
1 Introduction
This application note demonstrates implementation of a basic
pulse oximeter using Freescale products. The pulse oximeter is
implemented using the Freescale medical-oriented,
microcontroller Kinetis K53. This MCU embeds a 32-bit
ARM®Cortex™-M4 processor, Ethernet, USB connectivity,
and an analog measurement engine, ideal for medical
applications.

This document is intended to be used by biomedical engineers,
medical equipment developers, or any person related to the
medical practice and interested in understanding the operation
of a pulse oximeter.

2 Pulse oximetry
fundamentals

This section contains information on the pulse oximeter
function principle and basic physiology information about
blood oxygenation.

Freescale Semiconductor Document Number:AN4327

Application Note Rev. 2, 11/2012

Pulse Oximeter Fundamentals and
Design
by: Santiago Lopez

© 2011 Freescale Semiconductor, Inc.

Contents

1 Introduction..1

2 Pulse oximetry fundamentals....................................1

3 Pulse oximeter implementation................................5

4 Software model...13

5 Running MED-SPO2 demo....................................22

6 References...30

7 Conclusions...30

A Software timer..30

B Communication protocol...32

2.1 Blood oxygenation
Body cells need oxygen to perform aerobic respiration. Respiration is one of the key ways a cell gains useful energy. The
energy released in respiration is used to synthesize the adenosine triphosphate (ATP) to be stored. The energy stored in ATP
can then be used to drive processes requiring energy, including biosynthesis, locomotion, or transportation of molecules
across cell membranes.

Oxygen transportation is performed through the circulatory system. Deoxygenated blood enters the heart where it is pumped
to the lungs to be oxygenated. In the oxygenation process, blood passes through the pulmonary alveoli where gas exchange
(diffusion) occurs (Figure 1). Carbon dioxide (CO2) is released and the blood is oxygenated, afterwards the blood is pumped
back to the aorta.

Figure 1. Pulmonary alveoli

Blood red cells contain a protein called hemoglobin. When oxygen reacts with this protein, it gets attached to it and generates
Oxyhemoglobin (HbO2). Red cells with oxygenated hemoglobin circulate in the blood through the whole body, irrigating
tissues. When blood gets in contact with a cell, the red cell's hemoglobin releases oxygen and becomes Deoxyhemoglobin
(Hb) (deoxygenated hemoglobin). At this point, blood without oxygen returns to the heart’s right atrium to repeat the process.
The diagram below demonstrates the whole process (Figure 2).

Pulse oximetry fundamentals

Pulse Oximeter Fundamentals and Design, Rev. 2, 11/2012

2 Freescale Semiconductor, Inc.

Figure 2. Blood circulation diagram

2.2 Pulse oximetry
Pulse oximetry is the non-invasive measurement of the oxygen saturation (SpO2). Oxygen saturation is defined as the
measurement of the amount of oxygen dissolved in blood, based on the detection of Hemoglobin and Deoxyhemoglobin.
Two different light wavelengths are used to measure the actual difference in the absorption spectra of HbO2 and Hb. The
bloodstream is affected by the concentration of HbO2 and Hb, and their absorption coefficients are measured using two
wavelengths 660 nm (red light spectra) and 940 nm (infrared light spectra). Deoxygenated and oxygenated hemoglobin
absorb different wavelengths. Deoxygenated hemoglobin (Hb) has a higher absorption at 660 nm and oxygenated
hemoglobin (HbO2) has a higher absorption at 940 nm (Figure 3).

Pulse oximetry fundamentals

Pulse Oximeter Fundamentals and Design, Rev. 2, 11/2012

Freescale Semiconductor, Inc. 3

Figure 3. Hemoglobin light absorption graph

A photodetector in the sensor perceives the non-absorbed light from the LEDs. This signal is inverted using an inverting
operational amplifier (OpAmp) and the result is a signal like the one in Figure 4. This signal represents the light that has been
absorbed by the finger and is divided in a DC component and an AC component. The DC component represents the light
absorption of the tissue, venous blood, and non-pulsatile arterial blood. The AC component represents the pulsatile arterial
blood.

Figure 4. Light absorption diagram

The pulse oximeter analyzes the light absorption of two wavelengths from the pulsatile-added volume of oxygenated arterial
blood (AC/DC) and calculates the absorption ratio using the following equation.

Equation 1:

Pulse oximetry fundamentals

Pulse Oximeter Fundamentals and Design, Rev. 2, 11/2012

4 Freescale Semiconductor, Inc.

SpO2 is taken out from a table stored on the memory calculated with empirical formulas. A ratio of 1 represents a SpO2 of 85
%, a ratio of 0.4 represents SpO2 of 100 %, and a ratio of 3.4 represents SpO2 of 0 %. For more reliability, the table must be
based on experimental measurements of healthy patients.

Another way for calculating SpO2 is taking the AC component of only the signal and determinate ratio by using following
equation. SpO2 is the value of RX100.

Equation 2:

Iac = Light intensity at 1 (660 nm) or 2 (940 nm), where only the AC level is present.

A typical pulse oximetry signal is represented in Figure 5. The signal represents the pulsatile arterial blood absorption. The
beats per minute can be calculated using this signal.

Figure 5. Typical pulse oximetry signal

3 Pulse oximeter implementation
The pulse oximeter is implemented using the Freescale MCU Kinetis K53 which embeds the following key features for the
pulse oximetry signal treatment, among other medical oriented applications:

• 32-bit ARM® Cortex™-M4 core up to 100 MHz, bus speed up to 50 MHz
• DSP instructions for signal filtering
• Two Operational Amplifiers (OpAmp)
• Two Transimpedance Amplifiers (TRIAMP)
• USB connectivity as host, device or On-The-Go (OTG)
• Up to four pairs of differential and 24 single-ended 16-bit ADC channels
• 3 x 16-bit Flex Timer Modules (FTM) with PWM capability

The Kinetis K53 integrates most of the peripherals needed for pulse oximeter implementation, although some external
components are required. These components are integrated in an external Analog Front End, described below.

Pulse oximeter implementation

Pulse Oximeter Fundamentals and Design, Rev. 2, 11/2012

Freescale Semiconductor, Inc. 5

3.1 MED-SPO2 analog front end
Freescale Analog Front Ends (AFEs) provide fast prototyping capabilities enabling medical equipment developers to reduce
time to market. MED-SPO2 AFE includes all the necessary external components (except sensor) to implement a pulse
oximeter together with the Kinetis K53 MCU. The AFE functional block diagram is shown and described below (Figure 6).

Figure 6. MED-SPO2 functional block diagram

3.1.1 Medical connector
The medical connector is a standard connector in Freescale medical-oriented boards (TWR-9S08MM, TWR-MCF51MM and
TWR-K53). This connector includes the most important analog peripherals for medical applications and an I2C channel for
communication. The following table describes medical connector signals.

Table 1. Medical connector signals

1 VCC (3.3V) VSS (GND) 2

3 I2C SDA I2C SCL / PWM 4

5 ADC Differential CH + ADC Differential CH - 6

7 ADC Single Ended CH DAC Out 8

9 Op-Amp 1 Out Op-Amp 2 Out 10

11 Op-Amp 1 Input - Op-Amp 2 Input - 12

Table continues on the next page...

Pulse oximeter implementation

Pulse Oximeter Fundamentals and Design, Rev. 2, 11/2012

6 Freescale Semiconductor, Inc.

Table 1. Medical connector signals (continued)

13 Op-Amp 1 Input + Op-Amp 2 Input + 14

15 TRIAMP 1 Input + TRIAMP 2 Input + 16

17 TRIAMP 1 Input - TRIAMP 2 Input - 18

19 TRIAMP 1 Out TRIAMP 2 Out 20

3.1.2 Multiplexer circuit and LED driver circuit
The pulse oximeter needs two different wavelengths to perform measurements. These wavelengths are generated using two
Light Emitter Diodes (LEDs), a Red LED (660 nm,) and an Infra Red LED (940 nm). Samples cannot be taken at the same
time because there is only one photodetector for two signals, therefore signals must be multiplexed. MED-SPO2 includes a
GPIO-controlled analog multiplexer that allows selecting the wavelength to be sampled.

LED intensity is controlled using a PWM signal. However, MCU PWM pins do not provide enough strength to drive LEDs
in a proper manner. A LED driver circuit provides the LED with sufficient energy to work. Figure 7 shows a basic LED
driving circuit.

Figure 7. LED drive circuit

3.1.3 Pulse oximeter sensor
The MED-SPO2 was designed for working with Nelcor-DS100 series sensors or any other that are compatible. The sensor is
connected to the board through a simple DB9 connector, similar to the one used in the RS232 communications standard. The
following image (Figure 8) shows connections with the sensor using a DB9 connector.

Pulse oximeter implementation

Pulse Oximeter Fundamentals and Design, Rev. 2, 11/2012

Freescale Semiconductor, Inc. 7

Figure 8. DB9 Board connections to sensor

The pulse oximeter sensor already contains both LEDs, Red, IRed, and the photodetector needed for light absorption
detection.

3.1.4 Current to voltage converter
The output generated by the photodetector is a current that represents the light absorption. This current needs to be converted
into a voltage in order to be properly filtered and treated. Conversion is performed using a current to voltage converter which
consists in a single supply, low input offset voltage, low input offset and bias current TRIAMP embedded on K53 together
with a feedback resistance and a capacitor for filtering purposes. Figure 9 shows the implemented circuit.

Pulse oximeter implementation

Pulse Oximeter Fundamentals and Design, Rev. 2, 11/2012

8 Freescale Semiconductor, Inc.

Figure 9. Current to voltage converter

This circuit combines a current to voltage converter and a low-pass filter to improve the signal treatment. The output voltage
and cut frequency are given by the following formulas:

Equation 3:

Equation 4:

A 125 Hz low-pass filter is to remove high frequency noise from the received signal.

3.1.5 Filtered and amplification
This block is divided in five filters, four of them are passive filters and one of them is an active filter. Both 660 nm and 940
nm signals are processed using these filters for noise elimination and amplification. Figure 10 shows the filter circuit.

Pulse oximeter implementation

Pulse Oximeter Fundamentals and Design, Rev. 2, 11/2012

Freescale Semiconductor, Inc. 9

Figure 10. Filter circuit

The first filter is a low-pass filter with a cutoff frequency of 6 Hz designed to eliminate high frequency noise. The following
equation obtains the filter cut frequency:

Equation 5:

The second filter is a 60 Hz notch filter. The purpose of this filter is to eliminate the 60 Hz line interference. Figure 11
represents the connections for a notch filter.

Figure 11. Notch filter

The notch filter is referenced to VCC/2 to add an offset voltage. The notch filter cutoff frequency and design parameters are
represented by the following equations.

Equation 6:

Equation 7:

Equation 8:

Pulse oximeter implementation

Pulse Oximeter Fundamentals and Design, Rev. 2, 11/2012

10 Freescale Semiconductor, Inc.

The third filter is a 0.8 Hz high pass filter. The cutoff frequency of this filter is calculated using Equation 5. This filter
removes the DC component of the signal.

The fourth filter is a first order active 6 Hz low-pass filter that also provides a gain of 31. Figure 12 shows an active low pass
filter.

Figure 12. Active low-pass filter

This filter uses a K53 internal OpAmp to be developed. Vref on positive input allows using an inverter amplifier. The
following equations determine the filter cutoff frequency and gain.

Equation 9:

Equation 10:

The last one is a 4.8 Hz low pass filter similar to the first one (Equation 5), and the equation that represents this filter is the
same that represents the first one.

3.1.6 Vref generator
Because a negative voltage source implies extra costs and components, analog signals are handled in a positive voltage range.
Nevertheless some analog signals like some biopotentials have negative voltages that need to be considered. This is solved
mounting the AC signal on a positive DC level, typically VCC/ 2. Vref generator produces this signal using a simple voltage
divisor and a K53 embedded OpAmp. Figure 13 shows a Vref generator circuit.

Pulse oximeter implementation

Pulse Oximeter Fundamentals and Design, Rev. 2, 11/2012

Freescale Semiconductor, Inc. 11

Figure 13. Vref generator circuit

3.2 Functional description
The measurement starts when the MCU generates a PWM signal that varies the LED intensity. Because every person has a
different finger size and skin color, the LED needs to be calibrated to acquire an accurate signal. LED calibration is
performed by taking the LED filtered baseline (see Figure 10) and using an algorithm described in the Software model which
changes the PWM duty cycle value to adjust the LED intensity for every kind of user.

The LED driver circuit helps to drive LEDs so that power is not provided directly by the MCU. Using transistors, the LEDs
are powered directly by the VCC line and controlled by the MCU. The switch control pin on the MCU selects which LED is
turned on at that time. Light from Red and IRed LEDs on the sensor travels through the finger and the non-absorbed light is
received in the photodetector (Figure 14).

Pulse oximeter implementation

Pulse Oximeter Fundamentals and Design, Rev. 2, 11/2012

12 Freescale Semiconductor, Inc.

Figure 14. Pulse oximeter sensor

The signal passes through a current to the voltage converter (Figure 9) where it is filtered, amplified, and converted into a
voltage. The signal is now multiplexed to its respective filter and amplification stage, depending on whether it is Red or IRed
LED. At this stage, the signal is treated and most of the noise is removed. The signal is also amplified in order to be detected
easily by the MCU ADC. The filtered signal is then sent to an ADC channel on the MCU.

One sample of the Red filtered signal, Red baseline, IRed filtered signal, and IRed baseline are taken every 1 ms. Samples are
captured using the embedded 16-bit ADCs and filtered using a 0.5 Hz to 150 Hz FIR (Finite Impulse Response) software
filter on the Kinetis K53 MCU for high frequency and DC component removal, taking advantage of the MAC (Multiply and
Accumulate) DSP instruction. Samples are stored on a software buffer and averaged. A peak detection algorithm is used to
determinate the AC component of the signal that is generated by the pulsatile arterial blood absorption. This is the part of the
signal which is used for SpO2 and beats per minute (bpm) calculation. The samples taken and the calculated data (SpO2 and
bpm) are sent to a GUI on a computer. More information about the software process can be found in Software model.

4 Software model
The pulse oximeter demo is based on the Freescale USB stack and behaves as a USB CDC (Communication Device Class).
The demo works using state machines that execute one state per cycle avoiding CPU kidnapping and emulating parallelism.

Figure 15 shows the general software model.

Software model

Pulse Oximeter Fundamentals and Design, Rev. 2, 11/2012

Freescale Semiconductor, Inc. 13

Figure 15. General software model

Every state machine is a task that has to be performed by the MCU. The system can perform several tasks completing one at
time and running the next one until the first one is accomplished in a FIFO (First In First Out) organization. Some state
machines contain sub-state machines allowing the MCU to distribute the CPU load equally. As mentioned before, software is
based on the Freescale USB Stack with PHDC. More information about this software can be found in USBAPIRM: Freescale
USB Stack with PHDC Device API Reference Manual, available at freescale.com.

MED-SPO2 software is basically divided in three main parts:
• Initialization
• Communication with PC
• Measurement Execution

4.1 Initialization
The file main_kinetis.c contains the microcontroller initialization routines and calls the main application routine. The main
application routine (Figure 15) contains all the other state machines and calls them in a FIFO order. Initialization is integrated
by several functions described below. The most relevant ones are Init_Sys which initializes all the peripherals required by the
MCU for USB initialization and TestApp_Init which initializes functions required by the application itself.

Software model

Pulse Oximeter Fundamentals and Design, Rev. 2, 11/2012

14 Freescale Semiconductor, Inc.

http://www.freescale.com

4.1.1 Init_Sys()
Init_Sys() initializes the basic functions of the microcontroller, like clock initialization. First, this function copies the vector
table to RAM and clears any pending interrupts on USB and then, it enables interrupts from the USB module.

At this point, pll_init() is called. This function configures the microcontroller for running in PLL mode at 96 MHz of the core
speed with a 50 MHz clock generating a system bus frequency of 48 MHz. This is important because the USB module needs
48 MHz to run properly. More information about changing among clock modes can be found in K53P144M100SF2RM: K53
Sub-Family Reference Manual for 100 MHz devices in 144 pin packages, availabe on freescale.com.

After PLL initialization, the MPU_CESR is cleared and clock gating for USB is configured to get 48 MHz from the system
bus.

4.1.2 TestApp_Init();
The TestApp_Init()—Contains all the initializations needed by the MED-SPO2 application and for USB configuration as a
CDC device. This function is contained in the file Main_App.c and is called only once at the beginning of the program.

GPIOS_CLOCK_INIT—Is a macro that enables all the GPIO clocks for future use. Kinetis disables all its peripheral clocks
to save power, and the peripherals must be activated enabling its respective bit on the respective SIM_SCGCx register.

vfnEnable_AFE()—Initializes GPIO settings for the pin used as an AFE enabler which polarizes a field effect transistor
(FET) which is used as a switch for power on and off in the AFE on the medical connector.

SwTimer_Init()—Initializes the software timer. The software timer is a function that allows executing a function when a
programmed period of time has elapsed. More information about these routines can be found in Software timer.

After SwTimer_Init is executed, the Kinetis K53 USB module is initialized as a CDC device calling the function
USB_Class_CDC_Init. At this point, USB is now functional and can be recognized by a PC. Information about
USB_Class_CDC_Init and other USB Stack related questions can be found in USBAPIRM: Freescale USB Stack with
PHDC Device API Reference Manual, available at freescale.com.

4.2 Communication with PC
After the MCU has been initialized, TestApp_Task is executed in an infinite loop. This function contains the main state
machine and executes the communication and measurements state machines (Figure 16).

Software model

Pulse Oximeter Fundamentals and Design, Rev. 2, 11/2012

Freescale Semiconductor, Inc. 15

http://www.freescale.com
http://www.freescale.com

Figure 16. TestApp_Task diagram

SpO2_PeriodicTask executes all the sub-states related to the pulse oximetry measurement. This function is later explained in
detail in the following sections. SWTimer_PeriodicTask checks if the programmed times for running programs has elapsed.
For more information about this routine, see Software timer.

4.2.1 SerialComm_PeriodicTask
This function checks if there is new data from the PC. When data exists in the USB buffer this function analyzes it and
executes a routine when it is a valid command. Figure 17 represents the SerialComm_PeriodicTask function.

Software model

Pulse Oximeter Fundamentals and Design, Rev. 2, 11/2012

16 Freescale Semiconductor, Inc.

Figure 17. SerialComm_PeriodicTask flow diagram

Communication routines are based on the Freescale USB with PHDC USB Stack Communication Device Class functions.
The SerialComm_PeriodicTask function is constantly checking the g_recv_size flag. When this flag has a value other than 0,
this means that there is some data received from a computer on the USB buffer. This information is copied to the main
application InBuffer and the received data quantity is copied to InSize. After that, g_recv_size is set to 0 indicating that data
has been read.

When InSize has a value other than 0, it is understood that data has been received, and it is checked to be compatible with the
communication protocol data frame (Figure 18).

Software model

Pulse Oximeter Fundamentals and Design, Rev. 2, 11/2012

Freescale Semiconductor, Inc. 17

Figure 18. Protocol data frame

The first data byte checked is the Packet Type, this byte defines the kind of packet that has been received. The application
only recognizes Request (REQ) packets. Confirmation Packets (CFM) and Indication Packets (IND) are recognized only by
the PC GUI. For more information, see Communication protocol.

If the first byte received is a Request command, the second byte is checked to determine which command wants the PC to be
executed. There are several kinds of Command Opcodes.

MED-SPO2 responds to only four:
• SpO2StartMeasurementReq
• SpO2AbortMeasurementReq
• SpO2DiagnosticModeStartMeasurementReq
• SpO2DiagnosticModeStopMeasurementReq

One of these commands is specified on the Command Opcode byte. The selected function is executed using the pointer to
function ExecuteCommandReq[InBuffer[COMMAND_OPCODE]].

4.2.2 SpO2StartMeasurementReq and
SpO2DiagnosticModeStartMeasurementReq

These functions are very similar; both of them send a confirmation packet and start pulse oximetry measurements. The only
difference is that SpO2StartMeasurementReq initializes MED-SPO2 for a single measurement and
SpO2DiagnosticModeStartMeasurementReq initializes MED-SPO2 for a continuous measurement. More details about this
can be found in Measurement execution.

At the beginning, the function vfnStartSpO2MeasurementEngine initializes the OPAMPs and TRIAMPs for working in
general-purpose mode.

SpO2_Init is called into the subroutine and initializes all the timers needed by the application. FTM1 is needed by the
measurement routine to control the ON/OFF times of the sensor LEDs. FTM2 is needed for PWM generation.
SpO2_INIT_SWITCH_CONTROL_PIN is also called to initialize the GPIO pin for multiplexing control.

After vfnStartSpO2MeasurementEngine is executed, the measurement start request function generates a confirmation packet
indicating to the PC that a command has been received. Depending on the measurement start request function called, the
respective start measurement function is called. In this example, because SpO2DiagnosticModeStartMeasurementReq has
been called, the function calls SpO2_DiagnosticModeStartMeasurements as the start measurement function. This function
returns TRUE or FALSE depending if the initialization was completed successfully or not. Depending on this, the function
completes the confirmation packet with the last byte indicating if the request was executed correctly or not. The packet is
then sent using the function SerialComm_SendData.

This function checks OutSize to be greater than zero. If this condition is true, it is assumed that there is information in the
OutBuffer. This information is copied to the USB send buffer called g_curr_send_buf. Information in this buffer is sent to the
PC and the OutSize variable is cleared.

Software model

Pulse Oximeter Fundamentals and Design, Rev. 2, 11/2012

18 Freescale Semiconductor, Inc.

4.2.3 SpO2AbortMeasurementReq and
SpO2DiagnosticModeStopMeasurementReq

When a stop or abort measurement is requested by the PC (depending on the Command Opcode), one of these functions is
executed.

Confirmation packets for stop/abort measurement requests do not require the last byte containing error information. It is
always assumed that a stop/abort request has been executed when the confirmation packet is received. The function first
sends a confirmation packet indicating to the PC that the request command has been received. After that, a command
depending on the stop/abort request called, is executed. In this example because SpO2DiagnosticModeStopMeasurementReq
has been called, the function SpO2_DiagnosticModeStopMeasurement is executed. After the measurements have stopped, the
confirmation packet is sent using the function SerialComm_SendData. The function vfnTurnOffMeasurementEngine is now
called; this function disables all the OPAMPs and TRIAMPs.

4.3 Measurement execution
There are three basic parts on measurement execution:

• Measurements Start
• Measurements Execution
• Measurements Stop

4.3.1 Measurements start
When a host has sent a SpO2 Start Measurements request to the appropriate function, according to the Command Opcode
received, it is executed. Each of these functions calls a start measurement routine.

SpO2_DiagnosticModeStartMeasurement first checks if the SpO2 state machine is in an idle state, otherwise it means that the
state machine has been previously initialized. If it is in an idle state, the function initializes ADCs needed for both, the main
signal and baseline measurements. Then, depending on the function called, SpO2IsDiagnosticMode is set to true or false. If
SpO2IsDiagnosticMode is true, the device will send continuous SPO2 measurements and graph data. If it is false, the device
will take 10 samples and if those samples are valid the device averages those samples and sends a single SpO2 measurement.

The SpO2 state machine’s actual state is set to SPO2_STATE_MEASURING to indicate to the device that pulse oximetry
measurements are being performed. The ResetVariables() function resets all the SPO2 variables to its original state and clears
all the buffers. The SwTimer_StartTimer(TimerSendGraphData, SPO2_UPDATE_GRAPH_PERIOD) starts a software timer
for a graph update. More information about this routine see Software timer.

4.3.2 Measurements execution
When a measurement start function has been called, the SPO2 state machine is set to SPO2_STATE_MEASURING
indicating to the device that measurements are going to be performed. The SPO2 state machine calls the StateMeasuring
function which is a sub-state machine containing the necessary steps to perform measurements. Figure 19 shows the Sub-
State Machine flow diagram.

Software model

Pulse Oximeter Fundamentals and Design, Rev. 2, 11/2012

Freescale Semiconductor, Inc. 19

Figure 19. StateMeasuring flow diagram

StateMeasuring is a sub-state machine, this means that sub-states are called one by one every time the StateMeasuring
function is called.

To take a sample, follow the steps below:
1. Turn on Infra Red (IR) LED
2. Wait signal to stabilize
3. Read IR signal and baseline
4. Turn off IR LED
5. Wait signal to stabilize
6. Turn on Red LED
7. Wait signal to stabilize
8. Read Red signal and baseline
9. Turn off Red LED

The first step is to turn on the IR LED. The function SPO2_SET_SWITCH_CONTROL changes the value of the pin that
controls the board multiplexor and controls which signal is going to be read. The Pwm_Start(PwmValue) starts generating
the PWM signal which turns on the selected LED and controls light intensity by changing the PWM duty cycle. The
PwmValue determinates the duty cycle and therefore LED intensity. This value is modified in the LED calibration routine to
adjust the LED intensity for working with different skin colors and finger widths.

Software model

Pulse Oximeter Fundamentals and Design, Rev. 2, 11/2012

20 Freescale Semiconductor, Inc.

The START_TIMER_us function starts the microseconds counter which is constantly being checked to determine when the
predefined wait time has elapsed. This is performed to generate the signal stabilization times. Then the next sub-state is
called.

When the wait time has elapsed, the time counter is set to 0 to generate a new wait time for the Red LED. The SpO2 signal
and baseline are read from their respective ADC channels. The SPO2_FIR is a macro that determines if a FIR (Finite Impulse
Response) filter is used or not. When defined, the samples taken are filtered using the functions in Kinetis_FIR.c which uses
the MCU embedded DSP instructions to perform the filter function. Samples are then averaged and stored into a buffer using
the function MovingAverage_PushNewValue16b to make calculations. This process is executed again, but this time taking
samples from the Red LED signal.

After the samples have been taken, calculations are performed and LEDs are recalibrated. Case 4 on the state measuring
function performs these actions.If Diagnostic Mode was initialized when the IsTimeToUpdateGraphData flag on
TimerSendGraphData function is set, the data on the IR signal buffer is stored using the function SaveGraphData sent later to
the PC, then the TimerSendGraphData starts again.

The LED intensity is recalibrated when TimeToRecalibrate is equal to zero, on the calibration routine the baseline signal
average results are compared with baseline thresholds to determine if calibration is needed. If it is necessary to recalibrate,
the respective Calibrate function is called.

For example, if IR baseline signal is out of limits, the CalibrateIRLedIntensity function is called. This function compares the
baseline signal against several threshold values and changes the LED PWM duty cycle until the baseline signal is in the
limits.

After calibration has been checked, function FindMaxAndMin is called. This function determines the maximum (Max) and
minimum (Min) peaks of the signal in a window interval, that is, the function determines the biggest and the smallest sample
in a determined period of time. Once the Max peak and Min peak have been determined, the DoCalculations function is
called.

The DoCalculations function calculates the SpO2 percentage and the heart rate. The function first determines the peak to peak
voltage subtracting the Min peak to the Max peak to remove the DC component of the signal. The Vrms voltage is then
calculated by using the formula:

SpO2 percentage is calculated in relation with the current received from the IR LED and the current received from the Red
LED. Log10 of the RMS voltage for each of the different wavelength signals is calculated using a Look Up table containing
the different logarithm results. Ratio is calculated using the Log10(Iac) formula being SpO2 equal to RatioX100 (See Equation
2 in Pulse oximetry fundamentals).

The heart rate is calculated using the variable SpO2SamplesBetweenPulses. This variable contains the count of samples taken
between two heart beats. Because one sample is taken every 1 µs, the heart rate is calculated by 60,000 divided by the
quantity of samples between pulses.

SpO2 and HR calculations are stored in their respective 10 bytes array which contains the last 5 measurements taken. Every
array is averaged on the function CalculateHeartRateAndSpO2 to avoid false measurements. The result of every average is
the information sent to the PC.

4.3.3 Measurements end
When the host requests the device to stop SpO2 measurements, the function SpO2_AbortMeasurement is called. This
function is also called in diagnostic mode.

This function places the SpO2 State Machine in Idle State to stop taking measurements. After this, the timer for sending
graph data and the timer for generating the wait times are stopped. Finally, the PWM is turned off.

Software model

Pulse Oximeter Fundamentals and Design, Rev. 2, 11/2012

Freescale Semiconductor, Inc. 21

5 Running MED-SPO2 demo
MED-SPO2 demo was developed for running on the Freescale Tower System enabling fast prototyping and a short time to
market. The following steps will guide the user to run the MED-SPO2 demo.

5.1 Tower system configuration
The MED-SPO2 demo needs the following components to be assembled (Figure 20).

Figure 20. Required components

The TWR-SER and TWR-K53N512 require configuring some jumpers to work properly. The jumper configuration list is the
following:

TWR-SER
• Jumper J10 between the pins 1 and 2
• Jumper J16 between the pins 3 and 4

TWR-K53N512
• Jumper J1 Disconnected
• Jumper J3 Disconnected

Running MED-SPO2 demo

Pulse Oximeter Fundamentals and Design, Rev. 2, 11/2012

22 Freescale Semiconductor, Inc.

• Jumper J4 between the pins 2 and 3
• Jumper J11 between the pins 1 and 2

After the jumpers have been configured, the Tower System must be assembled by placing the connector marked as
PRIMARY together with the primary elevator, and the connector marked as SECONDARY with the secondary elevator.
MED-SPO2 Analog Front End must be connected on the TWR-K53N512 medical connector and the Pulse Oximetry sensor
must be connected to the DB9 connector on the MEDSPO2 AFE. Figure 21 shows the Tower System assembled.

Figure 21. Tower system

5.2 Loading application
The MED-SPO2 program was developed using the IAR Embedded Workbench for ARM v6.1 and can be downloaded from
IAR webpage. The name of the project is USB_CDC.eww and can be found on the route \app\cdc\iar_ew\kinetis in the
program folder.

1. Connect the USB cable to the TWR-K53N512 board, the device must be recognized as an Open Source BDM—Debug
Port.

2. Install the Open Source BDM drivers in the IAR folder.
3. Open the program and verify the debugger in the project options panel by clicking the Menu Project/Options.
4. Select the category Debugger and check that PE micro is selected (Figure 22).

Running MED-SPO2 demo

Pulse Oximeter Fundamentals and Design, Rev. 2, 11/2012

Freescale Semiconductor, Inc. 23

Figure 22. Debugger selection
5. Load the project into the MCU by clicking the DEBUG button (Figure 23). The project will compile automatically and

load into the MCU.

Running MED-SPO2 demo

Pulse Oximeter Fundamentals and Design, Rev. 2, 11/2012

24 Freescale Semiconductor, Inc.

Figure 23. Debug button

5.3 Running demo
After the Tower System has been configured and the project loaded into the MCU, demo can be used. The following steps
must be completed to run the demo successfully.

1. Connect the USB cable to the TWR-SER board as shown in Figure 24. The device must be recognized as a Virtual
Com Port.

Running MED-SPO2 demo

Pulse Oximeter Fundamentals and Design, Rev. 2, 11/2012

Freescale Semiconductor, Inc. 25

Figure 24. Connecting TWR-SER USB cable
2. Install the driver for the Virtual Com Port included in the project folder after the driver has been installed and device

recognized.
3. Open the GUI (Graphic User Interface). A window will appear asking for the COM PORT number assigned to the

device.
4. Select the appropriate COM PORT number and click OK (Figure 25), the GUI interface will appear on screen (Figure

26).

Figure 25. Port chooser

Running MED-SPO2 demo

Pulse Oximeter Fundamentals and Design, Rev. 2, 11/2012

26 Freescale Semiconductor, Inc.

Figure 26. GUI main screen
5. Verify that the Caps Lock is not activated on the keyboard and then press Shift + D to start GUI in doctor mode (Figure

27).

Running MED-SPO2 demo

Pulse Oximeter Fundamentals and Design, Rev. 2, 11/2012

Freescale Semiconductor, Inc. 27

Figure 27. Doctor mode
6. Place the sensor on the finger as shown in Figure 28 and click the SPO2 area on the GUI. The measurements and pulse

oximetry graph must appear on the screen (Figure 29).

NOTE
Stay still during this test.

Running MED-SPO2 demo

Pulse Oximeter Fundamentals and Design, Rev. 2, 11/2012

28 Freescale Semiconductor, Inc.

Figure 28. Sensor placement

Figure 29. GUI running

Running MED-SPO2 demo

Pulse Oximeter Fundamentals and Design, Rev. 2, 11/2012

Freescale Semiconductor, Inc. 29

6 References
This section contains a list of online resources available on the Freescale website.

• More information about the Kinetis K50 Family can be found on Freescale K50 Family Webpage, freescale.com/
K50_Measurement_MCU.

• USBAPIRM: Freescale USB Stack with PHDC Device API Reference Manual and useful information can be
downloaded from freescale.com

• Software was developed and tested on IAR v6.1 for ARM 30 days. Evaluation software can be downloaded from
iar.com/Downloads (the IAR Webpage in the section Downloads)

• Follow facebook.com/freescale, twitter.com/freescale, and youtube.com/freescale.

7 Conclusions
Freescale Medical portfolio offers a wide range of solutions for medical developments. The Kinetis K50 Family is an
example of High Performance, Ultra-Low Power MCUs embedding analog peripherals ideal for bio-signal treatments, and
great processing capabilities for digital signal treatment.

The pulse oximeter is an example of the capabilities of the Kinetis K50 Family, which allows developing pulse oximetry
applications with only the MCU and a few external components.

Appendix A Software timer
Software timer functions handle an array of subroutines with predefined elapse times. The software timer is constantly
checking the elapse times, and when one or more of these times are reached, the respective subroutine is called.

The software timer allows better management of time dependent subroutines because only one MCU timer is needed. The
timer must be configured to generate 1 ms interruptions and a variable must be increased by one on every interrupt execution
indicating the quantity of milliseconds elapsed.

A.1 Initializing software timer

An MCU timer must be initialized to generate an interrupt every 1 ms. On the interrupt routine a global variable must be
increased by one on every interrupt execution. This variable must be specified on the file SwTimer.h and the initialization
function must be called on the function SwTimer_Init in the file SwTimer.c.

At the beginning of the application, function SwTimer_Init must be called. This function cleans the objects array, releasing
all the software timers and leaving them available for application. The MCU timer initialization must be called in this
function.

A.2 Creating a software timer

References

Pulse Oximeter Fundamentals and Design, Rev. 2, 11/2012

30 Freescale Semiconductor, Inc.

http://www.freescale.com/webapp/sps/site/taxonomy.jsp?code=K50_MEASUREMENT_MCU
http://www.freescale.com/webapp/sps/site/taxonomy.jsp?code=K50_MEASUREMENT_MCU
http://www.freescale.com
http://www.iar.com/en/Service-Center/Downloads/
http://www.facebook.com/freescale
http://www.twitter.com/freescale
http://www.youtube.com/freescale.com

After the Software Timer has been initialized, a Timer can be created by using the function SwTimer_CreateTimer(pFunc_t
callBackFunc). The input parameter is the name of the function to be called. When this function is executed, it returns a
timerId value that is necessary to start or stop the created timer. If a 0xFF is returned as timerId, this means that the
maximum number of timers has been reached and the timer could not be initialized. The maximum number of timers is
defined as MAX_TIMER_OBJECTS and can be found on file SwTimer.h.

Example: My_Timer_Id = SwTimer_CreateTimer(Function_To_Be_Called);

Function SwTimer_StartTimer(UINT8 timerId, UINT16 tickPeriod_ms) starts the SwTimer, the input parameter timerId is
the timerId number returned by the Create Timer function when the timer was created. tickPeriod_ms is the period of time in
milliseconds that has to elapse to execute the function. The following example starts the previous created timer to execute
Function_To_Be_Called every 10 ms.

Example: SwTimer_StartTimer(My_Timer_Id, 10);

When the time defined has elapsed, the function Function_To_Be_Called is executed and the timer is deactivated. A new
Start Timer statement must be written to activate the timer again, when the programmed time has elapsed. Function
SwTimer_StopTimer(UINT8 timerId) stops the selected timer.

A.3 Functional description

When the function SwTimer_CreateTimer is called, a new object in the Timer Object Array is created. Function
SwTimer_PeriodicTask is constantly called on the Main Application Routine and checks all the timer objects on the Timer
Object Array. When the MCU timer, configured to interrupt every 1 ms, generates an interrupt, a variable increases its count
by one indicating that 1 ms has elapsed. The SwTimer_PeriodicTask function checks this variable. If it is different than zero,
the value of this variable is taken away from the Timer Object programmed Time. If the programmed time of a Timer Object
reaches zero, the subroutine declared for that timer on the function SwTimer_CreateTimer is called and the created times is
set to INACTIVE until a new SwTimer_StartTimer is called.

The following block diagram shows the SwTimer_PeriodicTask subroutine.

Functional description

Pulse Oximeter Fundamentals and Design, Rev. 2, 11/2012

Freescale Semiconductor, Inc. 31

Figure A-1. Block diagram

Appendix B Communication protocol
The application communicates with the GUI (Graphic User Interface) in the PC using the Freescale USB Stack with PHDC
with the device acting as a CDC (Communication Device Class). The device communicates via a serial interface similar to
the RS232 communications standard, but emulating a virtual COM port.

After the device has been connected and a proper driver has been installed, the PC recognizes it as a Virtual COM Port and it
is accessible, for example using HyperTerminal. Communication is established using the following parameters.

• Bits per second—115,200
• Data bits—8
• Parity—None
• Stop Bits—1
• Flow Control — None

Communication starts when the host (PC) sends a request packet indicating to the device the action to perform. The device
then responds with a confirmation packet indicating to host that the command has been received. At this point, the host must
be prepared to receive data packets from the device and show the data received on the GUI. Communication finishes when
the host sends a request packet indicating the device to stop. The following block diagram describes the data flow.

Pulse Oximeter Fundamentals and Design, Rev. 2, 11/2012

32 Freescale Semiconductor, Inc.

Figure B-1. Communication protocol data flow

Packets sent between host and device have a specific structure. The Packet is divided in four main parts:
• Packet Type
• Command Opcode
• Data length
• Data

The image below shows the packet structure.

Figure B-2. Packet structure

B.1 Packet type

Packet type

Pulse Oximeter Fundamentals and Design, Rev. 2, 11/2012

Freescale Semiconductor, Inc. 33

The Packet Type byte defines the kind of packet sent. There are three kinds of packets that can be sent between host and
device.

B.1.1 REQ packet

This is a request packet, this kind of packet is used by the host to request to the device to perform some action like a start or
stop measurement. A REQ packet is usually composed of 2 bytes, Packet Type and Command Opcode. Data Length and Data
Packet bytes are not required.

B.1.2 CFM packet

This is a confirmation packet. This kind of packet is used by the device to confirm to the host that a command has been
received, and sends a response indicating if the command is accepted, or if the device is busy.

B.1.3 IND packet

This is an indication packet. This kind of packet is used to indicate to the host that an event has occurred in the device and
data needs to be sent. For example, this is used when the device has a new data to be sent to the GUI.

The following table shows the HEX codes for every Packet Type.

Table B-1. HEX codes

Packet type Hex codes

REQ 0x52

CFM 0x43

IND 0x69

B.2 Command opcode

The Command Opcode byte indicates the action performed for a REQ packet, and the kind of confirmation or indication, in
case of CFM and IND packet types. There are different Opcodes for every Packet Type. The following table shows the
different Opcodes (See Note below).

Table B-2. Opcodes

Opcode REQ CFM IND Opcodes
(Hex)

Glucose meter

GLU_START_MEASUREMENT X X 0x00

GLU_ABORT_MEASUREMENT X X 0x01

GLU_START_CALIBRATION X X 0x02

Table continues on the next page...

Command opcode

Pulse Oximeter Fundamentals and Design, Rev. 2, 11/2012

34 Freescale Semiconductor, Inc.

Table B-2. Opcodes (continued)

Opcode REQ CFM IND Opcodes
(Hex)

GLU_BLOOD_DETECTED X 0x03

GLU_MEASUREMENT_COMPLETE_OK X 0x04

GLU_CALIBRATION_COMPLETE_OK X 0x05

Blood Pressure Meter

BPM_START_MEASUREMENT X X 0x06

BPM_ABORT_MEASUREMENT X X 0x07

BPM_MEASUREMENT_COMPLETE_OK X 0x08

BPM_MEASUREMENT_ERROR X 0x09

BPM_START_LEAK_TEST X X 0x0A

BPM_ABORT_LEAK_TEST X X 0x0B

BPM_LEAK_TEST_COMPLETE X 0x0C

BPM_SEND_PRESSURE_VALUE_TO_PC X 0x28

Electro Cardiograph Opcode

ECG_HEART_RATE_START_MEASUREMENT X X 0x0D

ECG_HEART_RATE_ABORT_MEASUREMENT X X 0x0E

ECG_HEART_RATE_MEASUREMENT_COMPLETE_OK X 0x0F

ECG_HEART_RATE_MEASUREMENT_ERROR X 0x10

ECG_DIAGNOSTIC_MODE_START_MEASUREMENT X X 0x12

ECG_DIAGNOSTIC_MODE_STOP_MEASUREMENT X X 0x13

ECG_DIAGNOSTIC_MODE_NEW_DATA_READY X 0x14

Thermometer

TMP_READ_TEMEPRATURE X X 0x15

Height scale

HGT_READ_HEIGHT X X 0x16

Weight scale

WGT_READ_WEIGHT X X 0x17

Spirometer

SPR_DIAGNOSTIC_MODE_START_MEASURMENT X X 0x0C

SPR_DIAGNOSTIC_MODE_STOP_MEASURMENT X X 0x0D

SPR_DIAGNOSTIC_MODE_NEW_DATA_READY X 0x0E

Pulse oximetry

SPO2_START_MEASURMENT X X 0x21

SPO2_ABORT_MEASURMENT X X 0x22

SPO2_MEASURMENT_COMPLETE_OK X 0x23

SPO2_MEASURMENT_ERROR X 0x24

SPO2_DIAGNOSTIC_MODE_START_MEASURMENT X X 0x25

SPO2_DIAGNOSTIC_MODE _STOP_MEASURMENT X X 0x26

Table continues on the next page...

Command opcode

Pulse Oximeter Fundamentals and Design, Rev. 2, 11/2012

Freescale Semiconductor, Inc. 35

Table B-2. Opcodes (continued)

Opcode REQ CFM IND Opcodes
(Hex)

SPO2_DIAGNOSTIC_MODE_NEW_DATA_READY X 0x27

0x21

System commands

SYS_CHECK_DEVICE_CONNECTION X X 0x29

SYS_RESTART_SYSTEM X 0x2A

NOTE
Software related with this application note does not respond to all of these commands.

B.3 Data length and data string

The data length and data string bytes are the data quantity count and the data itself. The data length byte represents the
number of bytes contained into the data string. The data string is the information sent, just the data, therefore the Data Length
byte must not count the Packet Type byte, the Command Opcode byte or itself.

B.4 Functional description

Communication starts when the host sends a REQ packet indicating to the device to start a new measurement. The host must
send a REQ Packet Type to start transactions (Figure B-3).

Figure B-3. Start packet sent by host

The Start Opcode can be any Opcode related with start a measurement, for example, if we wanted to start the ECG in
diagnostic mode, the Data Packet will look like Figure B-4.

Figure B-4. Starting ECG in diagnostic mode

0x52 is the HEX code for a request (REQ) Packet Type, 0x12 corresponds to
ECG_DIAGNOSTIC_MODE_START_MEASUREMENT. After sending the REQ packet, a CFM packet must be received
indicating the status of the device. The received packet must look like Figure B-5.

Data length and data string

Pulse Oximeter Fundamentals and Design, Rev. 2, 11/2012

36 Freescale Semiconductor, Inc.

Figure B-5. Confirmation packet structure

The error byte indicates the device status. The table below shows possible error codes.

Table B-3. Error codes

Error HEX code

OK 0x00

BUSY 0x01

INVALID OPCODE 0x02

If the error byte received corresponds to OK, the device starts sending data as soon as a new data packet is ready. If BUSY
error is received, the host must try to communicate later. If the error received is INVALID OPCODE, data sent and
transmission lines must be checked.

If a CFM packet with an OK error has been received, the device starts sending Information related with the measurement
requested. This is performed using indication packets (IND). Indication packet structure is shown in Figure B-6.

Figure B-6. Indication packet structure

The first byte contains the HEX code for an Indication Packet type. The second byte contains the Opcode for the kind of
indication, for example if the device is sending an Indication Packet for
ECG_DIAGNOSTIC_MODE_NEW_DATA_READY, the HEX code read in this position is 0x14 because this is the
Indication Opcode for a new set of data from the ECG diagnostic mode. The next byte is the Length which indicates the
quantity of data sent.

The first couple of bytes after the Length byte are the Packet ID bytes. The Packet ID is a 16-bit data divided in 2 bytes to be
sent and contains the number of packets sent. The Packet ID number of a data packet is the Packet ID of the previous packet
+ 1. For example, if the Packet ID of the previous packet sent was 0x0009, the Packet ID of the next packet must be 0x000A.
This allows the GUI to determine if a packet is missing.

The following data bytes are the Data String and contain the information of the measurement requested. The Data quantity is
determined by the Data Length byte and data is interpreted depending on the kind of measurement. For example, for the
MED-EKG Demo from Data 2 to Data n-1 contains the data graphed. Every point in the graph is represented by a 16-bit
signed number, this means that every 2 data bytes in the packet, means it is one point in the graph. The first byte is the most
significant part of the long (16-bits) and the second byte is the less significant part. The long is signed using 16-bit
complement. The last byte contains the Heart Rate measurement. This byte must be taken as it is, an unsigned char data that
contains the number of beats per minute. Figure B-7 shows a typical MED-EKG demo indication packet.

Figure B-7. MED-EKG IND packet

When a Stop request is sent by the host, the device stops sending data and waits for a new Start request command. Figure B-8
shows the Stop Command structure.

Functional description

Pulse Oximeter Fundamentals and Design, Rev. 2, 11/2012

Freescale Semiconductor, Inc. 37

Figure B-8. Stop command structure

Immediately after this, the device must acknowledge with a CFM packet shown in Figure B-9.

Figure B-9. Stop CFM packet

The CFM packet for stop does not require an error code, it just must be received. If this packet has not been received, the
request has been rejected or not taken and must be sent again to stop the measurements.

Pulse Oximeter Fundamentals and Design, Rev. 2, 11/2012

38 Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

Document Number: AN4327
Rev. 2, 11/2012

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductors products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any liability, including without limitation
consequential or incidental damages. "Typical" parameters that may be provided in
Freescale Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters,
including "Typicals", must be validated for each customer application by customer's
technical experts. Freescale Semiconductor does not convey any license under its patent
rights nor the rights of others. Freescale Semiconductor products are not designed,
intended, or authorized for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain life, or for any other
application in which failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claims alleges
that Freescale Semiconductor was negligent regarding the design or manufacture of
the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.
For further information, see http://www.freescale.com or contact your Freescale
sales representative.

For information on Freescale's Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© 2011 Freescale Semiconductor, Inc.

	Introduction
	Pulse oximetry fundamentals
	Blood oxygenation
	Pulse oximetry

	Pulse oximeter implementation
	MED-SPO2 analog front end
	Medical connector
	Multiplexer circuit and LED driver circuit
	Pulse oximeter sensor
	Current to voltage converter
	Filtered and amplification
	Vref generator

	Functional description

	Software model
	Initialization
	Init_Sys()
	TestApp_Init();

	Communication with PC
	SerialComm_PeriodicTask
	SpO2StartMeasurementReq and SpO2DiagnosticModeStartMeasurementReq
	SpO2AbortMeasurementReq and SpO2DiagnosticModeStopMeasurementReq

	Measurement execution
	Measurements start
	Measurements execution
	Measurements end

	Running MED-SPO2 demo
	Tower system configuration
	Loading application
	Running demo

	References
	Conclusions
	Appendix A: Software timer
	Initializing software timer
	Creating a software timer
	Functional description

	Appendix B: Communication protocol
	Packet type
	REQ packet
	CFM packet
	IND packet

	Command opcode
	Data length and data string
	Functional description

