|
y

'
A

Freescale Semiconductor
Application Note

Document Number: AN3994
Rev. 0, 01/2010

High-End 3D Graphics with OpenGL

ES 2.0

by Multimedia Application Division
Freescal e Semiconductor, Inc.
Austin, TX

These days 3D graphics for embedded devices have become
more common and complex. Thei.MX51 multimedia
processor offers a complete solution for a devel oper
interested in 3D graphics.

This application note intends to:

» Beasgtartup guide on understanding the principles of
3D technology and the new OpenGL ES 2.0
standard.

* Help the reader to understand the foundation of 3D
graphics, the OpenGL ES 2.0, and its programmable
pipeline.

» Explain the 3D concepts needed to develop
applications and culminates with a basic example
that the developer can use as a template for further
devel opment.

1 OpenGL Summary

OpenGL® isthe most widely adopted standard for real-time
computer graphics, covering most operating systems. It has
several applications. OpenGL enables speed and innovation
by incorporating a broad set of rendering, texture mapping,

© Freescale Semiconductor, Inc., 2010. All rights reserved.

Contents

1.OpenGLSUMMAaryciiiiiiinnennnnn.. 1
2.3DGraphicsPrimer 2
3. Embedded-System GraphicsLibrary (EGL) 6
4.0penGLSUMMArycooiiiiiiiinennnnn... 10
5. OpenGL ES2.0 CodeWalkthrough 16
6.COoNCIUSION . ..o 19
7. REferences. 19
8 RevisionHistory o i 20
A. Developing OpenGL ES 2.0 Applications with Microsoft

Visual Studioand WinCE6.0 20

freescale"

semiconductor

3D Graphics Primer

special effects, and other powerful visualization functions. Devel opers can leverage the power of OpenGL
across al popular desktop and workstation platforms, ensuring wide application deployment.

OpenGL is very stable because it has been available for more than seven years on awide variety of
platforms, with avery high standard for additions, including backward compatibility. Therefore, the
existing applications do not become obsolete. Also, OpenGL istotally portable. Thisallows developersto
be sure that their applications have the same visual result on any OpenGL API-compliant hardware, not
worrying about the underlying operating system. Additionally, OpenGL allows the new hardware
innovations to be implemented by the extensions mechanism, thereby letting the vendors incorporate new
featuresin their new products.

OpenGL iswell structured with an intuitive design and logical commands. Efficient OpenGL routines
typically result in applications with fewer lines of code than those that make up programs generated using
other graphics libraries or packages. In addition, OpenGL drivers encapsulate information about the
underlying hardware, freeing the application developer from having to design for specific hardware
features. Figure 1 shows the OpenGL visualization programming pipeline.

IMAGING PATH

m Unpack Pieels — Pieel Operations ——» Im:g@ﬂa;nerlurmn

Display Lints L3/ Taxmure Memery]' """ = Operations |—-" TO FRAME HUFFER l‘:'g

GEOMETRY PATH
v . ¥
W Unpack Vertices =—» Vertex Operations [~ Geometric Rasterization |

Figure 1. The OpenGL Visualization Programming Pipeline

OpenGL routines simplify the development of graphics software from rendering a simple geometric point,
line, or filled polygon to the creation of the most complex lighted and texture-mapped surfaces. OpenGL
gives software devel opers access to geometric and image primitives, display lists, modeling
transformations, lighting and texturing, anti-aliasing, blending, and many other features.

All elements of the OpenGL state including the contents of the texture memory and the frame buffer are
obtained by an OpenGL application. OpenGL also supports visualization applications with 2D images
treated as types of primitives that can be manipulated just like 3D geometric objects.

2 3D Graphics Primer

Before going into further details of the OpenGL ES 2.0 example code, take alook at the general concepts
and terminology related to 3D graphics in the subsections that follow. Examples relating to OpenGL ES
have been used where ever possible.

2.1 Triangles and Lines

A vertex isthe most basic concept in OpenGL, which defines apoint in a 3D space. A vertex has three
coordinates— Xx,y,z, usually defined as float values. The union of three vertices (v1,v2,v3) constructs a

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

2 Freescale Semiconductor

3D Graphics Primer

triangle. A lineis constructed by the union of only two vertices. Figure 2 shows that OpenGL can draw
lines, triangles, and quadrilaterals, while OpenGL ES 2.0 can only draw triangles and lines.

e e o

GL_TRIANGLE_STRIP

GL_TRIANGLES GL_TRIANGLE_FAN GL_QUADS GL_QUAD STRIP
w1 v 2 w5
Ve wil a
\'6"-‘3-{:..,5_ ¢ wl Wi
GL_LINES GL_LINE_STRIP GL_LNE_LOOP

Figure 2. Triangles and Lines

2.2 3D Meshes

A 3D model or meshisacollection of triangles, which can be represented in an array. Thisis called the
vertex array, usualy in the form of atriangle strip. Figure 3 shows an example of a 3D mesh.

Figure 3. 3D Mesh

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

Freescale Semiconductor 3

3D Graphics Primer

The above 3D mesh can be created with a 3D modeling tool, such as: Blender, 3D Studio Max, Maya,
Lightwave 3D, and so on. A 3D mesh file can be exported in many formats, optimized or non-optimized.
Example 1 shows how a.OBJfile (an universal 3D mesh format) looks.

Example 1. Sample .OBJ File

HitH#

#

OBJ File Generated by Li ghtWave3D
Li ght Wave3D OBJ Export v2.2
#

HitH#

bject: 1

#

Vertices: 5
Points: 1
Lines: O
Faces: 6
Materials: 1
#

HitH#

o1l

Vertex |ist

v -0.5 -0.50.5

v -0.5 -0.5 -0.5

v 0.5 -0.5 0.5

v 0.5 -0.5 -0.5

v 0050

Poi nt/ Li ne/ Face i st

f 521

f 231

f 243

f 542

f 351

f 453

End of file

Thisfilerepresents a pyramid. A pyramid has five vertices and six faces (triangles):
» Thefirst part isthe general information of the 3D mesh. It states the number of vertices and faces
(triangles).
» Thenext part isthe vertex list as follows:

Vertex |ist
v -0.5 -0.50.5

The v character stands for vertex. Thisline means that a vextex is constructed by the three x,y,z
coordinates (-0.5, -0.5, 0.5).

» Thelast part is about how to create the actual triangles

Point/Linel/ Face |i st
f 521

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

4 Freescale Semiconductor

g |

3D Graphics Primer

The f character stands for face which actually means a triangle, and the following three numbers
arste the vertex indices. This meansthat aface s constructed by 3 vertices (the 5, the 2", and the
1%).
With this information, one can re-create any 3D model from a.OBJfile. Note that the .OBJfileis not
optimized. However, there are several options, like using the Power VR (from Imagination Technol ogies)
.POD file plug-in to export and load 3D meshes. This plug-in sorts the geometry (as triangle strips) to
optimize them and avoid vertex redundancies.

2.3 Textures

A textureisa 2D still image (.bmp, .jpeg, .png, .gif, .tgafiles). Thisimage can be applied to a 3D surface
(atriangle) by adding a pair of coordinates (U,V) to each vertex of the 3D mesh. After this pixels are
sampled from theimage and interpol ated (with the GPU) to achieve adecal effect onthe 3D mesh. Figure 4
shows textures.

pyramid with uv coordinates of triangle
(0.75, 0.55)

[e a

(0.4, 0)
0 1 'L\

bitmap (uv coordinates) with
mapped triangle

0

texture mapped triangle

Figure 4. Textures

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

Freescale Semiconductor 5

PR 4

Embedded-System Graphics Library (EGL)

Figure 5 shows a .jpg image (a human face) being mapped into a 3D mesh.

Figure 5. Mapping a .jpg Image Into a 3D Mesh

Texture coordinates are specified at each vertex of agiven triangle, and these coordinates are interpolated
using an extended Bresenham’sline algorithm. If these texture coordinates are linearly interpolated across
the screen, the result is an affine texture mapping. Thisis afast calculation but there can be a noticeable
discontinuity between adjacent triangles when these triangles are at an angle to the plane of the screen.

Perspective-correct texturing accounts for the vertices positionsin 3D space, rather than simply
interpolating a 2D triangle. This achieves the correct visual effect, but it is slower to calculate. Instead of
interpolating the texture coordinates directly, the coordinates are divided by their depth (relative to the
viewer). The reciprocal of the depth value is also interpolated and used to recover the perspective-correct
coordinate. This correction makes it such that in parts of the polygon, that are closer to the viewer, the
difference from pixel to pixel between texture coordinatesis smaller (stretching the texture wider), and in
parts that are farther away, this difference is larger (compressing the texture). The GPU hardware
implements perspective-correct texturing so none of this hasto be done by the CPU.

3 Embedded-System Graphics Library (EGL)

EGL ™ handles graphics context management, surface/buffer binding, and rendering synchronization.
EGL enables hi gh-perfg&mance, accelerated, mixed-mode 2D and 3D rendering using other Khronos
APIs, such as OpenVG and OpenGL.

EGL can be implemented on multiple operating systems (embedded Linux®, WinCE, and Windows®)
and native window systems (such as X and Microsoft Windows). |mplementations may also choose to
allow rendering into specific types of EGL surfaces through other supported native rendering APIs such
as Xlib or GDI.

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

6 Freescale Semiconductor

Embedded-System Graphics Library (EGL)

EGL provides the following features:

» Mechanismsfor creating rendering surfaces (windows, pbuffers, pixmaps) onto which client APIs
can draw and share

» Methods to create and manage graphics contexts for client APIs

» Ways to synchronize drawing by client APIs and native platform rendering APIs
EGL itself isindependent of definitions and concepts specific to any native Windows system or rendering
API to a certain extent. However, there are afew places where native concepts must be mapped into
EGL -specific concepts, including the definition of the display on which graphics are drawn, and the

definition of native windows. Figure 6 shows the overall EGL structure and how it is used to create
graphics contexts and surfaces to higher level APIs such as OpenV G and OpenGL ES.

O penVG @;}LES

- EGL 1.2 enables advanced,
Graphics context | Surface/buffer ' | | rendering techniques that

combine high- rmance
EGL 1.2

I 2D and 3D graphics

Figure 6. The EGL Structure

3.1 Steps to Initialize EGL and Create a Rendering Context

Most EGL callsinclude an EGL Display parameter. This parameter represents the abstract display on
which graphics are drawn. In most environments a display corresponds to a single physical screen.

STEP 0:

The EGL Config describes the depth of the color buffer components and the types, quantities and sizes of
the ancillary buffersfor an EGL Surface. If the EGL Surface is awindow, then the EGL Config describing
it may have an associated native visual type. Example 2 shows the names of EGL Config attributes. These
names may be passed to eglChooseConfig to specify required attribute properties.

Example 2. EGLConfig Attribute Names

static const EGLint s_configAttribs[] =
{

EG._RED_SI ZE, 5,
EG._GREEN_SI ZE, 6,
EG._BLUE_SI ZE, 5,

EGL_ALPHA SI ZE, O,
EGL_LUM NANCE_S| ZE, EGL_DONT_CARE,
EGL_SURFACE_TYPE, EGL_VG COLORSPACE_LI NEAR BI T,
EGL_SAWPLES, 0,

EGL_NONE

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

Freescale Semiconductor 7

|
y

'
A

Embedded-System Graphics Library (EGL)

* EGL RED SIZE, EGL GREEN SIZE, EGL BLUE SIZE, EGL BLUE SIZE, and EGL ALPHA
SIZE give the depth of the color in bits.

* EGL SURFACE TYPE isamask indicating the surface types that can be created with the
corresponding EGL Config.

» EGL_SAMPLES sthe number of samples per pixel.

STEP 1: Initialization
I nitialization must be performed once for each display prior to calling most other EGL functions. A
display can be obtained by calling:
EGLDisplay eglGetDisplay(NativeDisplay Typedisplay _id);
Thetype and format of display id areimplementation-specific, and it describes a specific display provided
by the system EGL is running on. For example, an EGL implementation under X windows would require
display id to be an X Display, while an implementation under Microsoft Windows would require display
id to be a Windows Device Context. If display idisEGL DEFAULT_DISPLAY, adefault display is
returned.
EGL may be initialized on adisplay by calling:
EGLBoolean egllnitialize(EGL Display dpy, EGLint *major, EGLint *minor);

* EGL_TRUE isreturned on success, and major and minor are updated with the major and minor

version numbers of the EGL implementation. major and minor are not updated if they are specified
asNULL.

 EGL_FALSE isreturned on failure and major and minor are not updated.
* AnEGL_BAD_DISPLAY error isgenerated if the dpy argument does not refer to avalid
EGLDisplay.
* ANnEGL NOT_INITIALIZED erorisgenerated if EGL cannot beinitialized for an otherwisevalid
dpy.
Example 3 shows EGL initialization.

Example 3. EGL Initialization

egl di spl ay = egl Get D spl ay(EGL_DEFAULT_DI SPLAY) ;
egllnitialize(egldisplay, NULL, NULL);
assert(egl GetError() == EG._SUCCESS) ;

egl Bi ndAPI (EGL_OPENVG_API) ;

eglBindAPI () sets a given state to the Current Rendering APl in this case is OpenVG

STEP 2: Configuration

As mentioned before, EGL Config describes the format, type and size of the color buffers and ancillary
buffers for an EGL Surface. If the EGL Surface is awindow, then the EGL Config describing it may have
an associated native visual type. Names of EGL Config attributes may be passed to eglChooseConfig() to
specify required attribute properties. Example 4 shows EGL configuration.

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

8 Freescale Semiconductor

Embedded-System Graphics Library (EGL)

EG.Bool ean egl ChooseConfi g(EGLDi spl ay dpy, const ECGLint *attrib |ist,
EG.Config *configs, ECGLint config_size,
EGQi nt *num config);

Example 4. EGL Configuration

egl ChooseConfi g(egl di splay, s_configAttribs, &eglconfig, 1, &nuntonfigs);
assert (egl GetError () == EG._SUCCESS);
assert (nunconfigs == 1);

STEP 3: Rendering Contexts and Drawing Surfaces

« EGLSurfaces

One of the purposes of EGL is to provide a means to create an OpenV G context and associate it
with asurface. EGL defines severa types of drawing surfaces collectively referred to as
EGL Surfaces. To create an on-screen rendering surface, first create a native platform window with
attributes corresponding to the desired EGL Config. Using a platform-specific type (here called
NativeWindowType) referring to a handle to that native window, then call:
EG. Sur face egl O eat eW ndowSur f ace(EGLDi spl ay dpy,

EG.Confi g config, NativeW ndowType win,
const EGLint *attrib list);

egl CreateWindowSurface creates an onscreen EGL Surface and returns a handle to it. Any EGL
rendering context created with a compatible EGL Config can be used to render into this surface.
* Rendering Contexts

To create aRendering Context call:

EG.Cont ext egl Or eat eCont ext (EGLDi spl ay dpy, EG.Config config,
EQ.Cont ext share context,
const EGLint *attrib list);

If eglCreateContext succeeds, it initializes the rendering context to the initial OpenV G state and
returns a handleto it. The handle can be used to render to any compatible EGL Surface. Currently
no attributes are recognized, so attrib_list are normally NULL or empty (first attribute is
EGL_NONE).

STEP 4: Bind Context and Surfaces
To make a context current, call:

EG_Bool ean egl MakeCurrent (EG.Di spl ay dpy, EGLSurface draw,
EG Surface read, EG.Context ctx);

eglM akeCurrent binds ctx to the current rendering thread and to the draw and read surfaces. Note that
the same EGL Surface may be specified for both draw and read. eglM akeCurrent returns EGL_FALSE
on failure. If draw or read are not compatible with ctx, then an EGL_BAD_MATCH error is generated.

See implementation in Example 5 below:

Example 5. Bind Context and Surfaces

egl surface = egl Creat eW ndowSur f ace(egl di spl ay, eglconfig, open("/dev/fbo",
O RDWR), NULL);
assert (egl GetError () == EG._SUCCESS);

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

Freescale Semiconductor 9

OpenGL Summary

egl context = egl Creat eCont ext (egl di spl ay, egl config, NULL, NULL);
assert(egl GetError() == EG._SUCCESS) ;

egl MakeCurrent (egl di spl ay, eglsurface, eglsurface, eglcontext);
assert(egl GetError() == EG._SUCCESS) ;

3.2 EGL Deinitialization
Deinitialization of EGL is quite straight-forward. See Example 6 below:
Example 6. Deinitializing EGL

egl MakeCurrent (egl di spl ay, EG_NO SURFACE, EG._NO SURFACE, EG._NO_CONTEXT);
assert (egl GetError() == EG._SUCCESS) ;

egl Ter m nat e(egl di spl ay) ;

assert(egl GetError() == EG._SUCCESS) ;

egl Rel easeThr ead();

First, eglMakeCurrent() is called with EGL_NO_SURFACE and EGL_NO_CONTEXT. To release
resources associated with use of EGL and OpenV G on adisplay call:

EGLBoolean egl Ter ni nat e(EGLDisplay dpy);

Termination marks all EGL-specific resources associated with the specified display for deletion.

egl Ter mi nat e returns EGL_TRUE on success. If the dpy argument does not refer to avalid EGLDisplay,
EGL_FALSEisreturned, andanEGL_BAD_DISPLAY error isgenerated. EGL maintainsasmall amount
of per-thread state, including the error status returned by eglGetError, the currently bound rendering AP
defined by eglBindAPI, and the current contexts for each supported client API.

Toreturn EGL to its state at thread initialization, call:
EGLBoolean egl Rel easeThr ead(void);

EGL_TRUE isreturned on success, and the following actions are taken:

» For each client API supported by EGL, if there is a currently bound context, that context is
released. Thisis equivalent to calling eglMakeCurrent with ctx set to EGL_NO_CONTEXT and
both draw and read set to EGL_NO_SURFACE.

» The current rendering API isreset to its value at thread initialization.

* Any additional implementation-dependent per-thread state maintained by EGL is marked for
deletion as soon as possible.

4 OpenGL Summary

OpenGL ES™ isan API for advanced 3D graphics targeted at handheld and embedded devices, such as
the i.MX51 Freescale Multimedia Processor.

OpenGL ESisasubset of desktop OpenGL, creating aflexible and powerful low-level interface between
software and graphics acceleration. OpenGL ES includes profiles for floating-point and fixed-point
systems and the EGL specification for portable binding to native windowing systems.

The OpenGL API isvery large and complex. However, the goal was to create an APl suitable for
constrained devices. To achieve this goal, redundancy was removed from the OpenGL API. In any case,

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

10 Freescale Semiconductor

g |

OpenGL Summary

where there was more than one way of performing the same operation, the most useful method was taken
and the redundant techniques were removed.

Removing redundancy was an important goal. However, maintaining compatibility with OpenGL was
equally important. OpenGL ES was designed such that applications that were written to the embedded
subset of functionality in OpenGL would also run on OpenGL ES. Thiswas animportant goa asit alows
developersto leverage both APIs and devel op applications and tools that use the common subset of
functionality.

New features were introduced to address specific constraints of handheld and embedded devices. For
example, to reduce the power consumption and to increase the performance of shaders, precision qualifiers
were introduced to the shading language. See Figure 7.

Figure 7. OpenGL ES

The OpenGL ES specification includes the definition of several profiles. Each profileis a subset of a
version of the desktop OpenGL specification and some additional OpenGL ES-specific extensions. The
OpenGL ES profiles are part of awider family of OpenGL -derived application programming interfaces.
Assuch, the profiles share asimilar processing pipeline, command structure, and the same OpenGL name
space. Therearethree OpenGL ES specificationsthat have been released by Khronoswhich are asfollows:

* OpenGL Es1.0

* OpenGL Es1.1

* OpenGL Es2.0

The OpenGL ES 1.0 and 1.1 specifications implement a fixed function pipeline and are derived from the
OpenGL 1.3 and 1.5 specifications, respectively.

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

Freescale Semiconductor 11

PR 4

OpenGL Summary

Figure 8 shows the ES 2.0 programmabl e pipeline.

Figure 8. ES2.0 Programmable Pipeline

OpenGL ES 2.0 combines a version of the OpenGL shading language for programming vertex and
fragment shaders that have been adapted for embedded platforms, together with a streamlined API from
OpenGL ES 1.1 that has removed any fixed functionality that can be easily replaced by shader programs,
to minimize the cost and power consumption of advanced programmable graphics subsystems.

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

12 Freescale Semiconductor

OpenGL Summary

Figure 9 shows how the programmable graphics pipeline works.

4.1

A Shader-eye View of the Graphics Process

CPU —

== =

Figure 9. Graphics Process

The Vertex Shader

The vertex shader is a general-purpose programmable method for operating on vertices. Vertex shaders
can be used for traditional vertex-based operations such as transforming the position by a matrix,
computing the lighting equation to generate a per-vertex color, and generating or transforming texture
coordinates.

The vertex shader has the following inputs:

Attributes: constant in per-vertex data using vertex arrays
Uniforms: constant data used by the vertex shader
Samplers: represents textures used by the vertex shader, these are optional

Shader program: the actual source code of the shader, contains the instructions and operations that
are performed on the vertex.

Assemble Geometry:

A primitive is a geometric object that can be drawn using appropriate drawing commandsin
OpenGL ES 2.0. These drawing commands specify a set of vertex attributes that describe a
primitive's geometry and type (triangles, lines). Each vertex is described with a set of vertex
attributes. These vertex attributes contain information that the vertex shader usesto calculate a
position and other information that can be passed to the fragment shader, such asits color and
texture coordinates.

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

Freescale Semiconductor 13

OpenGL Summary

4.2

The outputs of the vertex shader are called varying variables. In the primitive rasterization stage,
the varying values are calculated for each generated fragment and are passed as inputs to the
fragment shader. The mechanism used to generate a varying value for each fragment from the
varying values assigned to each vertex of the primitive is called interpolation (see Figure 9).

Rasterizer:
Rasterization is the process that converts primitives, which can be points, lines, or trianglesinto a

set of two-dimensional fragments, which are processed by the fragment shader. These
two-dimensional fragments represent pixelsthat can be drawn on the screen asshown in Figure 10.

e &N
Vagligl}gs

Fragment Uniforms
(~16)

Per-Sample
Operations <LL
=Y

Figure 10. Rasterization

The Fragment Shader

The fragment shader is a general-purpose method for interacting with fragments. The fragment shader
program is executed for each fragment in the rasterization stage.

The fragment shader has the following inputs:

Varying variables: Outputs of the vertex shader that are generated by the rasterization unit for each
fragment using interpolation.

Uniforms: Constant data used by the fragment shader.
Samplers: A specific type of uniform that represent textures used by the fragment shader.

Shader program: Fragment shader program source code or executabl e that describesthe operations
that are performed on the fragment.

The fragment shader can either discard the fragment or generate a color value referred to as
gl_FragColor. The color, depth, stencil, and screen coordinate location (X, y) of screen coordinates
generated by the rasterization stage become inputs to the per-fragment operations stage of the
pipeline.

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

14

Freescale Semiconductor

h
L |

OpenGL Summary

After the fragment shader, the next stage is per-fragment operations. A fragment produced by
rasterization with (x,y) screen coordinates can only modify the pixel at location (x,y) in the

framebuffer (see Figure 11).
Fragment o Piel .| Scissor
Data Ownersiip ™1 et

Stencil Depth i . I To
‘ Test I Test EBlending | "| Dithering i_’ Framebuffer

Figure 11. Fragment Shader

At the end of the per-fragment stage, either the fragment is rejected or afragment color, depth, or
stencil valueis written to the framebuffer at the location (x,y) of the screen. The fragment color,
depth, and stencil values are written depending on whether the appropriate write masks were
enabled.

* Compiling and using the shader

After understanding the basic elements of a shader and defining a source code for each shader

(vertex and fragment), aseries of stepsarerequired in order to first create the objects, compile, and
use the shaders (see Figure 12).

Vertex Shader
glCreateShaderObject

glShaderSource

glCompileShader
glCreateProgramObject

1
glDeleteObject
glAttachObject

glCreateShaderObject glAttachObject

Fragment Shader

glLinkProgram

glShaderSource

gICompileShader glUseProgramObject

glDeleteObject glDeleteObject

Figure 12. Compiling and Using the Shader

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

Freescale Semiconductor 15

OpenGL ES 2.0 Code Walkthrough

Example 7 shows how the shader object is created using gl CreateShader, which creates a new shader
object of the type specified.

Example 7. Creating a New Shader Object

GLui nt vertexShader Obj ect = gl Creat eShader Obj ect (GL_VERTEX_SHADER) ;
GLui nt fragment Shader Obj ect = gl Cr eat eShader Obj ect (G._FRAGVENT _SHADER) ;

After anew shader obeject is created, the glShader Sourceis called to load the shader code into the object.
Then the shader is compiled using glCompileShader. See Example 8.

Example 8. Loading the Shader Code Into the Object

gl Shader Sour ce(vert exShader Obj ect, 1, &shaderSrc, NULL);

gl Shader Sour ce(fragnment Shader Obj ect, 1, &shader Src, NULL);
gl Conpi | eShader (vert exShader obj ect) ;

gl Conpi | eShader (vert exShader obj ect) ;

After the shader is compiled successfully, a new shader object is returned. This object has to be attached
to the program object. The program object isthe final linked program. When each shader is compiled into
a shader object they are attached to a program object and linked together before drawing as shown in
Example 9.

Example 9. Linking the Program Object

GLui nt progranDbj ect;

gl AttachQnoj ect (prograntbj ect, vertexShader Obj ect);

gl AttachQoj ect (progran®Dbj ect, fragnment Shader Obj ect) ;
gl Li nkPr ogr am(pr oganbj ect) ;

gl UseProgr antbj ect (pr ogr anbj ect) ;

After successful linking of the program object, it can now be used for the actual rendering. To use the
program object for rendering, bind it using glUseProgram.

5 OpenGL ES 2.0 Code Walkthrough

Thisfollowing section covers a smple, step by step openGL ES 2.0 example, excluding the previously
covered EGL section.

1. Include the necessary header files as shown in Example 10.

Example 10. Header Files

#i ncl ude <EG./egl . h>
#i ncl ude <GLES2/ GL2. h>
#i ncl ude <GLES2/ gl 2ext. h>

2. Definethe vertex shader and fragment shader as shown in Example 11.

Example 11. Define the Vertex and Fragment Shader

const CHAR* g_str VSProgram =
"attribute vec4 g_vVertex; \n"
"attribute vec4 g_vColor; \n"
"varying vec4 g_vVSColor; \n"
" \nll

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

16 Freescale Semiconductor

OpenGL ES 2.0 Code Walkthrough

"void main() \n"
ll{ \nll
" gl _Position = vec4(g_vVertex.x, g_vVertex.y, \n"
g_vVertex.z, g_vVertex.w); \n"
g_vVSCol or = g_vCol or; \n"
"} \n";

const CHAR* g_strFSProgram =
"#i fdef GL_FRAGVENT_PRECI SION_H GH \ n"

preci sion highp float; \n"
"#el se \n"
preci sion nediunmp float; \n"
"#endi f \n"
" \n"
"varying vec4 g_vVSCol or; \n"
" \n"
"void main() \n"
"y \n"
" gl _FragCol or = g_vVSCol or; \n"
"} \n";

3. After the shader source code, create the program, set the shader source and compile the shader as
shown in Example 12.

Example 12. Compiling the Shader

GLui nt g_hShader Program = 0;
GLui nt g_VertexLoc = 0;
GLui nt g_ColorLoc = 1;

GLui nt hVertexShader = gl Creat eShader(GL_VERTEX SHADER) ;

gl Shader Source(hVertexShader, 1, &g_strVSProgram NULL);

gl Conpi | eShader (hVert exShader);

GLui nt hFragment Shader = gl Creat eShader (G._FRAGVENT_SHADER) ;
gl Shader Source(hFragnent Shader, 1, &g_strFSProgram NULL);
gl Conpi | eShader (hFragment Shader);

4. Check for errors during the compiling process as shown in Example 13.

Example 13. Check for Errors

G&int nConpil eResult = 0;
gl Get Shaderi v(hFragment Shader, GL_COWPI LE_STATUS,
&nConpi | eResul t) ;
if (!nConpileResult)
{
CHAR Log[1024];
G&int nLength;
gl Get Shader | nf oLog(hFr agment Shader, 1024, &nLengt h,
Log);
return FALSE;
}

5. Attach theindividual shadersto the shader program as shown in Example 14.
Example 14. Attach Individual Shaders

g_hShader Program = gl Cr eat eProgran() ;
gl At tachShader (g_hShader Program hVert exShader) ;
gl At t achShader (g_hShader Program hFr agnent Shader) ;

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

Freescale Semiconductor 17

V¥ ¢
i

OpenGL ES 2.0 Code Walkthrough

6. The attributes must be initialized before the linking as shown in Example 15.

Example 15. Initialize Attributes

gl BindAttribLocation(g_hShader Program g_VertexLoc, "g_vVertex");
gl BindAttribLocation(g_hShader Program g_Col orLoc, "g_vCol or");
gl Li nkProgram(g_hShader Program);

7. Check if the linking was a success and after that delete the individual shadersas shownin
Example 16.

Example 16. Delete Individual Shaders

GLint nLinkResult = 0;

gl Get Program v(g_hShader Program GL_LI NK_STATUS, &nLi nkResult);
if (!nLinkResult)

{

CHAR Log[1024];

GLi nt nLength;

gl Get Progranl nf oLog(g_hShader Program 1024, &nlLength, Log);
return FALSE;

}

gl Del et eShader (hVert exShader);

gl Del et eShader (hFr agnent Shader);

}

8. A rendering loop is an endless loop or afixed number of frames depending on the application.
The first part consists of the vertex data of the triangles, followed by the regular OpenGL
functions for clearing the screen (glClear). After the screen has been cleared, use the shader
program with glUseProgram as shown in Example 17.

Example 17. Rendering Loop

VO D Render ()

{
FLOAT fSize = 0.5f;
FLOAT VertexPositions[] =
{
0.0f, +fSize*g_fAspectRatio, 0.0f, 1.0f,
-fSize, -fSize*g_fAspectRatio, 0.0f, 1.0f,
+f Si ze, -fSize*g_fAspectRatio, 0.0f, 1.0f,
b

FLOAT VertexCol ors[] = {1.0f, 0.0f, 0.0f, 1.0f,
0.0f, 1.0f, 0.0f, 1.0f,
0.0f, 0.0f, 1.0f, 1.0f
b

/] Clear the backbuffer and depth-buffer
gl dearColor(0.0f, 0.0f, 0.5f, 1.0f);
gl dear(GL_CO.OR BUFFER BIT | GL_DEPTH BUFFER BI T);

/] Set the shader program and the texture
gl UseProgram(g_hShader Program);

/] Draw the colored triangle
gl VertexAttri bPointer(g_VertexLoc, 4, G_FLOAT, 0, 0, VertexPositions);
gl Enabl eVertexAttri bArray(g_VertexLoc);

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

18 Freescale Semiconductor

Conclusion

gl VertexAttri bPointer(g_Col orLoc, 4, GL_FLOAT, 0, 0, VertexColors);
gl Enabl eVertexAttri bArray(g_Col orLoc);

gl DrawArrays(GL_TRIANGLE STRIP, 0, 3);

gl Di sabl eVertexAttri bArray(g_VertexLoc);
gl Di sabl eVertexAttri bArray(g_Col orLoc);

9. After everything is done, atriangle having three colored vertices (red, green, blue) is seen, as
shown in Figure 13.

: DpenGL Window

Figure 13. Three Coloured Vertices Triangle

6 Conclusion

This application note has covered some of the basics needed for 3D embedded graphics devel opment.
OpenGL ES 2.0 is astate-of-the-art program for powerful 3D graphics. With thei.MX51 multimedia
processor, a user can achieve intense 3D user interfaces, games, media players, and many more.

This application note is by no means a know-it-all knowledge base. Itis a starting point for all those who
want to dive into the rich world of 3D graphics. Section 7, “References’ hasalist of referencesfor further
reading on this subject.

7 References

For more information on the OpenGL, refer to the links below:
e http://www.khronos.org/opengles/
* http://www.khronos.org/opengles/sdk/docs/man/
» http://opengles-book.com/
* http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES Specification_1.0.17.pdf

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

Freescale Semiconductor 19

http://opengles-book.com/
http://www.khronos.org/opengles/
http://www.khronos.org/opengles/sdk/docs/man/
http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification_1.0.17.pdf

Revision History

8 Revision History
Table 1 provides arevision history for this application note.

Table 1. Document Revision History

Rev. _
Number Date Substantive Change(s)
0 01/2010 |Initial Release

Appendix A Developing OpenGL ES 2.0 Applications
with Microsoft Visual Studio and WinCE 6.0

The procedureto develop OpenGL ES 2.0 applications with Microsoft Visual Studio 2008 and WinCE 6.0
isasfollows:

1. Afterinstalling thei.MX51 BSP, open the i.MX51 BSP Solution. In the Solution Explorer tab,
left-click on Subprojects and click on Add New Subproj ect as shown in Figure 14.

| o] Soluition WS- 305-PON1_S-Mobilty2" (1 project)
= IMX35-305-POK | _S-Mobility
= G CyWRCERDD
= [PLATFORM
#- (51 ARUBABOARD
W[5 COMMON
¥ 3 OEVICEIMULATOR
¥ 4 rHsAMLE
=~ 3 MII5-305-FDKIS
= [Parameter Fles
o plstform by
j plakForm ok
".-| plakform. db
,’J plakform.rag
- - rC
B BOOTLOADER
¥ [T BOOTSHELL
: COMMON
] EBCOT
= [N DR
w1 (] NAND
[R50 (eocchoded From buld)
o R CoMMON
= [N DEVERS
=7 im.
(1
- [0l
¥ [MAINSTOMET
"3 PRIVATE
- 3 PuBLIC
:f Favorkes
= [Parameter Fles
¥ Froeicale 1LMUOS 305 ARM [Active)
=i Shits
+ = EYIE—

A M Subprosct
Add Existineg Subgromct. .,

Set Subproject Buld Order...

- ;',cn!mF-.'ﬁ'-n .'-'Iv.'. Wiews | “siProperties

Figure 14. i.MX51 BSP Solution

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0
20

Freescale Semiconductor

PR 4

Developing OpenGL ES 2.0 Applications with Microsoft Visual Studio and WinCE 6.0

2. Inthewizard that appears, select A smple Windows Embedded CE application as shownin
Figure 15.

Windows Embedded CE Subproject Wizard ‘Z'LE]

;3 Auto-generated subproject files

‘wehat kind of Windows Embedded CE applcation would you ke to create?

" An empty subproject
¥ A simple Windoves Embedded CE appbcation
A bypical "Helo Workd” applcation

< Previous | et & I Finish I Cancel I

Figure 15. Windows Embedded CE Subproject Wizard Screenshot

3. Enter aname for the project in the Solution Explorer tab. Select the newly created project,
right-click on it, and select Properties as shown in Figure 16.

\Windows Embedded CE Subpraject Wizand BiE:
‘J—’ Select name, lacation and temglate
_= Ms l: | M
Fvalable terrplates: Subpreject natme: B (3] Subprojects |
Fibgeorenz = (30]02_Drawiriangle (C:/WINCEB00/OSDasigns MK3S-30S-POK] S-Mobtvi02 DrawTriang
ﬁ mmm H- [Inchide fles Buid I
Crytuamat -Lirk Livary Location: . m
b peart #- [Parameter files
b= Mbmaiyuitu:r JC WSO 0SDesonalICIS-05-POK1_S-Mobd 5 [Resource Fles Frebuid £
5@ sjm files [§ open
€] 02_CrawTriangle.cpp
#8302 _DrawTriangle.rc sl
%] postink hat Add by
[5] preirk bat ;
) Readte.tct Set Subproject Build Order...
: €4 stdafx.cpp | [Findin Fles... 1
4
—— . im Explore
=yl Schution o a§c|a9; Wiews | S Properties
_‘Ei (2 Prope Show in Favorites F
Bl Open Buld Window
X Remove
el I et > | Firish I Carel I E.I‘.-'l Properties _J

Figure 16. Selecting an Application

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

Freescale Semiconductor 21

PR 4

Developing OpenGL ES 2.0 Applications with Microsoft Visual Studio and WinCE 6.0

4. Inthe C/C++ tab, select Include Directories and copy/paste the directory path where the
OpenGL/EGL header files arelocated (GL2. h, gl 2ext. h, egl.h) asshownin Figure 17.

Editing £ 'WINCEGOD" DSDesigns' iMX35-305-PDK 1 _5-Mobility02_DrawTriangle\ sources ll.i_(l
Global Block Genersl C/Ces | Link | Managed Cods |
Drebuag Information Debug nlo in PDB -~
DLL Contasing Resources Orly No
IDLL Eindry Pound _DManCRTStartup
E wcepbion Handling Hot enabled
E wecutable Entry Pomt WirtManCR T Startup
External C Enceptons Ensbled

Gensrate Browse Infpimation Mo

MASM assembly it SaleSEH aveaie (4 No

Optenization Preference Size

Precompded fles Yes

Precompied Header Fils Harme Sidhe peh =|
Include Dusctones

Spacifies addtional deactones that contan header files by kstng duecion names that
do not conlain spaces, separsted by semicolons. Do not mcluds & baling semicolon.

[ok] conesl

Figure 17. Wizard with C/C++ Tab

5. Click onthe Link tab and in the Additional Librariesfield copy/paste the directory path where
the OpenGL/EGL librariesfor the linker islocated (andgs! 1 dd. lib, 1ibEG.lib, Iibgsl.lib,
li bgsluser.lib, |ibCpenVG. Iib) asshowninFigure 18.

Editing C:\WINCEGDD'0SDesigns iMX35-305-PDK1_S-Mobility\02_DrawTriangle! sources - 21 xi|

Global Block General| C/Cos Link | Managed Code |

B Misc

Fooed Base Addiess Defoult

Additional Libraries
Specihes additional lbranes 1o link to pous Laget executable, DLL, or static Beary.

[0k] coxe |

Figure 18. Wizard with the Link Tab

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

22 Freescale Semiconductor

Developing OpenGL ES 2.0 Applications with Microsoft Visual Studio and WinCE 6.0

THIS PAGE INTENTIONALLY LEFT BLANK

High-End 3D Graphics with OpenGL ES 2.0, Rev. 0

Freescale Semiconductor 23

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road

Tempe, Arizona 85284

1-800-521-6274 or

+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 169 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064

Japan

0120 191014 or

+81 35437 9125

support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F

No. 118 Jianguo Road

Chaoyang District

Beijing 100022

China

+86 10 5879 8000

support.asia @freescale.com

For Literature Requests Only:

Freescale Semiconductor
Literature Distribution Center

1-800 441-2447 or

+1-303-675-2140

Fax: +1-303-675-2150

LDCForFreescaleSemiconductor
@hibbertgroup.com

Document Number: AN3994
Rev. 0
01/2010

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale and the Freescale logo are trademarks or registered trademarks
of Freescale Semiconductor, Inc. in the U.S. and other countries. All other
product or service names are the property of their respective owners. ARM
is the registered trademark of ARM Limited. ARM926EJ-S™ is the trademark of ARM
Limited.

© Freescale Semiconductor, Inc., 2010. All rights reserved.

=
]
o
i
=
=3
o
u

ARM

freescale"

semiconductor

	High-End 3D Graphics with OpenGL ES 2.0
	1 OpenGL Summary
	Figure 1. The OpenGL Visualization Programming Pipeline

	2 3D Graphics Primer
	2.1 Triangles and Lines
	Figure 2. Triangles and Lines

	2.2 3D Meshes
	Figure 3. 3D Mesh

	2.3 Textures
	Figure 4. Textures
	Figure 5. Mapping a .jpg Image Into a 3D Mesh

	3 Embedded-System Graphics Library (EGL)
	Figure 6. The EGL Structure
	3.1 Steps to Initialize EGL and Create a Rendering Context
	3.2 EGL Deinitialization

	4 OpenGL Summary
	Figure 7. OpenGL ES
	Figure 8. ES2.0 Programmable Pipeline
	Figure 9. Graphics Process
	4.1 The Vertex Shader
	Figure 10. Rasterization

	4.2 The Fragment Shader
	Figure 11. Fragment Shader
	Figure 12. Compiling and Using the Shader

	5 OpenGL ES 2.0 Code Walkthrough
	Figure 13. Three Coloured Vertices Triangle

	6 Conclusion
	7 References
	8 Revision History
	Table 1. Document Revision History

	Appendix A Developing OpenGL ES 2.0 Applications with Microsoft Visual Studio and WinCE 6.0
	Figure 14. i.MX51 BSP Solution
	Figure 15. Windows Embedded CE Subproject Wizard Screenshot
	Figure 16. Selecting an Application
	Figure 17. Wizard with C/C++ Tab
	Figure 18. Wizard with the Link Tab

