

Freescale Semiconductor Document Number: AN4260
Application Note Rev. 0, 03/2011

© 2011 Freescale Semiconductor, Inc.

Using Asymmetric DSP Application
Projects with CodeWarrior v10.1.8 or
Later

by Devtech Customer Engineering

Freescale Semiconductor, Inc.

Austin, TX

This application note is a companion document

to the application note AN4063 “Configuring an

Asymmetric Multicore Application for StarCore

DSPs” and AN4155 “Configuring a Mixed

Asymmetric Multicore Application for StarCore

DSPs”. It contains information specific to

managing asymmetric DSP application projects

using CodeWarrior for StarCore DSPs v10.1.8

or later.

Customers using CodeWarrior for DSPs v10.1.5

or earlier can use the information contained in

application note AN4063.

Contents

1 New Features ... 2
2 Warnings .. 3
3 Asymmetric Application Memory Map Limitations 4
4 Further Asymmetric Mapping Topics 7
5 Revision History ... 14

 Using Asymmetric DSP Application Projects with CodeWarrior v10.1.8 or Later

2 Freescale Semiconductor

1 New Features

CodeWarrior for StarCore DSPs v10.1.8 and later includes several enhancements that require some

changes in the asymmetric sample projects that accompany application note AN4063 or AN4155. These

are:

 Remote System Explorer (RSE): RSE defines a “container” called a remote system that stores

connection properties. The remote system settings can be easily shared among multiple launch

configurations. This is a key feature for multicore DSP applications where each core is managed

by its own launch configuration. For more information on RSE, consult the application note

AN4253, “Converting Earlier Versions of CodeWarrior for StarCore DSPs Projects to v10.1.8”.

 Flexible Startup: This allows better support for the asymmetric memory map used by most DSP

applications.

 Messages involving linker symbol redefinitions can be disabled.

These features are described in the sections that follow.

1.1 RSE

All launch configurations have been updated to use either a MSC8156 ADS USB or a MSC8156 ISS

remote system configuration.

The first time a CodeWarrior project using v10.1.5 or earlier is imported, make sure to also import the

remote system configurations MSC8156 ADS USB and MSC8156 ISS. These remote system

configurations can be used for importing future projects.

Alternatively, if there are already some remote systems configurations defined, they can be used here as

well.

1.2 Flexible Startup

Some of the restrictions formerly present in the definition of the asymmetric memory map have been

removed.

The linker .l3k files that are automatically generated by the CodeWarrior New Project wizard have been

modified to support this new capability. New projects can now have a separate descriptor for the

.att_mmu and the stack sections. See section 3 for more details on the remaining limitations.

Refer to the SmartDSP OS demo project asymmetric_demo or sample projects for V10.1.8 delivered

with AN4063 for an example of linker files with separate descriptors for the .att_mmu and the stack

sections.

1.3 Disable Message About Linker Symbol Redefinition

All asymmetric SmartDSP OS projects are linked with the option -disable-warn-redef-linker-sym.

This prevents generation of the messages:

 Using Asymmetric DSP Application Projects with CodeWarrior v10.1.8 or Later

Freescale Semiconductor 3

"Redefinition of linker predefined symbol ..."

2 Warnings

Attempts to build SmartDSP OS asymmetric projects display the following informative messages for

each core:

"Could not locate stack section for core c0. Stack not set. It must be set by user."

"Could not locate heap section for core c0. Heap not set. It must be set by user. "

This is the expected behavior, as the heap and stack sections are not explicitly specified in the linker

command files. Using the linker files generated by the wizard, stack (actually symbol _StackStart)

is allocated in section .oskernel_local_data_bss and RT .Lib heap is placed into the reserved

memory area allocated at the beginning of DDR0 memory.

To remove these messages, add definitions for the stack and heap sections to the .l3k files. Consult the

next two sections for details.

2.1 Define a Stack Section

To define a real stack section, apply the following modifications to the project:

1. In the file msc815x_iit.c, define the symbol StackStart as follows:

uint8_t StackStart[ALIGN_SIZE(OS_STACK_SIZE,8)]

__attribute__((section("stack")));

#pragma align StackStart 8

In the local_map.l3k file, add the stack section to descriptor_stack_heap as follows:

 descriptor_stack_heap{

 .oskernel_local_data

 .oskernel_local_data_bss

 stack

 } > stack_heap_descriptor

NOTE

The code snippet above refers to linker files delivered with asymmetric

sample projects. If you start from a project created using the New Project

wizard, the stack section needs to be added at the end of

descriptor_local_data.

 descriptor_local_data {

 .oskernel_local_data

 .data

 .oskernel_rom

 .rom

 .exception

 .exception_index

 .ramsp_0

 .init_table

 .rom_init

 .rom_init_tables

 .staticinit

 Using Asymmetric DSP Application Projects with CodeWarrior v10.1.8 or Later

4 Freescale Semiconductor

 LNK_SECTION(att_mmu, "rw", 0x200, 4, ".att_mmu");

 .bsstab

 reserved_crt_tls

 .oskernel_local_data_bss

 .bss

 stack

 } > local_data_descriptor;

2.2 Define a Heap Section

To define a real heap section, apply the following modification to local_map.l3k:

1. Remove the definitions __BottomOfHeap and __TopOfHeap.

The following lines must be removed from the .l3k file:

 #if (USING_USER_KA_STACK == 1)

 __BottomOfHeap = _KernelAwareness_e;

 #else

 __BottomOfHeap = _VirtLocalDataDDR0_b;

 #endif

 __TopOfHeap = __BottomOfHeap +__rtlibHeapSize;

2. Modify the definition of reserved_size as follows:

reserved_size = _KernelAwareness_size;

3. Add a heap section to descriptor_local_data_ddr0:

 descriptor_local_data_ddr0 {

 .local_data_ddr0

 .local_data_ddr0_bss

 #if (USING_RTLIB == 1)

 LNK_SECTION(heap, "rw", __rtlibHeapSize, 0x8, "heap");

 #endif

} > local_data_ddr0_descriptor;

3 Asymmetric Application Memory Map Limitations

The asymmetric application memory map still has the following restrictions:

3.1 General Purpose Limitations
1. The application entry code and startup code must be allocated in a memory area with one-to-one

mapping between virtual and physical address.

This is a requirement and applications that do not follow this scheme will not start.

2. To generate bootable code, the applications entry point should be located at the same physical

address on all cores.

This is a requirement and applications that do not follow this scheme will not work when attempting

to boot the application over Ethernet, I2C, SPI, or any other interface.

 Using Asymmetric DSP Application Projects with CodeWarrior v10.1.8 or Later

Freescale Semiconductor 5

3.2 Guidelines for SmartDSP OS Limitations

1. The section that contains the symbol g_heap_nocache must be allocated in the same MMU

segment as the startup stack. That means the section .oskernel_local_data must be allocated in

same MMU segment as .oskernel_local_bss.

This limitation comes from implementation of the SmartDSP OS hook function __target_setting. If

this rule cannot be followed, the SMARTDSP OS function __target_setting must be rewritten.

2. The section .os_shared_data must be allocated in M3 non-cacheable shared memory. That is

because this section contains spinlocks variables used within the OS code.

If this rule cannot be followed, multicore synchronization will not run correctly.

3. Due to the current startup code implementation, _VBAddr must be located at the same virtual

address for all the cores running the SmartDSP OS application.

If this rule cannot be followed, revise the library module startup__startup_msc8156_.asm.

4. SmartDSP OS heaps must have the same size on all cores running SmartDSP OS.

This is an OS requirement.

5. If Kernel Awareness is enabled, the Kernel Awareness buffer size and virtual start address must

be identical on all cores.

If this rule is not followed, smartdsp_os.c needs to be changed.

3.3 Guidelines for Bare Board Limitations
1. The section .att_mmu and startup stack label _StackStart must be located in the same MMU

segment.

This is a runtime library requirement and applications that do not follow this scheme will not execute

the startup code. If this rule cannot be followed, the function ___target_asm_start must be

rewritten.

2. Due to the current startup code implementation, _VBAddr must be located at the same virtual

address for all the cores running the bare board application

If this rule cannot be followed, revise the library module startup__startup_msc8156_.asm.

 Using Asymmetric DSP Application Projects with CodeWarrior v10.1.8 or Later

6 Freescale Semiconductor

3.4 Startup code

Figure 1 below depicts a flow diagram of the startup code delivered with the CodeWarrior IDE for

SmartDSP OS applications. The gray blocks represent the functions that implement the various stages of

this process.

Figure 1. The Flow of Execution of an Application When It Starts.

 Using Asymmetric DSP Application Projects with CodeWarrior v10.1.8 or Later

Freescale Semiconductor 7

4 Further Asymmetric Mapping Topics

Asymmetric SmartDSP OS projects use standard SmartDSP OS linker files. In those cases where the

application asymmetric memory map must be heavily modified, the .l3k files generated for the project

may need further modifications.

The project’s.l3k files need modification if the following is required:

 Different size for VTB buffer on some cores.

 Different size for KA Buffer on some cores.

 Different size for startup and exception stack on some cores.

 Different size for RTlib heap on some cores.

4.1 Different Size for VTB Buffer

In the default SmartDSP OS linker files, the VTB buffer is allocated at the virtual base of private DDR1

memory. If _VTB_size is different on some cores, any symmetrical variables allocated in DDR1 will

receive inconsistent addresses during linking. In order to avoid this problem, it is better to move VTB

buffer at the virtual end of the private DDR1 memory.

This can be done applying following changes in local_map.l3k:

 Define a core-dependent symbol, VTB_size.

#if (USING_VTB == 1)

 _VTB_size = (core_id() == 0) ? 0x4000 :

 (core_id() == 1) ? 0x4000 :

 (core_id() == 2) ? 0x8000 :

 (core_id() == 3) ? 0x8000 :

 (core_id() == 4) ? 0x8000 :

 (core_id() == 5) ? 0x4000 :

 0x0;

 _ENABLE_VTB = 1;

#else

 _VTB_size = 0;

#endif

_VTB_end = _VirtLocalDataDDR1_e;

_VTB_start = _VTB_end - _VTB_size + 1;

 Using the appropriate address translation block, reserve memory at the end of DDR1.

address_translation (*) {

...

#if (USING_VTB == 1)

 reserve (SYSTEM_DATA_MMU_DEF): _PhysLocalDataDDR1_e -_VTB_size + 1 ,

_VTB_start, _VTB_size, "rw";

#endif

...

}

 Using Asymmetric DSP Application Projects with CodeWarrior v10.1.8 or Later

8 Freescale Semiconductor

NOTE

On hardware that lacks DDR1 memory, the VTB buffer can be allocated

in another memory block (DDR0 or M3).

4.2 Different Size for KA Buffer

In the default SmartDSP OS linker files, the KA buffer is allocated at the virtual base of the private

DDR0 memory. If _KernelAwareness_size is different on some cores, any symmetrical variables

allocated in DDR0 receive inconsistent address during linking. In order to avoid this problem, it is better

to move KA buffer at the virtual end of the private DDR0 memory.

This can be done applying following changes in local_map.l3k:

 Define a core-dependent symbol, _KernelAwareness_size.

#if (USING_USER_KA_STACK == 1)

 _KernelAwareness_size = (core_id() == 0) ? 0x4000 :

 (core_id() == 1) ? 0x4000 :

 (core_id() == 2) ? 0x8000 :

 (core_id() == 3) ? 0x8000 :

 (core_id() == 4) ? 0x8000 :

 (core_id() == 5) ? 0x4000 :

 0x0;

 _KernelAwareness_e = _VirtLocalDataDDR0_e;

 _KernelAwareness_b = (_KernelAwareness_size == 0) ? _

 KernelAwareness_e :_KernelAwareness_e - _KernelAwareness_size +

1;

#else

 _KernelAwareness_size = 0;

#endif

 For the appropriate address translation block, reserve memory at the end of DDR0.

address_translation (*) {

...

#if (USING_USER_KA_STACK == 1)

 reserve (SYSTEM_DATA_MMU_DEF): _PhysLocalDataDDR0_e - reserved_size+1,

 _KernelAwareness_b, reserved_size, "rw";

#endif

...

}

 Change smartdsp_os.c source file to support KA buffers with different size and/or start

address. First, define symmetrical variables to hold the virtual start address and the size of the

KA buffer. For example:

uint32_t kaBufferSize = (uint32_t)&KernelAwareness_size;

uint32_t kaBufferStart = (uint32_t)&KernelAwareness_b;

 For the call of function osLogInitialize inside of function osInitialize, make sure to

use the newly defined variables instead of the macros from os_config.h.

status = osLogInitialize((uint8_t*)kaBufferStart, kaBufferSize,

OS_NUM_OF_CORES);

 Using Asymmetric DSP Application Projects with CodeWarrior v10.1.8 or Later

Freescale Semiconductor 9

4.3 Different Size for Startup Stack

In the default SmartDSP OS linker/source files, StackStart is allocated inside of the section

.oskernel_local_data_bss as a normal array. If _StackSize is different on some cores, this approach

cannot be used. The solution is to define a stack section in descriptor_stack_heap.

This can be done by applying the following changes:

 In local_map.l3k, define a core-dependent symbol, _StackSize.

 _StackSize = (core_id() == 0) ? 0x1e00 :

 (core_id() == 1) ? 0x1e00 :

 (core_id() == 2) ? 0x1800 :

 (core_id() == 3) ? 0x1800 :

 (core_id() == 4) ? 0x1800 :

 (core_id() == 5) ? 0xa00 :

 0x0;

 In local_map.l3k, place the stack section at the end of descriptor_stack_heap.

 descriptor_stack_heap{

 .oskernel_local_data

 .oskernel_local_data_bss

 LNK_SECTION(stack, "rw", _StackSize, 0x8, "stack");

 } > stack_heap_descriptor

 In msc815x_init.c, remove the definition of the variable, StackStart.

Comment out the following lines in the msc815x_init.c source file:

//uint8_t StackStart[ALIGN_SIZE(OS_STACK_SIZE,8)];

//#pragma align StackStart 8

NOTE

If the application is not using a stack of identical size on all cores, the use

of a dedicated virtual memory area to hold .att_mmu and stack sections

is recommended. The programmer should also ensure that symmetrical

sections are not allocated after descriptor_stack_heap.

4.4 Different Size for RTLib Heap

In the default SmartDSP OS linker files, RTLib Heap is allocated right after KA Buffer in the private

DDR0 memory. If __rtlibHeapSize is different on some cores, the symmetric variables allocated in

DDR0 receive inconsistent addresses during linking. To avoid this problem, it is better to move the heap

to the end of the application private DDR0 memory.

This can be done by applying following changes:

 In local_map.l3k, define a core-dependent symbol, __rtlibHeapSize.

__rtlibHeapSize = (core_id() == 0) ? 0x10000 :

 (core_id() == 1) ? 0x10000 :

 (core_id() == 2) ? 0x20000 :

 (core_id() == 3) ? 0x20000 :

 (core_id() == 4) ? 0x20000 :

 (core_id() == 5) ? 0x40000 :

 0x0;

 Using Asymmetric DSP Application Projects with CodeWarrior v10.1.8 or Later

10 Freescale Semiconductor

 In system*.l3k, place the heap section at the end of the used DDR0 memory. In each core private

unit, add the heap section at the end of the used DDR0 memory. For core 0, this is done as

follows:

unit private (task0_c0) {

 memory {

 private_text_0 ("rx"): org = _VirtPrivate_M2_b;

 private_data_0 ("rw"): AFTER(private_text_0);

 ddr0_private ("rw"): AFTER(ddr0_SYS0_data);

 }

 sections{

 ...

 ddr0_data {

#if (USING_RTLIB == 1)

 LNK_SECTION(heap, "rw", __rtlibHeapSize, 0x8, "heap");

#endif

 } > ddr0_private;

 }

}

address_translation (task0_c0) {

 private_text_0 (SYSTEM_PROG_MMU_DEF): PRIVATE_M3;

 private_data_0 (SYSTEM_DATA_MMU_DEF): PRIVATE_M3;

 ddr0_private (SYSTEM_DATA_MMU_DEF): LOCAL_DDR0;

}

The same approach can be applied to the other cores.

 Using Asymmetric DSP Application Projects with CodeWarrior v10.1.8 or Later

Freescale Semiconductor 11

4.5 Memory Map

The linker files generated by default with the CodeWarrior New Project wizard place the local memory

partitions first in either DDR or M3 memory, as shown in Figure 2.

Figure 2. Default Arrangement of Objects in Memory.

 Using Asymmetric DSP Application Projects with CodeWarrior v10.1.8 or Later

12 Freescale Semiconductor

To optimize local memory usage for each core, it is good practice to place the shared and partially

shared partitions first in memory and then place local partitions in the higher portions of memory

(Figure 3).

Figure 3. The Memory Map with Memory Organized for Optimized Use.

In order to achieve this, the start and end addresses of the shared, partially shared, and private areas must

be adjusted. The sections that follow explain how to accomplish this.

 Using Asymmetric DSP Application Projects with CodeWarrior v10.1.8 or Later

Freescale Semiconductor 13

4.5.1 Define the Memory Footprint

First, define the amount of memory required as partially shared memory for each of the subsystem. For

example, the following code snippet defines amount of partially shared memory required by each

subsystem on DDR0:

_DDR0_SHARED_SYS0_SIZE = 0x20000;

_DDR0_SHARED_SYS1_SIZE = 0x10000;

_DDR0_SHARED_SYS2_SIZE = 0x10000;

_TotalSYS_DDR0_Size = _DDR0_SHARED_SYS0_SIZE + _DDR0_SHARED_SYS1_SIZE +

 _DDR0_SHARED_SYS2_SIZE;

Next, define the amount of local memory required on each core. The following snippet demonstrates

how to define the amount of local memory required by each core on DDR0:

_LocalDataDDR0_c0_size = 0x2000000;

_LocalDataDDR0_c1_size = 0x2000000;

_LocalDataDDR0_c2_size = 0x1000000;

_LocalDataDDR0_c3_size = 0x1000000;

_LocalDataDDR0_c4_size = 0x1000000;

_LocalDataDDR0_c5_size = 0x3000000;

_TotalLocalDDR0Size = _LocalDataDDR0_c0_size + _LocalDataDDR0_c1_size +

 _LocalDataDDR0_c2_size + _LocalDataDDR0_c3_size +

 _LocalDataDDR0_c4_size + _LocalDataDDR0_c5_size;

Now the amount of memory remaining as shared memory can be evaluated. This can be accomplished

as follows:

_SharedDDR0_size = _DDR0_e - _DDR0_b - _TotalLocalDDR0Size -

 _TotalSYS_DDR0_Size;

4.5.2 Define Memory Start and End Addresses

Shared memory is defined at the beginning of each memory block. The example below defines start and

end address of shared memory on DDR0:

_SharedDDR0_b = _DDR0_b;

_SharedDDR0_e = _SharedDDR0_b + _SharedDDR0_size - 1;

Partially shared memory areas can be defined as:

_DDR0_SHARED_SYS0_Start = _SharedDDR0_e + 1;

_DDR0_SHARED_SYS0_End = _DDR0_SHARED_SYS0_Start + _DDR0_SHARED_SYS0_SIZE -1;

_DDR0_SHARED_SYS1_Start = _DDR0_SHARED_SYS0_End + 1;

_DDR0_SHARED_SYS1_End = _DDR0_SHARED_SYS1_Start + _DDR0_SHARED_SYS1_SIZE - 1;

_DDR0_SHARED_SYS2_Start = _DDR0_SHARED_SYS1_End + 1;

_DDR0_SHARED_SYS2_End = _DDR0_SHARED_SYS2_Start + _DDR0_SHARED_SYS2_SIZE - 1;

Finally, the virtual and physical address for local data can be defined. In computing the physical start

address for all cores, a symbol representing the offset for local data on each core, as compared to the

core 0 address, must be computed. This can be done as follows:

_PhysLocalDDR0_Offset =

 (core_id() == 0) ? 0x0 :

 (core_id() == 1) ? _LocalDataDDR0_c0_size :

 Using Asymmetric DSP Application Projects with CodeWarrior v10.1.8 or Later

14 Freescale Semiconductor

 (core_id() == 2) ? _LocalDataDDR0_c0_size + _LocalDataDDR0_c1_size :

 (core_id() == 3) ? _LocalDataDDR0_c0_size + _LocalDataDDR0_c1_size +

 _LocalDataDDR0_c2_size :

 (core_id() == 4) ? _LocalDataDDR0_c0_size + _LocalDataDDR0_c1_size +

 _LocalDataDDR0_c2_size + _LocalDataDDR0_c3_size:

 (core_id() == 5) ? _LocalDataDDR0_c0_size + _LocalDataDDR0_c1_size +

 _LocalDataDDR0_c2_size + _LocalDataDDR0_c3_size +

 _LocalDataDDR0_c4_size:

 0x0;

For each core the virtual and physical address for local data can then be computed:

 _LocalDataDDR0_b = _DDR0_SHARED_SYS2_End + 1;

 _VirtLocalDataDDR0_b = _LocalDataDDR0_b;

 _VirtLocalDataDDR0_e = (_VirtLocalDataDDR0_b + _LocalDataDDR0_size -1);

 _PhysLocalDataDDR0_b = _LocalDataDDR0_b + (_PhysLocalDDR0_Offset);

 _PhysLocalDataDDR0_e = _PhysLocalDataDDR0_b + _LocalDataDDR0_size -1;

Finally, in order to be able to define the physical memory blocks available for each core in

local_map_link.l3k, a new symbol is required to store the size of local memory on the core. This

symbol is defined as follows:

_LocalDataDDR0_size =

 (core_id() == 0) ? _LocalDataDDR0_c0_size:

 (core_id() == 1) ? _LocalDataDDR0_c1_size:

 (core_id() == 2) ? _LocalDataDDR0_c2_size:

 (core_id() == 3) ? _LocalDataDDR0_c3_size:

 (core_id() == 4) ? _LocalDataDDR0_c4_size:

 (core_id() == 5) ? _LocalDataDDR0_c5_size:

 0x0;

5 Revision History

Table 1 provides a revision history for this application note.

Table 1. Revision History

Rev. Number Date Substantive Change

0 03/8/11 Initial creation

Document Number: AN4260
Rev. 0
03/2011

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 010 5879 8000
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution
Center
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in
this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any and
all liability, including without limitation consequential or incidental damages. “Typical” parameters that
may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in
different applications and actual performance may vary over time. All operating parameters, including
“Typicals”, must be validated for each customer application by customer’s technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale
Semiconductor products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for
any other application in which the failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Freescale
Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and
hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors
harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the
design or manufacture of the part.

Freescale, the Freescale logo, CodeWarrior and StarCore are trademarks of Freescale Semiconductor,
Inc. Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective
owners.

© 2011 Freescale Semiconductor, Inc.

	Using Asymmetric DSP Application Projects with CodeWarrior v10.1.8 or Later
	1 New Features
	1.1 RSE
	1.2 Flexible Startup
	1.3 Disable Message About Linker Symbol Redefinition

	2 Warnings
	2.1 Define a Stack Section
	2.2 Define a Heap Section

	3 Asymmetric Application Memory Map Limitations
	3.1 General Purpose Limitations
	3.2 Guidelines for SmartDSP OS Limitations
	3.3 Guidelines for Bare Board Limitations
	3.4 Startup code

	4 Further Asymmetric Mapping Topics
	4.1 Different Size for VTB Buffer
	4.2 Different Size for KA Buffer
	4.3 Different Size for Startup Stack
	4.4 Different Size for RTLib Heap
	4.5 Memory Map
	4.5.1 Define the Memory Footprint
	4.5.2 Define Memory Start and End Addresses

	5 Revision History

