_SIZE, 5,
EGL_GREEN_SIZE, 6,
EGL_BLUE_SIZE, 5,
EGL_ALPHA_SIZE, 0,
EGL_LUMINANCE_SIZE, EGL_DONT_CARE,
EGL_SURFACE_TYPE, EGL_VG_COLORSPACE_LINEAR_BIT,
EGL_SAMPLES, 0,
EGL_NONE

};

EGL_RED_SIZE, EGL_GREEN_SIZE, EGL_BLUE_SIZE, and EGL_ALPHA_SIZE give the depth of the color in bits.
EGL_SURFACE_TYPE is a mask indicating the surface types that can be created with the corresponding
EGLConfig and EGL_SAMPLES is the number of samples per pixel.

The procedure to initialize EGL and create a rendering context is described below.

4.2.1 Initialization
Before calling other EGL functions, initialization must be performed once for each display. A display is
obtained by calling:

EGLDisplay eglGetDisplay(NativeDisplayTypedisplay_id)

The type and format of display ID are implementation-specific, and the display ID describes a specific
display provided by the system EGL. For example, an EGL implementation under X Windows would
require display ID to be an X Display, while an implementation under Microsoft Windows would require

i.MX35 Accelerated 2D Graphics, Rev. 1

Freescale Semiconductor 9

Getting Started with OpenVG and EGL

display ID to be a Windows Device Context. If display ID is EGL DEFAULT_DISPLAY, a default display
is returned.

To initialize EGL on a display, call:

EGLBoolean eglInitialize(EGLDisplay dpy, EGLint *major, EGLint *minor)

The function returns EGL_TRUE on success, and updates major and minor with the major and minor
version numbers of the EGL implementation. The function does not update major and minor when they
are NULL.

The function returns EGL_FALSE on failure and does not update major and minor. The function generates
EGL_BAD_DISPLAY error if the dpy argument does not refer to a valid EGLDisplay. The function also
generates an EGL NOT_INITIALIZED error if EGL is not initialized for an otherwise valid dpy.

A sample code is shown below:

egldisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
eglInitialize(egldisplay, NULL, NULL);
assert(eglGetError() == EGL_SUCCESS);
eglBindAPI(EGL_OPENVG_API);

In the sample code shown, eglBindAPI() sets a given state to the Current Rendering API which in this case
is OpenVG.

4.2.2 Configuration
As mentioned before, EGLConfig describes the format, type and size of the color buffers and ancillary
buffers for an EGLSurface. If the EGLSurface is a window, then the EGLConfig describing it may have
an associated native visual type.

Names of EGLConfig attributes may be passed to eglChooseConfig() to specify required attribute
properties as shown below:

EGLBoolean eglChooseConfig(EGLDisplay dpy, const EGLint *attrib list,
EGLConfig *configs, EGLint config_size,
EGLint *num config);

A sample code is shown below:

eglChooseConfig(egldisplay, s_configAttribs, &eglconfig, 1, &numconfigs);
assert(eglGetError() == EGL_SUCCESS);
assert(numconfigs == 1);

4.2.3 Rendering Contexts and Drawing Surfaces
The following sections describes the process of creating EGLSurfaces and rendering contexts.

4.2.3.1 EGL Surfaces

One of the purposes of EGL is to provide a means to create an OpenVG context and associate it with a
surface. EGL defines several types of drawing surfaces collectively referred to as EGLSurfaces.

i.MX35 Accelerated 2D Graphics, Rev. 1

10 Freescale Semiconductor

Getting Started with OpenVG and EGL

To create an on-screen rendering surface, first create a native platform window with attributes
corresponding to the desired EGLConfig.

Using a platform-specific type (called as NativeWindowType), refer to a handle to the native window, and
then call:

EGLSurface eglCreateWindowSurface(EGLDisplay dpy,
EGLConfig config, NativeWindowType win,
const EGLint *attrib list);

The eglCreateWindowSurface function creates an onscreen EGLSurface and returns its handle. Any EGL
rendering context created with a compatible EGLConfig can be used to render into this surface.

4.2.3.2 Rendering Contexts

To create a Rendering Context, call the following function:

EGLContext eglCreateContext(EGLDisplay dpy, EGLConfig config,
EGLContext share context,
const EGLint *attrib list);

If eglCreateContext function is a success, this function initializes the rendering context to the initial
OpenVG state and returns its handle. The handle can be used to render to any compatible EGLSurface.
Currently no attributes are recognized, therefore, attrib_list is NULL or empty (first attribute being
EGL_NONE).

4.2.4 Binding Context and Surfaces
To make a context current, call the following function:

EGLBoolean eglMakeCurrent(EGLDisplay dpy,EGLSurface draw,
EGLSurface read, EGLContext ctx);

The eglMakeCurrent function binds ctx to the current rendering thread and to the draw and read surfaces.
Note that the same EGLSurface is specified for both draw and read. The eglMakeCurrent function returns
EGL_FALSE on failure. If draw or read are not compatible with ctx, then an EGL_BAD_MATCH error
is generated.

The implementation is shown in the sample code below:

eglsurface = eglCreateWindowSurface(egldisplay, eglconfig, open("/dev/fb0",
O_RDWR), NULL);

assert(eglGetError() == EGL_SUCCESS);
eglcontext = eglCreateContext(egldisplay, eglconfig, NULL, NULL);
assert(eglGetError() == EGL_SUCCESS);
eglMakeCurrent(egldisplay, eglsurface, eglsurface, eglcontext);
assert(eglGetError() == EGL_SUCCESS);

4.3 EGL Deinitialization
Deinitializing EGL is a simple process and is shown in the example below:

eglMakeCurrent(egldisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
assert(eglGetError() == EGL_SUCCESS);
eglTerminate(egldisplay);

i.MX35 Accelerated 2D Graphics, Rev. 1

Freescale Semiconductor 11

Bringing Everything Together

assert(eglGetError() == EGL_SUCCESS);
eglReleaseThread();

To deinitialize, call eglMakeCurrent() with EGL_NO_SURFACE and EGL_NO_CONTEXT.

To release resources associated with the use of EGL and OpenVG on a display, call the following function:

EGLBoolean eglTerminate(EGLDisplay dpy);

Termination marks all EGL-specific resources associated with the specified display for deletion.

The eglTerminate function returns EGL_TRUE on success. If the dpy argument does not refer to a valid
EGLDisplay, EGL_FALSE is returned and an EGL_BAD_DISPLAY error is generated.

EGL maintains a small amount of per-thread state, including the error status returned by eglGetError, the
currently bound rendering API defined by eglBindAPI, and the current contexts for each supported client
API.

To return EGL to its state at thread initialization, call the following function:

EGLBoolean eglReleaseThread(void);

EGL_TRUE is returned on success, and the following actions are taken:

• For each client API supported by EGL, if there is a currently bound context, that context is
released. This is equivalent to calling eglMakeCurrent with ctx set to EGL_NO_CONTEXT and both
draw and read set to EGL_NO_SURFACE.

• The current rendering API is reset to its value at thread initialization.

• Any additional implementation-dependent per-thread state maintained by EGL is marked for
deletion as soon as possible.

5 Bringing Everything Together
For a rendering loop, which has either finite or infinite number of frames, use the sample code below:

int main (void)
{
init(); //all EGL initialization code is here
while (currentFrame < 100)
{

EGLint width = 0;
EGLint height = 0;
eglQuerySurface(egldisplay, eglsurface, EGL_WIDTH, &width);
eglQuerySurface(egldisplay, eglsurface, EGL_HEIGHT, &height);
render(width, height);
currentFrame++;

}
deinit(); //all deInit code is here
return 0;

}

To query an attribute associated with an EGLSurface call the following function:

EGLBoolean eglQuerySurface(EGLDisplay dpy, EGLSurface surface, EGLint attribute,EGLint
*value);

i.MX35 Accelerated 2D Graphics, Rev. 1

12 Freescale Semiconductor

Bringing Everything Together

In the sample code above, the arguments &width and &height store the values of width and height values.
The width and height values are then used in the render call, where the actual drawing occurs.

5.1 Building OpenVG Applications in Linux
The procedure to build the OpenVG programs on the Linux host is as follows:

1. Specify the application name and destiny directory.

$export APPNAME= <user application name>
$export DESTDIR= <user destiny directory>

2. Specify the OpenVG program source code name

$export VGSOURCES= <user source code names>

3. Specify the Libraries location and headers location.

The Freescale sample code must contain the OpenVG libraries and headers.

$export VGINCLUDE= <OpenVG Headers Directory>
$export VGLIB = <OpenVG Libraries Directory>

Table 1 shows the OpenVG related headers and libraries.

4. Build the application using the makefile provided with the FSL OpenVG sample code.

$make

5. Deploy the application.

Copy the resultant binary contained in the destiny directory to the i.MX35 and run the destiny
directory on the i.MX35 PDK.

root@freescale$ insmod gpu_z160
root@freescale $./<users application name>

5.2 Building Tiger Sample Application
In the Linux host, in the directory of the extracted package call the following function:

$export APPNAME=tigersample
$export DESTDIR=./bin
$export VGSOURCES="tiger.c main.c"

Table 1. OpenVG Related Headers and Libraries

OpenVG Related Headers OpenVG Related Libraries

EGL/eglext.h libbb2d.so

EGL/egl.h libcsi.so

EGL/eglplatform.h libgsl.so

VG/ext.h libpannel2.so

VG/ftvg_utils.h libc2d.so

VG/openvg.h libegl13.so

VG/vgu.h libOpenVG.so

— libres.so

i.MX35 Accelerated 2D Graphics, Rev. 1

Freescale Semiconductor 13

Developing OpenVG Applications in WinCE with Microsoft Visual Studio 2008

$export VGINCLUDE=./include
$export VGLIB =./lib
$make

Copy the resultant binary contained in the destiny directory to the i.MX35.

In the i.MX51 PDK call the following function:

root@freescale$ insmod gpu_z160
root@freescale $./<users application name

6 Developing OpenVG Applications in WinCE with
Microsoft Visual Studio 2008

The procedure to develop OpenVG applications in WinCE with Microsoft Visual Studio 2008 is as
follows:

1. Open the i.MX35 BSP Solution, in the Solution Explorer tab, left-click on Subprojects and click
the option Add New Subproject as shown in Figure 10.

Figure 10. i.MX35 BSP Solution and Windows Embedded CE Subproject Wizard Screenshot

2. In the wizard that appears, select A simple Windows Embedded CE application and click
Finish as shown in Figure 10.

i.MX35 Accelerated 2D Graphics, Rev. 1

14 Freescale Semiconductor

Developing OpenVG Applications in WinCE with Microsoft Visual Studio 2008

3. In the wizard that appears, type the name of the project and click Finish as shown in Figure 11.

Figure 11. Selecting an Application

4. After typing a name for the project, in the Solution Explorer tab, select and right-click the newly
created project, and then select Properties (Figure 11).

5. In the C/C++ tab, select Include Directories and then, copy and paste the directory path where
the VG/EGL header files are located (openvg.h, vgu.h, egl.h) as shown in Figure 12.

Figure 12. Wizard with C/C++ Tab

i.MX35 Accelerated 2D Graphics, Rev. 1

Freescale Semiconductor 15

Developing OpenVG Applications in WinCE with Microsoft Visual Studio 2008

6. Select the Link tab and in the Additional Libraries field copy and paste the directory path where
the OpenVG or EGL libraries for the linker is located (amdgslldd.lib, libEGL.lib, libgsl.lib,
libgsluser.lib, libOpenVG.lib) as shown in Figure 13.

Figure 13. Wizard with the Link Tab

6.1 Initializing EGL in WinCE
To initialize EGL, open the yourprojectName.cpp file and follow the instructions above. The difference is
that a window handler is given to the function eglCreateWindowSurface() as shown in the example below:

eglsurface = eglCreateWindowSurface (egldisplay, eglconfig, hWnd, O_RDWR), NULL);

6.2 Bringing Everything Together in WinCE
Finally, call the Initialize() function and Render() function in an infinite loop until the user closes the
screen, this can be done in the WinMain() function as shown below:

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine,
int nCmdShow)
{

 MyRegisterClass(hInstance);
if (!InitInstance (hInstance, nCmdShow))
return FALSE;

Initialize();
// Run the main loop until the user closes the window
while(TRUE) {
MSG msg;
if(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
{

if(msg.message == WM_QUIT)
return FALSE;
}

 TranslateMessage(&msg);
DispatchMessage(&msg);
// Update and render the application

i.MX35 Accelerated 2D Graphics, Rev. 1

16 Freescale Semiconductor

Conclusion

Render();
// Present the scene
eglSwapBuffers(g_eglDisplay, g_eglSurface);
}

 return TRUE;
}

NOTE
See the DrawTrinagle.cpp file for a complete implementation in WinCE.

To compile the functions, right click on the project and then select Rebuild. This must compile and create
an .exe file. Deploy the .exe to the i.MX35 PDK board.

7 Conclusion
OpenVG is a high-performance 2D API, created for embedded devices with hardware acceleration with a
good set of third-party tools. OpenVG enables developers to create eye-catching and appealing GUI´s,
games and Infotainment applications.

OpenVG and i.MX35 is a perfect combination for developers who want the most out of their hardware.
The i.MX35 WinCE 6.0 release includes full support for Visual Studio 2005 development, allowing a fast
development in a well known environment.

8 Revision History
Table 2 provides a revision history for this application note.

Table 2. Document Revision History

Rev.
Number

Date Substantive Change(s)

1 06/2010 In Section 3, “Running Pre-Built OpenVG Binaries in Linux,” changed:
 • i.MX51 PDK to i.MX35 PDK
 • ./tigersample to ./tiger

0 01/2010 Initial Release

i.MX35 Accelerated 2D Graphics, Rev. 1

Freescale Semiconductor 17

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

i.MX35 Accelerated 2D Graphics, Rev. 1

18 Freescale Semiconductor

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

i.MX35 Accelerated 2D Graphics, Rev. 1

Freescale Semiconductor 19

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

Document Number: AN3975
Rev. 1
06/2010

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

Freescale, the Freescale logo, CodeWarrior, ColdFire, PowerQUICC,
StarCore, and Symphony are trademarks of Freescale Semiconductor, Inc.
Reg. U.S. Pat. & Tm. Off. CoreNet, QorIQ, QUICC Engine, and VortiQa are
trademarks of Freescale Semiconductor, Inc. All other product or service
names are the property of their respective owners. ARM is the registered
trademark of ARM Limited.
© 2010 Freescale Semiconductor, Inc.

	i.MX35 Accelerated 2D Graphics
	1 OpenVG Overview
	Figure 1. Stages of OpenVG Pipeline
	1.1 Drawing and Storing Bitmaps
	Figure 2. Enlarged Portion of a Bitmap Image

	1.2 Drawing and Storing Vectors
	Figure 3. Enlarged Portion of a Vector Image
	Figure 4. Comparison between Vector Image and Bitmap Image
	Figure 5. Comparison between Fonts with Bitmaps and Fonts with Vectors

	2 Vector Graphics and User Interface
	Figure 6. An End-User Experience with OpenVG
	Figure 7. UI with Multimedia Features

	3 Running Pre-Built OpenVG Binaries in Linux
	Figure 8. Tiger Image on the PDK Screen

	4 Getting Started with OpenVG and EGL
	4.1 EGL Overview
	Figure 9. The EGL Structure

	4.2 Initializing EGL and Creating a Rendering Context
	4.2.1 Initialization
	4.2.2 Configuration
	4.2.3 Rendering Contexts and Drawing Surfaces
	4.2.3.1 EGL Surfaces
	4.2.3.2 Rendering Contexts

	4.2.4 Binding Context and Surfaces

	4.3 EGL Deinitialization

	5 Bringing Everything Together
	5.1 Building OpenVG Applications in Linux
	Table 1. OpenVG Related Headers and Libraries

	5.2 Building Tiger Sample Application

	6 Developing OpenVG Applications in WinCE with Microsoft Visual Studio 2008
	Figure 10. i.MX35 BSP Solution and Windows Embedded CE Subproject Wizard Screenshot
	Figure 11. Selecting an Application
	Figure 12. Wizard with C/C++ Tab
	Figure 13. Wizard with the Link Tab
	6.1 Initializing EGL in WinCE
	6.2 Bringing Everything Together in WinCE

	7 Conclusion
	8 Revision History
	Table 2. Document Revision History

