
1 Introduction
This application note presents a set of simple examples using
eDMA on MPC56xx and MPC55xx to emulate receiving and
transmitting serial data over SPI and SCI. This additionally
demonstrates advanced features of eDMA on these examples
together with some other techniques to minimize CPU load and
perform certain nontrivial tasks, such as SCI/SPI communication
using eDMA and other peripherals. This does not include any
software task.

In this process seven sample applications were prepared for
MPC5607B, employing various DMA channels to emulate

• SCI transmitter
• SCI receiver
• SPI master
• SPI slave

All these examples emulate simple serial communications and
thus share one technique to serialize/de-serialize data bits using
unused or unusable GPIO pins. More specifically SIUL (System
Integration Unit Lite) registers for serial and parallel access.

Other techniques or eDMA features, which are used in these
sample applications, include:

• Channel to channel linking
• Scatter-gather feature
• Conditional linking using eMIOS

© Origninal copyright–2010 Freescale Semiconductor, Inc.

Document Number: AN4147Freescale Semiconductor
Rev. 0, 07/2010Application Note

Tips and Tricks with DMA on
MPC56xx

David Cermakby:
Applications Engineering

Contents
Introduction...11

eDMA configuration...22

Features used...23

SCI Transmitter...44

SCI Receiver...95

SPI Master...106

SPI Slave...127

Common System Files..148

Conclusion...149

References...1510

https://www.nxp.com/products/processors-and-microcontrollers/power-architecture/mpc5xxx-microcontrollers:POWER_ARCH_5XXX?utm_medium=AN-2021

All these examples are compilable using standard development tools, listed below with the versions used for the testing. A
simple Makefile is used to build executable for the following three compilers.

• GreenHills version 5.16
• WindRiver version 5.6.1
• CodeWarrior version 2.3

2 eDMA configuration
This section outlines the eDMA configuration options. For details, please refer to the Reference Manual for each device.

The programming model defines:
• Global registers
• Priority registers
• Transfer control descriptors

2.1 Transfer Control Descriptor
Transfer Control Descriptor (TCD) is a data field, which defines behaviour of one DMA channel. The TCD contains the following
information, see Table 1

• Source address, offset
• Destination address, offset
• Transfer attributes
• Control/Status

Table 1. Transfer Control Descriptor

TCDn FieldDMA2 Offset

Source Address (saddr)0x1000 + (32 × n) + 0×00

Signed Source Address Offset (soff)Transfer Attributes

(smod, ssize, dmod, dsize)

0x1000 + (32 × n) + 0×04

Inner Minor Byte Count (nbytes)0x1000 + (32 × n) + 0x08

Last Source Address Adjustment (slast)0x1000 + (32 × n) + 0x0c

Destination Address (daddr)0x1000 + (32 × n) + 0x10

Signed Destination Address Offset (soff)Current 'Major' Iteration Count (citer)0x1000 + (32 × n) + 0x14

Last Destination Address Adjustment/Scatter Gather Address (dlast_sga)0x1000 + (32 × n) + 0x18

Channel Control Status

(bwc, major.linkch, done, active, major.e_link, e_sg,
d_req, int_half, int_maj_start)

Beginning Major Iteration Count (biter)0x1000 + (32 × n) + 0x1c

3 Features used
This section describes the features that are used in the examples of emulating SPI and SCI.

Tips and Tricks with DMA on MPC56xx, Rev. 0, 07/2010
Freescale Semiconductor, Inc.2

eDMA configuration

3.1 GPIO Registers for serial and parallel access
For transmitting and receiving data in a serial manner, it is necessary to provide a bit access or bit shift to the transmitted and
received data. Hardware communication peripherals usually utilize shift registers. Software emulation uses a bit shift commonly.

This application note outlines a method of using eDMA and SIUL (System Integration Unit Lite) registers to serialize (deserialize)
data bits and sending (receiving) them as one communication word. The simplest example is sending 8-bit data frame over SCI.
The peripherals in this case perform the following tasks:

• eDMA: Moving 8 bytes in a loop (each byte contains one bit to be sent) into GPIO register for a given pin (UART Tx)
• SIUL: It is possible to access the whole port (gate) writing a word (byte) to parallel GPIO registers. It is also possible to

access each pin separately writing a byte to serial GPIO registers. These registers mirror the same data, so by writing
various data into serial register, the same data would automatically appear in parallel registers and vice-versa. This is
beneficial, as the eDMA may use the serial access registers and transfer a byte array in a loop, while the application may
use the parallel access registers to write the whole word at once.

In order to utilize SIUL registers for serializing and deserializing data, the user application must reserve some GPIO registers
like the following:

• Unused GPIO: Pins, which are normally present on a device, but are not used by customer application in GPIO mode
(might be used in different mode).

• Unusable GPIO: Pins which are not present on a device package, but registers for these pins are accessible.

See the principle of this operation in the Figure 1, which refers to the transmission of one byte over SCI.

Figure 1. Principle of Serial and Parallel Access in SCI transmit

3.2 Channel to channel linking
It is possible to link to the other DMA channel after completion of

• Minor Loop
• Major Loop

When both the linkages are enabled and both loops have completed, the major loop link is performed only.

Another option to start a channel from one channel is to write into SSBR register the number of channel to link.

Tips and Tricks with DMA on MPC56xx, Rev. 0, 07/2010
3Freescale Semiconductor, Inc.

Features used

These features are used in SPI communications to split the job into receiving and transmitting, in case if both the edges of the
clock signal are sensed (SPI slave) or generated (SPI master).

3.3 Scatter Gather feature
One DMA channel is allowed to use multiple Transfer Control Descriptors and this enables a DMA channel to scatter the DMA
data to multiple destinations or gather it from multiple sources.

When scatter gather feature is enabled, on completion of a major loop for certain channel, a pointer to the next TCD is
de-referenced and loaded into this channel. The user TCD is usually located in flash memory.

Complex transfers within limited number of channels may use scatter gather operation to service multiple heterogeneous data
movements.

3.4 Conditional linkage
In some cases, it is necessary to process the DMA on the data of variable length, i.e. to conditionally link to a DMA channel
depending on the processed data.

MPC56xx platform defines very modular peripheral eMIOS, containing time-base, counters and comparators. It is possible in
certain modes to use some of these blocks separately. For example, in GPIO mode, the user has a write access to the counter
and a comparator may be used. Moreover, the unified channels have usually DMA triggering capability, so the configured DMA
channel can be started, on matching of an eMIOS comparator. In case of writing to the compare register by another DMA
channel, the system works as a dynamic conditional channel to channel link.

This feature is used, when transmitting variable amount of data, where a special character is used to stop the transmission.

4 SCI Transmitter
The examples in this section emulate the SCI transmitter using eDMA. All these examples are implemented for the device
MPC5607B, but are generally applicable to the 5600 family.

4.1 Module sci_app_01.c
eDMA emulating single SCI transmit

This example demonstrates how the eDMA will be used to emulate SCI. It uses LINFlex0 to receive one byte from serial line,
and sends the same byte using single DMA channel. The following configuration is used:

• LINFlex0 - Rx only on PCR_19 (PB3)
• DMA channel 0 writes to GPIO PCR_18 (PB2)
• DMA triggered using PIT_0 with always enabled source (periodic triggers only)
• Software task: After a byte is received through UART, the same is transmitted using eDMA
• Connection: Standard wiring on EVB: PB2 and PB3 -> SCI transciever

4.1.1 Function SciInit01
Initializes the first SCI application to transmit one byte at a time using one eDMA channel triggered periodically by PIT.

Prototype: void SciInit01(void);

Initialization of the following peripherals:

• SIU: PCR registers for Rx and Tx signals
• LINFLEX_0: As UART reciever on 9.600 kBauds, 8-bit data bits

Tips and Tricks with DMA on MPC56xx, Rev. 0, 07/2010
Freescale Semiconductor, Inc.4

SCI Transmitter

• PIT_0: Periodically triggers DMA at 9600 Hz (one bit per timer overflow)
• DMAMUX: Routes PIT_0 flag to activate channel 0 DMA
• eDMA0: Setup one byte data movements

from GPIO's PG15-PH9 (10 iterations of minor loop)•
• to GPIO PB2 (SCI Tx)
• disable on completion (after one byte transmitted, turns the eDMA off)

4.1.2 Function SciRun01
Checks the LINFlex receiver and if anything is received, sends it back using eDMA.

Prototype: void SciRun01(void);

Data to be transmitted are located at PG15-PH9, where

• PG15 is a start bit
• PH0-PH8 are data bits

accessed using GPDO[112-119] using eDMA (serial)•
• accessed using PGPDO[3] using application (parallel)

• PH9 is a stop bit

Data transmission is started by enabling the DMA channel. At this time the flag is cleared and timer is restarted, as one byte at
a time is sent. In case of multi-byte transmission this will not be necessary.

4.1.3 Function SciApp01
Function interface to execute SCI communication emulation Module spi_app_01.c.

Prototype: void SciApp01(void);

4.2 Module sci_app_02.c
eDMA emulating multiple SCI transmits

This example demonstrates how eDMA could be used to emulate multiple SCI transmits. Sending a string of bytes using chaining
two eDMA channels Configuration:

• DMA channel 0 writes to GPIO PCR_18 (PB2)
• DMA channel 0 activated using periodic triggers
• DMA channel 1 takes one byte from buffers and links to the channel 0
• DMA channel 1 activated explicitly by SW to transmit burst of bytes
• Connection: Standard wiring on EVB: PB2 and PB3 -> SCI transceiver

4.2.1 Variable pTxData
This is a reference to GPIO parallel access registers. It acts as a pointer to the data prepared for transmission, i.e. serialization.

4.2.2 Variable stringBuffer
This stores the string that is periodically transmitted over a serial line.

NOTE

The transmission has fixed number of data, which equals to the size of this byte array.

Tips and Tricks with DMA on MPC56xx, Rev. 0, 07/2010
5Freescale Semiconductor, Inc.

SCI Transmitter

4.2.3 Function SciInit02
Initializes the SCI application to transmit one byte continuously, while this byte is being modified by other channel.

Prototype: void SciInit02(void);

Initialization of the following peripherals:

• SIU: PCR registers for UART Tx signals
• PIT_0: Periodically triggers DMA at 9600 Hz (one bit per timer overflow)
• DMAMUX: Routes PIT_0 flag to activate channel 0 DMA
• eDMA0: Setup one byte data movements

from GPIO's PG15-PH9 (10 iterations of minor loop)•
• to GPIO PB2 (SCI Tx)
• link to the channel 1 after major loop.

• eDMA1: Setup one byte transfer from data buffer to PH0-PH7 (data to be sent)

4.2.4 Function SciRun02
Transmits the message "Hello World!" continuously in a serial line.

Prototype: void SciRun02(void);

Data to be transmitted are located at PG15-PH9, where

• PG15 is a start bit
• PH0-PH8 are data bits

accessed using GPDO[112-119] using eDMA (serial)•
• accessed using PGPDO[3] using application (parallel)

• PH9 is a stop bit

Data transmission starts by enabling the DMA channel 0, which transmits one byte. After the transmission, links to the channel
1, which transmits another byte from transmitting buffer. Channel 0 is not disabled, so transmission continues with all the
messages.

These transmissions are performed only by eDMA, so that there is no software task after activation of the two channels and the
timer. This function never exits and waits in the empty neverending loop.

4.2.5 Function SciApp02
Prototype: void SciApp02(void);

4.3 Module sci_app_04.c
eDMA emulating multiple SCI transmits under the given condition

This example demonstrates how the eDMA is used to transmit SCI data of variable length configuration:

• DMA channel 0 writes to GPIO PCR_18 (PB2) and is activated by PIT
• DMA channel 1 takes one byte from buffer and link from the channel 0
• DMA channel 2 sends one byte from buffer also to the comparator (is linked from the channel 1)
• DMA channel 3 is activated either by software (to start the timer) or by eMIOS-comparator (on match) to stop transmitting

the data.
• Connection: Standard wiring on EVB: PB2 and PB3 -> SCI transceiver

Tips and Tricks with DMA on MPC56xx, Rev. 0, 07/2010
Freescale Semiconductor, Inc.6

SCI Transmitter

4.3.1 Variable pTxData
This is a reference to GPIO parallel access registers. This serves as a pointer to the data prepared for transmission, i.e. serialization.

4.3.2 Variable stringBuffer
This stores the string which is transmitted over serial line. The end of this buffer is indicated by the last character '.'. The data
is compared during the transmission with the last character and the transmission is stopped on finding a match.

4.3.3 Variable toggleTimer
This array is used to switch within (start/stop) periodic interrupt timer, to enable or disable the transmission. Enabling is done
by the application, whereas disabling is automatic, when a stop character is indicated.

4.3.4 Function SciInit04
Initializes the SCI application to transmit one byte continuously, while this byte is modified by the channel 1. Channel 2 transmits
this byte to the comparator, which triggers channel 3 when it finds the matching value. Channel 3 then disables the PIT, i.e. the
data transmission.

Prototype: void SciInit04(void);

Initialization of the following peripherals:

• SIU: PCR registers for UART Tx signals
• PIT_0: Periodically triggers DMA at 9600 Hz (one bit per timer overflow)
• DMAMUX

Routes PIT_0 flag to activate channel 0 DMA•
• Routes eMIOS flag (from comparator) to trigger channel 3

• eDMA0: Setup one byte data movements (to transmit one SCI byte)
• eDMA1: Setup one byte transfer from data buffer to PH0-PH7 (data to be sent)
• eDMA2: Setup one byte transfer from data buffer to eMIOS comparator
• eDMA3: Setup to enable/disable the PIT. This channel is triggered from eMIOS comparator.

4.3.5 Function SciRun04
Transmits the message "Hello World etc" from the designated buffer in a serial line. This message can have variable length,
the end of the message is indicated by the last character '.'.

Prototype: void SciRun04(void);

Data transmission is started by enabling the DMA channel 0, which transmits one byte. After the transmission, links to the
channel 1, which transmits another byte from transmitting buffer. Triggering for channel 0 is disabled by channel 3, when a
stop character is found '.'

4.3.6 Function SciApp04
Prototype: void SciApp04(void);

4.4 Module sci_app_05.c
eDMA emulating multiple SCI transmits and using scatter gather option

Tips and Tricks with DMA on MPC56xx, Rev. 0, 07/2010
7Freescale Semiconductor, Inc.

SCI Transmitter

This example demonstrates how the eDMA will be used to emulate SCI transmitter of buffer with fixed length and scatter gather
option, using two DMA channels. Given below is the configuration used:

• DMA channel 0 writes to GPIO PCR_18 (PB2)
• DMA channel 0 activated using periodic triggers
• DMA channel 1 takes one byte from buffer and links to the channel 0
• DMA channel 1 activated explicitly by software to transmit burst of bytes
• DMA channel 1 scatters to USER TCD, which disables the timer and hence the transmission
• Connection: Standard wiring on EVB: PB2 and PB3 -> SCI transciever

This example is the same as sci_app_02, uses the same number of channels, but also scatter gather feature to solve buffering
and disabling in one channel.

4.4.1 Variable pTxData
This is a reference to GPIO parallel access registers. It is a pointer to the data prepared for transmission, i.e. serialization.

4.4.2 Variable stringBuffer
String which is periodically transmitted over serial line. Note that the transmission has fixed number of data (12 in this case).

4.4.3 Variable stopTimer
This is used to store the number to be moved to PIT control register to stop PIT and hence the SCI transmission.

4.4.4 Function SciInit05
Initializes the SCI application to transmit one byte continuously, while this byte is being modified by other channel.

Prototype: void SciInit05(void);

Initialization of the following peripherals:

• SIU: PCR registers for UART Tx signals
• PIT_0: To periodically trigger DMA at 9600 Hz (one bit per timer overflow)
• DMAMUX: Routes PIT_0 flag to activate channel 0 DMA
• eDMA0: Setup one byte data movements

from GPIO's PG15-PH9 (10 iterations of minor loop)•
• to GPIO PB2 (SCI Tx)
• link to the channel 1 after major loop.

• eDMA1: Setup one byte transfer from data buffer to PH0-PH7 (data to be sent)
this channel uses scatter gather operation to split the task into buffering the data and disabling the channel.•

NOTE

User TCD's are for demonstration purpose only located in the TCD array (elements 11 and 12). In real application this location
will be anywhere in the user memory (preferably flash), but aligned to the 32 bytes boundary.

4.4.5 Function SciRun05
Transmits the message "Hello World!" in a serial line. After sending these 12 characters, the transmission is stopped.

Prototype: void SciRun05(void);

Tips and Tricks with DMA on MPC56xx, Rev. 0, 07/2010
Freescale Semiconductor, Inc.8

SCI Transmitter

Data transmission is started by enabling the DMA channel 0, which transmits one byte. After the transmission, by linking to
the channel 1, passes the other byte from transmitting buffer. After a fixed number of iterations of channel 1 (major loop), scatter
gather operation is performed and the user TCD is loaded to channel 1, which disables the timer, i.e. the transmission. Then, in
the same way another TCD is loaded to the channel 1 (the original one), to setup the system for another data transmission.

4.4.6 Function SciApp05
Prototype: void SciApp05(void);

5 SCI Receiver
The following example demonstrates receiving SPI signal using the SCI receiver.

5.1 Module sci_app_03.c
eDMA emulating simple SCI receiver

This example demonstrates how the eDMA could be used to receive SCI. Configuration used is as given below:

• DMA channel 0 reads from GPIO PCR_19 (PB3)
• DMA channel 0 activated using periodic triggers
• DMA channel 1 activates PIT to receive data
• DMA channel 1 activated using eMIOS0_CH0 -- input capture
• Connection: Standard wiring on EVB: PB2 and PB3=PA0 -> SCI transceiver

needs to connect PB3 and PA0.•

5.1.1 Variable pRxData
This is a reference to GPIO parallel access registers. It is a pointer to the data that was received using byte by byte DMA
movements (de-serialization).

5.1.2 Function SciInit03
Initializes the SCI application to receive one byte

Prototype: void SciInit03(void);

This involves initialization of the following peripherals:

• SIU: PCR registers for DMA UART Rx signals, eMIOS0, and LINFEX UART Tx
• PIT_0: Periodically triggers DMA at 9600 Hz (one bit per timer overflow)
• EMIOS_0: Channel0 -> input capture (as 5607B does not route EINT SIU to DMA)
• DMAMUX: Routes PIT_0 flag to activate channel 0 DMA, and EMIOS_0,ch0 to activate channel 1 DMA
• eDMA0: Setup one byte data movement from DMA UART Rx to PH0-PH7 (data bits)
• eDMA1: Starts the timer (and data acquisition) after trigger (start bit)

5.1.3 Function SciRun03
Receives one byte from serial line.

Prototype: void SciRun03(void);

Tips and Tricks with DMA on MPC56xx, Rev. 0, 07/2010
9Freescale Semiconductor, Inc.

SCI Receiver

Data transmission is started by eMIOS channel input capture event - falling edge of the START bit. This triggers DMA channel0,
which enables PIT0 and that is used for data reception on GPIO pin PB3 (DMA UART Rx). Data received are located at
PH0-PH8.

5.1.4 Function SciApp03
Prototype: void SciApp03(void);

6 SPI Master
SPI Master example uses the same features, but involves more signals for sending and receiving.

Figure 2. Principle of SPI Master emulation

6.1 Module spi_app_01.c
eDMA emulating SPI master

This example demonstrates how the eDMA will be used to emulate SPI master, sending and receiving data Configuration used
is as given below:

• DMA channel 0 SCK generation activated periodically by PIT
• DMA channel 1 processes data in
• DMA channel 2 processes data out

Tips and Tricks with DMA on MPC56xx, Rev. 0, 07/2010
Freescale Semiconductor, Inc.10

SPI Master

• CS is solved by software, but could be as an additional DMA channel
• Connection: Connect DSPI to GPIO used for eDMA SPI emulation

PC4: DSPI1_SIN -> PB0 (DMA SOUT)•
• PC5: DSPI1_SOUT -> PB1 (DMA SIN)
• PC2: DSPI1_SCK -> PB2 (DMA SCK)
• PC3: DSPI1_CS0 -> PB3 (DMA CS0)

6.1.1 Variable pInData
Pointer to the input data accessing parallel GPIO registers.

6.1.2 Variable pOutData
Pointer to the output data accessing parallel GPIO registers.

6.1.3 Variable toggleTimer
This array is used to switch between (start/stop) PIT, to enable or disable the transmission. Enabling is done by the application,
whereas disabling is automatic, when a stop character is indicated.

6.1.4 Variable generateClock
This array is used to generate clock, where alternately output is 1 and 0.

NOTE

The order depends on the selected SPI properties CPHA and CPOL, which in this example is equal to 1 and 0 respectively.

6.1.5 Function SpiInit01
Initializes the SPI master using eDMA and also the DSPI peripheral as a slave to check the data

Prototype: void SpiInit01(void);

Initialization of the following peripherals:

• SIU: PCR registers for DMA SPI master and DSPI SPI slave
• DSPI: SPI slave, 8 bit data.
• PIT_0: Periodically triggers DMA at 9600 Hz (SPI clock rate)
• DMAMUX: Routes PIT_0 flag to activate channel 0 DMA
• eDMA0: Setup to send alternately 0 and 1 to generate clock and link to -channel_1 to receive data (after iteration)

-channel_2 to transmit data (after completion)
• eDMA1: Setup one byte transfer from GPIO to PH0-PH7 (reading)
• eDMA2: Setup one byte transfer from PH8-PH15 to GPIO (writing)
• eDMA3: Setup to enable or disable the PIT timer to control the SPI transmission.

6.1.6 Function SpiRun01
Transmits the message "Hello World!" and other messages from emulated SPI master to real SPI slave on DSPI_1.

Prototype: void SpiRun01(void);

Data transmission is started by channel 3, which enables PIT0. Timer then triggers channel0, which generates clock and is
linked to

Tips and Tricks with DMA on MPC56xx, Rev. 0, 07/2010
11Freescale Semiconductor, Inc.

SPI Master

• channel 1 after iteration of minor loop - SPI read
• channel 2 after completion of major loop - SPI write
• channel 3 is linked from channel 1 after transmission completes and disables back PIT 0, which turns off the master

NOTE

Driving of CS (chip select) signals is done by software.

6.1.7 Function SpiApp01
Prototype: void SpiApp01(void);

7 SPI Slave
SPI slave example uses the same resources, but the order of triggering and information flow is opposite.

Figure 3. Principle of SPI Slave emulation

7.1 Module spi_app_02.c
eDMA emulating SPI slave

This example demonstrates how the eDMA could be used to emulate SPI slave, sending and receiving data Configuration used
is as given below:

• DMA channel 0 SCK activated by SPI master (eMIOS0-CH0-SAIC)
• DMA channel 1 processes data in

Tips and Tricks with DMA on MPC56xx, Rev. 0, 07/2010
Freescale Semiconductor, Inc.12

SPI Slave

• DMA channel 2 processes data out
• CS (chip select) is driven by software, but can be used as an additional DMA channel
• Connection: Connect DSPI to GPIO used for eDMA SPI emulation

PC4: DSPI1_SIN -> PB0 (DMA SOUT)•
• PC5: DSPI1_SOUT -> PB1 (DMA SIN)
• PC2: DSPI1_SCK -> PA0 (DMA SCK)
• PC3: DSPI1_CS0 -> PB3 (DMA CS0)

7.1.1 Variable pInData
This stores pointer to the input data accessing parallel GPIO registers.

7.1.2 Variable pOutData
This stores pointer to the output data accessing parallel GPIO registers.

7.1.3 Variable startDmaChannel
This array is used explicitly to start DMA channels for data reading and data writing.

NOTE

The order depends on the selected SPI properties CPHA and CPOL, which in this example equals to 1 and 0 respectively (upon
the first edge sending, i.e. starting channel 2).

7.1.4 Function SpiInit02
Initializes the SPI slave using eDMA and also the DSPI peripheral as SPI master to check the data.

Prototype: void SpiInit02(void);

Initialization of the following peripherals:

• SIU: PCR registers for DMA SPI master and DSPI SPI slave
• DSPI: SPI master, 8 bit data.
• eMIOS: channel 0 as input capture unit (need DMA trigger, 5607B doesn't mux SIU to DMA)
• DMAMUX: Routes eMIOS0_CH0 to activate channel 0 DMA
• eDMA0: Setup to alternately trigger: -channel_1 to receive data (after iteration) -channel_2 to transmit data (after

completion)
• eDMA1: Setup one byte transfer from GPIO to PH0-PH7 (reading)
• eDMA2: Setup one byte transfer from PH8-PH15 to GPIO (writing)

7.1.5 Function SpiRun02
Transmits the message "Hello World!" and other message from SPI master (DSPI_1) to SPI slave (emulated) and back.

Prototype: void SpiRun02(void);

SPI slave is triggered using eMIOS channels (instead of external interrupt)-channel0. This channel launches other two channels
(2 and 1), which perform data transmission and reception.

7.1.6 Function SpiApp02
Prototype: void SpiApp02(void);

Tips and Tricks with DMA on MPC56xx, Rev. 0, 07/2010
13Freescale Semiconductor, Inc.

SPI Slave

8 Common System Files
The modules under the common system files are used to setup the MPC5607B system for these examples.

8.1 Module app_main.c
Main function of the application.

8.1.1 Function main
Main function which initializes the system and runs the function interface for the selected example.

Prototype: int main(void);

8.2 Module sys_init.c
Initializes the MPC5607B to run on the oscillator clock and enable basic peripherals.

8.2.1 Function DisableWatchdog
Disables the watchdog for MPC5607B device.

Prototype: void DisableWatchdog(void);

8.2.2 Function EnableAllPeripherals
Enables all peripherals in DRUN mode for MPC5607B.

Prototype: void EnableAllPeripherals(void);

8.2.3 Function VVOscInit
Setup the default 8MHz oscillator (with no PLL), used on MPC56xx evaluation board.

Prototype: void VVOscInit(void);

8.2.4 Function SysInit
Initializes the CPU clock on 8MHxz x-tall located on standard EVB(evaluation board).

Prototype: void SysInit(void);

Disables the Watchdog, enables all peripheral in DRUN mode, using external 8MH XOSC, enables the clockout to PA[0]

9 Conclusion
MPC56xx device family offers a very flexible eDMA solution, as given in this application note. The eDMA peripheral could
be used to emulate completely simple communication nodes (hardware based) for real SPI or SCI data transmission or reception.

More generally one can benefit from the described techniques and features for any other user application to reduce CPU load
and balance the application performance.

Tips and Tricks with DMA on MPC56xx, Rev. 0, 07/2010
Freescale Semiconductor, Inc.14

Common System Files

Demonstrated methods employ advanced eDMA modes, supporting nested loops, links and even conditional branches. This
enables a means to dynamically program complex data transfers, which normally need to be performed with some CPU
intervention.

10 References
• FTF Americas 2010, AUT-F0451. Session recording available at http://www.freescale.com/ftf.
• MPC5607B Microcontroller Reference Manual. Power Architecture® Controllers (5xx/5xxx), http://www.freescale.com

Tips and Tricks with DMA on MPC56xx, Rev. 0, 07/2010
15Freescale Semiconductor, Inc.

References

http://www.freescale.com/ftf
http://www.freescale.com

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: AN4147
Rev. 0, 07/2010

Information in this document is provided solely to enable system and sofware implementers
to use Freescale Semiconductors products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits or integrated circuits based
on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or guarantee
regarding the suitability of its products for any particular purpose, nor does Freescale
Semiconductor assume any liability arising out of the application or use of any product or
circuit, and specifically disclaims any liability, including without limitation consequential
or incidental damages. "Typical" parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different applications
and actual performance may vary over time. All operating parameters, including "Typicals",
must be validated for each customer application by customer's technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor prodcuts are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which failure of the
Freescale Semiconductor product could create a situation where personal injury or death
may occur. Should Buyer purchase or use Freescale Semiconductor products for any such
unintended or unauthorized application, Buyer shall indemnify Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly
or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claims alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts. For
further information, see http://www.freescale.com or contact your Freescale sales
representative.

For information on Freescale's Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All
other product or service names are the property of their respective owners.

© 2010 Freescale Semiconductor, Inc.

	Introduction
	eDMA configuration
	Transfer Control Descriptor

	Features used
	GPIO Registers for serial and parallel access
	Channel to channel linking
	Scatter Gather feature
	Conditional linkage

	SCI Transmitter
	Module sci_app_01.c
	Function SciInit01
	Function SciRun01
	Function SciApp01

	Module sci_app_02.c
	Variable pTxData
	Variable stringBuffer
	Function SciInit02
	Function SciRun02
	Function SciApp02

	Module sci_app_04.c
	Variable pTxData
	Variable stringBuffer
	Variable toggleTimer
	Function SciInit04
	Function SciRun04
	Function SciApp04

	Module sci_app_05.c
	Variable pTxData
	Variable stringBuffer
	Variable stopTimer
	Function SciInit05
	Function SciRun05
	Function SciApp05

	SCI Receiver
	Module sci_app_03.c
	Variable pRxData
	Function SciInit03
	Function SciRun03
	Function SciApp03

	SPI Master
	Module spi_app_01.c
	Variable pInData
	Variable pOutData
	Variable toggleTimer
	Variable generateClock
	Function SpiInit01
	Function SpiRun01
	Function SpiApp01

	SPI Slave
	Module spi_app_02.c
	Variable pInData
	Variable pOutData
	Variable startDmaChannel
	Function SpiInit02
	Function SpiRun02
	Function SpiApp02

	Common System Files
	Module app_main.c
	Function main

	Module sys_init.c
	Function DisableWatchdog
	Function EnableAllPeripherals
	Function VVOscInit
	Function SysInit

	Conclusion
	References

