|
y

'
A

Freescale Semiconductor
Application NoteWhite Paper

Document Number: AN4207
Rev. 2, 05/2012

Kernel Examples for the StarCore

SC3850 DSP Core

The StarCore SC3850 DSP core addresses the key market
needs of mainstream DSP applications, such as
communications, video, audio, and medical imaging. The
SC3850 core efficiently deploys a variable-length execution
set (VLES) execution model that utilizes maximum
parallelism by allowing multiple address generation and data
arithmetic logic units to execute multiple instructions in a
single clock cycle, while delivering very compact code.

The SC3850 digital signal processing library provides a set
of C-callable, optimized ASM functions commonly used in
signal processing applications. This application note
presents the usage and performance of five key signal
processing kernels, that is, complex Fast Fourier Transform
(complex FFT), complex Discrete Fourier Transform
(complex DFT), complex Finite Impulse Response (complex
FIR), Cyclic Redundancy Check (CRC), and Infinite
Impulse Response (1IR), to help users better utilize the DSP
library in their system development.

NOTE

The supporting software
library is available as zip file
AN4207SW on
freescale.com.

© 2010-2012 Freescale Semiconductor, Inc. All rights reserved.

IS A

Contents
References 2
SC3850 COre OVEIVIEWvivi e 2
Library organization 3
Benchmarking 4
CodeWarrior Trace and Profile tools 5
Using the SC3850 DSP library and test projects 8

-

> “freescale

|
y

'
A

References

1 References

* MSC8156 Reference Manual (MSC8156RM)
» Software Optimization of FFTs and IFFTs Using the SC3850 Core (AN3666)
» Software Optimization of DFTs and IDFTs Using the StarCore SC3850 DSP Core (AN3680)

2 SC3850 core overview

The SC3850 core technology is a generation of Freescale StarCore DSP cores. Key enhancements to the
previous generation include a twofold increase in DSP multiplication capacity, significantly higher
compiled code performance, and an improved memory hierarchy. Micro-architectural improvements and
new instructions enable the core to accelerate control functions, memory management, and DSP code
performance.

This figure shows the SC3850 block diagram.

MACOa | MAC1a | MAC2a | MAC3a

| COF Iil anwo || aavt || emu MACOb | MAC1b | MAC2b | MAC3b
Logic0 | Logic1 | Logic2 | Logic3

r r

e

OCE Inst. Bus I T T T
—> RSU — Resource Stall Unit

D/1 interface bus § 4 DMA bus t Peripheral bus
Memory Sub-System WRQ
| . 1 TE
a < | o < | o o« S | =
I (=] EDI - ql by m| - o< %]
o' &I il i = >
X 128
= AGU DALU
PAG RE Address =
ry L» ETE Registers "I ™ —” Data Registers
f I
-+ REG |+ ->{ PDU }4— I I 1 FT I I |

~ L

Figure 1. StarCore SC3850 block diagram

There are four parallel arithmetic logic units (ALUS) in the data arithmetic-logic unit (DALU), where most
of the arithmetic and logical operations are performed on data operands. Each data ALU can perform two
16 x 16 multiplications per cycle (total of 8 multiplications for all ALUs, and up to 8 GMACs per cycle at
1 GHz core frequency). There are two address arithmetic units (AAUSs) in the address generation unit
(AGU), which performs effective address calculations using the integer arithmetic necessary to address
data operands in memory. The program control unit (PCU) performs instruction fetch, instruction dispatch,
hardware loop control, and exception processing. The resource stall unit (RSU) controls the hardware
interlocks. It collects information from the instruction bus, holds the status for all resources in the core,
and inserts enough stalls to resolve the pipeline hazards. Memory interface provides data exchange
between the core and the other on-chip blocks, which has one 128-bit program bus and two 64-bit data
buses.

Kernel Examples for the StarCore SC3850 DSP Core, Rev. 2

2 Freescale Semiconductor

Library organization

This figure shows the SC3850 programming model. There are sixteen 40-bit data registers in DALU,
sixteen 32-bit address registers, four 32-bit offset registers, and four 32-bit modulo registers in AGU. In
addition, there are control and configuration registers that contain fields for indicating and controlling
specific aspects of the core operation, status flags, and fields for indicating certain exception conditions.

Data Registers DALU

Address / Base Address Registers

i
1
1
131 0 31 0
39 32 31 16 15 o ! RO RB/B0 AGU
Limit Tag Bit | Extension [High Portion | Low Portion : R1 RO/B1
LImIm (EXT) (HP) wLP) ! = SToyED
L0 DO0.e DO.h DO 1 ! R3 R11/B3
L1 Dl.e D1.h DI.1 : R R
2 D2.e D2.h D21 H o= T
3 D3.e D3.h D31 ! -
4) D4.h 4.1 i RS RCES
5 D5.e D5.h D51 i R7 R15/87
L6 D6.e D6.h D61 ' SP_(NSP, ESP)
1 R
t; gg'z gg': g;': | Modifier Registers offset Registers Modifier Control
- - - |31 0 31 0 31 Register g
9 D9.e D9.h D91 !
10 bi0.e b10.h BI0-1 ! Mo O MEiE
L11 Dil.e D11.h D111 1 M1 N1
L12 D12.e D12.h D12.1 i M2 N2
113 D13.e D13.h D13.1 ! N3 N3
114 D14.e D14.h D141 !
L15 Di5.e D15.h D15. 1 : : 1mp lementation
=== == s esssmssse——s—sss———-—- e ————) Dependent PCU
General i Program Counter Status Register Exception and Configuration
Configuration ! N 9 31 Mode Register ; 3, Register ¢
31 Register 0o ! [PC] [SR] [EMR] [1DCR |
1
SCR ! Start Address Registers Loop Counter Registers Interrupt Vector Base
31) 0 p
Back Trace ' SAO LCo fddress Reglste
< 1
31 Registers o) : SAL Lc1 VBA
BIRY ! SA2 Lc2
ElRE H SA3 Lc3

Figure 2. SC3850 programming model

The challenge facing DSP programmers is to use all the resources available in the advanced SC3850
architectures effectively. Ideally, the design should maximize the use of the program and data buses, and
all six operational units (4 ALUs and 2 AAUSs) simultaneously. To help users shorten the time-to-market
in system development, Freescale provides a set of optimized functions in C and ASM, named SC3850
DSP library. Each function in the library is designed to produce the best performance possible by optimally
utilizing available resources.

This application note presents the usage and performance of five key signal processing kernels, that is,
complex Fast Fourier Transform (complex FFT), complex Discrete Fourier Transform (complex DFT),
complex Finite Impulse Response (complex FIR), Cyclic Redundancy Check (CRC), and Infinite Impulse
Response (1IR), to help users better utilize the DSP library in their system development.

3 Library organization

Figure 3 shows the directory structure of the SC3850 DSP library. To build the library, open
fsl_sc3850_kernels\code\cw\sc3850_kernels\.project in CodeWarrior 10.1.x IDE. This project
contains all the SC3850 kernels and produces .elb library output. To test each kernel, open the test projects
located in fs1_sc3850_kernels\tests. For example, open complex FFT test project located in
fsl_sc3850_kernels\tests\fft_ifft_radix4_16x16\cw\test_sc3850 fft_ifft_radix4 complex_ 16x16\.
project to run/debug the complex FFT kernel.

Kernel Examples for the StarCore SC3850 DSP Core, Rev. 2

Freescale Semiconductor 3

Benchmarking

I include
I} 3850
| dacs
I lib
=l) tests
=l) oro_enc
+) ow
| s
I weckors
1) DFT_16x16
+ |) Fft_ifft_radixd_16x16
+ |) fir_complex_16x16
+ | iir_1st
I lirker_contral_Files
I system

Freescale SC3850 kernels

- Library code

- CodeWarrior project to create the SC3850 kernel library
- Source codes
- C code for SC3850 kernels
- Header files for SC3850 kernels
- ASM code for SC3850 kernels
- Documentation
- Library is placed in this directory

- Project and code for testing the library

- Testing directory for the CRC kernel (each kernel has one directory)
- CodeWarrior test project
- Testing source codes
- Input and reference vectors for verification

- Testing directory for DFT

- Testing directory for FFT

- Testing directory for FIR

- Testing directory for IIR

- Linker control files for the testing CW projects

- Systems files for benchmarking

Figure 3. SC3850 DSP library directory structure

4 Benchmarking

The MSC8156 application development system (MSC8156ADS) is a complete debugging environment
for engineers developing applications for the MSC8156 Freescale digital signal processor (DSP). A
MSCB8156ADS board is used in this application note to measure cycle counts. The MSC8156 device is a
highly integrated DSP processor that contains six StarCore SC3850 DSP subsystems (48 GMACS at 1
GHz). Each DSP core is part of an SC3850 subsystem that includes:

» 32 KB DCache
« 32 KB ICache

* 512 KB unified L2 cache/M2 shared memory

In addition, the MSC8156 contains:
e 1 MB of M3 shared memory
» Two DDR2/DDR3 memory controllers with a 64-bit data rate up to 800 Mbps

The MSC8156ADS board is connected to the USB port of a Host Debug Machine through USB cable. The
connection configuration can be set in the Debug Configurations window to let users to run applications
on MSC8156 ADS or on simulator. The clock difference between SC3850 PACC (Performance Accurate)
simulator and MSC8156 hardware is up to 5%. Running and debugging applications on hardware and

Kernel Examples for the StarCore SC3850 DSP Core, Rev. 2

4 Freescale Semiconductor

CodeWarrior Trace and Profile tools

simulator is discussed in Section 6, Using the SC3850 DSP library and test projects on page 8. A core
debug block, called on-chip emulator (OCE), can be used to measure cycle counts for SC3850 DSP kernel
examples. Example 1 lists sample code to initialize the OCE and measure cycle counts. Inittonce and
ReadCountEonce are defined in eonce.h and eonce.c.

Example 1. Sample code to initial the OCE and measure cycle counts

#define INIT_CYCLE InitEonceAll()

#define GET_CYCLE ReadCountEonce()
INIT_CYCLE;
//Compute the overhead of calling eonce
overhead = GET_CYCLE;
overhead = GET_CYCLE - overhead;

// Warm the Cache if necessary by calling kernel function
#ifdef WARMCACHE
sc3850_fft_radix4_complex_16x16_asm(.-.);

#endif

cycleCount_curr = GET_CYCLE;

// Call kernel function
sc3850_fft_radix4_complex_16x16_asm(.-..);

cycleCount_curr = GET_CYCLE - cycleCount_curr - overhead;

printf("'My cycleCount is: %81 cycles\n", cycleCount_curr);

It is important to understand that data/instruction access overhead can affect the benchmarking. In real
DSP applications, the memory access overhead can be minimized by overlapping the data transfer time
and the computation time. Usually the DSP kernels are benchmarked with Warm cache. The data and
instructions are preloaded into cache to minimize the memory access overhead. The Zero Wait State
(ZWS) cycle count is provided in AN3666 (Ref [2]) for FFT and in AN3680 (Ref [3]) for DFT. To utilize
the bus width fully and maximize the performance, some DSP kernels require data and program code to
be aligned to a specific boundary.

5 CodeWarrior Trace and Profile tools

There are powerful trace and profile tools in CodeWarrior Development Studio that can be used to improve
the application performance using either the simulator or the hardware. This section provides a short
introduction to the Trace and Profile tools.

5.1 Analysis tools features

The CodeWarrior Profiling and Analysis tools can be used to improve the application performance using
either the simulator or the hardware. The tools allow the following:

Kernel Examples for the StarCore SC3850 DSP Core, Rev. 2

Freescale Semiconductor 5

CodeWarrior Trace and Profile tools

» Easy setup via the Trace and Profile tab in the Debug configuration panel.

* Inthe case of hardware debug, the advanced setup can be configured via the advanced Settings
dialogue window. The developer can set complex configurations for the Debug and Profiling Unit
(DPU), On Chip Emulator (OCE), and Virtual Trace Buffer (VTB).

» Profiling of any routine, group of routines or an entire project and display the results in a intuitive
manner in the TRACE, CODE, and PERFORMANCE views.

» Track the time spent in any routine and the subroutines called and provide an easy way of
displaying the data in forms of graphs while the application is in debug mode or offline.

» Provide data viewing features such as export data to Excel file, export the trace and function data

generated by simulator or target hardware in CVS format, apply multi-level searches/filters and
find/isolate specific data, and show/hide and copy/paste columns and cells.

5.2 Start a new profiling session within the CodeWarrior
environment

CodeWarrior profiler launch configuration can be performed using a few simple steps. After the project is
created (for example, an MSC8156 stationary), use the following steps to start a profiling session:

1. Open the Debug dialog window. In the CodeWarrior Project view, right-click on the project name
(for example, the 8156 profile: c_pebug_s815x_Hw) and select the Debug as/Debug Configurations...
option in the context menu;

2. Select CodeWarrior Download configuration in the tree-view panel on the left and select the
launch configuration corresponding to the project you are using (for example, 8156 profiling:-
C_Debug_815x_HW - MSC8156 ADS Core 0);

3. Select Enable Trace and Profile in the Trace and Profile tab. After the check box is selected,
modify the Trace and Profile basic settings. Also, on this tab you can find the Advanced Settings
button that allows you to adjust/modify the settings for DPU, OCE, and VTB.

NOTE

Depending on the target configuration chosen, SC3x50, MSC814x or
MSC815x, Figure 4 could be slightly different. More or less options may be
shown in the Trace and Profile tab.

Kernel Examples for the StarCore SC3850 DSP Core, Rev. 2

6 Freescale Semiconductor

CodeWarrior Trace and Profile tools

Figure 4. Debug Trace and Profile view

At this point, if you click on the Apply and then Debug buttons, the basic profiler initialization is done and
results are ready to collect.

5.3

Viewing Trace and Profile results

Pressing the & icon (Profiler/All results menu can be used as an alternative) shows profiler results. A
new Trace and Profile Results view is displayed on the lower part of the screen. After the data is collected
the name of the data file is listed under VTB Profile results data source. After the debug session is
terminated, you can expand the data file in order to view the data sets:

Trace. Detailed information about trace event such as type of event occurred (VLES, Branch,
Routine Call/Return), symbol name of the current event belong to and symbol name and address
for current event in case of a Branch/Call/Return and also the destination symbol name and
address; All the other data (Critical code and Performance) are also generated based on trace data;

Critical code. A combination of stalls and cache information. Offers information and statistics for
all the instructions executed in the debug session. It display the OCE cycles and values for each
counter;

Performance. The metric and invocation information for each function that was/is executed during
the debug session. It enables you to compare the relative efficiency of different portions of your
target program;

ALU-AGU data (only generated by the simulator). Displays the usage of hardware blocks by the
application and the average usage of ALUs and AGUs by the each function instruction.

Kernel Examples for the StarCore SC3850 DSP Core, Rev. 2

Freescale Semiconductor 7

Using the SC3850 DSP library and test projects

= Debg - Perfarmance Data from the (ile /8156 profile/Trace_Profile_Results/analysls_vib_setun_8156 prafile - £_Debug_815_HW - WSCE158 ADS Core 0_0000.datafile - Fre... |- (=

Ble St pNavieale Segreh Project Profler Bun Perfomonce findos el

S S DB F REL w4k e e oo Gount . e-0-0Q- ¢ £ [Denug | R CICH

£ Debug 3 i+ - C1 || e yaripbies B bresiponts | [Cade vewsr = |

2 consete |1 Prosiems | sl Anatyss Dssssembly | @F Trace sns Frase Renin

Figure 5. Debug Trace and Profile results view

NOTE

The VTB Profile results are available ONLY after the debug session is
terminated

6 Using the SC3850 DSP library and test projects

This section demonstrates how to build the SC3850 kernel library in CodeWarrior IDE and how to link the
library into the test projects. The application interfaces (APIs) and performance are presented for five key
signal processing kernels: complex FFT, complex DFT, complex FIR, CRC, and IIR.

6.1 Build a SC3850 DSP library
The SC3850 DSP library is in a zip file. The library structure after unzipping it described in Section 3,
Library organization on page 3. Use the following steps to open the library project in CodeWarrior.

1. Select File > Import from the C/C++ Perspective toolbar. The Import dialog box appears.

2. Select General Folder > Existing Project into Workspace. Please see Figure 6.
3. Click Next. The Import Projects dialog box appears.
4

Click Browse. The Browse For Folder dialog box appears. Browse to root directory of the library
project (fsl_sc3850_kernels\code\cw\sc3850 kernels), as shown in Figure 7.

Click OK. The imported project appears in the Projects window.
Click Finish.

o o

Kernel Examples for the StarCore SC3850 DSP Core, Rev. 2

8 Freescale Semiconductor

Using the SC3850 DSP library and test projects

Select
Creabe rey projecls Irom an andhivs fle o drechoey, @

st a0 mpart Source:
| e Pl et

s enaral
Gy merchive Fie
P (it Proes
), Fibe System
E,.r‘rn‘mm

= O

= CodeWarmior

= OV

B RugiDeingg

I 5 Tean

Figure 6. Open the import window in the CodeWarrior IDE

5 G e CotWarrior Dwwwlopmon| Slundia

DX
Ml e %-E-0)- D - |lmport Projects 1= : [W5 bebug |G e
G-D-Q- & Sslact & dectiony 1o sairch for aasting Kckpse propscts, d /
K : . : o : —
(s =0 Fomn i Snaa =
=X = _ | &
' () Seloet poak drectory: | 1 [owse. | & e s ot avadoble,
L * Cselect archive fi: '
B & Pirem) Project:
T sl S [Hrmee | Folde
g ——y mere For Falder
; T:# Salect 100t drectory of He frojedts bo medit
Ll hm
& = inchude
B eonmn — —
L w0 herwis <[126R _';'Sm A
L ME0 bemels - BB []
B ot o1 513 2 B
§ 15 test_scwmn, e B o
= o e
Bos
L B L) SC3E0_AM
1] iy premcts i veortapace ¥ O sews0
e
=cvs
) dock
[; g" s
. [] kests
s R [t | & 15 ather
Sy bt o
e
£ 1) o J[e |
o "

Figure 7. Browse to root directory of the library project

Kernel Examples for the StarCore SC3850 DSP Core, Rev. 2

Freescale Semiconductor 9

h o
g |

Using the SC3850 DSP library and test projects

NOTE
You can also drag-and-drop a project (.project) file from Windows
Explorer to the CodeWarrior project window to open the project.

To build the library, select sc3850_kernels in the project window and click “SC3850_ASM” or
“SC3850_C” to create ASM or C library, as shown in Figure 8. The library files (.elb) for C and ASM
code are generated in fs1_sc3850_kernels\lib, respectively.

2 CNCs = - CodeWarrior Development Sludio
Fis Eft Refactor Nedgate Saarch Project Profilsr Aun Window Help

ra- @ B E-O-B-&F Frid-EB- @ -ei-d-@g- R ® [5 Debug | cjces
BDr Q- g . v 1 5CM50_ASH

o, P 2 5CH50_C - =
G, Codeaamier Propcts [1 3 DML s ThesT arges " Haba
=8

=

Fir- b Sen Tygw

2 & seasen eenes

B

& Inchades

= inchude

H 5 srie)
L RRSD ks « | 12 KR
Se3EE0 lernels - ! &KB

SEWEL) kirrels -1 aEn
w N sl _ceTAR0_iL_#iN

| Protims [£ Tacks | B Comsole 11 .] Properties n bl B4~

Anadysts - BL4ZT0-12.Fd Freescale net s b14270

i35 vk &

Figure 8. Build the ASM library (SC3850_ASM) or C library (SC3850_C)

6.2 Using the complex Fast Fourier Transform (complex FFT)

This section presents how to use complex radix-4 FFT/IFFT with 16 bit precision. Since the
implementation of complex FFT and complex IFFT kernels are very similar, we will focus on the complex
FFT kernel.

6.2.1 Test project structure

To demonstrate how to use the kernels and show their performance, CodeWarrior test projects are provided
in the package. The CodeWarrior test project for complex FFT/IFFT kernels is located in
\fsl_sc3850_kernels\tests. Each test project has project files, test harness source code, and test vectors
subdirectories, as shown in this figure.

Kernel Examples for the StarCore SC3850 DSP Core, Rev. 2

10 Freescale Semiconductor

h

Using the SC3850 DSP library and test projects

@ C:\work2010\appnoteWsing SC3850_DSP_libMsl_sc3850. kernels\tests\ift_iffi_radixd_16x1... [= |[B]

3

File Edit Wew Favaorites Tools Help :,
- y @ -
@ Back > LI; P Search F{__:‘ Folders
Address |E Ciiworkz201 0 appnotelUsing_SC3850_DSP_libiFsl_sc3850_kernelsitestsifft_ifft_radixd_16x16icwibest_sc3850_F v | Go
Folders X Mame
= [Fsl_sc3850_kernels ~ EI (cproject
) code project
) docs =) test_sc3a50_FFt_iFft_radicd_c..,
Ok best_sc3850_FFt_iFFt_radict c...
= [tests
I3 cre_enc
) DFT_16x16
= () FE_ifft_radizd 16x16
test_sc38S0_FFL_ifft_radiz4_complex_l6x16
[sre
= [5) vectors
) sa
) 256
) 1024
[4096
(5 fir_complex_16x16
5 iir_1st
I3 linker_contral_Files w
< | (M, £ | >

Figure 9. Complex FFT/IFFT kernel test project structure

Users are referred to [¢] for detailed algorithms, implementations, source codes, and test vectors of the
complex FFT/IFFT kernels

6.2.2 Build test projects

To build complex FFT/IFFT test project, select the corresponding test project in the project window and
the interested build configuration. Figure 10 shows how to build the test project with the
sc3850_fft_radix4_complex_16x16_asm Kernel. A binary file (.eld) are created in
fsl_sc3850_kernels\tests\fft_ifft_radix4_16x16\cw after building.

Kernel Examples for the StarCore SC3850 DSP Core, Rev. 2

Freescale Semiconductor 11

Using the SC3850 DSP library and test projects

¥ L= - C:WProgram FilesAFreescaleOW SC w10, 10808 arCore_Supporicompilerisrcirtlibexpandedistartup__stariup_mscB1596_ asm - ... r__"ﬁllgl

File Cdt Refactor Mawgate Ssanch Froject Frofler Run ‘Window el
D i - R-D-8-F |8 F--E- E-a-E-G- %- 8- B 4 bebug |G cices
B0 QP o
PR T
Ef, Codewamnr Projects 1 =0 starnp_skaetup_mse 5 "2 JTEST A FEF B 8 Mok | < O
i | o BLup 4 TEST_C_IFFT 1~
Pt ame Sae Type mywell; P, .
B 5 it DLT_AGM W SR : SCONS0_DFT_DET_ASM :::L“’w"u
35 SO kernels 1 SURRSD L
best_sc 3050 P Fft radocd comples 1dxlG : TEST
=ection Ctext
; SECFLAGS ALLOC, NOWRITE, EXEC INSTR
¥ Inchudes SECTYFE FROGDITS
H B ke
ke _contaul_fies global _ srcarc
= 3“?_ global errd_Aatare w
5 Ly woes SEE i Sounce # — = .
0 Lg sysmem.c DY Gourcs
B 1% test scrs) ffe Ffe redocs complex 166 19KR C5ourtd | [B provdame | 22 Tadks | Bl console 57 [Properties =]
B (= TEST_aSH at
bast_selr it rediod_comgbess TEwlG-TL J0ED e il i) e x| GASFE 4B
best e B R racked complen Miwlb- T 1HED st b st bbb St bbb bbb b S bbb S bbb b2 b BOTES0 DIL radiad cumples 1o
' ',_';-tbsl;_:::iﬂ.ﬁ{l_fft_fft_rbdxi_;nﬂlphx_uzdb : TEST [1.1] EReading input data from file.
B 15 best_sc3850 Fr_real_1gxig my &bs max input = Ox0OLLZ.
5 best_scrSD b 1t @ TEST O [1.2] FReading twiddle factors from f£ile.
5 test_scrSD kn 0 C_Debug BESE Sm [2.1] Complex Radix-4 Léxlé FFT or IFFT calculating.
(2.2] Complex Radix-4 Lexlé FFT or LFFT completed. By cycled
(31 Smvring oucput cosfficisncs to disk.
(1.1] Checking results,
(1.2) FC: no differences encounceeed.
mMy_maM_errar = 2.
Fhbdb bbb bbb f bbb s bbb TE wna an3A80_foc_radixd_comples 16
€ >N < >
¥ ek _sciES., mple_LGx16 | Whitable Smarl Insert. #0:1 [=

Figure 10. Build test project

6.2.3 Debug and run test projects on MSC8156 ADS

Use the following steps to debug and run test projects:
» Select Run > Debug Configurations. The Debug Configurations dialog box appears.

o Select codewarrior Download > test_sc3850 fft_ifft_radix4 complex_16x16 - TEST_ASM in the
left pane if you want to test the sc3850_fft_radix4_complex_16x16_asm Kernel. You must build the
test project with a specific kernel before running it.

» Click the Debugger tab. The Debugger page appears in the right pane. Change the settings on this
page as per your requirements. For example, select the required target processor and
simulator/emulator. The default setting is shown in Figure 11, and the configurations are set to run
on MSC8156 ADS board.

» Click the Connection tab in the Debugger page.
» Make sure Ethernet TAP is selected from the Connection drop-down list.
» If you make any changes, click the Apply button.

» Click Debug. The program downloads to hardware. The Debug perspective appears and the
execution halts at the first statement of main().

» Control program:

Kernel Examples for the StarCore SC3850 DSP Core, Rev. 2

12 Freescale Semiconductor

b -

Using the SC3850 DSP library and test projects

— Click Step Over ‘= . The debugger executes the current statement and halts at the next
statement.

— Click Resume = . The debugger executes all statements if there are no breakpoints.
— Click Terminate @ . The debug session ends.

- Dabug Configurations

Create, manage, and run configurations
Picrwardinine swy apopalc iz Lo Rowged, Dwers et o 1oy Lo gyl alinn,

CIiCE T
Ly [l Lasl
i) Lﬁ-ﬂeW{I’leﬂﬁM o

d&J.'llf_ﬁCN WD - SRR DT DRl
| dfe DLT_ Ao W SR - S0 DT DTG

] dfe DT BSM_W S - SL D J0ET_DLT_ASM
| SCIFAD karnets - DobiotiUbse The T argss

| SIS karnets - SURIS0 IL-M

| s 50 kernels - SC3050

X

@- —
Bt Larsd 3850 (1% g1t _yukrd_snmpbere_Liix16 - TEST_ASH

L] M | 1 frgurrents | B Environment s Debuggsr - 110 Source | (] Coman | @ Trace and Frofile
TV I. J =
Busse = Advanced

Delnigge Cpliis
S | ekl | Coneeclion | Oblwee Frmodalie | Syssloles | OF fAwernieos | Vi Balread: | O0F Re

Tangel Provessr MSCBISS . &

| best_se 3RS0 Fie Ffe_racked comples 18xiE - TEST O Surndlator Envdator MNone L Coaea trdax |0 |
: | bevsr_sc 3RS0 Fie_Ffe_radied_comples 32vIE - TEST_ASH
- Ty MSCELSA

| beest_se3sm0_Fhe_$ie_rackes_complee_3vid - TEST_C HiemTipe i

| bt _se3RE0_fir_rmal_JFx |6 - TRST_iviM [=] Eecus Parist
[E] bevst_sc3ssn_e_real_LE«16 - TEST_C = =
[E] berst _sc 3850 _jer_141 - TEST_ASH e Run Out of Heset
[E] bowsd_ser SEE0_jrr_14d < TEST_C HSCELSE - o A
[£] berst_sc3650_bn - ©_Dwbug_B156_5am - MECHI5E 155 Curm 0 PGLIAGS - ona | -
[E] bmst_s<3650_n - £ _Predurg_5156_5an - MECH156 155 Cone | PSLANSE - nore d -

3 1

[T] bet_s<3650_kn - ©_Prolurg_B156_San - MECHIS6 155 Cone 2 HSLA156 - pra - 5
=1 MEFEIEE | s d 1
LEf Lest_sc3E50 0 - C_Dwbug_8156_5im - MECEISE IS5 Coe 5
&=
L best_scHES0_n - C_Dwbug 5158 _%m - MEOS1SE 153 Core 4] i

T best_seoril_in - C_Chebiag 001565 - MGOUNSGE 155 Core 5 T e v

- 1.mh e T .3 ¥
W
] ¥
[o || newe |

Viker matched 24 of 29 kets

7

[Btost sohemd Fe e u:i el cpenpley 18xEE - TE Hipragenien s Mot

1 FIFIE Inl'-l~r=! AFAEE

ot J[oo |

6.2.4

Figure 11. Debug configuration on MSC8156 ADS board

Debug and run test projects on SC3850 PACC simulator

Use the following steps to debug and run test projects on the simulator:

Select Run > Debug Configurations. The Debug Configurations dialog box appears.

Select codewarrior Download > test_sc3850 fft_ifft_radix4 complex_16x16 - TEST_ASM in the
left pane if you want to test the sc3850_fft_radix4_complex_16x16_asm kernel.

Click the Debugger tab. The Debugger page appears in the right pane.

Click the StarCore tab in the Debugger page. Select scaxso for target processor and ccssim2 PACC
for simulator/emulator, as shown in Figure 12.

Click the Connection tab in the Debugger page. Make sure Generic is selected from the Connection
drop-down list.

Click the Apply button.

Click pebug. The program downloads to hardware. The Debug perspective appears and you can
debug the program from this window.

Kernel Examples for the StarCore SC3850 DSP Core, Rev. 2

Freescale Semiconductor

13

\
Y

4
A

Using the SC3850 DSP library and test projects

.+ Dabug Configurations IE
Create, manage, and run configurations -
Picpvarnnan] 'y oy iy i o Largged, Do dhosdiig o runey L o sl ﬁ\'
» = Bt Larsd 3850 (1% g1t _yukrd_snmpbere_Liix16 - TEST_ASH
Ly [l Lasl ' —
L] M | 1 frgurrents | B Environment s Debuggsr - 110 Source | (] Coman | @ Trace and Frofile
R 3 l__-ﬁ.-ﬁe'h'mlorunrrm - L W i et lm J -
[T dife_iLn_aesen Wi Sk - SO0 [0 T_DHT_fik (Fser spacfied s o
[F] dfe_D0LT_ace v SR - S0 DT DET G
E'.:ﬁ. DILT B W SH - SCIE0 J0FT_DLT_asm Delugyer Opticts
| $C300_hernels - DobiotUse ThesTargst rigrees
P seekin bl 000 A Starvore | Dumiial | Conction | St Exeosbin | Sysduks | OF fnsrms | Vi Redrads | O0F R
[E] scoima_harnels - 523050 <
= T Procedsor SLOUED W
| & | best o3850 PR FRe radiecd comples 18216 - TEST ASM gk Prce Homgeraois Mo e
E berst s 3RS0 Fe Ffe racked complies 18xi6 - TEST C Sunalaton Enrdabor | S| f el L Cora Ihdes: 0
|6 | bevet_se3800 Fie_Ffr_radied_comples 0wl - TEST_ASH SiribemT
| —- v Tygan
[£] best_seammn_ffe_§fe_rackes_enmpdes 32vi6 - TEST_C "
[herst_sc 3850 _Fir_real IRl - TEST_ASM [Execue Resst
E’ bevst_sc3EED_br_real_LEe 16 - TEST_C] itk bt
[E] terst _sc 3850_er_141 - TEST_ASH
[E] bowsd_ser SEE0_jrr_14d < TEST_C ; - - -
el X Lr_ e Target indtishaabon file | £ i F
& 3850k - €0 _Bi56_Sin - MECH156 155 Core 0 o Todlslaselu b e Cire SupportfIndisks stion | lesfRegater onhgl desMarn1w
[E] best_sc38%0 _jn - € _Prelary_8156_Sin - MECB1S6 155 Conm | [wiorkspsce... | [Fie systemn... | [vanabis
[T] berst_sc3850_kn « C_Dwbrg_S156_Sim - MECE1SS 155 Come 2
[E] Lest_sx3850_kn - C_Dwbuy_S156_S5im « MECEISE 155 Cone 3
T bt _scHES0 _In - C_Dwbug_S156_500 - MOOS15S 155 Com 4 Feluse b L
[E7] best_seomesn_ln - C_Chabiug 00 56t - MGCORSG 155 Cors & -
B Launch Groud ot »
W
L _ [o || newe |
Viker mstched 24 of 24 betns
@ [|

Figure 12. Debug configuration on SC3850 PACC simulator

6.2.5 In-place implementation

The in-place complex FFT/IFFT algorithms are implemented on the SC3850 core. An in-place FFT is
simply an FFT that is calculated entirely inside its original sample memory. In our complex FFT/IFFT
kernels, one data buffer is used for input and output data. Thus, after calculation, the input data is not valid
because the input data are overwritten by intermediate data or output data. The complex FFT/IFFT kernels
can run on cold cache and warm cache. Warm cache gives us better performance because it minimizes the
memory access overhead. In the warm cache case, we simply run the function twice, where the first
function run is used to warm up the cache. Since an in-place FFT is implemented, the input data are not
valid for the second run of the function. Thus, warm cache approach is used for cycle count measurement.
On the other hand, cold cache approach is used for bit exactness measurement. Note that in real
applications, other methods can be used to warm up the cache, such as data/instruction prefetching.

6.2.6 Function APl complex Radix-4 FFT 16 x 16

Radix-4 complex FFT with 16-bit input and 16-bit output. Input and output complex data are stored in the
form [real][imag]. Radix-4 supports 64, 256, 1024, and 4096 point FFTs. Please refer to [¢] for the
complex FFT algorithms and implementation details. The API of the complex IFFT kernel is very similar
to the complex FFT kernel, and, therefore, is not described in this application note.

Kernel Examples for the StarCore SC3850 DSP Core, Rev. 2

14 Freescale Semiconductor

Using the SC3850 DSP library and test projects

Example 2. Radix-4 FFT 16 x 16 API

void sc3850_fft_radix4_complex_16x16_asm (Wordl6 data_buffer[],
Word16 wctwiddles[],
Word16 wbdtwiddles[],
Word16 n,
Word16 1In,
Word16 Shift_down);

Input:

Wordl1l6 data_buffer[] // Address of Input and Output Buffer. Input and
// output share one memory area pointed by data_ buffer.
Word16 wctwiddles[] // Address of the array of twiddle factor Wc
Wordl1l6 wbdtwiddles[] // Address of the array of twiddle factor Wb and Wd
Word16 n // FFT point
Word16 In // Base 4 Log(N). Number of FFT stages
Word1l6 Shift_down // Scaling down parameter at each stage
// Shift_down = 0; No scaling
// Shift_down = 1; scaling down (dividing) by 2
// Shift_down = 2; scaling down (dividing) by 4

Output:

Wordl1l6 data_buffer[]// Address of Input and Output Buffer. Input and output share
// one big memory area pointed by data_buffer.

Data alignment requirement:

data_buffer 4N
wctwiddles N
wbdtwiddles 2N

The input parameter shift_down is used to avoid possible overflow in the FFT calculation by normalizing
the input before the 1st stage and then scaling it down by 4 at the output of every stage. scaling by 2 and
no scaling modes can be used for short FFTs only, that is, for N = 64, 256, and for vectors with appropriate
low amplitude values.

6.2.7 Check results

Reference complex FFT/IFFT outputs are pre-calculated and stored in data files. The test code loads the
reference outputs and compares the outputs of the complex FFT/IFFT kernel with the reference ones. If
the maximum absolute difference is smaller than a threshold, then we say the kernel passes result checking.

6.3 Complex Discrete Fourier Transform (complex DFT)

This section presents how to use complex DFT kernel with 16 bit precision.

Kernel Examples for the StarCore SC3850 DSP Core, Rev. 2

Freescale Semiconductor 15

\
Y

4
A

Using the SC3850 DSP library and test projects

6.3.1 Test project structure

The CodeWarrior test project for complex DFT kernelsis located in \fs1 sc3850 kernels\tests.
Each test project has project files, test harness source code, and test vectors subdirectories, as shown in
this figure.

@ C:Wwork2010\appnotelUsing SC3850_DSP_libMib\sl_sc3850_kernelsites... [= |[B]

X
.1:

File Edit \iew Favorites Tools Help

eﬁack - _/I Lﬁ f_J Search ‘H__i‘ Faolders *

Address ||.ﬂl CihworkZ2010appnoteldsing_SC3850_DSP_libYibhFsl_sc3850_kernelsitests\DFT_16x 161 | Go

Folders x Mame
= C5) Fsl_sc3850_kernels Y El Jcproject
I3 code 1 Jproject
B lib dft_DIT_ASM_Wa_SR - SC385...
= B tests dft_DIT_ASM_Wa_SR - SC385...
= 15 DFT_16x16
=) ow
(] if
I include
=I5 src
= My _oUTPUT
| M _REF
I w_ER E
= 153 veckar
I in

[FEE_ifFE_radizd 16x16
I linker_contral_files
Ia swskermn £
| > < |

4 b
— — — —

Figure 13. Complex DFT/IDFT kernel test project structure

Users are referred to [¢] for detailed algorithms, implementations, source codes, and test vectors of the
complex DFT/IDFT kernels

6.3.2 Build, debug and run test projects on MSC8156 ADS

Users can follow the same steps described in Section 6.2.2, Section 6.2.3 and Section 6.2.4 to build, debug
and run the DFT test projects on MSC8156 ADS and SC3850 PACC simulator.

6.3.3 Function APl complex DFT 16 x 16

Complex DFT has 16-bit input and 16-bit output. Input and output complex data are stored in the form
[real][imag]. It implements mixed radix-2/3/4/5 FFTs with reduced computation and combines them
together to support DFT of size N = 2k 3l gmgn (k, I, m, and n are positive integers). For example, a DFT

Kernel Examples for the StarCore SC3850 DSP Core, Rev. 2

16 Freescale Semiconductor

Using the SC3850 DSP library and test projects

of size 1200 can be calculated in five stages using radices of 5, 4, and 3 (1,200 =5 x 5 x 4 x 4 x 3). Please
refer to [+] for the complex DFT algorithms and implementation details. The API of the complex IDFT
kernel is very similar to the complex DFT kernel, and, therefore, is not described in this application note.
Twiddle factors are precalculated. Bit-reversed addressing is not performed in this implementation. The
Digit Reversed Address “psiDigitReversedAddress” is an offset for digit reversed address.

Example 3. Complex DFT 16 x 16 API

void sc3850_dft_dit_complex_16x16_auto_scale_asm(fft_arg *psFit);

Structure Definition:

typedef struct fft_arg_t

short *psiNumRadix;// Pointer to the array of radix every stage

short *psiNumButterfly;// Pointer to the array of # of butterflies every subgroup

short *psiNumSubgroup;// Pointer to the array of number of subgroups every stage

short *psiNumRadixOffset;// Pointer to the array of # of each radix in/out offset

short *psiDigitReversedAddress;// Pointer to the Digit Reversed Address
of twiddle factor Wb

array
array
array

array

of twiddle factor Wc
of twiddle factor Wd
of twiddle factor We

DFT

point

short *psiScale;// Pointer to the scaling factor every butterfly stage

// Pointer to Input Buffer

// Pointer to the array of radix every stage
// Pointer to the array of # of butterflies every subgroup

// Pointer to the array of number of subgroups every stage

short *psiNumRadixOffset; // Pointer to the array of # of each radix in/out offset

short *psiDigitReversedAddress; // Pointer to the Digit Reversed Address

{
short *psiln;// Pointer to Input Buffer
short *psiOut;// Pointer to Output Buffer
short *psiWb;// Pointer to the
short *psiWc;// Pointer to the
short *psiWd;// Pointer to the
short *psiWe;// Pointer to the
short *psiDFTpoint;// Pointer to the

} fft_arg;

Input:

short *psiln;

short *psiNumRadix;

short *psiNumButterfly;

short *psiNumSubgroup;

short *psiWb; //

short *psiWc; //

short *psiWd; //

short *psiWe; //

short *psiDFTpoint; //

short *psiScale; //

Output:

Pointer
Pointer
Pointer
Pointer
Pointer

Pointer

to
to
to
to
to
to

the
the
the
the
the
the

array of twiddle factor Wb
array of twiddle factor Wc
array of twiddle factor Wd
array of twiddle factor We
DFT point

scaling factor every butterfly stage

Kernel Examples for the StarCore SC3850 DSP Core, Rev. 2

Freescale Semiconductor

17

Revision history

short *psiOut; // Pointer to Output Buffer

Two scaling methods are implemented in the complex DFT kernel to prevent overflowing. The first
method is to scale down the input data by a fixed number of bits at each stage without considering the range
of the input data. This is called fixed scaling method. Another method is to detect the bit growth at the
output of each DFT stage. Once the number of bit growth is known, the number of scaling bits can be
determined to reverse the bit growth. This method is called automatic scaling method, which provides
better precision over the fixed scaling method.

6.3.4 Check results

Reference complex DFT/IDFT outputs are pre-calculated and stored in data files. The outputs of the
DFT/IDFT kernel are compared with the reference outputs. If the maximum absolute difference is smaller
than a threshold, then we say the kernel passes result checking.

7 Revision history

This table provides a revision history for this document.

Table 1. Document revision history

Rev. Date Substantive change(s)
number
2 05/2012 | Updated note on first page from “The supporting software library is available as a zip file under NDA
only. Contact your local sales office or representative for details” to “The supporting software library
is available as zip file AN4207SW on freescale.com.”
1 12/2010 | Added note on first page.
0 11/2010 | Public release

Kernel Examples for the StarCore SC3850 DSP Core, Rev. 2

18 Freescale Semiconductor

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Document Number: AN4207
Rev. 2
05/2012

Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.

Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer’s technical experts. Freescale does not convey any
license under its patent rights nor the rights of others. Freescale sells products pursuant
to standard terms and conditions of sale, which can be found at the following address:
http://www.reg.net/v2/webservices/Freescale/Docs/TermsandConditions.htm.

Freescale, the Freescale logo, CodeWarrior, QorlQ, and StarCore are trademarks of
Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. CoreNet and QorlQ
Qonverge are trademarks of Freescale Semiconductor, Inc. All other product or service
names are the property of their respective owners.

© 2010-2012 Freescale Semiconductor, Inc.

-

> “freescale”

	Kernel Examples for the StarCore SC3850 DSP Core
	1 References
	2 SC3850 core overview
	Figure 1. StarCore SC3850 block diagram
	Figure 2. SC3850 programming model

	3 Library organization
	Figure 3. SC3850 DSP library directory structure

	4 Benchmarking
	5 CodeWarrior Trace and Profile tools
	5.1 Analysis tools features
	5.2 Start a new profiling session within the CodeWarrior environment
	Figure 4. Debug Trace and Profile view

	5.3 Viewing Trace and Profile results
	Figure 5. Debug Trace and Profile results view

	6 Using the SC3850 DSP library and test projects
	6.1 Build a SC3850 DSP library
	Figure 6. Open the import window in the CodeWarrior IDE
	Figure 7. Browse to root directory of the library project
	Figure 8. Build the ASM library (SC3850_ASM) or C library (SC3850_C)

	6.2 Using the complex Fast Fourier Transform (complex FFT)
	6.2.1 Test project structure
	Figure 9. Complex FFT/IFFT kernel test project structure

	6.2.2 Build test projects
	Figure 10. Build test project

	6.2.3 Debug and run test projects on MSC8156 ADS
	Figure 11. Debug configuration on MSC8156 ADS board

	6.2.4 Debug and run test projects on SC3850 PACC simulator
	Figure 12. Debug configuration on SC3850 PACC simulator

	6.2.5 In-place implementation
	6.2.6 Function API complex Radix-4 FFT 16 ¥ 16
	6.2.7 Check results

	6.3 Complex Discrete Fourier Transform (complex DFT)
	6.3.1 Test project structure
	Figure 13. Complex DFT/IDFT kernel test project structure

	6.3.2 Build, debug and run test projects on MSC8156 ADS
	6.3.3 Function API complex DFT 16 ¥ 16
	6.3.4 Check results

	7 Revision history
	Table 1. Document revision history

