Freescale Semiconductor
Application Note

Document Number: AN4180
Rev. 0, 08/2010

System-80 Asynchronous Display on
the i.MX31 WINCE 6.0 PDK

by Multimedia Applications Division
Freescal e Semiconductor, Inc.
Austin, TX

This application note provides the necessary information,
considerations, and procedure to add or adapt a System-80
Type 2 (sampling with the read and write signals)
asynchronous panel to the WINCEG0O Board Support
Package (BSP) for the i.M X31 Platform Development Kit
(PDK). This application note describes the smart panel
information and the generalities of the Asynchronous
Display Controller (ADC). In addition, this application note
al so describes the devel opment process to adapt a new panel
to the BSP, considering that the framework driver structure
isalready provided by the operating system. Thisapplication
note assumes that the reader is familiar with the Microsoft®
Patform Builder packages and the WINCE Embedded 6.0
Device Driver concepts.

1 Overview of i.MX31 Display

As amultimedia processor, the i.M X31 supports several
types of displays. The display devices are handled by a
special module called the Image Processing Unit (1PU). The
IPU module a so handles other graphic interfaces such asthe
Camerainterface and 2D graphics acceleration. All the IPU
submodules are connected by a private

© 2010 Freescale Semiconductor, Inc. All rights reserved.

IS L

Contents

Overview of i.MX31Display 1
LCD Generditiesccviiiiiiiinn.. 3
Asynchronous Display Interfaces 5
Display Configurationin WINCE6.0 22
ModifyingtheBSP 31
RevisionHistoryo L. a7

freescale"

semiconductor

Overview of i.MX31 Display

Direct Memory Access (DMA) Interface that is used for the IPU to transfer data between the submodules
and also between the IPU and external memory.

Figure 1 shows the functional block diagram of the IPU module.

- eu -

Video @L » .| Camera Camera Memory
Sources Interface Processing Interface

5% :

Image
Enhancement | <—»{ IDMA

& Conversion

)

-—ill \ Memory
_ == . Display Display | o |
Displays @ 4— < Interface Processing

A

Selecting an appropriate Liquid Crystal Display (L CD) for amobile device involves several conflicts with
respect to the requirements. Some of these conflicts are described as follows:

» Large amount of data, implying high rate of datatransfer and processing, requiring significant
resources

» Flexibility to support a variety of use cases

* Small size, cost, and power consumption

Figure 1. IPU Functional Block Diagram

Freescale provides reference designsfor thei.MX family wherethefunctionality of LCD is demonstrated.
However, according to the requirements, devel opers find many reasons to replace the display in their
products. Features such as screen size, resolution, weight, power consumption, and price are very
important in acommercial multimedia product. Another important fact about L CD panelsis that many
displays become obsolete quickly. Therefore, it is hard to find the same LCD panel included in the
reference design while creating a product.

This application note isintended only for Smart Displays that include panel's, which uses the System-80
Type 2 (sampling with the read and write signals) as display interface. However, this application note also
provides some information about dumb displays.

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

2 Freescale Semiconductor

LCD Generalities

2 LCD Generalities

This section describes the generalities of the LCD devices.

2.1 LCD Basics

LCD isan electronic device, which consists of an array of pixels, which can be either color or monochrome
unit. Every element in the array is created with a special material that allows the LCD to change the
characteristics of the light that passes through them. These devicesdo not emit light and therefore, another
element named backlight is shipped along with the panel to create afully functional display device.

211 Resolution

In this application note, the term resolution is used to refer to the number of pixels contained in an LCD
array. It has two dimensions—horizontal and vertical.

Table 1 lists the most common video resolution standards.

Table 1. Video Resolution Standards

Video Name Description Width Height Aspect Ratio
CGA Color Graphics Adapter 320 200 8:5
QVGA Quarter VGA 320 240 4:3
VGA Video Graphics Array 640 480 4:3
NTSC National Television System Committee 720 480 3:2
PAL Phase Alternating Line (TV) 768 576 4:3

The maximum standard resolution that the i.M X 31 supportsis SVGA and hence, resol utions greater than
SVGA are not included in Table 1.

All resolutions mentioned in Table 1 show alandscape orientation of LCD panels, which means that there
aremore pixelsin the horizontal axisthan in the vertical axis. However, there are also portrait LCD panels
available in the market with the same standard resolution but the horizontal and vertical size areinverted.
These portrait LCD panels have more vertical pixels when compared to the horizontal pixels.

Figure 2 shows the portrait and landscape orientation of an LCD panel.

freescale”
freescale"

Figure 2. Portrait and Landscape Orientation of an LCD Panel

It isimportant to select an appropriate orientation of the LCD panel because both the e ectronic and optical
features are optimized for applications that use the native orientation of the panel. Besides the optical

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

Freescale Semiconductor 3

LCD Generalities

characteristics, the dumb displaysinclude an embedded L CD controller to draw the pixelsfrom left to right
and top to bottom. However, to show images or videos on the LCD panel using a non-native orientation,
the display content is pre-processed. Therefore, the image is stored in a buffer in away (order) the LCD

controller expects the pixel information to be sent to it. This operation is called rotation and the i.MX31

includes hardware to perform this operation. It is recommended to select the LCD panel that mostly uses
its native orientation to avoid additional image processing.

Figure 3 shows the portrait and landscape L CD panels displaying images in the non-native orientation.

freescale”

freescale”

Figure 3. Rotated Frame on Portrait and Landscape Orientation of an LCD Panel

Theframes can berotated in 90°, 180°, or 270°. Every frame hasto be rotated before sending to the display.

2.1.2 Size

The size of an LCD panel is measured diagonally in inches, from top left corner to bottom right corner.
Sincethesizedirectly impactsthe pixel width, it iscommon to assumethesize of aV GA (640 x 480) panel
to be larger than a QV GA (320 x 240) panel because the number of pixelsin VGA isfour times greater
when compared to QV GA. But, thisisnot true at all times. LCD manufacturing processes allow the size
and resolution to be independent variables. It isdifficult to determine the size of apanel fromitsresolution.
Screensthat are larger in size tend to consume more power than the smaller ones and also impact the size
and weight of the final product. On the other hand, higher resolutions on smaller LCD panels can
complicatethevisibility for thefinal user. Based on theinformation available in the datasheet, it isdifficult
to determine if aparticular LCD panel fitsthe application. Instead, it is recommended to view the LCD in
other reference design or demo before making afinal decision.

21.3 Color Spaces

A color space isaway to represent colors. There are two main color spaces—RGB (that is, RGB565,
RGB888, and RGBAS8888) and YUV (that is, YUV 4:4:4, YUV 4:2:2, and YUV 4:2:0). Thei.MX31
supports both the color spaces, but the display panels can receive data only by using the RGB interface.

22 LCD Types

The LCD panels are categorized as synchronous and asynchronous panels and their descriptions are
described in the following sections.

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

4 Freescale Semiconductor

Asynchronous Display Interfaces

2.2.1 Synchronous Panel (Dumb Display)

Dumb displays or synchronous displays are panels which require the microprocessor to send al pixelsin
the image every frame. In these panels, screen refresh is performed by driving the complete frame data
continuoudly. In general, smart displays are more expensive than dumb displays and due to this reason,
synchronous panels are more commonly used in the final product.

2.2.2 Asynchronous Panel (Smart Display)

The advantage of smart displaysisthat the i.MX31 has to send only the display data when the image has
changed, and most of the timesit sends only the portion that has changed. Images can be sent at any time
and the screen refresh is handled by the embedded Smart Liquid Crystal Display Controller. Another
advantage of smart displaysis that the i.MX 31 can handle three asynchronous displays and synchronous
interface simultaneoudly. If an application requirestwo LCD panels, one of them must be an asynchronous
interfaces.

3 Asynchronous Display Interfaces

There are two types of asynchronous display interfaces—System-80 LCD interface and 68 K interface.

3.1 System-80 (Type 2) LCD Interface

The System-80 LCD interface is one of the widely used interfaces for smart displays. It isalso known as
80-series system businterface or Intel 80 interface. Thisinterfaceis composed of four control lines—CS,
RS, WR, and RD, and the data bus whose width can vary. Thei.MX31 can handle the Type 1 (sampling
with the chip select signal) and Type 2 (sampling with the read and write signals) interfaces, but this
application note focuses only on the Type 2 interface, which is the most commonly used interface.

Table 2 shows the System-80 (Type 2) interface signals.
Table 2. System-80 (Type 2) Interface Signals

Signal IPU Signal Description

CSo IPP_DO_DISPB_DO0_CS Display 0 chip select

CSt IPP_DO_DISPB_D1_CS Display 1 chip select

CSs2 IPP_DO_DISPB_D2_CS Display 2 chip select

RS IPP_DO_DISPB_PAR_RS Data/command select for parallel interface
WR IPP_DO_DISPB_WR Write strobe signal

RD IPP_DO_DISPB_RD Read strobe signal

DB [15:0] DISPB_DATA [15:0] Data bus

The various signals that are available in the System-80 LCD interface are as follows:

* CS0-2—Chip Select (CS) signal is used to communicate to the smart LCD panel that the
commands and data used in the System-80 interface belongsto LCD. Thei.MX31 can handle up
to three asynchronous panels, and the method used to distinguish which LCD is addressed by the

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

Freescale Semiconductor 5

Asynchronous Display Interfaces

microprocessor by using a CS per panel. Most of the times, the CS0 signal isactivelow and the tag
used for thislineisncs.

» RS—Register Select (data/lcommand) is a control signal for the System-80 interface of the
asynchronous display (0—2). Using the RS signal, the processor communicates to the LCD panel if
the information in the bus has to be interpreted either asa command or data. In general, command
mode is used to set the register address before sending the register’s value using the data mode.

* WR—When the Write strobe signal is active, the processor is indicating that either the command
or dataison the data bus and it must be read by the LCD panel.

* RD—TheRead strobe signal isused by thei.MX31 to request the LCD panel to placethecommand
or datain the buswhen the processor isready to read the information and thisinformation isrelated
with the previous command.

* DI—TheDisplay Interface (DI) isused to send/receive data and command to/from the LCD panel.
Depending on the LCD interface, the bus width can vary from 7 to 18 bits.

Figure 4 shows the LCD interface between the i.MX31 processor and the Giant plus GPM722A0 VGA
panel.

DISPB_DATA[15:0] DBO0-DB15 40
System 80
IPP_DO_DISPB_DO0_CS CS
IPP_DO_DISPB_PAR_RS RS
System 80
IPP_DO_DISPB_WR /WR
IPP_DO_DISPB_RD /RD GIANTPLUS
GPM722 A0 320
DISPB_D1_CS (GPIO) /RESET
MCIMX31
5V5_BOOST
Backight Touch Panel
LED_A LED_K YU| XR YD| XL
LED_KP
CSPI //
MC13783
/ ATLAS
12S /

Figure 4. LCD Interface Between the i.MX31 and GiantPlus GPM722A0 VGA Panel

Figure 4 showshow i.MX3Ll isinterfaced with asmart LCD panel such asthe GPM722A0 GiantPlus. The
System-80 (Type 2) interface is used for LCD initialization (command mode) and also for sending the

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

6 Freescale Semiconductor

Asynchronous Display Interfaces

display buffers (template data mode). Additionally, the LCD panel requires areset signal, external
backlight power booster circuit, and touch screen support. In PDK (only), the touch screen support feature
isprovided by PMIC ATLAS MC13783 by using the keypad LED circuit. Also, the PMIC settings are
configured by the i.MX31 using an SPI interface.

3.2

68 K Interface

The 68 K interfaceis from Motorolaand it is one of the widely used interfaces for smart displays. This
interface is composed of four control lines—CS, RS, RW_WR, and E_RDB, and the databus, whose width
can vary. The difference between thisinterface and the System-80 interface is the inclusion of an Enable
sgna (E_RDB), whichisused to indicate when the data needs to be latched for read and write operations.
Also, unlike System-80 interface, this interface combines the read or write selection in asingleline
(RW_WR).

Table 3 showsthe 68 K interface signals.

Table 3. 68 K Interface Signals

Signal IPU Signal Description
CSo IPP_DO_DISPB_DO0_CS Display 0 chip select
CSt IPP_DO_DISPB_D1_CS Display 1 chip select
CSs2 IPP_DO_DISPB_D2_CS Display 2 chip select
RS IPP_DO_DISPB_PAR_RS Data/command select for parallel interface
RD_WR IPP_DO_DISPB_RD_WR Read/Write strobe signal
EN IPP_DO_DISPB_EN Enable
DB [15:0] DISPB_DATA [15:0] Data bus

The various signals that are available in the 68 K interface are as follows:

CS 0—2—Chip Select (CS) signal is used to communicate to the smart LCD panel that the
commands and data used in the 68 K interface belongsto LCD. Thei.MX31 can handle up to three
asynchronous panels, and the method used to distinguish which LCD is addressed by the
microprocessor is by using one CS per panel. Most of the times, the CS signal is activelow and the
tag used for thislineisncs.

RS—Register Select (data/command) isacontrol signal for the 68 K interface of the asynchronous
display (0-2). Using the RS signal, the processor communicates to the LCD panel if the
information in the bus has to be interpreted either as acommand or data. In general, command
mode is used to set the register address before sending the register’s value using the data mode.

RD_WR—Read/Write control signal isused to distinguish whether theinformation on the databus
is being written to the LCD, or if the instruction is areading request to the LCD.

EN—Enable signal determineswhen the datain the busis ready to perform both the read and write
operations.

DI—Depending on the LCD interface, the bus width can vary from 7 to 18 bits. This application
note does not focus on the display interface. Therefore, there are no details available about this
interface.

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

Freescale Semiconductor 7

Asynchronous Display Interfaces

3.3 Asynchronous Serial Interfaces
Apart fromthe parallel interface, thereareal so seria interfacesthat can be used to control the smart panels.
Thei.MX31 IPU can handle the following types of asynchronous serial interfaces:

» 3-wire (with bidirectional dataline)

* 4-wire (with separate data input and output lines)

* 5S-wiretype 1 (with sampling RS by the serial clock)

* S-wiretype 2 (with sampling RS by the chip select signa)

Asthis application note do not focus on the above interfaces, there are no details available about all these
interfaces.

3.4 System-80 (Type 2) Display Timing and Signals

This section focuses on the timing and signal waveforms and how to configure them in the LCD panel and
thei.MX31 display interface. The first step in selecting an LCD moduleis to refer to its datasheet. The
datasheet must contain the pin interface, system interface dataformat (that is, 16-bit or 18-bit interface,
1,2, or 3 transfer per pixel), initialization routine, and timing charts for the System-80 (Type 2) interface.
Many times ashorter version of the datasheet is only available with no sufficient information. In this case,
it is advisable to request for full documentation from the supplier. The document that is received contains
amessage (in every sheet) indicating that the document is only apreliminary version. Though thereis not
much difference between the preliminary and final versions, it is always better to have the final version.

3.4.1 Timing Charts

To understand the timing issuesin a System-80 LCD interface, review the charts—CS, RS, RD, WR, and
Data busin the datasheet.

These charts can be used to verify thelogical value of every signal while performing any operation. Most
of the System-80 L CD datasheets contain diagrams to show how to read, write, and send commandsto the
LCD controller.

For example, if the LCD isusing the System-80 (Type 2) interface with 18/16 bit data system interface,
then the diagrams are similar to the following figures.

Figure 5 shows the write sequence of the System-80 (Type 2) 18/16 bit interface.

os |

RS

nRD

WR I_I |_|

DB[17:0],) W ” . tor ot a”
DB[15:0] Xerte register “index X Wirite register “data’ X

Figure 5. Write Sequence of the System-80 (Type 2) 18/16 Bit Interface

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

8 Freescale Semiconductor

Asynchronous Display Interfaces

In thisfigure, the CS, RD, and WR signals are active low. These signals become active only when the
signal goeslow. From Figure 5, it is verified to be a System-80 (Type 2) interface, because the datais
latched by using the RD and WR signals. When RSisthe only signal used in conjunction with WR signal
and also when RS islow, the information on the data bus must be treated as a command (register). On the
other hand, when RS has a high value and WR is active, the information on the data bus is related with
some data, which istypically a straight RS polarity.

3411 Read from Register
Figure 6 shows the read sequence of the System-80 (Type 2) 18/16 bit interface.

nCS

RS
nRD

nWR

DBI[17:0], / \
DB{1 5;0% XWrite register“index” \ { Read register “data’

Figure 6. Read Sequence of the System-80 (Type 2) 18/16 Bit Interface

Figure 6 shows that the RD signal is used to indicate when the datais going to be read and thissignal is
used only after a command is issued.

It is observed that the data polarity is always straight for color LCDs and can be inverted for
monochromatic LCDs.

3.4.2 Timing Concepts

Though the previous figures are helpful in understanding the logical flow of the interface, more details
about the timing of each state (in ns) are required to configure the display interface.

Table 4 shows the timing concepts in the asynchronous System-80 (Type 2) LCD interface.
Table 4. Timing Concepts

Timing Concepts Description

Write system cycle time | Width of the write signal strobe cycle that is used to mark the writing of each data or command to the
(tevew) LCD. Itis the combination of the write low pulse width and the write high pulse width and the transition
between these states.

Read systemcycle time | Width of the read signal strobe cycle that is used to mark the reading of each data or command from
(tcycr) the LCD panel. It is the combination of the read low pulse width and the read high pulse width and the
transition between these states.

Write low pulse width | Time for which the WR signal must be low for a valid write system cycle time.
(twi)

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

Freescale Semiconductor 9

Asynchronous Display Interfaces

Table 4. Timing Concepts (continued)

Write high pulse width
(twh)

Time for which the WR signal must be high for a valid write system cycle time.

Read low pulse width
(trL)

Time for which the RD signal must be low for a valid read system cycle time.

Read high pulse width
(trr)

Time for which the RD signal must be high for a valid read system cycle time

Setup time for write
(tocsw)

Time measured between the tgycyy initialization (RS) until the WR signal goes low.

Setup time for read
(tocsr)

Time measured between the toycr initialization (RS) until the RD signal goes low.

Write signal fall time
(tws)

Maximum acceptable time that the WR signal must spend in the transition from high-level to low-level
state. Most of the times, this value is ignored, and it is assumed that the i.MX LCD interface is able to
switch the signal at high speed.

Write signal rise time
(twr)

Maximum acceptable time that the WR signal must spend in the transition from low-level to high-level
state. Most of the times, this value is ignored, and it is assumed that the i.MX LCD interface is able to
switch the signal at high speed.

Read signal fall time
(trr)

Maximum acceptable time that the RD signal must spend in the transition from high-level to low-level
state. Most of the times, this value is ignored, and it is assumed that the i.MX LCD interface is able to
switch the signal at high speed.

Read signal rise time
(trr)

Maximum acceptable time that the RD signal must spend in the transition from low-level to high-level
state. Most of the times, this value is ignored, and it is assumed that the i.MX LCD interface is able to
switch the signal at high speed.

Hold time for write
(tocHw)

After the WR signal switches from low-level to high-level (write latch instruction), the address hold time
is the time that the RS signal needs to maintain in its current value (0 = command and 1 = Data).

Hold time for read
(tbocHr)

After the RD signal switches from low-level to high-level (write latch instruction), the address hold time
is the time that the RS signal needs to maintain in its current value (0 = command and 1 = Data).

Write data set up time
(tps)

Time required to verify whether the data bus has the valid data before executing the write latch
instruction.

Write data hold time
(ton)

Time required to verify whether the i.MX31 has the valid data on the bus after executing the write latch
instruction.

Read data delay time
(tracc)

Time taken by the LCD to place the valid data on the bus after it receives the read start instruction (RD
transition from high-level to low-level).

Read data hold time
(tron)

Time taken by the LCD to place the valid data on the bus after it receives the read latch instruction (RD
transition from low-level to high-level).

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

10

Freescale Semiconductor

Asynchronous Display Interfaces

Figure 7 shows the write cycle timing of the System-80 (Type 2) interface.

nCS

RS
nRD

nWR

DB[17:0]

DB[15:0] XWrite register “index” \ /\ Read register“data” \

Figure 7. Write Cycle Timing of the System-80 (Type 2) Interface

Figure 8 shows the read cycle timing of the System-80 (Type 2) interface.

X X
RS !
: tocsr town 1
) 1 ! (
(Gl | I —
(. : \
1]
nCS \ : : /
))
T T Tru
3 T | le >
o g : :
1 mn
nRD N /I |\
. e :
Rf, 1 Rr
aebn SchaL RN
E‘ Trace . E Tron . '
.1—): ﬂ—b:
Read Data ' -)
DB[17:0] X Valid Data x

Figure 8. Read Cycle Timing of the System-80 (Type 2) Interface

3.4.3 Custom LCD Timing
This section describes the reset signal and its artifacts.

3.4.3.1 Reset

Many LCD panelsinclude an LCD controller, which needs an external system reset. If the LCD usesthe
reset signal, the timing regarding the pulse has to be found.

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

Freescale Semiconductor 11

|
y

'
A

Asynchronous Display Interfaces

Figure 9 shows the example of areset signal.

—p| Tires [@—
< Tres | 4 Vi
nRESET /
VR
N 7
Figure 9. Reset Signal Example
Table 5 provides the artifacts of the reset signal.
Table 5. Artifacts of Reset Signal
Parameter Symbol Minimum Type Maximum Unit
Reset low-level width | Trgg 1 — — ms
Reset rise time T.RES — — 10 us

The important fact that can be observed is the reset signal is active low. This means that the reset signal
must be high while performing normal operations. Thereset signal must below for at least 15 nsto ensure
avalid reset. Thereset piniscontrolled by the i.MX31 General Purpose Input/Output (GPIO). It is
recommended not to usethe RC circuit to generate thereset signal asit restrictstherising time of the signal
to 10 ps.

3.5 System Interface Data/Command Format

The data width is not the only characteristic of the data interface. Another important feature of the smart
panel isthe Interface Data Format.

To explain this, the following example needs to be reviewed:

Consider that an RGB565 LCD isavailable and a 16-bit data bus width isused. Thefirst stepisto send al
the RGB data using one singletransfer (16-bit databusand onetransfer per pixel) through the parallel data
bus and this approach is an appropriate way to do it.

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

12 Freescale Semiconductor

Asynchronous Display Interfaces

Figure 10 shows the data format of the RGB565 LCD system interface.

Internal
DI RGB
data

D2|D1| DO

' Transfer
DBI15.00

Pixel data on
LCD nmemory

Figure 10. RGB565 16 Bit Data Bus, 1 Transfer Per Pixel System Interface Data Format

Now, suppose that thissame L CD al so supports RGB666 and animageis created based on this pixel depth.
It isevident that al the RGB data cannot be sent through the 16-bit data bus by using only one transfer
(1.MX31 databusis 18-bit width maximum, but currently only 16 bits are used because L CD supportsonly
16-bit datatransfer). For example, send all the red and green componentsin thefirst transfer and then send
the remaining two blue bitsin the following transfer. Then, in the next transfer start over with the next
pixel.

Figure 11 shows the data format of the RGB666 LCD system interface.

Internal
DI RGB Y
data
1% Trander 2™ Transfer
DBI15:.01 DH 15:01
Pixel dataon
LCD memorv

Figure 11. RGB666 16 Bit Data Bus, 2 Transfers Per Pixel System Interface Data Format

However, the LCD can request for a different system interface data format, where the dummy data has to
be sent in the first transfer and not in the second. Also, R5 and R4 must be placed in the most significant
bit (msb) of the data businstead of the least significant bit (Isb).

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

Freescale Semiconductor 13

Asynchronous Display Interfaces

Figure 12 shows the data format of the RGB666 LCD system interface.

Figure 12. RGB666 16 Bit Data Bus, 2 Transfers Per Pixel System Interface Data Format

Though Figure 11 and Figure 12 give the best performance regarding data transfers between thei.MX and
LCD, there are also other means to send this data. For example, each color component can be sentin a
single datatransfer. First, send the six bits of the red component, then send the six green bits in the next
transfer, and then in the third transfer, send the remaining five bits of the blue component. After this
transfer, the process begins with the next pixel data.

Figure 13 shows the data format of the RGB666 LCD system interface.

Interna
DI RGB
data

1% Trandfer
DB[15.0]

D16

Pixel dataon
LCD memory

Figure 13. RGB666 16 Bit Data Bus, 3 Transfers Per Pixel System Interface Data Format

The same LCD supports more than one color depth (bits per pixel) and more than one system interface
data format. The system interface is selected using a specific pin or register configuration. If the system
interfaceisselected by aregister, the question that arisesis, how the datais sent before sel ecting the system
interface. Thisis possible because command and pixel data transfer system interface are not always the
same. The command interface can perform only one transfer per command, but the data transfer system
interface can perform two or three transfers per pixel.

3.6 LCD Panels Supported by the i.MX31
Thei.MX31 can handle up to four displays at the same time.

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

14 Freescale Semiconductor

Asynchronous Display Interfaces

Table 6 lists the various types of displays that are handled by the display controllers.

Table 6. Display Controllers and their Interfaces

Display Display Type Interface
DISPO Asynchronous Parallel interface only
DISP1 Asynchronous Serial and parallel interface
DISP2 Asynchronous Serial and parallel interface
DISP3 Synchronous RGB interface (HSYNC, VSYNC, PIXCLK, upto RGB666)

3.6.1 Asynchronous Display Interface

Thei.MX31 ADC can be configured to handle several types of devices and interfaces. The ADC is able
to support up to three smart displays simultaneously with time multiplexed access. The DISP1 and DISP2
provide parallel and serial display interfaces while DISPO provides only the parallel interface.

The interfaces supported by the ADC are as follows:
» System-80 interface
— Type 1 (sampling with the chip select signal) with or without byte enable signals
— Type 2 (sampling with the read and write signals) with or without byte enable signals
* System 68 K interface
— Type 1 (sampling with the chip select signal) with or without byte enable signals
— Type 2 (sampling with the read and write signals) with or without byte enable signals
» Seridl interfaces
— 3-wire (with bidirectional data line)
— 4-wire (with separate data input and output lines)
— 5-wiretype 1 (with sampling RS by the serial clock)
— 5-wiretype 2 (with sampling RS by the chip select signal)
For more details, refer to the Image Processing Unit chapter of the MCIMX31 and MCIMX31L Multimedia
Applications Processor s Reference Manual (MCIMX31RM).

For parallel interfaces, the data busis time multiplexed with DISP3 (synchronous interface) and with the
other parallel asynchronous interfaces. If there is a synchronous panel in the system, the asynchronous
displays can be accessed only when the i.M X 31 does not send any datato the dumb display (implies back
and front porches). Based on this, it is observed that the bandwidth for parallel asynchronous LCDs are
limited by the synchronous panel frame rate, back porch, and front porch (both horizontal and vertical).
When the Synchronous Display Controller (SDC) or ADC communicates with one of the four displays
through the parallel interface, the Micro Controller Unit (MCU) is allowed to access another display
through the serial interface simultaneously.

Thei.M X3l is ableto support awide variety of system data interfaces. In general, for System-80 type 2,
the i.M X 31 supports data bus, whose width variesfrom 8 to 18 lines (DISPB_DATA [17:0]). Theinternal
Display Interface (DI) format for data and command is a 24-bit word which is divided into three byte
components (for a 16-bit word, eight zeros are added to the MSB from the ADC). Because of this, itis

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

Freescale Semiconductor 15

Asynchronous Display Interfaces

always better to assume that the RGB888 is available internally and also assume that there are 24 bits
available for commands, even when the bits can be masked to 8 or 16 bits. Thisword can be either as an
output or input in one, two, or three of the display clock cycles. Dueto this, the ADC isableto providethe
outputs—RGB565, RGB666, and RGB888 color depthsand few other variationsof color, which fitsinthe
24 bits. Another important feature of i.M X 31 isthat it has aseparate system transfer configuration for both
commands and data.

It isimportant to mention the registers that are used to configure the system interface. For DISPO, the
registers used for data mapping are:
« DI_DISPO DBO_MAP
« DI_DISPO DB1 _MAP
« DI_DISPO DB2_MAP
« DI _DISP_ACC CC
For command mapping, the registers used are:
« DI_DISPO_CBO MAP
« DI_DISPO_ CB1 MAP
« DI_DISPO_CB2 MAP
« DI_DISP_ACC CC

For more details, refer to the Image Processing Unit chapter of the MCIMX31 and MCIMX31L Multimedia
Applications Processor s Reference Manual (MCIMX31RM).

The examplesavailablein Figure 10 to Figure 13 can bereviewed using proper valuesto gain moreclarity.

Table 7 showsthe i.MX31 register values for a RGB565 transfer per pixel system interface.
Table 7. i.MX31 Register Values for 16 Bit Data Interface RGB565 1 Transfer Per Pixel

OFFS0 | OFFS1 | OFFS2 M7 M6 M5 M4 M3 M2 M1 Mo
Byte2 Red 15 0 0 3 3 3 0 0 0 0 0
Byte1 Green 10 0 0 3 3 0 0 0 0 0 0
ByteO Blue 4 0 0 3 3 3 0 0 0 0 0

DISPX_IF_ CLK CNT_ Y |0

The OFFS1 and OFFS2 columns are set to 0 because the data is packed and sent in asingle transfer and
therefore, no datais sent in the second or third transfer. The OFFSO determines how the color components
areordered inthefirst transfer (clock cycle). Here, the M SB of blue component islocated in D4 (five bits),
MSB of green component is located in D10 (6 bits) and MSB of red component islocated in D15 (five
bits). Since RGB565 is used, masking can reflect the color depth by specifying which isthe MSB (not
masked). The M5-M7 columns are always masked (3 implies masked) for red and blue components (five
bits) and for the green component, only the M7 and M6 columns are masked (six bits). The MO-M4
columnsin the red and blue components and the M0-M5 columns in the green component are filled with
zeros because the data has to be enabled in thefirst clock cycle. The DISPX_IF_CLK_CNT_Y row isset

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

16 Freescale Semiconductor

Asynchronous Display Interfaces

to O (display clock cycles - 1) because only one transfer per pixel isused and therefore, only one clock
cycleisrequired.

NOTE

XinDISPX_IF_CLK_CNT_Y canbeO0, 1, or 2 depending on which display
isselected, and Y can be C (command mapping) and D (data mapping).

Table 8 showsthe i.MX3L1 register values for the RGB666 two transfer per pixel system interface.
Table 8. i.MX31 Register Values for 16 Bit Data Interface RGB666 2 Transfers Per Pixel

OFFS0 | OFFS1 | OFFS2 M7 M6 M5 M4 M3 M2 M1 Mo
Byte2 Red 15 0 0 3 3 0 0 0 0 0 0
Byte1 Green 9 0 0 3 3 0 0 0 0 0 0
ByteO Blue 3 5 0 3 3 0 0 0 0 1 1

DISPX_IF_ CLK CNT_ Y |1

Inthisexample, two transfersare required and so DISPX_IF_CLK_CNT_Y isset to one (number of clock
cycles- 1). Using OFFSO, the first cycleis set up, wherethe red (six bits) and green (six bits) components
are sent and hence, thered MSB ison D15 and the green MSB ison D9. Also, part of the blue component
issent inthefirst transfer (four MSB bits) and hence, the blue MSB ison D3. In the second transfer, only
the remaining bits of the blue component is sent. Therefore, OFFS1 column contains only the blue offset,
which is placed on D5, so that BO and B1 are placed in the LSB. The M6 and M7 columns are masked for
all colors (bytes), which imply that all color components are of six bitswidth. Using 0 or 1in masksis
used to specify whether the bits are in thefirst cycle (0 = first transfer) or second cycle (1 = second
transfer).

Table 9 showsthe i.MX31 register values for the RGB666 two transfer per pixel system interface.
Table 9. RGB666 16 Bit Data Bus, 2 Transfers Per Pixel System Interface Data Format

OFFSO0 | OFFS1 | OFFS2 M7 M6 M5 M4 M3 M2 M1 MO
Byte2 Red 15 17 0 3 3 0 0 1 1 1 1
Byte1 Green 0 11 0 3 3 1 1 1 1 1 1
ByteO Blue 0 5 0 3 3 1 1 1 1 1 1

DISPX IF_ CLK CNT Y |1

This example also requires two transfers and therefore, DISPX_IF_CLK_CNT_Y isset to one. Since
RGB666 is used, M6 and M7 columns must be masked (3) to indicate the color depth. In the first transfer,
only thetwo M SB of thered component are sent and so, red OFFS0is 15. For the second transfer (OFFSL1),
the blue component starts at D5 and the green component at D11, but the remaining red information has
an offset of 17 because the four least significant bits of the red component are sent using the lines,
D12-D15. The masks determine that only R5 and R4 have to be sent in the first transfer and all the other
bits are sent in the second cycle.

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

Freescale Semiconductor 17

|
y

'
A

Asynchronous Display Interfaces

Table 10 shows the i.MX31 register values for the RGB666 three transfer per pixel system interface.
Table 10. RGB666 16 Bit Data Bus, 3 Transfers Per Pixel System Interface Data Format

OFFS0 | OFFS1 | OFFS2 M7 M6 M5 M4 M3 M2 M1 MO
Byte2 Red 5 0 0 3 3 0 0 0 0 0 0
Byte1 Green 0 5 0 3 3 1 1 1 1 1 1
ByteO Blue 0 0 5 3 3 2 2 2 2 2 2

DISPX IF_CLK CNT Y |2

TheDISPX_IF_CLK_CNT_Y row indicatesthat threetransfer per pixel arerequired and masks determine
that the RGB666 is used. Here, the red component is sent in the first transfer (0), green component in the
second transfer (1), and blue component in the third transfer (2). The MSB’s of all the components are

placed on D5, and thisis reflected in the offsets. (OFFSO for red, OFFSL1 for green, and OFSS2 for blue)

The same concept can be applied to the command interface by considering the byte0, bytel, and byte2
store command information instead of color information. For more details, refer to the Bus Mapping Unit
section in the MCIMX31 and MCIMX31L Multimedia Applications Processors Reference Manual
(MCIMX31RM).

3.7 Command and Template Mode

For asynchronous panels, the two types of display accessesfor registers and data are—the command and
template mode. The command mode is used for initialization process and the template mode is used for
the frame buffer update. Once the interfaces have been configured, both modes generate al the signalsto
write data or send commands to the smart panel.

3.7.1 Command Mode

The command mode is used for the initialization routine. In this mode, the asynchronous command
interface is set up with the desired characteristicsby using the DI_DISP_LLA_CONF register:

» Display Interface (DISPO, DISP1, or DISP2)
» Dataor command (RS polarity)

Write the command or data to be sent to the smart panel inthe DI_DISP_LLA_DATA register. With these
two actions, the ADC sends the data or command from the DI_DISP_LLA_DATA register tothe LCD in
one, two, or three transfers according to the system command configuration that is described in the
DI_DISPO_CBO_MAP DI_DISPO CB1_MAP,DI_DISPO_CB2 MAP,andDI_DISP_ ACC_CCregisters
(offsets and masks). If another command or data with the same configuration needs to be sent, write the
command or dataagain onthe DI_DISP_LLA_DATA register.

The WINCEG00 BSP provides afunction where the low-level aspectssuchasDI_DISP_LLA_CONF and
DI_DISP_LLA_ DATA areencapsulatedintheabcw i t ecommand() function. Itisimportant to mention that
the offsets and masks for the command system interface must be configured before using the

ADCW i t econmand() function. See the following example:

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

18 Freescale Semiconductor

Asynchronous Display Interfaces

Consider an interface where either the data (RS = 1) or command (RS = 0) is of 16-bit width. While using
an interface, first send the register address (command) and then the register contents (data) in order to
configure the register. Also, assume that the DISPO 16-bit width command is used with only one transfer
per command.

Figure 14 shows the 16 bit command one transfer per command system interface data format.

D31 D23 RO
DI_DISP_LLA_DATA Unused Dummy data |C15 |C14 [C13 |C12 [C11|C10|C9 | C8 [C7 [C6 |C5 |C4 |C3 | C2 (C1 [CO
ot A AR B AR A AR A AR B y v N
1> Transfer
DI_DISPE[150] |P15[D14 |D13 [D12 (D11 |D10 (D9 | D8 |D7 (D6 | D5 (D4 |D3 | D2 (D1 [DO

Figure 14. 16 Bit Command 1 Transfer Per Command System Interface Data Format

Thefollowing configuration showsthat theDI_DISP_LLA_DATA byte0 and bytel are sent to the display
during thefirst clock cycle. Byte2 isignored because there is only one transfer per command
(DISPO_IF_CLK_CNT_C=0). Configure the interface before writing datato DI_DISP_LLA_DATA.

For more details, refer to the Memory Map and Register Definition section in the MCIMX31 and
MCIMX31L Multimedia Applications Processor s Reference Manual (MCIMX31RM).

Table 11 shows the data format of the 16 bit command one transfer per command system interface.
Table 11. 16 Bit Command one Transfer Per Command System Interface (Refer Figure 14)

OFFS0 | OFFS1 | OFFS2 M7 M6 M5 M4 M3 M2 M1 Mo
Byte2 0 0 0 3 3 3 3 3 3 3 3
Byte1 15 0 0 0 0 0 0 0 0 0 0
Byte0 7 0 0 0 0 0 0 0 0 0 0

DISPO_IF_ CLK CNT C |0

3.7.2 Template Mode

The template mode is used for sending pixelsto the LCD. Oncethe LCD isinitialized, the display dataon
the smart panel memory can be considered as an externa memory where the i.MX31 display driver
modifies either some part of the content or the compl ete frame buffer. In this way, the driver attempts to
access only that memory and the ADC setsup all the signalsin order to write those pixels in the smart
panel memory.

A template isamicro program that is executed every time when a data burst has to be written to or read
from asmart display. A typical structure of the template includes the following parts:

» Sending a pre-command sequence to the display.

* Sending an address to the display.

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

Freescale Semiconductor 19

|
y

'
A

Asynchronous Display Interfaces

Waiting for acknowledgement from the display or for the given number of display clocks and
waiting is required only for the read access.

Sending a data sequence to the display or receiving a data sequence from the display. Thisstepis
repeated when addressing is sequentia (refer to the Sequential Addressing A ccess section of the
MCIMX31 and MCIMX31L Multimedia Applications Processors Reference Manual
(MCIMX31RM).

Sending a post-command sequence to the display.

Depending on the access type (read or write) and access, the template structure can be varied. For
the sequential access (refer to the Sequential Addressing Access section of the MCIMX31 and
MCIMX31L Multimedia Applications Processor s Reference Manual (MCIMX31RM), both
commands and addresses are not sent to the display. Therefore, templates are not used for the
sequential access. Two templates—read and write exists for each of the three displays and the
maximal template length is 32 commands.

There is no standard that specifies how this transfer is going to happen. For example, in the GiantPlus
GPM722A0 if the frame buffer contents has to be modified, send the X (pixel offset) and Y (line) position
of the pixel to the smart panel, by writing the addresses in the Graphics RAM (GRAM) horizontal (R20h)
and GRAM vertical address (R21h) registers, and then write the pixel contents in the R22h register (write
datato GRAM). After this operation, if the display interface writes again on the R22h register, the smart
panel storesthe RGB datain the next pixel location and so on.

Even when the addresses of X and Y are set every time apixel isreferenced, thei.MX31isable to
distinguish the continuous access and run only the address set up (R20h, R21h, and R22h). When a non-
sequential accessisreferenced, the functionality needsto be configured inthei.MX31 IPU’'sADC_CONF
register. This helps to reduce the transfer per pixel in the display interface. For more details, refer to the
MCIMX31 and MCIMX31L Multimedia Applications Processors Reference Manual (MCIMX31RM).

3.7.2.1 Sending Pre-Command Sequence to the Display

There is no pre-command sequence for GiantPlus GPM 722A0.

3.7.2.2 Sending an Address to the Display

The addressesto the GRAM horizontal/vertical address Set (R20h, R21h) registers need to be sent and the
template command for thisis asfollows:

1.

Send the GRAM horizontal address set command to the register (R20h).

Figure 15 shows the GRAM horizontal address set command (R20h).

nCs0 ﬁ
RS How Opcode Data
cortrd RS — 1
0 | Sep-by- | WRCMND 0x20 (HOR_GRAM_ADDR_ET) nWR —| ’7
den
o150

Figure 15. Horizontal Address Set Command

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

20

Freescale Semiconductor

Asynchronous Display Interfaces

2. Send the contents of the GRAM horizontal address to the register.
Figure 16 shows the contents of the GRAM horizontal address.

nC0
RS Flow Opcade Data RS
cortrol =
1 Sepby- | WR XADDR (JxOl(send;d'ess bits [7:Q]) nwWR —| ’7
sten
7 PRS0
Because this LCD is 240pixel swidth we need 8 hits
for X Addresses.

Figure 16. Contents of the GRAM Horizontal Address

3. Send the GRAM vertical address set command to the register (R21h).
Figure 17 shows the GRAM vertical address set command.

RS Flow Opcode Data

cortrol RS

0 Sepby- [WR CMND Ox21(VER_GRAM ADDR SET) nWR —l—,i
step

or 50

Figure 17. Vertical Address Set Command

4. Send the contents of the GRAM vertical address to the register.
Figure 18 shows the contents of the GRAM vertical address.

nCs0
RS Flow Opcode Daa RS
corntrol
1 Sepby- | WR_YADDR Ox01 (send address bits [22:8]) nWR —ﬁ
step /
7 0B(150

Because this LCD is 240pixel swidth we need 8 hits
for X Addresses. Y address LSB is bit 8

Figure 18. Contents of the GRAM Vertical Address

5. Send the write data to the GRAM command (R22h).
Figure 19 shows sending of the write data to the GRAM command.

nCs0
RS | Flow Opcode Data RS
control 4I
0 | Sepby- | WR CMND 0x22(WR_DATA_TO_GRAM) nWR —| ’7
step

PRB —(Toer >——

Figure 19. Send Write Data to the GRAM Command

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

Freescale Semiconductor 21

|
y

'
A

Display Configuration in WINCE 6.0

3.7.23 Sending a Data Sequence to the Display
Finally, send the pixel information to the panel.
Figure 20 shows sending of the pixel information to the panel.

nCs0
RS Flow Opcode Data s
corntrol
1 STOP WR DATA Not used nWR I_\ m I_
\ / DB[15q —Pixd XY X Pixd X+1Y X Pixd X+2Y >
Stop mugt beincluded in last Pixd datais taken from the After pixel 239, the index jumpsto the
template command buffer menory first pixel inthe next line.

Figure 20. Sending Pixel Information to the Panel

3.7.24 Sending a Post-Command Sequence to the Display
There is no post-command sequence for GiantPlus GPM722A0.

It is observed that nearly six transfers are required for loading theinitial pixel data, but if the sequential
access is used correctly, the total number of transfers can be reduced to one transfer per pixel.

4 Display Configuration in WINCE 6.0

L CD support isone of the most important features for any multimediadevice. Display support enablesthe
device to have a Graphical user interface (GUI) and the possibility to become an entertainment artifact.

The graphic context is composed of several layers where the i.MX31 display interface isthe final part in
the abstraction. All the ADC and display interface characteristics that are reviewed in previous sections
describe only how the i.MX 31 sends the frame buffer to the panel. However, it isimportant to know who
isgoing to create the frames that need to be sent to the panel. If the screen isrefreshed 60 times per second
(60 Hz), every line and every single pixel has to be created to maintain the coherence of the graphic
context.

Thei.MX31 PDK BSP basesits display driver on the Display Driver Interface (DDI) defined by
Microsoft® for all WINCEB0O devices. | mplementing adriver using this model ensures the compatibility
of the hardware with the operating system. In other words, once WINCE is loaded and if the driver is
created using the MS model, the operating system handles the graphic context, providing all frames.

4.1 WINCEG600 Display Driver Development Concepts

Display drivers are loaded and called directly by the graphics, windowing, and event subsystem, called
Gwes.exe. Drivers are most commonly written using a layered architecture because of the number of
hardware-independent operations.

The Graphics Primitive Engine (GPE) library handles the default drawing, acting as the display driver's
Model Device Driver (MDD) upper layer.

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

22 Freescale Semiconductor

Display Configuration in WINCE 6.0

The user devel ops the hardware-specific code that corresponds to the display driverslower layer, caled
the Platform-Dependent Driver (PDD).

Table 12 shows the elements that constitute the Windows CE graphics pipeline.

Table 12. Elements of Windows CE Graphics Pipeline

Element

Description

Application

The application can be simple such as a Hello World application or complex such as a three-dimensional
engineering application.
Whichever it is, the application calls GDI functions. Coredll.dll exposes these functions.

Coredll.dll

The major set of functions is exposed through a single DLL, called Coredll.dll.

In most cases, this library does not perform the work. Instead, the library packages the parameters for the
function call and then triggers a Local Procedure Call (LPC) to another process.

The specific process depends on the function call. All drawing and windowing calls are sent to Gwes.exe.

Gwes.exe

The Graphics, Windowing, and Events Subsystem (GWES) is responsible for all graphical output and all
interactions with the user.

The drivers that reside in the GWES address space include display drivers, printer drivers, keyboard drivers,
mouse drivers, and touch screen drivers.

Ddi.dll

The default name for the display driver is Ddi.dll. As with most DLLs, Ddi.dll communicates through exported
functions.

Ddi.dll exports only the Dr vEnabl eDr i ver function, which returns a pointer to an array of 27 function pointers
to the caller. When GWES requires a display driver, it calls one of the 27 functions.

Writing a device driver involves writing the code for the 27 functions.

Three of these functions are specific to printer drivers, which leaves 24 for the display driver developer.

Hardware

The graphic pipeline ends at the hardware. The display driver communicates to the hardware using the
mechanism required by the hardware.
This process typically involves a combination of memory-mapped video buffers and I/O registers.

Figure 21 shows the Windows CE graphics architecture.

Application

Client.exe fe]s]l

Device configuration Display driver
fram bus enumeratar ==

through the registry oFE

|

Hardware

Figure 21. Windows CE Graphics Architecture

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

Freescale Semiconductor 23

Display Configuration in WINCE 6.0

More details can be found under Display Drivers (Developing a Device Driver > Windows CE Drivers>
Display Drivers) topic of Platform Builder for Microsoft® Windows CE 5.0 hel p.

It isimportant to mention that developing a WINCE Display driver from scratch implies a considerable
effort and knowledge, specially the WINCE architecture. Freescale providesthei.MX31 display driver for
asynchronous di%)I aysin the WINCEG00 BSP. Thei.MX31 Windows CE 6.0 BSP display driver isbased
on the Microsoft™ DirectDraw Graphics Primitive Engine (DDGPE) classes and supports the M icrosoft®
DirectDraw interface. This driver combinesthe functionality of astandard LCD display with DirectDraw
support and the display driver interfaceswith |PU. Thisdriver supports more than one panel which can be
selected by using the Windows Register. The support for a new asynchronous panel can be added using
the procedure described in the following section.

4.2 Adding Support for a New LCD Panel

The following sections describes the procedure used to add the support for a new asynchronous panel.

4.2.1 Identify LCD Characteristics and Timing

To add the support for anew System-80 smart panel for the i.MX31 BSP, ensure that this panel is
compatible with thei.MX31. The panel must have the following interface characteristics:

— Asynchronous display (smart display)
— System-80 Type 2 (sampling with the read and write signals) interface
— Resolution not greater than SVGA

Once acompatible LCD panel is selected, it isimportant to find the timing and system data interface
characteristics of the display. Following tables are related to the GPM 722A0 display.

Table 13 shows the artifacts of the GPM722A0 display.
Table 13. Artifacts of the GPM722A0 Display

Parameter Symbol Value

Display Interface DI System-80 Type 2 (sampling with the read and write signals)

Burst Mode BRSTM Parallel interface burst mode

Data Polarity DEP Straight

Chip Select Polarity CSPOL Active low

Register Select (PAR_RS) Polarity | RSPOL Straight polarity

Write Signal Polarity WRPOL Active low

Read Signal Polarity RDPOL Active low

Color Depth (bits per pixel) BPP 16(RGB565)/18(RGB666) bits (configurable)

System interface data format DFMT One or two transfer per pixel depending on color depth, one transfer per
command

LCD width HDISP 240 pixels

LCD height VDISP 320 lines

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

24 Freescale Semiconductor

Display Configuration in WINCE 6.0

Table 14 a so shows the artifacts of the GPM722A0 display.
Table 14. Artifacts of the GPM722A0 Display

Parameter Symbol Minimum Type Maximum Unit
Write Cycle Time toyow 100 — — ns
Read Cycle Time tcycr 300 — — ns
Write Low Pulse Width twi 50 — 500 ns
Write High Pulse Width twH 50 — — ns
Read Low Pulse Width TRL 150 — — ns
Read High Pulse Width TRrH 150 — — ns
Setup Time for Write Tpcsw 10 — — ns
Setup Time for Read Tpcsr 5 — — ns
Write Signal Fall Time Twe — — 25 ns
Write Signal Rise Time Twr — — 25 ns
Read Signal Fall Time Tre — — 25 ns
Read Signal Rise Time Trr — — 25 ns
Hold Time for Write TocHw 15 — — ns
Hold Time for Read TbcHR 5 — — ns
Write Data set up Time Tbs 10 — — ns
Write Data Hold Time TonH 15 — — ns
Read Data Delay Time Tracc — — 100 ns
Read Data Hold Time TroH 5 — — ns

Note: Check if these values are same as the PANEL_| NFO structure.

More details on how to deduce these values from the LCD data sheet can be found in the Section 1,
“Overview of .M X31 Display,” to Section 3, “ Asynchronous Display Interfaces,” of thisapplication note.

4.2.2 i.MX31 WINCEG600 PDK LCD Driver Initialization Flow
The following snippet represents the WINCEG00 PDK LCD driver initialization flow:

DDI PU: : DDl PU()
+ DDIPU: : I nit()
+ DDI PU: : Set upVi deoMenory()
+ Set up the nenory for video.
+ video nenory size cones froma constant in inage_cfg.h
+ | MAGE_W NCE_| PU_RAM PA_START
+ I'nit Hardwar e()
+ DDKC ockSet poi nt Request () - HSP_CLK = 132 MHz
+ BSPInitializeLCD(el PU ADC) - GantPluslnitializeLCD()
+ Configure Reset pin as GPIGO LCS1, MCU3_24
+ LCD_RESET_GPI O_PI N=1
+ InitializeADC()

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

Freescale Semiconductor 25

Display Configuration in WINCE 6.0

+ Configure ADC and Di: |PU CONF, |PU CHA DB MODE SEL, |PU_CHA CUR BUF,
DI _DI SPx_DBO_MAP, DI _HSP_CLK_PER, ADC_CONF
+ _init_dma()
+ CreateTenpl at e()
+ ReadTenpl at eMenory()
+ ADCSet Sr cBuf fer ()
+ BSPEnabl eLCD(el PU_ADC) - G ant Pl usEnabl eLCD()
+ Pni cVol t ageRegul at or On(VMMCL) ; VMMCL 2.8V
+ Pmi cVol t ageRegul at or On(VGEN) ; VGEN 2.8V
+ BSPDi spl ayl OMUXEnabl e() - G ant Pl usDi spl ayl OMJUXEnabl e()
+ Configure LCD pins: LDO-17, LCSO, PAR RS, WRI TE, READ, etc)
+ BSPReset LCD(el PU_ADC) - G ant Pl usReset LCD()
+ LCD_RESET_GPI O_PI N=0
+ Sl eep(3000)
+ LCD_RESET_GPI O_PI N=1
+ ADCEnabl eModul es()
+ Enabl e DI
+ Enabl e ADC
+ Startup Command Sequence
ADCW it eConmand() - G antPlusWiteRegister(

+ Enabl eADC()
+ Enabl e DI
+ Enabl e ADC
+ DDI PU: : AdvertisePower | nterface()

TheLCD driverisinitialized inthe ol Pu_sbc: : bbi Pu_sbg() function. The video memory sizeisnot taken
from the registry, because this value is a constant IMAGE_WINCE_IPU_RAM_SIZE) declared in the

i mge_cf g. hc file. Panel type, rotation parameters, pixel depth, and TV modes supported by the platform
are extracted from the registry (pl at f orm reg file). Based on the selected panel, the driver notifies the
WINCE display properties such aswidth, height, bits per pixel, and so on. The cPEMbde datais
automatically set by using the PaNeL_I NFO structure of the current panel. With this information, WINCE
graphic context creates the frame buffers in the width, height, and format required by the LCD, whichis
to be displayed on the screen. The information regarding the ccEmode must also be modified to complete
the support for the new LCD. The width and height must be provided in the natural orientation of the LCD.

The next step isthe hardwareinitialization. Here, the IPU registers are configured to enable the ADC and
DI for working with the selected panel. The LCD timing features are not stored in registers, but are located
in the array PANEL_I NFO g_ADCPanel Ar r ay[nunPanel | placed in the

W NCE600\ PLATFORM i MX313DS\ SRC\ DRI VERS\ | PU\ ADC\ adc. ¢ file. So, to add the support for anew panel, this
array must be updated by adding another PANEL_I NFO structure with the panel timing information. The
IDMAC ADC channelsare configured, and theIOMUX isalso configured to enablethe LCD pininterface
(LDO-LD17,LCSO, PAR_RS, WRITE, READ, and so on). Then using bspdi spl ay. cpp, the driver
configures the specific LCD panel pins for initialization which includes reset and other enable pins that
arerequired. At the end of the process, the power levelsfor LCD are enabled, the panel isreset and all
initialization commands are sent to the LCD panel.

4.2.3 i.MX31 WINCEG600 PDK LCD Display Interface Related Files

Thefilesrelated to the i.MX31 WINCEGOO PDK LCD display are contained in the following locations:

W NCE600\ PLATFORM i MX313DS\ SRC\ | NC\ adc. h
W NCE600\ PLATFORM i MX313DS\ SRC\ DRI VERS\ | PW\ ADC\ adc. ¢
W NCE600\ PLATFORM i MX313DS\ SRC\ DRI VERS\ | PU\ DI SPLAY\ COMMON\ ddi pu. cpp

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

26 Freescale Semiconductor

Display Configuration in WINCE 6.0

W NCE600\ PLATFORM i MX313DS\ SRC\ DRI VERS\ | PU\ DI SPLAY\ COVWWON\ ddi pu_cur sor. cpp

W NCE600\ PLATFORM COMMON SRC\ SOC\ FREESCALE\ MXARML1_FSL_VI1\ I PUW I NC\i pu. h

W NCE600\ PLATFORM i MX313DS\ SRC\ DRI VERS\ | PU\ DI SPLAY\ DLL\ bspdi spl ay. cpp

W NCE600\ PLATFORM i MX313DS\ FI LES\ pl atformreg

W NCE600\ PLATFORM COMMON\ SRC\ SOC\ FREESCALE\ PM C\ MC13783_FSL_V1\ I NC\ pmi c_regul ator . h
W NCE600\ PLATFORM i MX313DS\ SRC\ | NC\ bsp_cfg. h

4.2.4 i.MX31 PDK LCD Structures

It isimportant to understand how and where the information related to the LCD panel settings (see
Section 4.2, “ Adding Support for aNew LCD Panel,”) are stored because the communication channel is
used to inform the Asynchronous LCD driver about the settings for the new LCD display. PANEL_I NFO,
which contains ADcC_| PU_ DI _SI GNAL_CFG and SDC_| PU_DI _SI GNAL_CFG IS the structure that needs to be
changed in order to add the support for a new panel. The g_AbcrPanel Array[] array inadc. c fileisthe
global array that stores the pAaNEL_I NFofor all supported smart displays (Toshiba, Epson, and so on). To
modify the driver, it is recommended to add a new entry at the end of the structure with the new

PANEL_| NFO Structure.

4.2.4.1 PANEL_INFO

PANEL_| NFOisthe main structure for the LCD timing and features. It also contains two structures related to
the signal polarity. The Apc | Pu_Di _sI GNAL_CFG IS used for asynchronous displays. Alternatively, the
SDC_I PU_DI _SI GNAL_CFG describes the polarities and characteristics of the RGB interface.

struct PANEL_I NFO ST {
PUCHAR NANE;
| PU_PANEL_TYPE TYPE;
| PU_PI XEL_FORMAT PI XEL_FMT;
I NT MODEI D
I NT W DTH,;
I NT HEI GHT;
I NT FREQUENCY;
I NT VSYNCW DTH;
I NT VSTARTW DTH,;
| NT VENDW DTH;
I NT HSYNCW DTH;
I NT HSTARTW DTH,;
| NT HENDW DTH;
INT RD_ CYCLE PER, // in ns
INT RD_UP_PGCS; // in ns
INT RD_DOWN_PCS; // in ns
INT WR_CYCLE_PER; // in ns
INT WVR_UP_PGCs; // in ns
INT WVR_DOWN_PCS; // in ns
INT PIX_CLK FREQ // in Hz
INT PI X_DATA PCS; // in ns
ADC | PU_DI _SI GNAL_CFG ADC SI G POL;
SDC_| PU_DI _SI GNAL_CFG SDC_SI G _PQOL;
b
typedef struct PANEL_I NFO ST PANEL_I NFQ

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

Freescale Semiconductor 27

Display Configuration in WINCE 6.0

Table 15 provides the description of each element in the PANEL_I NFO Structure.

Table 15. PANEL_INFO Structure Elements

Data Type Variable Name Description Symbol Unit
PUCHAR NAME Name of the panel — —
IPU_PANEL_TYPE TYPE Index of the panel type 1 — —
IPU_PIXEL_FORMAT | PIXEL_FMT Pixel format 2 BPP bit
INT MODEID Mode ID 3 — ns
INT WIDTH Active frame width VDISP pixel
INT HEIGHT Active frame height HDISP line
INT FREQUENCY Refresh rate FV Hz
INT VSYNCWIDTH Not used by smart panels — —
INT VSTARTWIDTH Not used by smart panels — —
INT VENDWIDTH Not used by smart panels — —
INT HSYNCWIDTH Not used by smart panels — —
INT HSTARTWIDTH Not used by smart panels — —
INT HENDWIDTH Not used by smart panels — —
INT RD_CYCLE_PER Read cycle period tcycr ns
INT RD_UP_POS Read up position TRH ns
INT RD_DOWN_POS Read down position TRL ns
INT WR_CYCLE_PER Write cycle period tcyow ns
INT WR_UP_POS Write up position twH ns
INT WR_DOWN_POS | Write down position twi ns
INT PIX_CLK_FREQ | Pixel clock frequency [4] — —
INT PIX_DATA_POS | Pixel data position [5] — —

1

The enum on this data field is used by adc. c file to distinguish the proper timing settings between the supported displays

(LCD, NTSC TV, and PAL TV) when the selected display is being loaded. The i pu. h header file contains IPU_PANEL_TYPE.

2 There are three different RGB pixel formats, RGB565, RGB666, and RGB888. By selecting one of these formats, the ADC’s
interpretation of the frame buffer data can be specified.

3 ForLCD panels, use DISPLAY_MODE_DEVICE as MODEID. Two other supported modes are also available, but those values

belong to the TV out functionality.

4.2.4.2 ADC_IPU_DI_SIGNAL_CFG
The following snippet represents the bit fields of the ADC display interface signal polarities:

// Bitfield of ADC Display Interface signal polarities
typedef struct {

U NT32 DI SP_NUM : 2;

Ul NT32 DI SP_I| F_MODE: 2;

Ul NT32 DI SP_PAR_BURST_MODE: 2;

U NT32 DATA _PQL : 1; /1 true = inverted

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

28 Freescale Semiconductor

U NT32 CS_POL :1; /1 true = active high
U NT32 PAR_RS_PCL 11 /] true = inverse
U NT32 WR_PCL 11 /1 true = active high
U NT32 RD POL :1; /1 true = active high
U NT32 VSYNC_POL :1; /1 true = active high
U NT32 SD D PQL : 1; /] true = inverse
U NT32 SD _CLK_PCL :1; /] true = inverse
U NT32 SER RS _PCL :1; /] true = inverse
U NT32 BCLK_PQL :1; /1 true = inverted

U NT32 Dumy . 16;
} ADC_| PU DI _SI GNAL_CFG,

Table 16 provides the name and description of the ADC display interface bit fields.

/1 Durmmy variable for alignment.

Table 16. ADC Display Interface Bit Fields

Display Configuration in WINCE 6.0

Offset Bit-Field Name Description Symbol

0 DISP_NUM Display number’ —

2 DISP_IF_MODE Display interface mode 2 —

4 DISP_PAR_BURST_MODE | Bust mode for parallel interfaces s —

5 DATA_POL Data polarity 4 DEP

6 CS_POL Chip select polarity ° CSPOL
7 PAR_RS_POL Parallel register strobe (REG/Data) polarity 6 RSPOL
8 WR_POL Write signal polarity 7 WRPOL
9 RD_POL Read signal polarity 8 RDPOL
10 VSYNC_POL VSYNC polarity (not used in GPM722A0) ° —

11 SD_D_POL Data polarity for serial interface (not used in parallel) —

12 SD_CLK_POL Clock polarity for serial interface (not used in parallel) —

13 SER_RS_POL Register polarity for serial interface (not used in parallel) —

14 BCLK_POL Burst clock polarity [10] —

15 Dummy Dummy data for memory alignment —

1

Display number refers to the i.MX31 display that is used for this interface. For parallel interfaces (System-80 Type 2), DISPO,
DISP1, or DISP3 can be used. Since this option is available, DISP0 (IPU_ADC_DISPLAY_0) can be selected.

There are seven different types of interfaces supported by the i.MX31, but this application note uses only the
IPU_DI_DISP_IF_CONF_IF_MODE_SYSTEMS80_TYPE2 (0x01) interface, which is defined in the nxar mL1_i pu. h file.
The burst access mode must be IPU_DI_DISP_IF_CONF_PAR_BURST_MODE_BURST_CS for the GiantPlus GPM722A0.
Data polarity must be straight (IPU_DI_DISP_SIG_POL_DATA_POL_STRAIGHT). If required, invert the signals in the data
bus (used only for B/W displays).

When the CS signal goes low to indicate it is active, the polarity of the CS_POL must be
IPU_DI_DISP_SIG_POL_CS_POL_ACTIVE_LOW. Active low is the most common configuration for this signal. However, the
CS_POL can also be IPU_DI_DISP_SIG_POL_CS_POL_ACTIVE_HIGH at times.

Setting PAR_RS_POL to IPU_DI_DISP_SIG_POL_PAR_RS_POL_STRAIGHT implies low for commands and high for data in
most common configuration. Additionally, IPU_DI_DISP_SIG_POL_PAR_RS_POL_INVERSE can be used if the interface
requires a configuration, which is HIGH for commands and LOW for data.

Write signal polarity is IPU_DI_DISP_SIG_POL_CS_POL_ACTIVE_LOW, which implies that the signal is active when it goes
low. If the LCD requires, the IPU_DI_DISP_SIG_POL_CS_POL_ACTIVE_HIGH can also be used.

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

Freescale Semiconductor 29

|
y

'
A

Display Configuration in WINCE 6.0

8 Read signal polarity is IPU_DI_DISP_SIG_POL_WR_POL_ACTIVE_LOW, which implies that the signal is active when it goes
low. Active Low is the most common configuration for this signal, similar to the Chip select and Write signal. The
IPU_DI_DISP_SIG_POL_WR_POL_ACTIVE_HIGH configuration is also available for rest of the cases.

VSYNC_POL refers to the polarity of VSYNC signal, which is used in some of the smart panels to synchronize the writings.

But, in the case of GPM722A0, the module does not provide this signal and therefore, this polarity can be ignored in this driver.
Additionally, if this signal is not available, the driver must be configured in order to ignore this synchronization. This is done by
setting an environmental variable (BSP_ADC_ENABLE_TEARING_PREVENTION) in the bsp_cf g. h header file to false.

4.2.4.3

SDC_IPU_DI_SIGNAL_CFG
The following snippet represents the bit fields of the SDC display interface signal polarities:

/1 Bitfield of SDC Display Interface signal

typedef struct {

u
u
u
u
u
u
u
u
u

NT32
NT32
NT32
NT32
NT32
NT32
NT32
NT32
NT32

DATAMASK_EN: 1
CLKIDLE_EN : 1
CLKSEL_EN :1
VSYNC POL :1
ENABLE_POL : 1;
1
1
1
2

DATA_PCL ; Il true
CLK_PCL ; /'l true
HSYNC_POL ; /'l true

Dumy

} SDC_I PU_DI _SI GNAL_CFG;
This structure is not used for asynchronous display panels and therefore, all these bitfields can be set to

Z€ero.

4.2.4.4

11

GPEMode

The following code snippet provides the ceEmode structure:
/1 STRUCT GPEMbde

// This structure describes a display node.
struct GPEMode

{
int nodel d;
int wi dt h;
int hei ght ;
int Bpp;
int frequency;
EGPEFor mat format;

}s

pol arities.

i nverted
rising edge
active high

4, /1 Durmmy variable for alignment.

The aPEMbde structure is used to communicate to the WINCE graphics engine, the size and format of the
screen. Using this information, the OS creates the frame in an appropriate size (required by the i.MX31),

which isto be processed and sent to the panel using the display interface.

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

30

Freescale Semiconductor

Table 17 provides the description of each element in the GceEMode Structure.

Table 17. GPEMode Structure Elements

Modifying the BSP

Data Type Variable Name Description Symbol Unit
int modeld Display or TV modes ' — —
int Width Active frame width VDISP pixel
int Height Active frame height HDISP line
int Bpp Bits per pixel 2 BPP bit
int Frequency Screen refresh rate FV Hz
int Format EGPEFormat enum 3 — —

1 Display mode can be either DISPLAY_MODE_DEVICE or DISPLAY_MODE_NTSC.
2 The mode must be set to DISP_BPP, whose value is 16.
3 This field represents the bits per pixel of the GPE frames and it takes any of the following values.

It isimportant to mention that the i.M X 31 supports maximum of 18 bits as the display interface width. If
more than 18 bits are used as BPP, the less significant bits are discarded when they are sent to the LCD.

Due to this reason, the recommended values for this field are gpe16Bpp and gpe24Bpp.

enum EGPEFor mat

{

gpelBpp,
gpe2Bpp,
gpe4Bpp,
gpe8Bpp,
gpel6Bpp,
gpe24Bpp,
gpe32Bpp,
gpel6YCr Ch,
gpeDevi ceConpat i bl e,
gpeUndefi ned

}s

In WINCEG0O, cPEMbde is automatically set by the ADC driver.

5 Modifying the BSP

To add support for the i.MX31 PDK WINCEG00 BSP, perform the following steps:
1. Modify the catalog

O N U WDN

Modify thepl at form reg file
Modify the pi at f orm bi b file
Set up the power LCD voltages
Set up the reset signal

Set up the backlight
Configure wait for VSYNC signal

Add a panel type enum for the new LCD

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

Freescale Semiconductor

31

3
4

y
A

Modifying the BSP

9. Create the PANEL_I NFO entry for the new LCD

10. Configure data and command system interface

11. Write initialization command routine

12. Create atemplate for the frame buffer write access

13. Add the mouse support for asynchronous displays

14. Rebuild the project
For example, consider the Giantplus GPM722A0 LCD panel. This smart panel isamulti-color depth
RGB565/RGB666, which uses the System-80 interface with 16-bit width transfers. But, choose RGB565
one transfer per pixel for the final implementation. Figure 5 and Figure 6 show how to read and write

from/to the LCD memory/registers. Also, Figure 10 and Figure 14 show the data and command system
interface transfers.

5.1 Modifying the WINCE600 Catalog
The WINCE600 catalog is changed by using the M icrosoft® Visual Studio. The procedure to modify the
WINCEG00 catalog using the M icrosoft® Visual Studio is as follows:

1. If thei.MX313dsmobility project isopen, click File > Close Solution to close the project.

2. Click File > Open > File to open the catalog file under
WINCEGOO\PLATFORM\IM X 313DS\CATALOG folder.

Figure 22 shows the catalog file.

Open File = el
Loak in:]_, CATALOG ;I 3 - % ¥ 4 B9 - Tods~
— @) imx313ds. phexml
Desktop
My Projects
L 1
?—1"
My Computer
File name: || Li i | .l
Files of type: I;‘|| Files {==) LI Cancel I

Figure 22. Opening the Catalog File

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

32 Freescale Semiconductor

Modifying the BSP

3. Create anew entry for the GiantPlus display under Catalog > Third Party > BSP > Freescale
i.MX31 3DS: ARMV4I > Device Drivers > Display folder. Right click the Display folder and

select Add Catalog Item as shown in Figure 23.

imx313ds.pbcxm'l" StartPage |

- X
B3 EHad - 3
= @ Catalog [Curent file] £
= Third Party
=03 BSP

=[] Freescalei.MX31 3DS: ARMVA]
=-_ Device Drivers
#-[_ Accelerometer
-3 Audio
#-[J Battery
-1 Camera
-3 CODECS

=13 DVFCE Add Catalog Item in Subfolder
B b I

Figure 23. Adding a New Catalog Item
4. Modify the properties of the catalog item as listed in Table 18.

Table 18 shows the modification of the properties of the newly added catalog item.
Table 18. Modifying the Catalog ltem Properties

Properties Value
Description IPU ADC display driver GIANTPLUS GPM722A0
Title GIANTPLUS GPM722A0(QVGA)

Additional Variables BSP_DISPLAY_GIANTPLUS_GPM722A0
BSP_PP
Modules ddraw_ipu.dll

Choose One Group True

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

Freescale Semiconductor

33

A 4
4\

Modifying the BSP

As shown in Figure 24, all the other properties must have the default value.

 imcs13dsphonl =%
B & Eadd - | G GIANTPLUS GPM722A0(QVGA) Catalog Item 5
= @) Catalog [Cument file] A Al
= "J Thlrd iy Bl Compatibility FS
=3 BSP =
=[] Freescale i MX31 3D5: ARMVAI Sipportsd Pl (Collection)
=-_4 Device Drivers Type BSP-Specific
[#-[1 Accelerometer B General
-0 Audio Help Link
- Battery Sdk Help File Attribute
-3 Camera Sdk Help Files (Collection)
-3 CODECS Size 0
=1 Display Size Is Scaled True
@-{0 EPSON L4FO0242TOVGA) B Identification
) GIANTPLUS GPM722AQVGA) Comment
-3 DVFC Description IPU ADC display driver GIANTPLUS GPM722A0
#-[] Bthemet Lan3217 Driver Title GIANTPLUS GPM722A0(QVGA)
-3 GPS Unique Id Item:DefaultVendor:DefaultCatalogItemMame:1
+ H] 1L B g B Item
i Fos Devies (Collection) @
-1 MBX

Modules (Collection)

i] MO 7RG A Motification Html

- Pulse-width Modulator

@[] Radio Driver : Motification Title
[#{_1 SD Host Controller Sysgen Variable
*-{] Seral E Location
-1 Smart Backlight Cortrol Choose One Group True Z
-3 Timers + | | Additional Variables
[- T ~ || Optional, Specify the name of a non-sysgen variable assodated with this catalog item. If this catalog item is added t...

Figure 24. Catalog Item Properties

5. Click OK on variables collection message box. Save and close the file. Open the
i.MX313dsmobility project, and then refresh the catalog by using the button on the top of the
catalog items view.

When the i.MX313dsmobility project in the Visual Studio is opened again, it is observed that the catalog
is changed as the GiantPlus display entry is also available in the catalog. Since the pl at f or m bi b and
pl at form reg files has to be modified, the GPM722A0 entry is excluded from the build.

Also, comment out the BSP_DISPLAY EPSON_L4F00242T03 = 1 entry in thei nx313ds. bat file under
the\ w NCE\ PLATFORM i Mx313Ds folder because this flag includes the Epson display unconditionally.

@REM For Di splay and Smart backlight support.
@REM set BSP_DI SPLAY_EPSON_L4F00242T03=1

5.2 Platform.reg

Open thepl at form reg file and add the register configuration settings for the new panel. Search al the
BSP_DISPLAY_EPSON_L4F00242T03 entries and add another OR condition for the GiantPlus display.
HKEY_LOCAL_MACHI NE\ Dr i ver s\ Di spl ay\ DDI PUMust be unique for each display.

; I PU Display Driver

#i f (defined BSP_CAMERA || defined BSP_PP || defined BSP_DI SPLAY_EPSON_L4F00242T03 || defined
BSP_DI SPLAY_G ANTPLUS_GPM722A0 || defined BSP_MBX)
[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t I n\ | PU_BASE]

"Prefix"="1PU"

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

34 Freescale Semiconductor

Modifying the BSP

"Dl l"="ipu_base.dll"

"Order"=dword: 1

"Il ndex" =dword: 1
#endif // (defined BSP_CAMERA || defined BSP_PP || defined BSP_DI SPLAY_EPSON L4F00242T03 | |
defined BSP_DI SPLAY_G ANTPLUS GPM722A0 || defined BSP_DI SPLAY_SHARP_LQ035Q7DB02 || defi ned
BSP_NMBX)

#if (defined BSP_DI SPLAY_EPSON L4F00242T03 || defi ned BSP_DI SPLAY_Gl ANTPLUS_GPM722A0 || defined
BSP_DI SPLAY_SHARP_LQ035Q7DB02)
[HKEY_LOCAL_MACHI NE\ Syst emi GDI \ Dri vers]

"Di splay"="ddraw_i pu.dl "

"Order"=dword: 10

I F BSP_DI SPLAY_G ANTPLUS_GPM722A0
[HKEY_LOCAL_MACHI NE\ Dri ver s\ Di spl ay\ DDI PU|

"Bpp" =dwor d: 10 ; 16bpp
"Vi deoBpp" =dwor d: 10 ; RGB565
"Panel Type" =dword: 7 ; G antPlus QVGA snart panel

ENDI F

#endi f // (defined BSP_DI SPLAY EPSON L4F00242T03 || defined BSP_DI SPLAY_G ANTPLUS_GPM722A0 | |
defi ned BSP_DI SPLAY_SHARP_LQ035Q7DB02)

5.3 Platform.bib

The p! at f or m bi b file determines the files that are to be included in the image. For the display driver, the
ddraw_i pu.dl 1 andipu_base. dl | fileshasto beincluded and the pi at f or m bi b entries must be updated.
Also, the BSP_DISPLAY_GIANTPLUS GPM722A0 variable must be set.

| F BSP_NODI SPLAY !

#if (defined BSP_DI SPLAY_EPSON L4F00242T03 || defi ned BSP_DI SPLAY_G ANTPLUS_GPM722A0 || defined
BSP_DI SPLAY_SHARP_LQ035Q7DB02)

ddraw_i pu. dl | $(_FLATRELEASEDI R)\ ddr aw_i pu. dl | NK SHK
#endi f

ENDI F ; BSP_NCDI SPLAY !

1

;1 PU Common Driver

#if (defined BSP_CAMERA || defined BSP_PP || defined BSP_DI SPLAY_EPSON_L4F00242T03 || defined
BSP_DI SPLAY_Gl ANTPLUS_GPM722A0 || defined BSP_DI SPLAY_SHARP_LQ035Q7DB02 || defi ned BSP_MBX)

i pu_base. dl | $(_FLATRELEASEDI R)\i pu_base. dI | NK SHK
#endi f

1

After thepl atform reg and pl at f orm bi b files are modified, perform a build using the current BSP and
subprojects.

5.4 Setting Up the Power LCD Voltages

Before connecting any LCD panel to thei.MX31 PDK, it isimportant to verify if the LCD can be powered
with the proper supply voltages and also if the display data interface has the correct value. Power settings
arehandled by the ATLAS PMIC and during itsinitialization, the display driver must configurethe PMIC
settingsin order to set up the power voltage configuration. Unlike EPSON display (L4F00242T03), which

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

Freescale Semiconductor 35

Modifying the BSP

uses 1.8 V, the GiantPlus display uses 2.8 V (LCD_VIO) for connection. The voltage settings can be
modified using the BsPEnabl eLcD() function in the bspdi spl ay. cpp file. The PMIC settings can also be
modified using the pni c_r egul at or . h file because the 2.8 V enumeration for vGen has not been declared.

pmic_regulator.h

typedef enum _MC13783 REGULATOR _VREG VOLTAGE VGEN{
VGEN_ 1 20V = 0, //output 1.20V,

VGEN_1_30V, /] out put 1. 30V,
VGEN_1_50V, /loutput 1.50V,
VGEN_1_80V, /] out put 1. 80V,
VGEN_1_10V, /loutput 1.10V,
VGEN _2_00V, /1 out put 2. 00V
VGEN_2_80V, / / out put 2. 775V
VGEN_2_40V, / / out put 2. 40V,

} MC13783_REGULATOR VREG VOLTAGE_VGEN;

bspdisplay.cpp

BOOL BSPEnabl eLCD(| PU_DRI VE_TYPE di spType)
{

switch (dispType)
{
case el PU_SDC:

br eak;
case el PU_ADC:

{
PM C_REGULATOR VREG VOLTAGE vol t age;

Pm cVol t ageRegul at or On(VMVC1) ;

Pm cVol t ageRegul at or On(VGEN) ;

vol tage.vimct = VMMC 6; //2.8V

Pm cVol t ageRegul at or Set Vol t ageLevel (VMMCL, voltage);
vol tage. vgen = VGEN_2_80V;

Pm cVol t ageRegul at or Set Vol t ageLevel (VGEN, voltage);
Sl eep(100);

5.5 Setting Up the Reset Signal

Many synchronous and asynchronous displaysrequireareset signal and it isrecommended that thissignal
must be controlled by the microprocessor. For GPM 722A0, the reset signal is controlled by the i.MX31
GPIOMCU3_24 (LCS1). Duetothisreason, duringinitialization, this pin needsto be configured as GPIO.

The reset pinis configured using the Bspi ni ti al i zeLcd() function inthe bspdi spl ay. cpp file:

BOOL BSPInitializeLCD(lIPU_DRIVE_TYPE di spType)
{

switch (dispType)

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

36 Freescale Semiconductor

Modifying the BSP

case el PU_ADC:
/] Reset pin:LCS1, MCU3_24
DDKI omux Set Pi nMux (DDK_I OMUX_PI N_LCS1, DDK_I OMUX_OUT_GPI Q
DDK_| OMUX_IN_GPI O) ;
DDKI onmux Set PadConf i g(DDK_I| OMJUX_PAD_LCS1, DDK_| OMUX_PAD SLEW SLOW
DDK_| OMUX_PAD DRI VE_NORMAL, DDK_| OMUX_PAD MODE_CMOS, DDK_| OMUX_PAD_TRI G_SCHM TT,
DDK_| OMUX_PAD_PULL_UP_100K) ;
DDKGpi 0Set Conf i g(DDK_GPI O_PORT3, LCD RESET_GPI O PIN, DDK_GPI O DI R_QUT,
DDK_GPI O_| NTR_NONE) ;
DDKGpi oW i t eDat aPi n(DDK_GPI O_PORT3, LCD RESET_GPIO PIN, 1);
br eak;
case el PU_SDC:
br eak;
}

Thereset pulseisactive low and it is created by setting the Lco_ReseT_cPi 0 _PI N variablein the
BSPEnabl eLcD() function:

BOOL BSPEnabl eLCD(| PU_DRI VE_TYPE di spType)
{

switch (dispType)
{
case el PU_SDC:

br eak;

case el PU_ADC:
// Reset LCD nodul e, MCU3_24, LOWactive
DDKGpi oW i t eDat aPi n(DDK_GPI O_PORT3, LCD RESET_GPIO PIN, 0);
Sl eep(100);
DDKGpi oW i t eDat aPi n(DDK_GPI O PORT3, LCD RESET_GPIO PIN, 1);
Sl eep(100);

5.6 Setting Up the Backlight

The backlight must be turned ON because the contents on the LCD panel can be viewed only when the

backlight is ON. Also, the backlight must be turned ON before continuing with the display driver
devel opment.

In this example, initialize the keypad backlight, which isthe ATLAS line that handles the GiantPlus

backlight in the PDK by using the BsPenabl eLcD() function:

BOOL BSPEnabl eLCD(| PU_DRI VE_TYPE di spType)
{

switch (dispType)
{

case el PU_SDC:

br eak;

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

Freescale Semiconductor

37

|
y

'
A

Modifying the BSP

case el PU_ADC:

/1 Turn-on GPM722A0 backl ight through ATLAS KEYPAD LED
Pni cBackl i ght Set Mode(BACKLI GHT_KEYPAD, BACKLI GHT_CURRENT_CTRL_MODE) ;
/1 set to the m ni mum period
Pm cBackl i ght Set Cycl eTi ne(MC13783_LED_M N_BACKLI GHT_PERI OD) ;
/'l set the current level for D splay
Pm cBackl i ght Set Cur r ent Level (BACKLI GHT_KEYPAD,
MC13783_LED MAX_BACKLI GHT_CURRENT_LEVEL) ;
/1 set the PWM dutycycle
Pri cBackl i ght Set Dut yCycl e(BACKLI GHT_KEYPAD, MC13783_LED_MAX_BACKLI GHT_DUTY_CYCLE) ;
/1 turn on Master enable
Pm cBackl i ght Mast er Enabl e() ;

5.7 Configuring Wait for the VSYNC Signal

There are some panels, which send aVSYNC signal to synchronize the writing to the panel and avoid
tearing. Since thisis not applicable for GPM722A0, the panel can be removed from the driver. If the panel
is not removed, then the driver waits for the VSYNC signal (that does not appear), after every write
operation. If the tearing prevention flag is not removed, the timeout for this signal appears and the refresh
rate is extremely slow and limited for the VSY NC timeout (less than one write per second).

The panel is disabled by setting the BsSP_ADC_ENABLE_TEARI NG_PREVENTI ON Option inthe bsp_cf g. h header
fileto FALSE.

#def i ne BSP_ADC_ENABLE_TEARI NG_PREVENTI ON FALSE

5.8 Adding a Panel Type enum for the New LCD

A new | PU_PANEL_TYPE enumeration must be created for thisnew panel if another LCD panel support isto
be added. This enumeration can befound in thei pu. h header file. Here, all the asynchronous panel entries
must be placed after Abcranel O f set , and the offset after this entry represents the position of the new
asynchronous PANEL _I NFO structure in the g_Abcranel Array[] array in the adc. c file.

ipu.h

typedef enum {
| PU_PANEL_SHARP_TFT, // Registry value is 0O
| PU_PANEL_NEC TFT, // Registry value is 1
| PU_TV_NTSC, /] Registry value is 2
I PU_TV_PAL, // Registry value is 3
ADCPanel Of f set,
| PU_PANEL_TGSH BA, // Registry value is 5
| PU_PANEL _EPSCN, // Registry value is 6
| PU_PANEL_G ANTPLUS, // Registry value is 7
/1 New panel goes here , /! Registry value is 8
/1 New panel goes here , /! Registry value is 9
nunPanel ,

} 1 PU_PANEL_TYPE;

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

38 Freescale Semiconductor

Modifying the BSP

5.9 Create the PANEL_INFO Entry for the New LCD

Based on the information described in Section 4.2.4.1, “PANEL_INFO,” fill the PANEL_I NFO Structure for
the new asynchronous panel and add it to the g_Abcranel Array[] array intheadc. ¢ file. The position of
the array for the new LCD panel is determined by the | Pu_PANEL_TYPE enumeration.

The following code snippet describes the GiantPlus GPM722A0 smart panel:

PANEL_I| NFO g_ADCPanel Array[nunPanel] =
{

/1 Toshiba Smart Panel Definitions

{
b

/1 Epson Smart Panel definitions

{

}
/1 G antPlus GPMI6722A0 QVGA Snart Panel Definitions

{
(PUCHAR) "G ant Pl us QVGA Panel ",// Nane

| PU_PANEL_G ANTPLUS, /1 type

| PU_PI X_FMI_RGB565, /1 Pixel Format

DI SPLAY_MODE_DEVI CE, /1 Mode ID

240, /1 width

320, /'l hei ght

60, /'l frequency (refresh rate)

0, /1 Vertical Sync width

0 /] Vertical Start Wdth 34
0, // Vertical End Wdth
0
0

, /'l Horizontal Sync Wdth
) /] Horizontal Start Wdth 144

0, /1 Horizontal End Wdth
600, /1 Read Cycle Period (600)
150, /! Read Up Position (100)
150, /! Read Down Position (130)
300, /1 Wite Cycle Period (100)
10, /1 Wite Up Position (10)
80, /1l Wite Down Position (45)
8000000, /1 Pixel Clock Cyle Frequency (8000000)
200, /1 Pixel Data Offset Position (200)
{ /1 ADC Display Interface signal polarities
| PU_ADC_DI SPLAY_O, /1 Display Nunber

IPU_DI_DI SP_I| F_CONF_| F_MODE_SYSTEMBO_TYPE2, // Interface node
| PU_DI _DI SP_I F_CONF_PAR_BURST_MODE_BURST_CS, // Paral l el interface single

I PU_DI_DI SP_SI G POL_DATA POL_STRAI GHT, // Data Pol
IPU_DI_DISP_SIG POL_CS POL_ACTI VE_LOW /1 dock Select Pol
I PU_DI_DISP_SI G POL_PAR_RS _POL_STRAI GHT, // Parallel RS Pol
IPU_DI_DISP_SIG POL_WR POL_ACTI VE_LOW !/ Wite Pol
IPU_DI_DISP_SI G POL_RD POL_ACTI VE_LOW /1 Read Pol
IPU_DI_DISP_SIG POL_VSYNC POL_ACTIVE LON // VSync Pol
IPU_DI_DISP_SIG POL_SD D POL_STRAI GHT, // Serial Data Pol
I PU_DI _DI SP_SI G_PCOL_SD_CLK_POL_STRAI GHT, /1l Serial Interface dk Pol
IPU_DI_DISP_SI G POL_SER RS _POL_STRAI GHT, // Serial Infc Addr bit Pol
I PU_DI _DI SP_SI G_PCL_BCLK_POL_STRAI GHT, /1 Burst clock Pol
b
{ /1 SDC Display Interface signal polarities

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

Freescale Semiconductor 39

Modifying the BSP

ooooo0000

}
}

5.10 Configuring the Data and Command System Interface

After reviewing the LCD datasheet, and based on the information in Section 3.5, “ System Interface
Data/Command Format,” and Section 3.6, “L CD Panels Supported by thei.MX31,” configure the system

interface by modifying the DISPO properties.
For data, the registers used to modify are:

« DI_DISPO DBO_MAP

« DI_DISPO DB1_MAP

« DI_DISPO DB2_MAP

« DI_DISP_ACC CC

Modify the following registersin the i ni ti al i zeADc() function intheadc. c file:

« DI_DISPO_CBO MAP
 DI_DISPO CB1 MAP
 DI_DISPO_CB2 MAP
« DI_DISP_ACC CC

U NT32 InitializeADC(PANEL_I NFO *current Panel , int bpp)
{

switch (m_Si gnal Pol . DI SP_NUM
{
case | PU_ADC DI SPLAY_O:
/| Data Mappi ng
//... DI _Dl SPO_BO_NAP
OUTREG32(&g_p! PU->DI _DI SPO_DB0_MAP,
/1 data offset (BYTEO - BLUE)

/1 NMBB of blue conponent is |located on bit D4

CSP_BI TFVAL(| PU_DI _DI SPO_DBO_MAP_NMDOO_OFFS0, 4)]|
CSP_BI TFVAL(| PU_DI _DI SPO_DBO_MAP_NMDOO_OFFS1, 0)]|
CSP_BI TFVAL(| PU_DI _DI SPO_DBO_MAP_NMDOO_OFFS2, 0)]|

/1 data mappi ng (BYTEO - BLUE)

/1 mask 3 bits, since blue conponent is 5 bits width
/1 MB-M7 are enabled on first clock cycle (0)

CSP_BI TFVAL(| PU_DI _DI SPO_DBO_NMAP_NMDOO_MD,
CSP_BI TFVAL(| PU_DI _DI SPO_DBO_NMAP_NMDOO_ML,
CSP_BI TFVAL(| PU_DI _DI SPO_DBO_NMAP_NDOO_MP,
CSP_BI TFVAL(| PU_DI _DI SPO_DBO_NMAP_NMDOO_NB,
CSP_BI TFVAL(| PU_DI _DI SPO_DBO_NMAP_NMDOO_ M,

3) |
3)|
3) |
0) |
0) |

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

40

Freescale Semiconductor

/...

CSP_BI TFVAL(| PU_DI _DI SPO_DBO_NMAP_NMDOO_NG,

CSP_BI TFVAL(| PU_DI _DI SPO_DBO_NMAP_NMDOO_NG,

CSP_BI TFVAL(| PU_DI _DI SPO_DBO_NMAP_NMDOO_MY,
DI _DI SPO_B1_MAP

OUTREG32(&y_pl PU->Di _DI SPO_DB1_MAP,

/...

/1 data offset (BYTEL - GREEN)

/1 NMBB of green conponent is |ocated on bit D10
CSP_BI TFVAL(| PU_DI _DI SPO_DB1_MAP_NMDO1_CFFSO,
CSP_BI TFVAL(| PU_DI _DIi SPO_DB1_MAP_MD01_OFFS1, 0)]|
CSP_BI TFVAL(| PU_DI _DIi SPO_DB1_MAP_MD01_OFFS2, 0)]|

/1 data nmappi ng (BYTE1 - GREEN)

/'l mask 2 bits, since green conponent is 6 bits width

/1 M2-M7 are enabled on first clock cycle (0)

CSP_BI TFVAL(| PU_DI _DI SPO_DB1_NMAP_NMDO1_MD,
CSP_BI TFVAL(| PU_DI_Di SPO_DB1_MAP_NMDO1 ML,
CSP_BI TFVAL(| PU_DI_Di SPO_DB1_MAP_NMDO1_ M,
CSP_BI TFVAL(| PU_DI _DI SPO_DB1_NMAP_NMDO1_NB,
CSP_BI TEVAL(| PU_DI_Di SPO_DB1_MAP_NMDO1_ M4,
CSP_BI TFVAL(| PU_DI _DI SPO_DB1_NMAP_NMDO1_NG,
CSP_BI TFVAL(| PU_DI _DI SPO_DB1_NMAP_NDO1_MG,
CSP_BI TEVAL(| PU_DI_Di SPO_DB1_MAP_NMDO1_ M7,
DI _DI SPO_B2_MA

OUTREG32(&y_pl PU->Di _DI SPO_DB2_MAP,

/1 data offset (BYTE2 - RED)

3) |
3) |
0) |
0) |
0) |
0) |
0) |
0));

/1 MBB of red conponent is |located on bit D15

CSP_BI TFVAL(| PU_DI _DI SPO_DB2_MAP_MD02_OFFSO,
CSP_BI TFVAL(| PU_DI _DI SPO_DB2_MAP_NMD02_OFFS1, 0)]|
CSP_BI TFVAL(| PU_DI _DI SPO_DB2_MAP_MD02_OFFS2, 0)]|

/1 data nmappi ng (BYTE2 - RED)

/1 mask 3 bits, since red conmponent is 5 bits width

/1 MB-M7 are enabled on first clock cycle (0)

CSP_BI TFVAL(| PU_DI _DI SPO_DB2_NMAP_NDO2_MD,
CSP_BI TFVAL(| PU_DI_Di SPO_DB2_MAP_NDO2_ ML,
CSP_BI TEVAL(| PU_DI_Di SPO_DB2_MAP_NDO2_ M,
CSP_BI TFVAL(| PU_DI _DI SPO_DB2_NMAP_NDO2_NB,
CSP_BI TEVAL(| PU_DI_Di SPO_DB2_MAP_NDO2_M4,
CSP_BI TFVAL(| PU_DI _DI SPO_DB2_NMAP_NDO2_NG,
CSP_BI TFVAL(| PU_DI _DI SPO_DB2_NMAP_NDO2_MG,
CSP_BI TFVAL(| PU_DI_Di SPO_DB2_MAP_NDO2_ M7,

3) |
3) |
3)|
0) |
0) |
0) |
0) |
0));

/1 Data SystemlInterface is 1 transfer/pixel
| NSREG32BF(&g_pl PU->DI _DI SP_ACC CC,

| PU_DI_DI SP_ACC CC DI SPO_I F_CLK_CNT_D,

I PU_DI_DI SP_ACC CC CLOCK_1_CYCLE);

/1 Command Mappi ng

/1 Enable byte during first clock cycle

OUTREG32(&g_p! PU->DI _DI SPO_CB0O_MAP,

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

/'l command of fset first byte DB7- DBO

CSP_BI TFVAL(| PU_DI DI SPO_CBO_MAP_MCOO_OFFSO, 0x7) |
CSP_BI TFVAL(| PU_DI_DI SPO_CBO_MAP_MCDO_OFFS1, 0)]
CSP_BI TFVAL(| PU_DI_DI SPO_CBO_MAP_MCDO_OFFS2, 0)]

10) |

15) |

Modifying the BSP

/1 command mappi ng, enable conplete ByteO in first cycle

CSP_BI TEVAL(| PU_DI_Di SPO_CBO_MAP_MCDO_MD,
CSP_BI TFVAL(| PU_DI_DI SPO_CBO_MAP_NMCOO_ML,
CSP_BI TEVAL(| PU_DI_Di SPO_CBO_MAP_NMCDO_M,
CSP_BI TFVAL(| PU_DI_Di SPO_CBO_MAP_MCDO_MB,
CSP_BI TFVAL(| PU_DI_DI SPO_CBO_MAP_MCDO_M4,
CSP_BI TFVAL(| PU_DI_DI SPO_CBO_MAP_MCDO_Mb,

0) |
0) |
0) |
0) |
0) |
0) |

Freescale Semiconductor

41

Modifying the BSP

case | PU_ADC DI SPLAY_1:

case | PU_ADC DI SPLAY 2:

5.11

/...

CSP_BI TFVAL(
CSP_BI TFVAL(

DI _DI SPO_CB1_MAP

I PU_DI _DI SPO_CBO_NMAP_MCDO_MB,
| PU_DI_DI SPO_CBO_MAP_MCOO_M7,

OUTREG32(&g_p! PU->DI _DI SPO_CB1_NMAP,
/1 command of fset, Bytel DB15- DB8

/...

CSP_BI TFVAL(
CSP_BI TFVAL(
CSP_BI TFVAL(

CSP_BI TFVAL(
CSP_BI TFVAL(
CSP_BI TFVAL(
CSP_BI TFVAL(
CSP_BI TFVAL(
CSP_BI TFVAL(
CSP_BI TFVAL(
CSP_BI TFVAL(

DI _DI SPO_CB2_MAP

I PU_DI _DI SPO_CB1_NMAP_MCD1_OFFSO,

0) |
0));

| PU_DI_DI SPO_CB1_MAP_MX01_OFFS1, 0)]|
| PU_DI_DI SPO_CB1_MAP_MX01_OFFS2, 0)]|
/1 command mappi ng

I PU_DI _DI SPO_CB1_NAP_MOO1_MD,
I PU_DI_DI SPO_CB1_NMAP_MOD1_ M,
I PU_DI_DI SPO_CB1_NAP_MOD1_MR,
I PU_DI _DI SPO_CB1_NMAP_MCD1_MB,
I PU_DI_DI SPO_CB1_NMAP_MOD1_Mi,
I PU_DI_DI SPO_CB1_NMAP_MOD1_Mb,
I PU_DI_DI SPO_CB1_NAP_MCD1_MB,
I PU_DI_DI SPO_CB1_NAP_MOD1_ M7,

OUTREG32(&g_p! PU->DI _DI SPO_CB2_NMAP,
/] command of f set
| PU_DI _DI SPO_CB2_MAP_MC02_OFFS0, 0) |
| PU_DI _DI SPO_CB2_MAP_MC02_OFFS1, 0)]|
| PU_DI _DI SPO_CB2_MAP_MC02_OFFS2, 0)|

br eak;
br eak;

br eak;

}

CSP_BI TFVAL(
CSP_BI TFVAL(
CSP_BI TFVAL(

/1 command mappi ng mask BYTE2,

CSP_BI TFVAL(
CSP_BI TFVAL(
CSP_BI TFVAL(
CSP_BI TFVAL(
CSP_BI TFVAL(
CSP_BI TFVAL(
CSP_BI TFVAL(
CSP_BI TFVAL(

I PU_DI _DI SPO_CB2_NAP_MCD2_MD,
I PU_DI_DI SPO_CB2_NAP_MOD2_ ML,
I PU_DI_DI SPO_CB2_NAP_MOD2_MR,
I PU_DI _DI SPO_CB2_NAP_MOD2_MB,
I PU_DI_DI SPO_CB2_NAP_MCD2_M4,
I PU_DI_DI SPO_CB2_NAP_MOD2_Mb,
I PU_DI _DI SPO_CB2_NAP_MOD2_MB,
I PU_DI _DI SPO_CB2_NAP_MOD2_M7,

/1 1 clk cycle per comand

| NSREG32BF(&g_pl PU->DI _DI SP_ACC _CC,

I PU_DI_DI SP_ACC CC DI SPO_| F_ CLK_CNT_C,
I PU_DI_DI SP_ACC CC CLOCK_1_CYCLE);

Write Initialization Command Routine

After configuring the command interface, theinitialization routine must beincluded in the BsPenabl eL.cDy()
function. Since all the write registers have the same endianness, send the 16-bit addressfirst and then the
16-bit data value. A new low-level routine can be created to avoid the usage of the crd_dat a[] array. The
BSPEnabl eLcD() function must be declared in the adc. h header file and adlsoin the adc. ¢ header file.

0) |
0) |
0) |
0) |
0) |
0) |
0) |
0));

ignore third byte

3)|
3) |
3) |
3) |
3) |
3)|
3) |
3));

OxF) |

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

42

Freescale Semiconductor

Modifying the BSP

adc.h

voi d ADCW it eCommandRegi st er (U NT32 di spNum BOOL b_cnd_data, U NT32 regNum Ul NT32 regData);

adc.c

void ADCW it eComrandRegi st er (U NT32 di spNum BOCL b_cnd_data, U NT32 regNum U NT32 regDat a)
{
/Il Wite |lowlevel access configuration register
OUTREG32(&g_p! PU->DI _DI SP_LLA CONF,
CSP_BI TFVAL(I PU_DI _DI SP_LLA_CONF_DRCT_BE_MODE, 0) |
CSP_BI TFVAL(I PU_DI _DI SP_LLA CONF_DRCT_MAP_DC, 1) |
CSP_BI TFVAL(I PU_DI _DI SP_LLA CONF_DRCT_LCCK, 0) |
CSP_BI TFVAL(I PU_DI _DI SP_LLA_CONF_DRCT_DI SP_NUM di spNum) |
CSP_BI TFVAL(I PU_DI _DI SP_LLA CONF_DRCT_RS, b_cnd_data ? 0 : 1));
// Wite lowlevel access data (send address first)
OUTREG32(&g_p! PU->DI _DI SP_LLA DATA, regNum;
/Il Wite low|evel access configuration register
OUTREG32(&g_p! PU->DI _DI SP_LLA CONF,
CSP_BI TFVAL(I PU_DI _DI SP_LLA_CONF_DRCT_BE_MODE, 0) |
CSP_BI TFVAL(I PU_DI _DI SP_LLA CONF_DRCT_MAP_DC, 1) |
CSP_BI TFVAL(I PU_DI _DI SP_LLA_CONF_DRCT_LCCK, 0) |
CSP_BI TFVAL(I PU_DI _DI SP_LLA_CONF_DRCT_DI SP_NUM di spNum) |
CSP_BI TFVAL(I PU_DI _DI SP_LLA CONF_DRCT_RS, 1));
/Il Wite lowlevel access data (send regi ster address first)
OUTREG32(&y_p! PU->DI _DI SP_LLA DATA, regData);
}

In the following example, the initialization routine is provided by the LCD vendor.

bspdisplay.cpp

BOOL BSPEnabl eLCD(| PU_DRI VE_TYPE di spType)
{

switch (dispType)
{
case el PU_SDC:

br eak;
case el PU_ADC:
U NT32 di spNum= 0; // We are using Display O

ADCW i t eCommandRegi ster (di spNum TRUE, O0xO0E5, 0x8000);//????
ADCW i t eCommandRegi ster (di spNum TRUE, 0x0000, 0x0001);// start oscilation
Sl eep(10);
ADCW i t eConmandRegi ster (di spNum TRUE, 0x0001, 0x0100);//driver S1->S720
ADCW i t eCommandRegi ster (di spNum TRUE, 0x0002, 0x0700); //linear control
ADCW i t eCommandRegi ster (di spNum TRUE, 0x0003, 0x1030);
ADCW i t eCommandRegi ster (di spNum TRUE, 0x0004, 0x0000);//no resizing
ADCW i t eCommandRegi ster (di spNum TRUE, 0x0008, 0x0303); //display control 2
ADCW i t eCommandRegi ster (di spNum TRUE, 0x0009, 0x0000); //display control 3
ADCW i t eCommandRegi ster (di spNum TRUE, 0x000A, 0x0000); //display control 4
ADCW i t eCommandRegi ster (di spNum TRUE, 0x000C, 0x0000);//RGB ifc-18bit
ADCW i t eConmandRegi ster (di spNum TRUE, 0x000D, 0x0000);//frame mark |ine0
ADCW i t eConmandRegi st er (di spNum TRUE, 0x000F, 0x0000);

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

Freescale Semiconductor 43

Modifying the BSP

/| power on sequence

ADCW i t eCommandRegi st er (di spNum

ADCW i t eConmandReg
ADCW i t eConmandReg
ADCW i t eConmandReg
Sl eep(50) ;

ADCW i t eConmandReg
ADCW i t eConmandReg
Sl eep(50) ;

ster (di
ster (di
ster (di

ster (di
ster (di

spNum
spNum
spNum

spNum
spNum

TRUE,
TRUE,
TRUE,
TRUE,

TRUE,
TRUE,

/1 1f we are using the suggested 2.8V
// we can use the G antpl us-suggested
/] anplification settings

ADCW i t eConmandReg
Sl eep(50) ;

ADCW i t eConmandReg
Sl eep(50) ;

ADCW i t eConmandRegi
ADCW i t eConmandRegi
ADCW i t eConmandRegi
ADCW i t eConmandRegi
ADCW i t eConmandRegi
ADCW i t eConmandRegi
ADCW i t eConmandRegi
ADCW i t eConmandRegi
ADCW i t eConmandRegi
ADCW i t eConmandRegi
ADCW i t eConmandRegi
ADCW i t eConmandRegi
ADCW i t eConmandRegi
ADCW i t eCommandRegi
ADCW i t eCommandRegi
ADCW i t eCommandRegi
ADCW i t eCommandRegi
ADCW i t eConmandRegi
ADCW i t eConmandRegi
ADCW i t eCommandRegi
ADCW i t eConmandRegi
ADCW i t eConmandRegi
ADCW i t eConmandRegi
ADCW i t eConmandRegi
ADCW i t eConmandRegi
ADCW i t eConmandRegi
ADCW i t eConmandRegi
ADCW i t eConmandRegi
ADCW i t eConmandRegi
ADCW i t eConmandRegi
ADCW i t eConmandRegi
ADCW i t eConmandRegi
ADCW i t eConmandRegi

/] Wite test pattern to display

ster (di
ster(di

ster (di
ster (di
ster (di
ster (di
ster(di
ster(di
ster (di
ster (di
ster (di
ster(di
ster(di
ster (di
ster(di
ster (di
ster (di
ster (di
ster (di
ster (di
ster (di
ster (di
ster (di
ster (di
ster (di
ster (di
ster (di
ster (di
ster (di
ster (di
ster (di
ster (di
ster(di
ster (di
ster (di

spNum
spNum

spNum
spNum
spNum
spNum
spNum
spNum
spNum
spNum
spNum
spNum
spNum
spNum
spNum
spNum
spNum
spNum
spNum
spNum
spNum
spNum
spNum
spNum
spNum
spNum
spNum
spNum
spNum
spNum
SpNum
SpNum
SpNum
SpNum
SpNum

ADCW i t eConmandRegi st er (di spNum
ADCW i t eConmandRegi st er (di spNum

Sl eep(1);
int i;

//blue and green strips

for(i=0;
{

i <(240*320/8-1);

i ++)

TRUE,

TRUE,

TRUE,
TRUE,
TRUE,
TRUE,
TRUE,
TRUE,
TRUE,
TRUE,
TRUE,
TRUE,
TRUE,
TRUE,
TRUE,
TRUE,
TRUE,
TRUE,
TRUE,
TRUE,
TRUE,
TRUE,
TRUE,
TRUE,
TRUE,
TRUE,
TRUE,
TRUE,
TRUE,
TRUE,
TRUE,
TRUE,
TRUE,
TRUE,
TRUE,

TRUE,
TRUE,

0x0010,
0x0011,
0x0012,
0x0013,

0x0010,
0x0011,

supply,
vol t age

0x0012,
0x0013,

0x0029,
0x0020,
0x0021,
0x0030,
0x0031,
0x0032,
0x0035,
0x0036,
0x0037,
0x0038,
0x0039,
0x003C,
0x003D,
0x0050,
0x0051,
0x0052,
0x0053,
0x0060,
0x0061,
0x006A,
0x0080,
0x0081,
0x0082,
0x0083,
0x0084,
0x0085,
0x0090,
0x0092,
0x0093,
0x0095,
0x0097,
0x0098,
0x0007,

0x0020,
0x0021,

0x0000) ;
0x0007) ;
0x0000) ;
0x0000) ;

0x1590) ;
0x0007) ;

0x0118) ;
0x1700);

0x000E) ;
0x0000) ;
0x0000) ;
0x0000) ;
0x0404) ;
0x0305) ;
0x0000) ;
0x1F00);
0x0505) ;
0x0203) ;
0x0707) ;
0x0400) ;
0x0012) ;

/1 power1
/| power 2
/] power 3
/] power 4

/1 power1
/| power 2

/1 power 3
/] power 4

/] power contro
/| GRAM addr ess set
/| GRAM addr ess set
/! Gamma control
// Gamma control
/! Gamma control
/1 Gamma control
/1 Gamma control
/! Gamma control
/1 Gamma control
/1 Gamma control
/1 Gamma control
/! Gamma control

0x0000) ; //hor/ver addr pos
OxO0O0EF) ; //hor/ver addr pos

0x0000) ;
0x013F) ;

addr
addr

/1 hor/ver
/! hor/ver

pos
pos

0x2700);//gate scan contro
0x0001);//gate scan contro
0x0000);//gate scan contro

0x0000) ;
0x0000) ;
0x0000) ;
0x0000) ;
0x0000) ;
0x0000) ;
0x0014) ;
0x0000) ;
0x0000) ;
0x0110);
0x0000) ;
0x0000) ;
0x0133);

0x0000) ;
0x0000) ;

//Partial image
//Partial image
//Partial image
//Partial image
//Partial image
//Partial image
[/ panel ifc 20 clk

//display control 1

/| GRAM addr ess set
/| GRAM addr ess set

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

44

Freescale Semiconductor

Modifying the BSP

ADCW i t eCommandRegi st er (di spNum TRUE, 0x0022, O0x001F); //Wite pixel
ADCW i t eCommandRegi st er (di spNum TRUE, 0x0022, Ox001F); //Wite pixel
ADCW i t eCommandRegi st er (di spNum TRUE, 0x0022, Ox001F); //Wite pixel
ADCW i t eCommandRegi st er (di spNum TRUE, 0x0022, O0x001F); //Wite pixel
ADCW i t eCommandRegi st er (di spNum TRUE, 0x0022, Ox07EQ); //Wite pixel
ADCW i t eCormmandRegi st er (di spNum TRUE, 0x0022, Ox07EQ); //Wite pixel
ADCW i t eCommandRegi st er (di spNum TRUE, 0x0022, Ox07EQ); //Wite pixel
ADCW i t eCommandRegi st er (di spNum TRUE, 0x0022, Ox07EQ); //Wite pixel

}
Sl eep(2000) ;

5.12 Creating the Frame Buffer Template for Write Access

Green and blue strips can be found on the screen, if all the steps are executed. With the help of thisimage,
ensure that the panel isinitialized correctly and also the backlight is enabled. As mentioned in

Section 3.7.2, “Template Mode,” create atemplate to enable the display driver in order to write on the
frame buffer. Thistemplate is defined in the cr eat eTenpl at e() function of the adc. ¢ file.

/1 Regi ster name Reg No. R'W RS Description

N e

#defi ne HOR_GRAM ADDR_SET 0x20 // W 1 Horizontal GRAM Address Set
#define VER GRAM ADDR_SET 0x21 // W 1 Vertical GRAM Address Set
#define WR_DATA_TO GRAM 0x22 I/l W 1 Wite Data to GRAM

voi d CreateTenpl at e(TEMPLATE_CMD_REG *pCnd, unsigned int width, unsigned int height)
{

unsigned int i = 0;

UNREFERENCED_PARANETER(wi dt h) ;

UNREFERENCED_PARANETER(hei ght) ;

/!l Create the tenplate for G antPlus LCD GPM/22A0
pCnd[i].reg. Data = HOR GRAM ADDR SET; // X coordi nate command
pCnd[i].reg. Opcode = WR_CMND;
pCrd[i].reg. RS = 0;
pCrd[i ++] . reg. Fl onControl = SI NGLE_STEP;
pCnd[i].reg. Data = 0x01; /1 send address bits [7:0]
pCrd[i].reg. Opcode = WR_XADDR;
pCrd[i].reg. RS = 1;
pCrd[i ++] . reg. Fl onControl = SI NGLE_STEP;
pCrd[i].reg. Data = VER GRAM ADDR_SET; // Y coordi nate conmmand
pCnd[i].reg. Opcode = WR_CMND;
pCrd[i].reg. RS = 0;
pCrd[i ++] . reg. Fl onControl = SI NGLE_STEP;
pCnd[i].reg. Data = 0x01; /1 send address bits [22:8]
pCrd[i].reg. Opcode = WR_YADDR;
pCrd[i].reg. RS = 1;
pCrd[i ++] . reg. Fl onControl = SI NGLE_STEP;
pCrd[i].reg. Data = WR_DATA TO GRAM /Il Wite Data to GRAM
pCnd[i].reg. Opcode = WR_CMND;
pCrd[i].reg. RS = 0;
pCrd[i ++] . reg. Fl onControl = SI NGLE_STEP;
pCrd[i].reg. Data = O;
pCrd[i].reg. Opcode = WR _DATA;
pCrd[i].reg. RS = 1;

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

Freescale Semiconductor 45

V¥ ¢
i

Modifying the BSP

pCrd[i ++] . reg. Fl onControl = STOP;
}

UNREFERENCED_PARAMETER tag is used to describe the following error:

error C2220: warning treated as error - no 'object' file generated
warni ng C4100: 'height' : unreferenced formal paraneter
warni ng C4100: 'width' : unreferenced fornal paraneter

5.13 Adding the Mouse Support for the Asynchronous Displays

In some cases where the mouse is moving, it is necessary to inform the asynchronous thread to update the
region where the cursor is changing. For thisreason, it is necessary to add the mouse support feature to the
ddi pu_cursor. cpp file.

ddipu_cursor.cpp

SCODE DDI PU: : MovePoi nter(int x, int y)
{

.O.u.rsoro‘f();
if (x!=-1]] y!'!=-1)
{

/1 handl e the TV node case for updates
i f(m_bTVMbdeActi ve)
{

}
/1 handl e ADC (Smart Panel s) updates
i f(m_bADCActi ve)
{
/1 Now, calculate the dirty-rect to refresh to the actual hardware
bounds. | ef t m Cursor Rect. | eft;
bounds. t op m _Cur sor Rect . t op;
bounds. ri ght m _Cursor Rect . ri ght;
bounds. bott om m _Cur sor Rect . bott om
EnterCritical Section(&mcsDirtyRect);
DEBUGCHK(m pTVDi rtyRect != NULL);
i f (m_pADCDi rtyRect)
{
m_pADCDi rt yRect - >Set Di r t yRegi on((LPRECT) &ol dBounds) ;
m_pADCDi rt yRect - >Set Di r t yRegi on((LPRECT) &ounds) ;
}
/1 Signal to ADC thread to udpate the screen.
Set Event (m_hADCUpdat eRequest) ;
LeaveCritical Section(&m csDirtyRect);
}

}
return S_OK;

5.14 Rebuilding the Project
In the end, rebuild the project by using the Build current BSP and subprojects.

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

46 Freescale Semiconductor

Revision History

Go to Menu Build > Advanced Build Commands > Build Current BSP and Subprojectsto rebuild the

project.

6 Revision History
Table 19 provides the revision history for this application note.

Table 19. Document Revision History

Rev. Number

Date

Substantive Change(s)

0

08/2010

Initial release

System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK, Rev. 0

Freescale Semiconductor

47

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road

Tempe, Arizona 85284

1-800-521-6274 or

+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 169 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064

Japan

0120 191014 or

+81 35437 9125

support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F

No. 118 Jianguo Road

Chaoyang District

Beijing 100022

China

+86 10 5879 8000

support.asia @freescale.com

For Literature Requests Only:

Freescale Semiconductor
Literature Distribution Center

1-800 441-2447 or

+1-303-675-2140

Fax: +1-303-675-2150

LDCForFreescaleSemiconductor
@hibbertgroup.com

Document Number: AN4180
Rev. 0
08/2010

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo, CodeWarrior, ColdFire, PowerQUICC,
StarCore, and Symphony are trademarks of Freescale Semiconductor, Inc.
Reg. U.S. Pat. & Tm. Off. CoreNet, QorlQ, QUICC Engine, and VortiQa are
trademarks of Freescale Semiconductor, Inc. All other product or service
names are the property of their respective owners. ARM is the registered
trademark of ARM Limited.

© 2010 Freescale Semiconductor, Inc.

B POWERED

ARM
freescale"

semiconductor

	System-80 Asynchronous Display on the i.MX31 WINCE 6.0 PDK
	1 Overview of i.MX31 Display
	Figure 1. IPU Functional Block Diagram

	2 LCD Generalities
	2.1 LCD Basics
	2.1.1 Resolution
	Table 1. Video Resolution Standards
	Figure 2. Portrait and Landscape Orientation of an LCD Panel
	Figure 3. Rotated Frame on Portrait and Landscape Orientation of an LCD Panel

	2.1.2 Size
	2.1.3 Color Spaces

	2.2 LCD Types
	2.2.1 Synchronous Panel (Dumb Display)
	2.2.2 Asynchronous Panel (Smart Display)

	3 Asynchronous Display Interfaces
	3.1 System-80 (Type 2) LCD Interface
	Table 2. System-80 (Type 2) Interface Signals
	Figure 4. LCD Interface Between the i.MX31 and GiantPlus GPM722A0 VGA Panel

	3.2 68 K Interface
	Table 3. 68 K Interface Signals

	3.3 Asynchronous Serial Interfaces
	3.4 System-80 (Type 2) Display Timing and Signals
	3.4.1 Timing Charts
	Figure 5. Write Sequence of the System-80 (Type 2) 18/16 Bit Interface
	3.4.1.1 Read from Register
	Figure 6. Read Sequence of the System-80 (Type 2) 18/16 Bit Interface

	3.4.2 Timing Concepts
	Table 4. Timing Concepts
	Figure 7. Write Cycle Timing of the System-80 (Type 2) Interface
	Figure 8. Read Cycle Timing of the System-80 (Type 2) Interface

	3.4.3 Custom LCD Timing
	3.4.3.1 Reset
	Figure 9. Reset Signal Example
	Table 5. Artifacts of Reset Signal

	3.5 System Interface Data/Command Format
	Figure 10. RGB565 16 Bit Data Bus, 1 Transfer Per Pixel System Interface Data Format
	Figure 11. RGB666 16 Bit Data Bus, 2 Transfers Per Pixel System Interface Data Format
	Figure 12. RGB666 16 Bit Data Bus, 2 Transfers Per Pixel System Interface Data Format
	Figure 13. RGB666 16 Bit Data Bus, 3 Transfers Per Pixel System Interface Data Format

	3.6 LCD Panels Supported by the i.MX31
	Table 6. Display Controllers and their Interfaces
	3.6.1 Asynchronous Display Interface
	Table 7. i.MX31 Register Values for 16 Bit Data Interface RGB565 1 Transfer Per Pixel
	Table 8. i.MX31 Register Values for 16 Bit Data Interface RGB666 2 Transfers Per Pixel
	Table 9. RGB666 16 Bit Data Bus, 2 Transfers Per Pixel System Interface Data Format
	Table 10. RGB666 16 Bit Data Bus, 3 Transfers Per Pixel System Interface Data Format

	3.7 Command and Template Mode
	3.7.1 Command Mode
	Figure 14. 16 Bit Command 1 Transfer Per Command System Interface Data Format
	Table 11. 16 Bit Command one Transfer Per Command System Interface (Refer Figure 14)

	3.7.2 Template Mode
	3.7.2.1 Sending Pre-Command Sequence to the Display
	3.7.2.2 Sending an Address to the Display
	Figure 15. Horizontal Address Set Command
	Figure 16. Contents of the GRAM Horizontal Address
	Figure 17. Vertical Address Set Command
	Figure 18. Contents of the GRAM Vertical Address
	Figure 19. Send Write Data to the GRAM Command

	3.7.2.3 Sending a Data Sequence to the Display
	Figure 20. Sending Pixel Information to the Panel

	3.7.2.4 Sending a Post-Command Sequence to the Display

	4 Display Configuration in WINCE 6.0
	4.1 WINCE600 Display Driver Development Concepts
	Table 12. Elements of Windows CE Graphics Pipeline
	Figure 21. Windows CE Graphics Architecture

	4.2 Adding Support for a New LCD Panel
	4.2.1 Identify LCD Characteristics and Timing
	Table 13. Artifacts of the GPM722A0 Display
	Table 14. Artifacts of the GPM722A0 Display

	4.2.2 i.MX31 WINCE600 PDK LCD Driver Initialization Flow
	4.2.3 i.MX31 WINCE600 PDK LCD Display Interface Related Files
	4.2.4 i.MX31 PDK LCD Structures
	4.2.4.1 PANEL_INFO
	Table 15. PANEL_INFO Structure Elements

	4.2.4.2 ADC_IPU_DI_SIGNAL_CFG
	Table 16. ADC Display Interface Bit Fields

	4.2.4.3 SDC_IPU_DI_SIGNAL_CFG
	4.2.4.4 GPEMode
	Table 17. GPEMode Structure Elements

	5 Modifying the BSP
	5.1 Modifying the WINCE600 Catalog
	Figure 22. Opening the Catalog File
	Figure 23. Adding a New Catalog Item
	Table 18. Modifying the Catalog Item Properties
	Figure 24. Catalog Item Properties

	5.2 Platform.reg
	5.3 Platform.bib
	5.4 Setting Up the Power LCD Voltages
	5.5 Setting Up the Reset Signal
	5.6 Setting Up the Backlight
	5.7 Configuring Wait for the VSYNC Signal
	5.8 Adding a Panel Type enum for the New LCD
	5.9 Create the PANEL_INFO Entry for the New LCD
	5.10 Configuring the Data and Command System Interface
	5.11 Write Initialization Command Routine
	5.12 Creating the Frame Buffer Template for Write Access
	5.13 Adding the Mouse Support for the Asynchronous Displays
	5.14 Rebuilding the Project

	6 Revision History
	Table 19. Document Revision History

