
Freescale Semiconductor
Application Note

© 2012 Freescale Semiconductor, Inc. All rights reserved.

About this document
This document describes how to calculate the maximum
frequency, transfer formats or different timings with various
configuration settings. It also includes programming
examples.

Document Number: AN4375
Rev. 1, 06/2012

Contents
About this document . 1

1. eSPI background information 2
2. Calculating the maximum SPI frequency 2
3. eSPI transfer formats . 4
4. eSPI programming examples 6
5. Revision history . 9

QorIQ eSPI Controller
Register Setting Considerations and
Programming Examples

QorIQ eSPI Controller Register Setting Considerations and Programming Examples, Rev. 1

2 Freescale Semiconductor

eSPI background information

1 eSPI background information
The enhanced serial peripheral interface (eSPI) is a full-duplex, synchronous, character-oriented channel
that supports a simple interface. The eSPI:

• Can only be used as an SPI master

• Is different from a regular SPI interface, because both its transmitter and receiver have a FIFO of
32 bytes

• Is optimized to send data in a frame

• Can support different operation modes

• Can achieve better performance when it interfaces with SPI-based flash memories or EEPROMs

To obtain a comprehensive understanding of the eSPI functionality and the basic operation of the
SPI-based flash memory or other SPI based devices, see the following documentation, most of which are
available on the Freescale website listed on the last page of this document:

• Applicable chip reference manual

• Applicable chip hardware specifications

• Applicable chip errata

• Manufacturer data sheet on the SPI-based devices selected

2 Calculating the maximum SPI frequency
Some chip reference manuals state that the eSPI can transfer a single character at very high rates—a
maximum (up to system clock / 2), which is not true. When the SPMODEx[DIV16x] = 0, and
SPMODEx[PMx] = 0000, the eSPI clock is configured to be the system clock divided by 2. In most cases,
the system clock is defined to be the platform clock divided by 2. However, the maximum SPI clock
frequency is also limited by the eSPI AC timing specification and its connected SPI slave device. In most
cases, the SPI clock is lower than the platform clock divided by 4.

The maximum eSPI clock (Fmax) is calculated from the minimum eSPI cycle period. For the output side
of eSPI, the formula for the minimum eSPI cycle period is:

Tout = eSPI output Master output delay + board_skew + external spi device input setup time. Eqn. 1

For the input side of eSPI, the formula for the minimum eSPI cycle period is:

Tin = eSPI inputs Master input setup time + board_skew + external spi device output delay. Eqn. 2

The maximum eSPI clock is calculated from:

Fmax = 1/(max(Tin, Tout)) Eqn. 3

QorIQ eSPI Controller Register Setting Considerations and Programming Examples, Rev. 1

Freescale Semiconductor 3

Calculating the maximum SPI frequency

Let’s choose the P1022 and Atmel® AT25DF641 flash memory as an example to show how to calculate
the maximum SPI frequency. This table shows the AC timing specifications of the P1022.

This table shows the AC timing specifications of the AT25DF641 from Atmel®.

Ignore the board skew for now and choose the maximum platform clock of 533.33 MHz, which
tPLATFORM_CLK is 1.875 ns. To meet the SPI flash of 1 ns hold time, the SPMODE[HO_ADJ] must be set
to 1. From Equation 1, the Tout can be calculated by:

Tout = 5.5+(tPLATFORM_CLK *SPMODE[HO_ADJ]) + 2 = 5.5 + (1.875*1)+2 = 9.375(ns) Eqn. 4

Table 1. P1022 SPI AC timing specifications

Parameter Symbol1 Min Max Unit Note

SPI_MOSI output—Master data (internal
clock) hold time

tNIKHOX 0.5 + (tPLATFORM_CLK
*SPMODE[HO_ADJ])

— ns 2, 3

SPI_MOSI output—Master data (internal
clock) delay

tNIKHOV — 5.5 + (tPLATFORM_CLK
*SPMODE[HO_ADJ])

ns 2,3

SPI_CS outputs—Master data (internal
clock) hold time

tNIKHOX2 0 — ns 2

SPI_CS outputs—Master data (internal
clock) delay

tNIKHOV2 — 5.5 ns 2

SPI inputs—Master data (internal clock)
input setup time

tNIIVKH 5 — ns —

SPI inputs—Master data (internal clock)
input hold time

tNIIXKH 0 — ns —

Notes:
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state) for

inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tNIKHOV symbolizes the NMSI
outputs internal timing (NI) for the time tSPI memory clock reference (K) goes from the high state (H) until outputs (O) are valid
(V).

2. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are
measured at the pin.

3. See QorIQ P1022 Integrated Processor Family Reference Manual for detail about the register SPMODE.

Table 2. Atmel® AT25DF641 AC Timing Specifications

Parameter Symbol1 Min Max Unit

Max frequency — — 100 MHz

Output hold time tOH 2 — ns

Output valid time tV 5 ns

Input setup time tDS 2 — ns

Input hold time tDH 1 — ns

QorIQ eSPI Controller Register Setting Considerations and Programming Examples, Rev. 1

4 Freescale Semiconductor

eSPI transfer formats

Based on Equation 2, the Tin can be calculated by:

Tin = 5 + 5= 10 (ns) Eqn. 5

The maximum SPI frequency is calculated from Equation 3:

Fmax = 1/Tin = 1/10 Eqn. 6

Therefore, the maximum SPI frequency value is 100 MHz based on the AC timing specifications.

However, the final maximum SPI frequency is also limited by the software settings. It is determined by
the selection of SPMODEx[PMx] and SPMODEx[DIV16x]. The formula to calculate the maximum
frequency is:

Fmax = System_Clk / [(SPMODEx[PMx]+1)*2] when SPMODE[DIV16x] = 0 Eqn. 7

Fmax = System_Clk / [(SPMODEx[PMx]+1)*2*16] when SPMODE[DIV16x] = 1 Eqn. 8

where: System_clk is platform clock divided by 2

For this example, the eSPI maximum frequency can be calculated by selecting SPMODEx[PMx] = 1 and
SPMODEx[DIV16x] = 0.

Fmax = 533.33/2 / [(1+1)*2] = 66.66 (MHz) Eqn. 9

If the platform clock is 400 MHz, the eSPI maximum SPI clock can be 100 MHz by selecting
SPMOEx[PMx] = 0 and SPMODEx[DIV16x]=0.

Fmax = 400/2 / [(0+1)*2] = 100.00 (MHz) Eqn. 10

As you can see, a higher platform frequency may not be necessary to get a higher SPI clock.

3 eSPI transfer formats
Depending on what the value of SPMODEx[Cpx] is set to, the SPI_CLOCK starts toggling at a different
time. The eSPI transfer format in which SPI_CLK starts toggling is in the middle of the transfer when
SPMODEx[CPx] = 0. While the eSPI transfer format in which SPI_CLK starts toggling is at the beginning
of the transfer when SPMODEx[CPx] = 1.

This figure shows the eSPI transfer format with SPMODEx[CPx] = 0.

QorIQ eSPI Controller Register Setting Considerations and Programming Examples, Rev. 1

Freescale Semiconductor 5

eSPI transfer formats

Figure 1. eSPI transfer format with SPMODEx[CPx] = 0

This figure shows the eSPI transfer format with SPMODEx[CPx] = 1.

Figure 2. eSPI transfer format with SPMODEx[CPx] = 1

SPI_CLK

SPI_CLK

SPI_MOSI

CSx/SPISEL

(From master)

SPI_MISO
(From slave)

(CI = 0)

(CI = 1)

NOTE: Q = Undefined signal

msb lsb

msb Qlsb

SPI_CLK

SPI_CLK

SPI_MOSI

CSx/SPISEL

(From master)

SPI_MISO
(From slave)

(CI = 0)

(CI = 1)

NOTE: Q = Undefined signal

msb lsb

lsbQ msb

QorIQ eSPI Controller Register Setting Considerations and Programming Examples, Rev. 1

6 Freescale Semiconductor

eSPI programming examples

This figure shows how to program RxDelay and HLD to work with RapidS mode on AT25DF641 SPI
serial flash memory. The SPCOM[RxDelay] register should be set to 1. The SPCOM[HLD] register should
be set to 1. The SPMODEx[CIx] = 0; SPMODEx[CPx] = 1.

Figure 3. eSPI Transfer Format with SPCOM[RxDelay] = 1

This figure shows the read-data bytes at a higher speed (FAST_READ) command sequence with a
Spansion S25FLxxx flash chip. The SPCOM[RxDelay] register should be set to 1. The SPCOM[HLD]
register should be set to 0. SPMODEx[CIx] = 0; SPMODEx[CPx] = 0. Note that an extra dummy-byte
writes to SPITF before writing to SPCOM.

Figure 4. Read data bytes at higher speed (FAST_READ) command sequence

4 eSPI programming examples
NOTE

The applicable chip reference manual includes good examples regarding the
content of SPITF and SPIRF with various parameters set (specifically, see
sections “eSPI transmit FIFO access register (SPITF),” and “eSPI receive
FIFO access register (SPIRF)”. Section “eSPI Programming Examples”
includes 24-bit and 16-bit address examples, but the examples in this
document are more detailed.

NOTE
Note that in these examples, hex is denoted by an “h” suffix.

QorIQ eSPI Controller Register Setting Considerations and Programming Examples, Rev. 1

Freescale Semiconductor 7

eSPI programming examples

4.1 16-bit address example
The following sequence initializes the eSPI to read 36 bytes from 16-bit address memory, start address =
0040h. In this example, chip-select 1 is used.

1. Configure a parallel I/O signal to operate as the eSPI CS1 output signal.

2. Write FFFF FFFFh to SPIE to clear any previous events. Configure SPIM to enable all desired
eSPI interrupts.

3. Configure SPMODE = 8000 100Fh to enable normal operation, eSPI enabled.

4. Configure SPMODE1 = 2417 1108h—REV1 = 1, PM1 = 4 (divide eSPI input clock by 10),
LEN1 = 7, POL1 = 1, CS1BEF = CS1AFT = CS1CG= 1.

5. Configure SPITF = 0300 40xxh (xx is don’t care)—03h is read opcode while 0040h is the 16-bit
start address. This should be done by two writes to SPITF:

— 1 half-word write with 0300h, then

— 1-byte write with 40h

6. Configure SPCOM = 4003 0026h so 3 bytes are skipped (1 for opcode and 2 for 16-bit address),
TRANLEN = 36 + 3 – 1 = 38 = 26h.

4.2 8-bit address example
The following sequence initializes the eSPI to read 6 bytes from 8-bit address memory from start
address = 5Eh and then to read 2 bytes from start address = 40h. In this example, chip-select 0 is used.

1. Configure a parallel I/O signal to operate as the eSPI CS0 output signal.

2. Write FFFF FFFFh to SPIE to clear any previous events. Configure SPIM to enable all desired
eSPI interrupts.

3. Configure SPMODE = 8000 100Fh to enable normal operation, eSPI enabled.

4. Configure SPMODE0 = 2417 1108h—REV0 = 1, PM0 = 4 (divide eSPI input clock by 10),
LEN0 = 7, POL0 = 1, CS0BEF = CS0AFT = CS0CG = 1.

5. Configure SPITF = 035E 0340h—03h is read opcode while 5Eh is the first 8-bit start address.The
second 03h is for the second read opcode while 40h is the second 8-bit start address.

6. Write SPCOM = 0002 0007h so that 2 bytes are skipped (1 for opcode and 1 for 8-bit address),
TRANLEN = 6 + 2 – 1.

7. Wait for SPIE[DON] to be set.

8. Write SPCOM = 0002 0003h so that it skips 2 bytes (1 for opcode and 1 for 8-bit address),
TRANLEN= 2 + 2 – 1.

QorIQ eSPI Controller Register Setting Considerations and Programming Examples, Rev. 1

8 Freescale Semiconductor

eSPI programming examples

4.3 RapidS example
The following sequence initializes the eSPI to read 36 bytes from 16-bit address memory, start address =
0040h using the RapidS mode (mode 0). It corresponds to Figure 3. In this example, chip-select 1 is used.

1. Configure a parallel I/O signal to operate as the eSPI CS1 output signal.

2. Write FFFF FFFFh to SPIE to clear any previous events. Configure SPIM to enable all desired
eSPI interrupts.

3. Configure SPMODE = 8000 100Fh to enable normal operation, eSPI enabled.

4. Configure SPMODE1 = 6117 1108h—CP1 = 1, REV1 = 1, PM1 = 1 (divide eSPI input clock by
4), LEN1 = 7, POL1 = 1, CS1BEF = CS1AFT = CS1CG = 1. (Ci = 1, cp = 0 if mode 3 is used)

5. Configure SPITF = 0300 40xxh (xx is don’t care)—03h is read opcode while 0040h is the 16-bit
start address. This should be done by two writes to SPITF:

— 1 half-word write with 0300h, then

— 1-byte write with 40h

6. Configure SPCOM = 6403 0026h—RxDelay = 1, HLD=1 (it should set to 0 if mode 3 is used); 3
bytes are skipped (1 for opcode and 2 for 16-bit address), TRANLEN = 36 + 3 – 1 = 38 = 26h.

4.4 32-bit address example
The following sequence initializes the eSPI to read 36 bytes from 32-bit address memory, start address =
0000 0040h:

1. Configure a parallel I/O signal to operate as the eSPI CS1 output signal.

2. Write FFFF FFFFh to SPIE to clear any previous events. Configure SPIM to enable all desired
eSPI interrupts.

3. Configure SPMODE = 8000 100Fh to enable normal operation, eSPI enabled.

4. Configure SPMODE1 = 2417 1108h—REV1 = 1, PM1 = 4 (divide eSPI input clock by 10),
LEN1 = 7, POL1 = 1, CS1BEF = CS1AFT = CS1CG = 1.

5. Configure SPITF = 0300 0000h (32-bit write), 40xx xxxxh (only one byte write)—03h is read
opcode while 0000 0040h is the 32-bit start address. This should be done by two writes to SPITF:

— 1 word write with 0300 0000h, then

— 1-byte write with 40h

6. Configure SPCOM = 4005 0028h so 5 bytes are skipped (1 for opcode and 4 for 32-bit address),
TRANLEN = 36 + 5 – 1.

QorIQ eSPI Controller Register Setting Considerations and Programming Examples, Rev. 1

Freescale Semiconductor 9

Revision history

5 Revision history
This table provides a revision history for this document.

Table 3. Document revision history

Rev.
number

Date Substantive change(s)

1 06/2012 • Updated the steps in Section 4.2, “8-bit address example.”
 • Modified Equation 4.
 •

0 02/2012 Initial public release

Document Number: AN4375
Rev. 1
06/2012

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer’s technical experts. Freescale does not convey any

license under its patent rights nor the rights of others. Freescale sells products pursuant

to standard terms and conditions of sale, which can be found at the following address:

http://www.reg.net/v2/webservices/Freescale/Docs/TermsandConditions.htm.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, C-Ware,

Energy Efficient Solutions logo, Kinetis, mobileGT, PowerQUICC, Processor Expert,

QorIQ, Qorivva, StarCore, Symphony, and VortiQa are trademarks of Freescale

Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack, ColdFire+,

CoreNet, Flexis, MagniV, MXC, Platform in a Package, QorIQ Qonverge, QUICC

Engine, Ready Play, SafeAssure, SMARTMOS, TurboLink, Vybrid, and Xtrinsic are

trademarks of Freescale Semiconductor, Inc. All other product or service names are

the property of their respective owners. The Power Architecture and Power.org word

marks and the Power and Power.org logos and related marks are trademarks and

service marks licensed by Power.org.

© 2012 Freescale Semiconductor, Inc.

	QorIQ eSPI Controller Register Setting Considerations and Programming Examples
	About this document
	1 eSPI background information
	2 Calculating the maximum SPI frequency
	Table 1. P1022 SPI AC timing specifications
	Table 2. Atmel® AT25DF641 AC Timing Specifications

	3 eSPI transfer formats
	Figure 1. eSPI transfer format with SPMODEx[CPx] = 0
	Figure 2. eSPI transfer format with SPMODEx[CPx] = 1
	Figure 3. eSPI Transfer Format with SPCOM[RxDelay] = 1
	Figure 4. Read data bytes at higher speed (FAST_READ) command sequence

	4 eSPI programming examples
	4.1 16-bit address example
	4.2 8-bit address example
	4.3 RapidS example
	4.4 32-bit address example

	5 Revision history
	Table 3. Document revision history

