
AN4073
Rev 1, 07/2012

Freescale Semiconductor
Application Note
Using the 32 Sample First In First Out (FIFO)
in the MMA8451Q
by: Kimberly Tuck

Applications Engineer

1.0 Introduction
The MMA8451Q has a built-in 32 sample first in, first out

buffer capable of storing 14-bit data or 8-bit data. The data can
be high pass filtered or not depending on whether the
HPF_OUT bit is set in the part. The FIFO is very beneficial for
saving overall system power by putting the processor into
sleep mode until it needs to process data from the
accelerometer. The idea is to configure the MMA8451Q to
monitor a desired interrupt, putting the processor in a low
power mode until it needs to respond to the accelerometer.
This minimizes the system’s overall power consumption,
increasing the life of the battery. The embedded FIFO is a
proven benefit as it limits how often the processor needs to
read the data. The FIFO allows the processor to sleep longer
while samples are being collected inside the sensor.

 Higher sample rate data can be captured in the FIFO and
accessed at a reasonable update time without increasing
computational throughput by accessing every sample
individually.

1.1 Key Words
Accelerometer, Output Data Rate (ODR), 32 Sample FIFO,
12-bit Data, 8-bit Data, I2C Bus, Flushing, Algorithm
Development, Circular Buffer Mode, Fill Buffer Mode, Trigger
Buffer Mode, Watermark, Overflow, Sensor, Power Savings,
Multi-read, Processor, MCU

TABLE OF CONTENTS
1.0 Introduction . 1

1.1 Key Words . 1
1.2 Summary . 2
1.3 Related Documentation . 2

2.0 MMA8451, 2, 3Q Consumer 3-axis Accelerometer 3 x 3 x 1 mm 2
2.1 Output Data, Sample Rates and Dynamic Ranges of all Three Products . . . 2

3.0 Applications Using the FIFO . 3
3.1 Power Savings Using the FIFO Data Logging . 3
3.2 Power Savings Using the FIFO to Collect the History Leading up to an Event

Trigger . 7
3.3 FIFO Behavior During Wake to Sleep Transitions . 8

4.0 Embedded Settings of the FIFO . 9
4.1 Register 0x09: F_SETUP FIFO Set-Up Register . 9
4.2 Register 0x0A Interrupt Triggers for Trigger Mode . 9
4.3 Accessing the FIFO Buffer Data . 9
4.4 Setting HPF Data through the FIFO . 10
4.5 Register 0x00: F_STATUS FIFO Status Register . 10
4.6 Configuring the FIFO to an Interrupt Pin . 10
4.7 Reading the System Interrupt Status Source Register 10

5.0 Example Code Using the FIFO . 11
5.1 Power Minimization Example: Data Logger Collecting 14-bit HPF Data 100 Hz,

4g . 12
5.2 Event Detection Trigger on a Tap Event to Flush the Data for Further Analysis

800 Hz ODR, 8g Mode, 8-bit data . 13
5.3 Auto-Wake Sleep Trigger Using the FIFO to Hold the Data that Saved Before

the ODR Changed: Circular Buffer Mode . 14
© 2010, 2012 Freescale Semiconductor, Inc.. All rights reserved.

1.2 Summary
A. The embedded FIFO is highly beneficial for system power savings and minimizing traffic across the I2C bus.
B. The FIFO allows for remarkable power savings of the system by allowing the host processor/MCU to go into a

sleep mode while the accelerometer independently stores the data, up to 32 samples.
C. The FIFO can be configured to be in a circular buffer mode, trigger mode or a fill buffer mode, which is application

dependent.
D. The FIFO is very useful for further enhancing embedded algorithms to extract more details from what caused the

interrupt, with the ability to read previous history.
E. The FIFO relieves the host processor from continuously polling data and relieves bus congestion.
F. The FIFO in the MMA8451Q is a bit different than the MMA8450Q and allows for data to be written into the device

and read out at the same time. This allows for even further current consumption savings.
G. The FIFO can be used to store 14-bit or 8-bit data. The data can be high pass filtered or not.

1.3 Related Documentation
The MMA845xQ device features and operations are described in a variety of reference manuals, user guides, and application

notes. To find the most-current versions of these documents:
1. Go to the Freescale homepage at:

http://www.freescale.com/
2. In the Keyword search box at the top of the page, enter the device number MMA845xQ.
3. In the Refine Your Result pane on the left, click on the Documentation link.

2.0 MMA8451, 2, 3Q Consumer 3-axis Accelerometer 3 x 3 x 1 mm
The MMA8451, 2, 3Q has a selectable dynamic range of ±2g, ±4g, ±8g. The device has eight different output data rates, se-

lectable high pass filter cut-off frequencies, and high pass filtered data. The available resolution of the data and the embedded
features is dependant on the specific device.
Note: The MMA8450Q has a different memory map and has a slightly different pinout configuration.

Figure 1. MMA8451, 2, 3Q Consumer 3-axis Accelerometer 3 x 3 x 1 mm

2.1 Output Data, Sample Rates and Dynamic Ranges of all Three Products
2.1.1 MMA8451Q

1. 14-bit data
2g (4096 counts/g = 0.25 mg/LSB) 4g (2048 counts/g = 0.5 mg/LSB) 8g (1024 counts/g = 1 mg/LSB)

2. 8-bit data
2g (64 counts/g = 15.6 mg/LSB) 4g (32 counts/g = 31.25 mg/LSB) 8g (16 counts/g = 62.5 mg/LSB)

3. Embedded 32 sample FIFO (MMA8451Q)

2.1.2 MMA8452Q
1. 12-bit data

2g (1024 counts/g = 1 mg/LSB) 4g (512 counts/g = 2 mg/LSB) 8g (256 counts/g = 3.9 mg/LSB)

1

2

3

4

5 9

10

11

12

13
141516

876

N
C

VD
D

N
C

VDDIO

BYP

NC

SCL

GND

NC

GND

INT1

GND

INT2

S
A

0

N
C

S
D

A

MMA845xQ
16-Pin QFN
(Top View)
AN4073

Sensors
2 Freescale Semiconductor

http://www.freescale.com/

2. 8-bit data
2g (64 counts/g = 15.6 mg/LSB) 4g (32 counts/g = 31.25 mg/LSB) 8g (16 counts/g = 62.5 mg/LSB)

2.1.3 MMA8453Q Note: No HPF Data
1. 10-bit data

2g (256 counts/g = 3.9 mg/LSB) 4g (128 counts/g = 7.8 mg/LSB) 8g (64 counts/g = 15.6 mg/LSB)
2. 8-bit data

2g (64 counts/g = 15.6 mg/LSB) 4g (32 counts/g = 31.25 mg/LSB) 8g (16 counts/g = 62.5 mg/LSB)

3.0 Applications Using the FIFO
The FIFO is used typically for the following functions:

• Data logging- flushing once every 32 samples for power savings and to relieve bus contention
• Storing the previous history leading up to an event, for power savings and relives bus contention
• The FIFO can be programmed to stop on an event trigger if the device was in sleep mode and the sample rate

changes when the event occurs
• The FIFO can be programmed to stop on an event trigger for tap, Portrait/Landscape, transient or motion. The

watermark can be set to store a certain amount of the data leading up to the event and a certain amount after the
event.

• The FIFO can be used to store High Pass Filtered data for gesture analysis involving data transitions. This
simplifies the processing required on the host.

3.1 Power Savings Using the FIFO Data Logging
The FIFO is very beneficial for saving overall system power by putting the processor into sleep mode until it needs to process

data from the accelerometer. The idea is to configure the MMA8451Q to monitor a desired interrupt, putting the processor in a
low power mode until it needs to respond to the accelerometer. This maximizes the time that the processor spends in a sleep or
low power mode and ultimately will minimize the system’s overall power consumption, increasing the life of the battery. The FIFO
allows the processor to sleep longer while samples are being collected inside the sensor. This also minimizes the traffic across
the I2C bus.

The timing of the data rate and the bus speed should be chosen with care. As an example the accelerometer is put in Low
Power Mode sampling at 50 Hz (20 ms) with the FIFO running in Fill Mode and the FIFO interrupt enabled. The interrupt would
be used to trigger the processor to wake up, service the interrupt, and flush the 32 samples. New data cannot be stored into the
FIFO while it is being flushed. Therefore the processor must wake up, service the interrupt and flush the data within 20 ms before
the next sample is available.

The FIFO overflow is asserted every 32 samples. The user has the option of flushing either the 14-bit data or the 8-bit data.
For the 14-bit data each sample consists of three 14-bit values, each stored as 2 bytes. Therefore, when full, the FIFO will contain
192 bytes. For the 8-bit data each sample consists of three 8-bit values, each stored as 1 byte. Therefore in this case when full
the FIFO will contain 96 bytes. An I2C burst access has about 3 extra bytes of “overhead”, for a total of 195 bytes in the 12-bit
data flush and 99 bytes in total for the 8-bit data flush. Also the Start, Stop and Repeat Start I2C transactions take a minimum of
0.6 µs. A 1 µs value will be added for each of these. Assuming that each I2C byte requires a 10-bit transfer window (8 for data,
1 for the acknowledge and 1 for bus idle), the time required to perform an I2C burst read of N samples can be calculated as
follows:

Figure 2. I2C Single Byte Read Transaction

Master ST Device Address [6:0] W Register Address [7:0] SR Device Address [6:0] R NAK SP

Slave AK AK AK Data [7:0]

10 10 10 10
AN4073

Sensors
Freescale Semiconductor 3

 14-bit Data Flush Calculations
 FIFORead(N) = (((N · 7) + 3) · 9) bits/ I2C bit rate) FIFORead(32) = 2043/ I2C bit rate
 For an I2C bit rate of 400 kHz, FIFORead(32) + 3 µs = 4.878 ms.
 For an I2C bit rate of 400 kHz, FIFORead(16) + 3 µs = 2.478 ms.

 8-bit Data Flush Calculations
 FIFORead(N) = ((((N · 3) + 3) · 10) / I2C bit rate) FIFORead(32) = 990 / I2C bit rate
 For an I2C bit rate of 400 kHz, FIFORead(32) + 3 µs = 2.478 ms.

 Note that bursting out 32 samples of 14-bit XYZ data consecutively takes 2043 bits to perform the transaction. By bursting
XYZ 14-bit data each time new data is ready requires 2880 bits, as this requires 32 iterations. The start, stop and repeat start
trans- actions calculated at 1 µs each start to add up over 32 iterations.

DataReadyRead(32) = (((3 · 2)+ 3) · 10) · 32 = 2880 bits/I2C bit rate
For an I2C bit rate of 400 kHz, DataReadyRead(32) = 7.2 ms + 3 µs · 32 = 7.296 ms

It is seen that using the FIFO to pull out all 32 samples at one time saves on the overhead. This allows the application proces-
sor to do other things or to remain in a low power mode for longer. Note that the timing to read the FIFO can be minimized further
by increasing the bus speed if this is possible by the processor.

Note: The MMA8451Q is capable of I2C bus speeds up to 4.75 MHz.

Example conditions are given for a processor with the wake timing and current consumption values in Table 1. In Wake Mode
the example processor uses a total of 12 mA, while in sleep mode it only uses 0.5 mA. It takes 3 ms to wake the processor from
sleep and read the FIFO status. As shown above, a 14-bit data flush from the accelerometer FIFO takes close to 5 ms while an
8-bit flush of the FIFO takes 2.5 ms. With these example conditions, the average current consumption and the percentage of
saved current consumption can be calculated.

Note: Current consumption and wake times on different processors/MCUs will vary but this same methodology applies. The next
several sections will show the analysis of flushing the FIFO at different sample rates using the assumed conditions from Table 1.

3.1.1 Flushing the FIFO at 100 Hz ODR and Below
 At all data rates the processor can wake up and flush the FIFO without missing any samples. The following is a timing diagram

typical of how the FIFO and processor would be configured for sample rates 100 Hz. The FIFO collects data until the overflow
flag interrupt is asserted. Then the processor wakes up and flushes all the data out of the FIFO. At 100 Hz and below this occurs
before the next sample is ready. The details of the sleep to wake timing are captured in Figure 3 and Table 2.

Figure 3. Timing of the FIFO at 100 Hz ODR Showing Sleep and Wake Timing

Table 1. Example Conditions Processor

 Wake-Up Time I2C Bit Rate 14-bit Flush 8-bit Flush Sleep Mode Wake Mode

 3 ms 400 kHz 5 ms 2.5 ms 0.5 mA 12 mA

Table 2. Wake and Sleep Timing at 100 Hz ODR

Data ODR LP
Current

Total
Time

Sleep
Time

Wake
Time Sleep/Total Wake/Total Sleep

Current
Wake

Current
Total

Current
Current
Savings

14-bit 100 Hz 0.024 mA 320 ms 312 ms 8 ms 312/320 8/320 0.524 mA 12.024 mA 0.812 mA 93.3%

8-bit 100 Hz 0.024 mA 320 ms 314.5 ms 5.5 ms 314.5/320 5.5/320 0.524 mA 12.024 mA 0.722 mA 94.0%

Sleep 10 ms • 32 = 320 ms - 5 ms - 3 ms = 312 ms (14-bit Read)

Sleep 10 ms • 32 = 320 ms - 2.5 ms - 3 ms = 314.5 ms (8-bit Read)

14-bit

8-bit

Wake

32
AN4073

Sensors
4 Freescale Semiconductor

3.1.2 Flushing the FIFO at 200 Hz ODR
When the data rate is set to 200 Hz the time between samples is 5 ms. The processor can be put in sleep mode until the

overflow flag is asserted. Then the data is flushed. This is done without missing any samples. The results of the Sleep to Wake
timing and current drain are captured in Table 3.

Figure 4. Timing of the FIFO at 200 Hz ODR Showing Sleep and Wake Timing

3.1.3 Flushing the FIFO at 400 Hz ODR
When sampling at 400 Hz, there is a new sample every 2.5 ms. Because the FIFO can read and write at the same time, there

is no conflict with missing samples to read out the data fast enough. The timing diagram illustrating the Wake and Sleep intervals
are shown in Figure 5.

Figure 5. Timing of the FIFO at 400 Hz ODR Showing Sleep and Wake Timing
Table 4 presents all the calculations at 400 Hz flushing 14-bit data and 8-bit data without missing samples.

Table 3. Wake and Sleep Timing at 200 Hz ODR

Data ODR LP
Current

Total
Time

Sleep
Time

Wake
Time Sleep/Total Wake/Total Sleep

Current
Wake

Current
Total

Current
Current
Savings

14-bit 200 Hz 0.044 mA 160 ms 152 ms 8 ms 152/160 8/160 0.544 mA 12.044 mA 1.119 mA 90.7%

8-bit 200 Hz 0.044 mA 160 ms 154.5 ms 5.5 ms 154.5/160 5.5/160 0.544 mA 12.044 mA 0.939 mA 92.2%

Sleep 5 ms • 32 = 160 ms - 5 ms - 3 ms = 152 ms (14-bit Read)

Sleep 5 ms • 32 = 160 ms - 2.5 ms - 3 ms = 154.5 ms (8-bit Read)

14-bit

8-bit

Wake

32

Table 4. Wake and Sleep Timing at 400 Hz ODR

Data ODR LP
Current

Total
Time

Sleep
Time

Wake
Time Sleep/Total Wake/Total Sleep

Current
Wake

Current
Total

Current
Current
Savings

14-bit 400 Hz 0.085 mA 80 ms 72 ms 8 ms 72/80 8/80 0.585 mA 12.085 mA 1.735 mA 85.6%

8-bit 400 Hz 0.085 mA 80 ms 74.5 ms 5.5 ms 74.5/80 5.5/80 0.585 mA 12.085 mA 1.376 mA 88.6%

Sleep 2.5 ms • 32 = 80 ms - 5 ms - 3 ms = 72 ms (14-bit Read)

Sleep 2.5 ms • 32 = 80 ms - 2.5 ms - 3 ms = 74.5 ms (8-bit Read)

14-bit

8-bit

Wake

32
AN4073

Sensors
Freescale Semiconductor 5

3.1.4 Flushing the FIFO at 800 Hz ODR
When sampling at very high speeds the value of the FIFO is very apparent. The processor no longer needs to access the data

every 1.25 ms at 800 Hz mode to collect all the data. The processor can go to sleep and wait until the overflow flag asserts,
flushing the data every 4 ms. Because the FIFO can read and write at the same time there is no conflict with missing samples to
read out the data fast enough. The timing diagram illustrating the Wake and Sleep intervals are shown in Figure 6.

Figure 6. Timing of the FIFO at 800 Hz ODR Showing Sleep and Wake Timing

Table 6 summarizes the Wake and Sleep timing for all sample rates of the MMA8451Q. The total current consumed per cycle
and the current savings as a percentage are calculated based on the amount of time the processor is in Wake vs. Sleep.

From Table 6, these values can be related to the amount of time that a typical lithium ion battery for a cell phone would last.
This gives a representation of power savings related to battery life time. Table 7 incorporates the current consumption of the
processor and the accelerometer in full power mode to give the average total current consumption. An example lithium-ion cell
phone battery stores 1200 mA hours. Based on this information a comparison is made. This shows the total current consumption
(processor + accelerometer) at all sample rates when the processor is continuously polling data and therefore always in the wake
state. The current consumption values for the accelerometer are taken in the Low Power mode, which gives the best case
scenario. This analysis can be done for the other 3 oversampling modes (High Resolution, Low Noise + Low Power, and Normal).

Table 5. Wake and Sleep Timing at 800 Hz ODR

Data ODR LP
Current

Total
Time

Sleep
Time

Wake
Time Sleep/Total Wake/Total Sleep

Current Wake Current Total
Current

Current
Savings

14-bit 800 Hz 0.165 mA 40 ms 32 ms 8 ms 32/40 8/40 0.665 mA 12.165 mA 2.965 mA 75.6%

8-bit 800 Hz 0.165 mA 40 ms 34.5 ms 5.5 ms 34.5/40 5.5/40 0.665 mA 12.165 mA 2.246 mA 81.5%

Table 6. Power Savings Using FIFO at All Data Rates

ODR Time Between
Samples

Sleep/Total
Ratio 14-bit

Total Current
mA

Current Savings
14-bit Data (%)

Sleep/Total
Ratio 8-bit

Current Consumption
8-bit Data Flush mA

Current Savings
8-bit Data (%)

1.56 Hz 641 ms 99.96% 0.510 mA 95.75% 99.98% 0.509 mA 95.76%
6.25 Hz 160 ms 99.84% 0.524 mA 95.64% 99.89% 0.518 mA 95.68%
12.5 Hz 80 ms 99.69% 0.542 mA 95.49% 99.79% 0.531 mA 95.58%
50 Hz 20 ms 98.75% 0.658 mA 94.53% 99.14% 0.613 mA 94.90%

100 Hz 10 ms 97.50% 0.812 mA 93.25% 98.28% 0.722 mA 94.00%
200 Hz 5 ms 95.00% 1.119 mA 90.71% 96.56% 0.939 mA 92.20%
400 Hz 2.5 ms 90.00% 1.736 mA 85.64% 93.13% 1.376 mA 88.62%
800 Hz 1.25 ms 80.00% 2.965 mA 75.63% 86.25% 2.246 mA 81.54%

Table 7. Example Li-Ion Battery Life Calculations without the FIFO to Data Log Data

ODR
LP-Low Power Total Consumption AA Li-Ion Battery Life 1200 mAh

(1200 mAh/Total mA) Time (h)
Time

(Days)

1.56 Hz (LP) 12.006 99.95 4.16

6.25 Hz (LP) 12.006 99.95 4.16

12.5 Hz (LP) 12.006 99.95 4.16

50 Hz (LP) 12.014 99.88 4.16

100 Hz (LP) 12.024 99.80 4.16

200 Hz (LP) 12.044 99.63 4.15

400 Hz (LP) 12.085 98.30 4.14

800 Hz (LP) 12.165 98.64 4.11

Sleep 1.25 ms • 32 = 40 ms - 5 ms - 3 ms = 32 ms (14-bit Read)

Sleep 1.25 ms • 32 = 40 ms - 2.5 ms - 3 ms = 34.5 ms (8-bit Read)

14-bit

8-bit

Wake

32
AN4073

Sensors
6 Freescale Semiconductor

When the processor is continuously running, the accelerometer current consumption has a small effect on the battery life be-
cause the processor uses much more current than the accelerometer. The ability to use the accelerometer to store data and put
the processor in a sleep mode can have a significant impact on the battery life (Table 8 and Table 9). In Table 8 and Table 9 the
far column on the right displays the battery life improvement by using the accelerometer FIFO to data log the data, putting the
processor into a sleep mode until the FIFO is full. This is compared to having the processor and accelerometer running all the
time, which is the method required to data log without a FIFO. This shows that at the highest sampling rate in Low Power Mode
the battery life improves 4 - 5x what it would by polling the data with the processor continually running. At the lowest sample rate
in Low Power Mode, the savings is 23.6x longer battery life.

3.2 Power Savings Using the FIFO to Collect the History Leading up to an Event Trigger
One of the application uses for the FIFO is the ability to analyze the data that occurred right up to the point of an interrupt

triggering event. After the interrupt flag of the event is set, the FIFO (configured in Trigger Mode) can be flushed to extract the
data leading up to the event. The event trigger watermark can be set to store any number of samples before the event occurred
and then the remaining samples after the event occurred, as long as the total number of samples is equal to 32. For example,
the FIFO can be set to store the first 20 samples leading up to the event by setting the watermark to 20. Then after the event the
FIFO will fill to 32 collecting the next 12 samples after the event and then will stop and assert to overflow flag. This technique can
be used for a variety of gestures. For example, directional tap can be analyzed by configuring the single tap event and setting
the FIFO to Trigger Buffer Mode enabling the Tap Trigger. The tap event must be configured to all the desired threshold settings.
For this application the data rate should be set to 800 Hz. The processor can go into a low power or sleep mode until the FIFO
overflow flag is asserted. Then the data can be flushed to analyze the data leading up to the event and right after the event. The
ability to extract the data of interest efficiently while the processor is in sleep mode has huge advantages. Even if the processor
is not in a sleep mode this saves the processor from having to continually analyze irrelevant data. The accelerometer is smart
enough to be configured to store the data of interest and let the processor know when that data is available.

Table 8. Example Li-Ion Battery Life Calculations Using the FIFO to Data Log 14-bit Data

ODR
LP-Low Power

Total Consumption
14-bit Data Flush mA

Li-Ion Battery 1200 mAh
(1200 mAh/Total mA) Time (h)

Time
(Days)

Battery Life
Improvement (x Longer)

1.56 Hz (LP) 0.510 mA 2350.71 97.95 23.52

6.25 Hz (LP) 0.524 mA 2290.21 95.43 22.91

12.5 Hz (LP) 0.542 mA 2214.28 92.26 22.15

50 Hz (LP) 0.658 mA 1824.4 76.02 18.27

100 Hz (LP) 0.812 mA 1478.74 61.61 14.82

200 Hz (LP) 1.119 mA 1072.39 44.68 10.76

400 Hz (LP) 1.735 mA 691.64 28.82 6.93

800 Hz (LP) 2.965 mA 404.72 16.86 4.10

Table 9. Example Li-Ion Battery Life Calculations Using the FIFO to Data Log 8-bit Data

ODR
LP-Low Power

Total Consumption
8-bit Data Flush mA

Li-Ion Battery 1200 mAh
(1200 mAh/Total mA) Time (h)

Time
(Days)

Battery Life
Improvement (x Longer)

1.56 Hz (LP) 0.509 mA 2357.18 98.22 23.58
6.25 Hz (LP) 0.518 mA 2315.02 96.46 23.16
12.5 Hz (LP) 0.531 mA 2261.13 94.21 22.62
50 Hz (LP) 0.613 mA 1958.13 81.59 19.60

100 Hz (LP) 0.722 mA 1662.84 69.29 16.66

200 Hz (LP) 0.939 mA 1277.53 53.23 12.82

400 Hz (LP) 1.376 mA 872.33 36.35 8.79

800 Hz (LP) 2.246 mA 534.22 22.26 5.42
AN4073

Sensors
Freescale Semiconductor 7

3.3 FIFO Behavior During Wake to Sleep Transitions
Table 10 describes the different behaviors of the FIFO under the wake/sleep conditions.

When the FIFO is configured and the Auto-Wake/Sleep is configured with the FIFO Wake from Sleep bit set (Reg 0x2C bit 7)
the data in the FIFO is held until the FIFO is flushed. If a new sample arrives before the FIFO is flushed a FIFO Gate Error occurs
indicating at least one sample has been missed. The FIFO Gate Error bit is set by the system in register 0x0B, bit 7. This bit will
clear when the FIFO is flushed. This can be useful to see the data up to the point before the device changes ODR. The FG_Time
bits (in 0x0B) indicate the number of samples or time period that has elapsed since the FIFO Gate Error was asserted. A value
of up to 31 can be stored.

Table 10. Behavior of FIFO under Wake/ Sleep Conditions
FIFO INT
Enabled

Wake From
Sleep Enabled Result

NO NO

FIFO will fall asleep when the sleep timer times out and no other interrupt wakes the system.
There is an AUTOMATIC flush and the FIFO starts refilling at the Sleep ODR from 0.
If another functional block causes the device to wake the FIFO will FLUSH itself again and start filling at the
Wake ODR.

YES NO

With the interrupt enabled the FIFO can be read and flushed clearing the interrupt. The system is kept from
falling asleep by reading the status after the interrupt is set. The FIFO does not have to be flushed to keep the
device in wake mode as long as the FIFO status is read continuously after the FIFO interrupt is enabled. If the
system falls asleep (and no new interrupts occur during the time-out period), the FIFO AUTOMATICALLY
flushes and starts refilling at the Sleep ODR from 0 and stores at the Wake ODR.

NO YES
FIFO will fall asleep if no wake events occur within the time out period.
Last data remains here in the FIFO until it is flushed.
Once the FIFO is flushed, it will start collecting the new data at the current ODR.

YES YES

With interrupt enabled, the FIFO can be read and flushed (clearing the interrupt) . Note: Reading the FIFO
status will keep the system from falling asleep.
If the system does fall asleep (and no interrupts occur during the time out period) then the FIFO will stop
collecting any data. The last data will be held in the FIFO.
Once the FIFO is flushed, it will start collecting the new data at the current ODR.

Table 11. 0x0B SYSMOD: System Mode Register (Read Only)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

FGERR FGT_4 FGT_3 FGT_2 FGT_1 FGT_0 SYSMOD1 SYSMOD0
AN4073

Sensors
8 Freescale Semiconductor

4.0 Embedded Settings of the FIFO
The following section discusses the different registers involved in configuring the FIFO.

1. Register 0x09 bit 7, 6 – Set F_Mode to 01, 10 or 11 and set Watermark Value
2. Register 0x0A Interrupt Triggers for FIFO trigger mode
3. Register 0x01 Points to the FIFO buffer and is used to access 8-bit or 14-bit data.
4. Register 0x0E XYZ_DATA_CFG Register for enabling high pass filtered data and dynamic range
5. Register 0x00 FIFO Status Register
6. Register 0x2D Interrupt Enable Register bit 6
7. Register 0x2E Interrupt Configuration Register bit 6, Route INT1 or INT2

4.1 Register 0x09: F_SETUP FIFO Set-Up Register
The F_SETUP register configures the FIFO mode and the watermark value. When F_MODE is a value greater than zero (00)

the FIFO is enabled. When F_MODE is 00 the FIFO is disabled.

FMODE = 01 Circular Buffer: In this mode the FIFO contains the most recent samples when overflowed. The oldest sample is
discarded to be replaced by the new sample. This mode is useful when waiting for an event and wanting to collect the latest
32 samples up to that event.

FMODE = 10 Fill Buffer: In this mode the FIFO stops accepting new samples when overflowed. This is a good mode to be in for
data logging.

FMODE = 11 Trigger Buffer: In this mode the FIFO will be in a circular mode up to the number of samples set in the watermark.
After the trigger occurs (tap, P/L, motion, transient) the FIFO will fill and collect samples until the buffer if full. This allows the data
to be collected both before and after the trigger event, defined by the watermark. Note that the FIFO mode can be switched
between the three operational modes (01, 10, 11) in Active Mode. The mode must first be changed to 00 then it can be modified.

To change Modes while in Active try the following sequence:
A. Set the Watermark 1 to 32 counts
B. Set F_Mode bit 6 and 7 to “Fill” 01
C. Set Active Mode
D. Set F_Mode bit 6 and 7 to “Disable” 00
E. Set F_Mode bit 6 and 7 to “Circular” 10

The watermark is used to trigger a watermark interrupt. If the FIFO watermark remains at 0 this will disable the
FIFO watermark event flag generation. A FIFO sample count exceeding the watermark event does not stop the FIFO from
accepting new data. The FIFO update rate is dictated by the selected system ODR. In active mode the ODR is set by the DR bits
in the CTRL_REG1 register (0x2A) and when auto-sleep is active the ODR is set by the ASLP_RATE field in the CTRL_REG1
register (0x2A).

When a byte is read from the FIFO buffer the oldest sample data in the FIFO buffer is returned and also deleted from the front
of the FIFO buffer, while the FIFO sample count is decremented by one. It is assumed that the host application shall use the I2C
multi-read transaction to dump the FIFO.

4.2 Register 0x0A Interrupt Triggers for Trigger Mode
The Trigger Configuration register is used with the Trigger Buffer Mode (FMODE = 11). The event to trigger the FIFO to switch

from circular to fill and stop is selected in register 0x0A. The function settings for the selected interrupt must be configured but
the system function interrupt does not need to be enabled.

4.3 Accessing the FIFO Buffer Data
If F_Mode > 00 in Reg 0x09 then the data points to the head of the FIFO buffer at Register 0x01 which is the X_MSB byte. This
is the start point for both the 14-bit or the 8-bit data. When accessing the 8-bit data the F_READ bit in Register 0x2A is set which
modifies the auto-incrementing to skip over the LSB data. When F_READ is cleared the 14-bit data is read accessing all 6 bytes
sequentially per sample. Registers 0x02, 0x03, 0x04, 0x05 and 0x06 will return a value of zero when read.
Note: F_MODE must be equal to 00 when changing the F_READ bit to change between 8-bit or 14-bit data. Also the part must
be in Standby mode.

Table 12. 0x09 F_SETUP: FIFO Setup Register (Read/Write)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

F_MODE1 F_MODE0 F_WMRK5 F_WMRK4 F_WMRK3 F_WMRK2 F_WMRK1 F_WMRK0

Table 13. 0x0A: TRIG_CFG Trigger Configuration Register (Read/Write)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

— — Trig_TRANS Trig_LNDPRT Trig_PULSE Trig_FF_MT — —
AN4073

Sensors
Freescale Semiconductor 9

4.4 Setting HPF Data through the FIFO
In order to store HPF data in the FIFO the HPF_OUT bit must be set in Register 0x0E. When the HPF_OUT bit is not set the

data will not be high pass filtered. The dynamic range is also set in this register with the FS0 and FS1 bits.

4.5 Register 0x00: F_STATUS FIFO Status Register
The Status Register shown in Table 15, is shared between the real time status when F_MODE = 00, and the FIFO Status when

F_MODE > 00. The status is used to retrieve information about the FIFO. This register has a flag for the overflow and watermark.
It also has a counter that can be checked to review the number of samples stored in the buffer.

The F_OVF and F_WMRK_FLAG flags remain asserted while the event source is still active, but the user can clear the FIFO
interrupt bit flag in the interrupt source register (INT_SOURCE Reg 0x0C) by reading the F_STATUS register (0x00).

The F_OVF bit flag will assert when the FIFO has overflowed and the F_WMRK_FLAG bit flag will assert when the F_CNT
value is greater than then F_WMRK value. These interrupts remain asserted until at least one sample (X,Y,Z) is read. Both the
Watermark flag and the Overflow flag cause a System Interrupt for the FIFO in Register 0x0C when the FIFO interrupt is enabled.

4.6 Configuring the FIFO to an Interrupt Pin
In order to set up the system to route to a hardware interrupt pin, the System Interrupt (bit 6 in Reg 0x2D) must be enabled.

The MMA8451Q allows for seven (7) separate types of interrupts. One (1) of these is reserved for the FIFO.

Step 1: Enable the Interrupt in Register 0x2D.

The INT_EN_FIFO interrupt enable bit allows the FIFO function to route its event detection flag to the interrupt controller of
the system. The interrupt controller routes the enabled function to either the INT1 or INT2 pin.

To enable the FIFO, set bit 6 in Register 0x2D as follows:
Code Example: IIC_RegWrite (0x2D, 0x40);

Step 2: Route the interrupt to INT1 or to INT2. This is done in register 0x2E.

Note: To route the FIFO to INT1 set bit 6 in register 0x2E. Clear bit 6 to set the FIFO to INT2.
Code Example: IIC_RegWrite (0x2E,0x40); //Set to INT1

4.7 Reading the System Interrupt Status Source Register
In the interrupt source register, the status of the various embedded features can be determined. This is shown in Table 18.

The bits that are set (logic ‘1’) indicate which function has asserted an interrupt; conversely, the bits that are cleared (logic ‘0’)
indicate which function has not asserted or has de-asserted an interrupt. The interrupts are rising edge sensitive. The bits are
set by a low to high transition and are cleared by reading the appropriate interrupt source register.

Table 14. Register 0x0E: XYZ_DATA_CFG (Read/Write)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 HPF_OUT 0 0 FS1 FS0

Table 15. Register 0x00_STATUS: FIFO STATUS Register (Read Only)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

F_OVF F_WMRK_FLAG F_CNT5 F_CNT4 F_CNT3 F_CNT2 F_CNT1 F_CNT0

Table 16. 0x2D CTRL_REG4 Register (Read/Write)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

INT_EN_ASLP INT_EN_FIFO INT_EN_TRANS INT_EN_LNDPRT INT_EN_PULSE INT_EN_FF_MT — INT_EN_DRDY

Table 17. 0x2E CTRL_REG5 Register (Read/Write)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

INT_CFG_ASLP INT_CFG_FIFO INT_CFG_TRANS INT_CFG_LNDPRT INT_CFG_PULSE INT_CFG_FF_MT — INT_CFG_DRDY

Table 18. 0x0C INT_SOURCE: System Interrupt Status Register (Read Only)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

SRC_ASLP SRC_FIFO SRC_TRANS SRC_LNDPRT SRC_PULSE SRC_FF_MT — SRC_DRDY
AN4073

Sensors
10 Freescale Semiconductor

T

5.0 Example Code Using the FIFO
The following are three examples for configuring the FIFO. Table 19 shows all the registers of importance for using the FIFO.

able 19. Registers of Importance for the FIFO

Reg Name/Definition Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

00 F_STATUS
FIFO Status R F_OVF F_WMRK_FLA

G F_CNT5 F_CNT4 F_CNT3 F_CNT2 F_CNT1 F_CNT0

09 F_SETUP
FIFO Setup R/W F_MODE1 F_MODE0 F_WMRK5 F_WMRK4 F_WMRK3 F_WMRK2 F_WMRK1 F_WMRK0

0A TRIG_CFG
FIFO Triggers R/W — — Trig_TRANS Trig_LNDPRT Trig_PULSE Trig_FFMT — —

0B SYSMOD
System Mode R FGERR FGT_4 FGT_3 FGT_2 FGT_1 FGT_0 SYSMOD1 SYSMOD0

0C INT_SOURCE
Interrupt Status R SRC_ASLP SRC_FIFO SRC_TRANS SRC_LNDPRT SRC_PULSE SRC_FF_MT — SRC_DRDY

2A CTRL_REG1
Control Reg1 R/W ASLP_RATE1 ASLP_RATE0 DR2 DR1 DR0 LNOISE F_READ ACTIVE

2C
CTRL_REG3

Control Reg3 R/W
(Wake Interrupts from Sleep)

FIFO_GATE WAKE_TRANS WAKE_LNDPRT WAKE_PULSE WAKE_FF_MT — IPOL P_OD

2D
CTRL_REG

Control Reg4 R/W
(Interrupt Enable Map)4

INT_EN_ASLP INT_EN_FIFO INT_EN_TRANS INT_EN_LNDPRT INT_EN_PULSE INT_EN_FF_MT — NT_EN_DRDY

2E
CTRL_REG5

Control Reg5 R/W
(Interrupt Configuration)

INT_CFG_ASLP INT_CFG_FIFO INT_CFG_TRANS INT_CFG_LNDPRT INT_CFG_PULSE INT_CFG_FF_MT — INT_CFG_DRDY
AN4073

Sensors
Freescale Semiconductor 11

5.1 Power Minimization Example: Data Logger Collecting 14-bit HPF Data 100 Hz, 4g
Step 1: Go to Standby Mode, set Sample Rate to 100 Hz, Standby (Active = 0),14-bit (F_READ = 0),

IIC_RegWrite(0x2A, 0x18); //CRTL_REG1: 100 Hz mode DR = 011, Active = 0,
F_Read = 0

Step 2: Set the FIFO to Fill Buffer Mode in Register 0x09 F_Setup
IIC_RegWrite(0x09, 0x80); //FIFO Set to Fill Mode

Step 3: Set the FIFO Interrupt Pin to Int1 to flush the data every 32 samples when the overflow flag
asserts

IIC_RegWrite(0x2D, 0x40); //Enable the interrupt Pin for the FIFO
IIC_RegWrite(0x2E, 0x40); //Set the interrupt to route to INT1

Step 4: Turn on HPF for Data Out and set 4g Mode
IIC_RegWrite(0x0E, 0x11); //HPF_OUT set, 4g mode

Step 5: Go to Active Mode
CRTL_REG1_Data = IIC_RegRead(0x2A);
CRTL_REG1_Data| = 0x01;
IIC_RegWrite(CRTL_REG1_Data);

Step 6: Write an Interrupt Service Routine to Clear the interrupt and Flush the data from the FIFO.

Interrupt void isr_KBI (void)
{

WAKE_MCU;
//clear the interrupt flag
CLEAR_KBI_INTERRUPT;

//Determine the source of the interrupt by reading the system interrupt
Int_SourceSystem = IIC_RegRead(0x0C);
// Set up Case statement here to service all of the possible interrupts
if ((Int_SourceSystem&0x40)==0x40)
{

// 1. Read the Status Register to Clear the Overflow Flag Interrupt

IIC_RegRead(0x00);

// 2. This would be used to burst out 14 bit data
ComObj.ReadDataBurst(CurDeviceAddress, 0X01, ref databuf14, 192);
//This would be used to burst out 8 bit data
ComObj.ReadDataBurst(CurDeviceAddress, 0X01, ref databuf8, 96);

}
}

AN4073

Sensors
12 Freescale Semiconductor

5.2 Event Detection Trigger on a Tap Event to Flush the Data for Further Analysis
800 Hz ODR, 8g Mode, 8-bit data
Step 1: Go to Standby Mode, set Sample Rate to 800 Hz, Standby (Active = 0),8-bit (F_READ = 1),

IIC_RegWrite(0x2A, 0x02); //CRTL_REG1: 800 Hz mode DR = 000, Active = 0,
F_Read = 1

Step 2: Set the FIFO to Trigger Buffer Mode in Register 0x09 F_Setup
IIC_RegWrite(0x09, 0xD4); //FIFO Set to Trigger, Set Watermark to 20

Step 3: Set the Trigger for Tap Detection
IIC_RegWrite(0x0A,0x08); //Enable the Tap to Trigger the FIFO

Step 4: Enable X and Y and Z Single Pulse
IIC_RegWrite(0x21, 0x15)

Step 5: Set Threshold 1.575g on X and 2.52g on Z
Note: Every step is 0.063g
1.575g/ 0.063g = 25 counts
2.52g/0.063g = 40 counts
IIC_RegWrite(0x23, 0x19); //Set X Threshold to 1.575g
IIC_RegWrite(0x24, 0x19); //Set Y Threshold to 1.575g
IIC_RegWrite(0x25, 0x28); //Set Z Threshold to 2.52g

Step 6: Set Time Limit for Tap Detection to 50 ms No LPF Enabled
Note: 800 Hz ODR, Time step is 0.625 ms per step
50 ms/0.625 ms = 80 counts
IIC_RegWrite(0x26,0x50); //50 ms

Step 7: Set Latency Timer to 300 ms
Note: 800 Hz ODR, Time step is 1.25 ms per step
300 ms/1.25 ms = 240 counts
IIC_RegWrite(0x27,0xF0); //300 ms

Step 8: Set the Tap Interrupt Pin to INT1 to Alert to MCU to wake up and flush the FIFO
IIC_RegWrite(0x2D, 0x08); //Enable the interrupt Pin Tap
IIC_RegWrite(0x2E, 0x08); //Set the interrupt to route to INT1

Step 9: Put Device in 8g Mode, Storing HPF Data
IIC_RegWrite(0x0E, 0x12); //8g HPF Data

Step 10: Put Device in Active Mode
CRTL_REG1_Data = IIC_RegRead(0x2A);
CRTL_REG1_Data| = 0x01;
IIC_RegWrite(CRTL_REG1_Data);

Step 11: Write an Interrupt Service Routine to Clear the interrupt and Flush the data from the FIFO The
interrupt service routine will wake the MCU and then flush the data. The data will contain 20
samples of data leading up to the tap event and 12 samples after the event. Sometimes the
rebound acceleration data can be very insightful to understanding an event. Therefore it is a
good idea to capture the data right before the event, during the event and maybe a few samples
after the event. All of this can be accomplished with the FIFO.
AN4073

Sensors
Freescale Semiconductor 13

Interrupt void isr_KBI (void)
{

WAKE_MCU;
//clear the interrupt flag
CLEAR_KBI_INTERRUPT;
//Determine the source of the interrupt by first reading the system interrupt
register
Int_SourceSystem = IIC_RegRead(0x0C);
// Set up Case statement here to service all of the possible interrupts
if ((Int_SourceSystem&0x40)==0x40)
{

// 1. Read the Status Register to Clear the Tap Status Flag
TapStatus = IIC_RegRead(0x22);
// 2. 8 bit data only required. The FIFO interrupt is cleared when
// flushing the data. Therefore no requirement to read the FIFO Status
ComObj.ReadDataBurst(CurDeviceAddress, 0X01, ref databuf8, 96);

}
}

5.3 Auto-Wake Sleep Trigger Using the FIFO to Hold the Data that Saved Before the
ODR Changed: Circular Buffer Mode
Step 1: Put the device in Standby Mode, ASLEEP = 50 Hz, Wake DR = 800 Hz

IIC_RegWrite (0x2A, 0x02); //Sleep 50 Hz, Wake 800 Hz, F_READ = 1 8-bit data
Step 2: Enable Auto Sleep: To enable the Auto-Wake/Sleep set bit 2 in Register 0x2B, the SLPE bit.

Note: Register 0x2B CRTL_REG2
CRTL_REG2_Data = IIC_RegRead(0x2B); //Store value in the Register
CRTL_REG2_Data| = 0x04; //Set the Sleep Enable Bit
IIC_RegWrite(0x2B, CRTL_REG2_Data); Write the updated value in CRTL_REG2.

Step 3: Set the Sleep Timer for 20 seconds to time out
Note: Time step at 800 Hz ODR = 320 ms steps

20s/ 0.32s = 62.5, rounded to 63 counts
IIC_RegWrite(0x29, 0x3F);

Step 4: Set the FIFO Gate and the Motion Block 1 in the Wake From Sleep Register
WakeRegData = IIC_RegRead(0x2C); //Store Register contents
WakeRegData | = 0x88; Set the Wake from Motion and the FIFO Gate
IIC_RegWrite(0x2C, WakeRegData);

Step 5: Configure the Data to be Regular Data, not HPF data, 2g mode in Register 0x0E
IIC_RegWrite(0x0E, 0x00);

Step 6: Put the FIFO in Circular Buffer Mode
IIC_RegWrite(0x09, 0x40); //FIFO Set to Circular Buffer Mode

Step 7: Set up the Motion Freefall Block (INT2), and Auto Sleep (INT1)
IIC_RegWrite(0x2D, 0x84); //Enable Motion Block, Auto Sleep
IIC_RegWrite(0x2E, 0x80); //Set INT1 to AutoSleep, Set INT2 to Motion

Step 8: Enable X, Y, Z with “OR” Condition and latch enabled for Motion Detection
IIC_RegWrite(0x15, 0xF8);

Step 9: Set the Threshold to 2g
Note: Each count is 0.063g per count
2g/0.063g/count = 32 counts
IIC_RegWrite(0x17, 0x20);
AN4073

Sensors
14 Freescale Semiconductor

Step 10: Set the debounce counter to eliminate false readings at 800 Hz, will need to adjust at Sleep ODR
IIC_RegWrite(0x18, 0x30); //60 ms at 800 Hz

Step 11: Put the device in Active Mode
CRTL_REG1_Data = IIC_RegRead(0x2A);
CRTL_REG1_Data| = 0x01;
IIC_RegWrite(CRTL_REG1_Data);

Step 12: Set up the Interrupt Service Routine

Interrupt void isr_KBI (void)
{

WAKE_MCU;
//clear the interrupt flag
CLEAR_KBI_INTERRUPT;
//Determine the source of the interrupt by first reading the system interrupt
register
Int_SourceSystem = IIC_RegRead(0x0C);
// Set up Case statement here to service all of the possible interrupts
if ((Int_SourceSystem&0x80)==0x80)
{

//Perform an Action since AutoSleep Flag has been set
//Read the System Mode to clear the system interrupt
Int_SysMod = IIC_RegRead(0x0B);
if (Int_SysMod==0x02)
{

// sleep mode
//Flush Data to MCU and store
ComObj.ReadDataBurst(CurDeviceAddress, 0X01, ref databuf8, 96);

}
else if (Int_SysMod==0x01)
{

//Wake Mode
//Flush Data to MCU and store
ComObj.ReadDataBurst(CurDeviceAddress, 0X01, ref databuf8, 96);

}
else
{

//Error
}

}
}

AN4073

Sensors
Freescale Semiconductor 15

Document Number: AN4073
Rev. 1
07/2012

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer’s technical experts. Freescale does not convey any

license under its patent rights nor the rights of others. Freescale sells products pursuant

to standard terms and conditions of sale, which can be found at the following address:

store.esellerate.net/store/Policy.asSelectorpx?Selector=RT&s=STR0326182960&pc.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, C-Ware,

Energy Efficient Solutions logo, Kinetis, mobileGT, PowerQUICC, Processor Expert,

QorIQ, Qorivva, StarCore, Symphony, and VortiQa are trademarks of Freescale

Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack, ColdFire+,

CoreNet, Flexis, MagniV, MXC, Platform in a Package, QorIQ Qonverge, QUICC

Engine, Ready Play, SafeAssure, SMARTMOS, TurboLink, Vybrid, and Xtrinsic are

trademarks of Freescale Semiconductor, Inc. All other product or service names are

the property of their respective owners.

© 2012 Freescale Semiconductor, Inc.

	1.0 Introduction
	Table of Contents
	The MMA845xQ device features and operations are described in a variety of reference manuals, user guides, and application notes. To find the most-current versions of these documents:
	2.0 MMA8451, 2, 3Q Consumer 3-axis Accelerometer 3 x 3 x 1 mm
	The MMA8451, 2, 3Q has a selectable dynamic range of ±2g, ±4g, ±8g. The device has eight different output data rates, selectable...
	2.1.1 MMA8451Q
	2.1.2 MMA8452Q
	2.1.3 MMA8453Q Note: No HPF Data

	3.0 Applications Using the FIFO
	The FIFO is used typically for the following functions:
	The FIFO is very beneficial for saving overall system power by putting the processor into sleep mode until it needs to process d...
	The timing of the data rate and the bus speed should be chosen with care. As an example the accelerometer is put in Low Power Mo...
	The FIFO overflow is asserted every 32 samples. The user has the option of flushing either the 14-bit data or the 8-bit data. Fo...
	Note that bursting out 32 samples of 14-bit XYZ data consecutively takes 2043 bits to perform the transaction. By bursting XYZ 1...
	It is seen that using the FIFO to pull out all 32 samples at one time saves on the overhead. This allows the application process...
	Example conditions are given for a processor with the wake timing and current consumption values in Table 1. In Wake Mode the ex...
	Table 1. Example Conditions Processor

	3.1.1 Flushing the FIFO at 100 Hz ODR and Below
	At all data rates the processor can wake up and flush the FIFO without missing any samples. The following is a timing diagram ty...
	Table 2. Wake and Sleep Timing at 100 Hz ODR

	3.1.2 Flushing the FIFO at 200 Hz ODR
	When the data rate is set to 200 Hz the time between samples is 5 ms. The processor can be put in sleep mode until the overflow ...
	Table 3. Wake and Sleep Timing at 200 Hz ODR

	3.1.3 Flushing the FIFO at 400 Hz ODR
	When sampling at 400 Hz, there is a new sample every 2.5 ms. Because the FIFO can read and write at the same time, there is no c...
	Table 4 presents all the calculations at 400 Hz flushing 14-bit data and 8-bit data without missing samples.
	Table 4. Wake and Sleep Timing at 400 Hz ODR

	3.1.4 Flushing the FIFO at 800 Hz ODR
	When sampling at very high speeds the value of the FIFO is very apparent. The processor no longer needs to access the data every...
	Table 5. Wake and Sleep Timing at 800 Hz ODR

	Table 6 summarizes the Wake and Sleep timing for all sample rates of the MMA8451Q. The total current consumed per cycle and the current savings as a percentage are calculated based on the amount of time the processor is in Wake vs. Sleep.
	Table 6. Power Savings Using FIFO at All Data Rates

	From Table 6, these values can be related to the amount of time that a typical lithium ion battery for a cell phone would last. ...
	Table 7. Example Li-Ion Battery Life Calculations without the FIFO to Data Log Data

	When the processor is continuously running, the accelerometer current consumption has a small effect on the battery life be- cau...
	Table 8. Example Li-Ion Battery Life Calculations Using the FIFO to Data Log 14-bit Data
	Table 9. Example Li-Ion Battery Life Calculations Using the FIFO to Data Log 8-bit Data

	One of the application uses for the FIFO is the ability to analyze the data that occurred right up to the point of an interrupt ...
	Table 10 describes the different behaviors of the FIFO under the wake/sleep conditions.
	Table 10. Behavior of FIFO under Wake/ Sleep Conditions

	When the FIFO is configured and the Auto-Wake/Sleep is configured with the FIFO Wake from Sleep bit set (Reg 0x2C bit 7) the dat...
	Table 11. 0x0B SYSMOD: System Mode Register (Read Only)

	4.0 Embedded Settings of the FIFO
	The following section discusses the different registers involved in configuring the FIFO.
	The F_SETUP register configures the FIFO mode and the watermark value. When F_MODE is a value greater than zero (00) the FIFO is enabled. When F_MODE is 00 the FIFO is disabled.
	Table 12. 0x09 F_SETUP: FIFO Setup Register (Read/Write)

	To change Modes while in Active try the following sequence:
	The watermark is used to trigger a watermark interrupt. If the FIFO watermark remains at 0 this will disable the FIFO watermark ...
	When a byte is read from the FIFO buffer the oldest sample data in the FIFO buffer is returned and also deleted from the front o...
	The Trigger Configuration register is used with the Trigger Buffer Mode (FMODE = 11). The event to trigger the FIFO to switch fr...
	Table 13. 0x0A: TRIG_CFG Trigger Configuration Register (Read/Write)

	In order to store HPF data in the FIFO the HPF_OUT bit must be set in Register 0x0E. When the HPF_OUT bit is not set the data will not be high pass filtered. The dynamic range is also set in this register with the FS0 and FS1 bits.
	Table 14. Register 0x0E: XYZ_DATA_CFG (Read/Write)

	The Status Register shown in Table 15, is shared between the real time status when F_MODE = 00, and the FIFO Status when F_MODE ...
	Table 15. Register 0x00_STATUS: FIFO STATUS Register (Read Only)

	The F_OVF and F_WMRK_FLAG flags remain asserted while the event source is still active, but the user can clear the FIFO interrupt bit flag in the interrupt source register (INT_SOURCE Reg 0x0C) by reading the F_STATUS register (0x00).
	The F_OVF bit flag will assert when the FIFO has overflowed and the F_WMRK_FLAG bit flag will assert when the F_CNT value is gre...
	In order to set up the system to route to a hardware interrupt pin, the System Interrupt (bit 6 in Reg 0x2D) must be enabled. The MMA8451Q allows for seven (7) separate types of interrupts. One (1) of these is reserved for the FIFO.
	Table 16. 0x2D CTRL_REG4 Register (Read/Write)

	The INT_EN_FIFO interrupt enable bit allows the FIFO function to route its event detection flag to the interrupt controller of the system. The interrupt controller routes the enabled function to either the INT1 or INT2 pin.
	To enable the FIFO, set bit 6 in Register 0x2D as follows:

	Code Example: IIC_RegWrite (0x2D, 0x40);
	Table 17. 0x2E CTRL_REG5 Register (Read/Write)

	Code Example: IIC_RegWrite (0x2E,0x40); //Set to INT1
	In the interrupt source register, the status of the various embedded features can be determined. This is shown in Table 18. The ...
	Table 18. 0x0C INT_SOURCE: System Interrupt Status Register (Read Only)

	5.0 Example Code Using the FIFO
	The following are three examples for configuring the FIFO. Table 19 shows all the registers of importance for using the FIFO.
	Table 19. Registers of Importance for the FIFO

