
1 Introduction
Direct memory access (DMA) is a technique for the transfer of
data between main memory and a peripheral device without
passing it through the CPU. It is possible to achieve higher
transmission speed by parallel work with CPU, because the
DMA controller is used only for data transfer. Transfer speed
of the DMA controller is limited with the simultaneous access
to the internal buses which could be shared between bus
masters and bus slaves. It is possible to increase the speed by
appropriate setting of the priority level in the X-BAR
modules, the DMA controller, and the DMA multiplexer. The
second factor that limits transfer speed is the response time of
the connected peripheral device.

This application note provides information about using DMA
controller on the microcontrollers from the MPC5xxx family.
The main purpose of this application note is to show how the
DMA controller can be used to transfer, link, and split
relatively complex data blocks. The description of the main
control registers is given with respect to the presented
examples. For more detailed description, please see
MPC5675KRM: MPC5675K Microcontroller—Reference
Manual , available on http://www.freescale.com.

Freescale Semiconductor Document Number:AN4522

Application Note Rev. 1, 6/2012

Examples of Setting the DMA
Controller on the Power
Architecture® MPC5675K Family
of Microcontrollers
by: Vladimir Skorocky

Automotive and Industrial Solutions Group

© 2012 Freescale Semiconductor, Inc.

General Business Information

Contents

1 Introduction..1

2 Description of the eDMA basic registers7

3 Examples of link to the DMA channels..................24

4 Summary...34

5 Reference...34

http://www.freescale.com

1.1 Features of the data transfer over DMA
The following modules are used for the data transfer over DMA:

• CPU: Starts the data transfer over DMA and solves the DMA interrupts and errors.
• X-BAR: This module is the arbiter that decides which master module gets the access to a slave by the simultaneous

request from two or more masters. The priority of the individual masters is set by the X-BAR control registers. For
example, the masters for for the microcontroller MPC5675K are:

• Core0 and Core1 instruction ports
• Core0 and Core1 load store port
• DMA0
• FlexRay

Similarly, the slaves for the same microcontroller are:
• Instruction port
• Load store port
• Peripheral bridge

The system can connect only one master and slave at a time. In case several masters need one slave, X-BAR assigns the
slave according to the priority set in the X-BAR control registers.

• DMA Multiplexer: Connects the peripheral requests to the DMA. All requests from the peripheral devices can be
connected to any DMA channel. Some of the devices such as GPIOs and memory, have a quick response time, and do
not need a request. Such devices are known as 'always requestors.'

• DMA: Includes independent channels that can connect peripheral device with memory, or memory with memory for
data transfers. The channels can work independently with simultaneous access to memory and periphery, or can be set
for sequential transfer. The technique for sequential transfer of the data blocks is known as link. The main purpose of
this application note is to describe the possibilities of the link on the examples of the different levels.

Figure 1 shows a parallel data flow over DMA M2 master port and M1 Core0 load/store port by simultaneous access to the
RAM memory. DMA channel 31 transfers data from SRAM0 to peripheral bridge and at the same time, the CPU requests for
access to SRAM0.

Introduction

Examples of Setting the DMA Controller on the Power Architecture® MPC5675K Family of
Microcontrollers, Rev. 1, 6/2012

2 Freescale Semiconductor, Inc.
General Business Information

DMA channel 31

eDMA
module

Trigger 4

••••

Trigger 1

Always 6

••••

Always 1

DMA
multiplexer

Source 46

Source 3

Source 2

Source 1 DMA channel 0

••••
••••••••••••••••••••••

M0 M1 M2 M3 M4 M5 M6 M7

X-BAR_0 module in DPM modeCore 0
load store

S1S0 S7

DMA 0 FlexRay

SRAMC_0 P Bridge 0

DMA channel 1

Core 0
instructions

Figure 1. Transfer between SRAM and the peripheral bridge.

1.2 Brief description of the DMA module on the MPC5675x
There are 32 DMA channels on the MPC5675x MCUs for data transfer from memory to memory, or from memory to a
peripheral device. These channels can work concurrently or sequentially. Other microcontrollers from this family have the
same or similar registers. For more detailed information, see MPC5675KRM: MPC5675K Microcontroller—Reference
Manual, available at http://www.freescale.com. The main difference between this microcontroller and others is in the number
of channels.

The following table presents a short description of the main control registers of the MPC5675K MCU:

Table 1. MPC5675K MCU control registers

Register Description

DMACR DMA Control Register

Defines the basic operating configuration of the eDMA
module.

Table continues on the next page...

Introduction

Examples of Setting the DMA Controller on the Power Architecture® MPC5675K Family of
Microcontrollers, Rev. 1, 6/2012

Freescale Semiconductor, Inc. 3
General Business Information

http://www.freescale.com

Table 1. MPC5675K MCU control registers (continued)

Register Description

DMAES DMA Error Status register

Provides information concerning the last recorded
channel error.

DMAERQL DMA Enable Request Low register

Provides a bit map for the 32 implemented channels to
enable the request signal for each channel.

DMAEEIL DMA Enable Error Interrupt Low register

Provides a bit map for the 32 implemented channels to
enable the error interrupt signal for each channel

DMAINTL DMA Interrupt Request Low register

Provides a bit map for the 32 implemented
channels signaling the presence of an interrupt request
for each channel.

DMAERRL DMA Error Low register

Provides a bit map for the 32 implemented channels
signaling the presence of an error for each channel.

DMAGPOR DMA General-Purpose Output register

Indicates to the Cache Coherency module that writes
from this DMA are marked as global.

DMA Channel n Priority registers When the fixed-priority channel arbitration mode is enabled
(DMACR[ERCA] = 0), the contents of these registers define
the unique priorities associated with each channel within a
group.

TCD Transfer Control Descriptor

Information on TCD is described in Description of the
eDMA basic registers

1.3 DMA channel multiplexer (DMACHMUX)
DMA multiplexer is the second most important module in DMA transfer configuration. The schematic drawing is shown in
Figure 2.

Following are the main features:

• 52 peripheral sources (named peripheral slots). The first 46 sources are dedicated for peripheral requests.
• It is possible to trigger the first four slots through dedicated peripheral or external trigger.
• Last six of them are 'always requestors,' which suggests that transfer is done as soon as possible without the peripheral

request.
• 32 independently selectable DMA channels.

NOTE
Typical 'always requestors' are memory and GPIO.

Introduction

Examples of Setting the DMA Controller on the Power Architecture® MPC5675K Family of
Microcontrollers, Rev. 1, 6/2012

4 Freescale Semiconductor, Inc.
General Business Information

Figure 2. DMA multiplexer

Channel Configuration (CHCONFIGx) register: There are 32 CHCONFIGx registers mapped into memory on the address
0xFFFD_C000 to 0xFFFD_C01F. Following is the field description of the CHCONFIGx register:

Table 2. CHCONFIGx field description

Field
Name

Description

ENBL DMA Channel Enable bit

Has to be configured for this register for all the active channels.

TRIG DMA Channel Trigger Enable

Enables the periodic trigger capability for the DMA Channel. The
trigger bit is valid only for first four slots.

SOURCE DMA Channel Source field

Specifies the DMA source for relevant channel.

Introduction

Examples of Setting the DMA Controller on the Power Architecture® MPC5675K Family of
Microcontrollers, Rev. 1, 6/2012

Freescale Semiconductor, Inc. 5
General Business Information

The following table shows the numbering of all sources in MPC567xx:

Table 3. MPC567xx DMA sources

Number of source Name of the source (slot)

1 DSPI_0 DSPI_TFFF

2 DSPI_0 DSPI_RFDF

3 DSPI_1 DSPI_TFFF

4 DSPI_1 DSPI_RFDF

5 DSPI_2 DSPI_TFFF

6 DSPI_2 DSPI_RFDF

7 CTU CTU

8 CTU FIFO1

9 CTU FIFO2

10 CTU FIFO3

11 CTU FIFO4

12 FlexPWM_0 comp_val

13 FlexPWM_0 capt

14 eTimer_0 DREQ0

15 eTimer_0 DREQ1

16 eTimer_1 DREQ0

17 eTimer_1 DREQ1

18 eTimer_2 DREQ0

19 eTimer_2 DREQ1

20 ADC_0 DMA

21 ADC_1 DMA

22 LINFlexD_0 Transmit

23 LINFlexD_0 Receive

24 LINFlexD_1 Transmit

25 LINFlexD_1 Receive

26 FlexPWM_1 comp_val

27 FlexPWM_1 capt

28 CTU_1 CTU

29 CTU_1 FIFO1

30 CTU_1 FIFO2

31 CTU_1 FIFO3

32 CTU_1 FIFO4

33 ADC_2 DMA

Table continues on the next page...

Introduction

Examples of Setting the DMA Controller on the Power Architecture® MPC5675K Family of
Microcontrollers, Rev. 1, 6/2012

6 Freescale Semiconductor, Inc.
General Business Information

Table 3. MPC567xx DMA sources (continued)

Number of source Name of the source (slot)

34 ADC_3 DMA

35 LINFlexD_2 Transmit

36 LINFlexD_2 Receive

37 LINFlexD_3 Transmit

38 LINFlexD_3 Receive

39 FLEXPWM_2 comp_val

40 FLEXPWM_2 capt

41 IIC_0 Transmit

42 IIC_0 Receive

43 IIC_1 Transmit

44 IIC_1 Receive

45 IIC_2 Transmit

46 IIC_2 Receive

47 Not used

48 Always Requestor

49 Always Requestor

50 Always Requestor

51 Always Requestor

52 Always Requestor

53 Always Requestor

Example: To trigger the transfer of DSPI_0_DSPI_RFDF over DMA channel 4, set CHCONFIG4 = 0xC2 where 4 is the
number of the DMA channel, 0xC enables the channel and sets it in the triggered mode, and 2 is the number of the source.

2 Description of the eDMA basic registers
This section describes how to set important control registers with respect to more complex transfers that are shown in
Examples of link to the DMA channels. These examples are based on the memory-to-memory transfer. This type of transfer
is easy to use because it does not need peripheral requests. For explanation of the examples, it is sufficient to describe only
the DMA Control Register (DMACR) and the Transfer Control Descriptors (TCD). For more information about other
registers, see MPC5675KRM: MPC5675K Microcontroller- Reference Manual, available on http://www.freescale.com.

2.1 DMA Control Register (DMACR)
This is a memory-mapped register at the address 0xFFF4_4000 and is common for all the DMA channels. This register sets
mode of the arbitration, modifies the TCD fields, and can stop the DMA transfer.

Description of the eDMA basic registers

Examples of Setting the DMA Controller on the Power Architecture® MPC5675K Family of
Microcontrollers, Rev. 1, 6/2012

Freescale Semiconductor, Inc. 7
General Business Information

http://www.freescale.com

The following table provides the field description of the DMACR.

Table 4. DMACR field description

Field name Number Description

CX 14 Cancel Transfer

0 Normal operation
1 Cancel the remaining data transfer

ECX 15 Enable Cancel Transfer

GRP1PRI 20-21 Channel Group 1 Priority

GRP0PRI 22-23 Channel Group 0 Priority

EMLM 24 Enable Minor Loop Mapping

This bit is described in Transfer Control Descriptor
(TCD)

CLM 25 Continuous Link Mode

0 A minor loop channel link made to itself goes
through channel arbitration
1 A minor loop channel link made to itself does not go
through channel arbitration before being activated
again.

HALT 26 Halt DMA Operations

HOE 27 Halt On Error

ERGA 28 Enable Round-Robin Group Arbitration

ERCA 29 Enable Round-Robin Channel Arbitration

EDBG 30 Enable Debug

2.2 Transfer Control Descriptor (TCD)
This section describes the TCD data structure in detail. In the TCDs, the basic parameters of data transfer such as source and
destination address, number of major and minor loops, and address correction after each data transfer, are set. Data transfer
starts when the start bit of the appropriate TCD is set to 1. For the MPC5675K MCU, the DMACR block is mapped on the
address 0xFFFD_C000. The first TCD is shifted up by 0x1000 bytes, that is, on the address 0xFFFD_D000. The description
of particular components is presented in the following sections.

NOTE
The description of the registers and its positions are specified only for the MPC5675K
MCU.

Description of the eDMA basic registers

Examples of Setting the DMA Controller on the Power Architecture® MPC5675K Family of
Microcontrollers, Rev. 1, 6/2012

8 Freescale Semiconductor, Inc.
General Business Information

The following table shows the mapping of the basic parameters of the transfer in TCD field:

Table 5. Basic transfer parameters

DMA Offset TCDn field

0x1000 + (32 × n) + 0x00 Source Address (saddr)

0x1000 + (32 × n) + 0x04 Transfer Attributes (smod, ssize, dmod,
dsize)

Signed Source Address Offset (soff)

0x1000 + (32 × n) + 0x08 Signed Minor Loop Offset (smloe,
dmloe, mloff)

Inner “Minor” Byte Count (nbytes)

0x1000 + (32 × n)+ 0x0C Last Source Address Adjustment (slast)

0x1000 + (32 × n) + 0x10 Destination Address (daddr)

0x1000 + (32 × n) + 0x14 Current “Major” Iteration Count (citer) Signed Destination Address Offset (doff)

0x1000 + (32 × n) + 0x18 Last Destination Address Adjustment/Scatter Gather Address (dlast_sga)

0x1000 + (32 × n)+ 0x1C Beginning “Major” Iteration Count (biter) Channel Control/Status (bwc,
major.linkch, done, active, major.e_link,
e_sg, d_req, int_half, int_maj, start)

2.2.1 Source address
The source address specifies the memory address pointing to the source data.

2.2.2 Source modulo (smod), source size (ssize), destination modulo
(dmod),destination size (dsize)

Description of the eDMA basic registers

Examples of Setting the DMA Controller on the Power Architecture® MPC5675K Family of
Microcontrollers, Rev. 1, 6/2012

Freescale Semiconductor, Inc. 9
General Business Information

The following table presents the field descriptions.

Table 6. Field descriptions

Field name Description

smod Source Modulo

This 5-bit field specifies the size of the mask for the
source address. It is useful if there is a need to repeat
the data blocks on the minor loop level. For this
purpose, the beginning of the transferred block must
be aligned on the proper address. For instance, when
smod is 7, it is necessary to align the address of the
data block on address 0bxxxx_xxxx_x000_0000 having
seven zeroes. When the address reaches the value
0bxxxx_xxxx_x111_1111, the address pointer will be
set on the value 0bxxxx_xxxx_x000_0000 again.
Disadvantage of this solution is that only the data
blocks with length 2N can be transferred. When the
value of smod or dmod is set to 0, the modulo feature
is disabled.

ssize Source Size

Determines the size of the source data

3b000 = 8 bits
3b001 = 16 bits

3b010 = 32 bits

3b011 = 32 bits

3b100 = 16 byte burst

3b101= 32 byte burst

dmod Destination Modulo

This field has the same meaning as smod. The only
difference is that this value controls the destination
address.

dsize Destination Size

Specifies the size of the destination data. See the ssize
definition.

soff Source Offset (signed value)

As source read is completed, this value is added to the
source address as the next address for reading. This
value is added to the source address after read is
completed.

NOTE
The destination offset (doff) field is placed at the word 5 of the TCD.

Description of the eDMA basic registers

Examples of Setting the DMA Controller on the Power Architecture® MPC5675K Family of
Microcontrollers, Rev. 1, 6/2012

10 Freescale Semiconductor, Inc.
General Business Information

2.2.3 Nbytes
Nbytes is the number of bytes to be transferred in the minor loop. This number must be divisible by the ssize and dsize
values, otherwise it may cause configuration error. This word could be set as follows:

• When the EMLM bit in DMACR is 0, that is, when DMACR[EMLM] = 0; the whole word contains the number of the
transferred bytes in the Minor loop.

• When DMACR[EMLM] =1, that is, when Minor loop mapping is enabled, and smloe or dmloe fields (or both) are set,
the second word looks as follows:

The bits 2–21 constitute the Minor Loop Offset (mloff) field. This signed value is added to the source or destination address
when the Minor loop ends.

• If smloe is set, the offset is added to the source address after end of the Minor loop.
• If dmloe is set, the offset is added to the destination address. The nbytes field is in bits 21–31 of this word.

2.2.4 Slast
Slast specifies the last source address adjustment value. The adjustment value is added to the source address at the
completion of the outer major iteration count. This value can be applied to “restore” the source address to the initial value, or
adjust the address to refer the next data structure.

2.2.5 Daddr
Daddr specifies the destination address, which is the memory address pointing to the destination data.

2.2.6 Current major iteration count (citer), destination offset (doff)
It is possible to set citer into two modifications as follows:

• When citer e_link=0: This means that this DMA channel is not linked with another one on the minor loop level. Then
the citer field can be set on the bits 2–13. The doff, or the Destination Signed Offset field value is added to the
destination address after the destination write is completed.

Description of the eDMA basic registers

Examples of Setting the DMA Controller on the Power Architecture® MPC5675K Family of
Microcontrollers, Rev. 1, 6/2012

Freescale Semiconductor, Inc. 11
General Business Information

• When citer e_link=1: In this case, the DMA channel is linked with another channel. The number of channels is then
written in citer.linkch[0:4] fields. After minor loop of this channel ends, it starts working the channel with the number
that is written in this field.

2.2.7 Destination address—Scatter-Gather address
Scatter-Gather (SG) is the last destination address adjustment or the memory address for the next TCD to be loaded into this
channel.

• If scatter-gather processing for the channel is disabled, or e_sg = 0, then adjustment value is added to the destination
address at the completion of the outer major iteration count. This value can be applied to restore the destination address
to the initial value, or adjust the address to refer the next data structure.

• If scatter-gather processing for the channel is enabled, or e_sg = 1, this address points to the structure in memory that
corresponds the TCD data structure. When the first transfer ends, this structure is loaded into TCD and the transfer
continues with new parameters. The scatter-gather address must be aligned on the 32 bytes boundary, otherwise a
configuration error is reported.

2.2.8 Biter and status/control bits
This word could be set as follows:

• If the biter.e_link field is cleared , then the content of bits 2–15 is biter (beginning 'major' iteration count). The biter
field sets the initial number of the major loop counter (citer). Bits 19–23 contain the DMA channel number for major
link, when bit m.e_link is asserted.

Description of the eDMA basic registers

Examples of Setting the DMA Controller on the Power Architecture® MPC5675K Family of
Microcontrollers, Rev. 1, 6/2012

12 Freescale Semiconductor, Inc.
General Business Information

•

• If the bit 0 is asserted, then the bits 7–15 constitute the biter field. Bits 2–6 contain the DMA channel number for minor
link.

The following table contains a brief description of particular fields.

Table 7. Field descriptions

Field Description

biter.e_link Enables channel-to-channel linking on the minor loop level.
This is the initial value copied to citer.e_link field when the
major loop is completed.

0 The channel-to-channel linking is disabled.
1 The channel-to-channel linking is enabled.

biter[0:4] or biter.linkch[0:4] If biter.e_link = 0, then no channel-to-channel linking is
performed after the inner Minor loop is exhausted.

If biter.e_link = 1, then after Minor loop is exhausted,
the eDMA engine initiates a channel service request at
the channel defined by biter.linkch[5:0] by setting the
Start bit of that channel.

biter[5:13] Beginning “major” Iteration Count

This is the initial value copied into the citer field or
citer.linkch field when the Major loop is completed. The
citer fields control the iteration count and linking during
channel execution.

bwc[0:1] This field forces the eDMA module to stall after the
completion of each read/write access to control the bus
request bandwidth seen by the platform’s cross-bar arbitration
switch.

Table continues on the next page...

Description of the eDMA basic registers

Examples of Setting the DMA Controller on the Power Architecture® MPC5675K Family of
Microcontrollers, Rev. 1, 6/2012

Freescale Semiconductor, Inc. 13
General Business Information

Table 7. Field descriptions (continued)

Field Description

major.linkch[0:4] Link Channel Number

If major.e_link = 0, then no channel-to-channel linking
is performed after the outer “major” loop counter is
exhausted.
If major.e_link = 1, then after the “major” loop counter
is exhausted, the eDMA engine initiates a channel
service request at the channel defined by
major.linkch[5:0] by setting the Start bit of that channel.

done Channel Done

This flag indicates the eDMA module has completed
the outer major loop. It is set by the eDMA engine as
the citer count reaches 0; it is cleared by software, or
the hardware when the channel is activated.

This bit must be cleared in order to write the
major.e_link or e_sg bits.

active Channel Active

This flag signals the channel is currently in execution. It
is set when channel service begins, and is cleared by
the eDMA engine as the inner Minor loop completes or
if any error condition is detected.

major.e_link Enables channel-to-channel linking once the major loop is
complete. As the channel completes the outer major loop, this
flag enables the linking to another channel, defined by
major.linkch[5:0].

0 The channel-to-channel linking is disabled.
1 The channel-to-channel linking is enabled.

e_sg Enable Scatter/Gather Processing

As the channel completes the outer major loop, this
flag enables scatter/gather processing in the current
channel. If enabled, the eDMA engine uses dlast_sga
as a memory pointer to a 0-modulo-32 address
containing a 32-byte data structure which is loaded as
the transfer control descriptor into the local memory.

0 The current channel’s TCD is in “normal” format.
1 The channel-to-channel linking is enabled.
The dlast_sga field provides a memory pointer to the
next TCD to be loaded into this channel after the outer
major loop completes the execution.

d_req Disable Request

If this flag is set, the eDMA hardware automatically
clears the corresponding DMAERQ bit when the
current major iteration count reaches 0.
0 The DMAERQ bit of the channel is not affected.
1 The DMAERQ bit of the channel is cleared when the
outer major loop is complete.

Table continues on the next page...

Description of the eDMA basic registers

Examples of Setting the DMA Controller on the Power Architecture® MPC5675K Family of
Microcontrollers, Rev. 1, 6/2012

14 Freescale Semiconductor, Inc.
General Business Information

Table 7. Field descriptions (continued)

Field Description

inf_half Enables an interrupt when major counter is half complete.

0 The half-point interrupt is disabled.
1 The half-point interrupt is enabled.

int_maj Enables an interrupt when major iteration count completes.

0 The end-of-major loop interrupt is disabled.
1 The end-of-major loop interrupt is enabled.

start Channel Start

If this flag is set, the channel is requesting service. The
eDMA hardware automatically clears this flag after the
channel begins execution.

0 The channel is not explicitly started.

1 The channel is explicitly started via a software
initiated service request.

2.3 Functional description of the DMA module
It is possible to split the control of the DMA module into three levels:

• Basic transfer
• Minor loop
• Major loop

If the Start signal in the the TCD is asserted in the corresponding channel, then the first Major loop starts. The number of the
Major loops is set in the Biter field in the word 7 of the TCD. Initially, the values of the fields biter and citer are equal.

Biter specifies the number of the minor loops to be performed in one data transfer. If this loop needs peripheral request, the
DMA channel is waiting for it. After peripheral request is asserted, the Minor loop transfers nbytes of data. The data is
transferred over one or more basic transfers. When nbytes is transferred, the citer counter is decreased. To start next Major
loop, it is necessary to assert the Start bit again. The transfer is finished when the citer = 0. At this moment, the done bit is
asserted in the word 7 and the citer counter is asserted on the value of biter.

The basic function of eDMA is summarized as follows:
1. The DMA channel with right setting of all parameters, waits for the Start control bit to get asserted.
2. The Start bit can be asserted in the program or by other channel (in the case of link). When the Start bit is asserted, the

eDMA engine starts the initial Major loop.
3. The Major loop starts the first Minor loop. The Minor loop waits for the peripheral request unless the always requestor

is connected.
4. Peripheral request starts the Minor loop which in turn, starts the Basic transfer.
5. Basic transfer reads and writes ssize or dsize bytes from a source address to a destination address.
6. The Minor loop decreases the parameter nbytes. If nbytes = 0, the minor loop ends, else the next Basic transfer starts.
7. Minor loop that is finished decreases the citer counter.
8. If the citer counter = 0, then the Major loop is finished, otherwise the eDMA waits for asserting the next Start bit.

In the following figure, the first column signed w is word in TCD and the first row signed b is the number of bit.

Description of the eDMA basic registers

Examples of Setting the DMA Controller on the Power Architecture® MPC5675K Family of
Microcontrollers, Rev. 1, 6/2012

Freescale Semiconductor, Inc. 15
General Business Information

Figure 3. TCD block for functional description

Figure 3 shows the TCD parameters for different levels of the transfer. In Figure 3, the parameters for the basic transfer are
marked in green, red color is used for the minor loop and gray for the major loop. The following sections describe the levels
of the DMA transfer in detail.

2.3.1 Flowchart of the DMA transfer
The basic function of the DMA module is shown in Figure 4. In the following figure, the Basic transfer is inside block 5, the
Minor loop is in blocks 5 and 6 and Major loop goes over the blocks 2–10 and then back to block 2. Parts of this flowchart
are used in the next flowcharts for linking with the same numbers of blocks.

Description of the eDMA basic registers

Examples of Setting the DMA Controller on the Power Architecture® MPC5675K Family of
Microcontrollers, Rev. 1, 6/2012

16 Freescale Semiconductor, Inc.
General Business Information

2.
Start

?

+

+

+

5. Transfer data
Apply smod, dmod,

soff, doff
nbytes=nbytes–ssize

1. Setting basic parameters
in the control registers

Setting used descriptors
in all linked channels

3.
Need request

?

4.
Request asserted

?

6.
nbytes=0

?

+

7. CITER=CITER–1

8.
CITER=0

?

+

9. CITER=BITER
Apply slast, dlast

10.
Link on the major

loop level
?

+

11. Go to the linked channel

12. Input from the linked
channel

–

–

–

–

–

13. Apply mloff
IF is set

15. Go to the linked channel

+

–
14.

Link on the minor
loop level

?

–

Figure 4. Basic diagram of the DMA control and data flow

Description of the eDMA basic registers

Examples of Setting the DMA Controller on the Power Architecture® MPC5675K Family of
Microcontrollers, Rev. 1, 6/2012

Freescale Semiconductor, Inc. 17
General Business Information

2.3.2 The Basic transfer
The Basic transfer is on the lowest level of the DMA transfer. The basic transfer is placed inside the block 5 on the functional
diagram shown in Figure 3 and the parameters for Basic transfer in the TCD are marked green. The data is transferred from
the source address to the actual destination address. The number of the transmitted bytes is determined by higher value of
ssize and dsize. After each read or write, either the source or the destination address is changed. The signed value of soff or
doff is added to the actual address. The number of the transferred bytes is then subtracted from parameter nbytes and basic
transfer continues until nbytes = 0. Nbytes is a basic parameter of the higher Minor loop level. The fields smod and dmod
determine the number of last bits in address that is possible to change on the Basic transfer level. For this purpose, it is
necessary to align address to appropriate number of zeros in the lower bits of the address. It is also necessary to set the value
of nbytes divisible by ssize and dsize, otherwise the configuration error occurs.

Following are the basic parameters for this transfer:

Table 8. Basic transfer parameters

ssize,dsize Source/Destination Data Transfer Size:

000 8-bit
001 16-bit
010 32-bit
011 16-byte (32-bit, 4-beat, WRAP4 burst)
101 32-byte (32-bit, 8 beat, WRAP8 burst)

smod / dmod Source /Destination Address Modulo

It is possible to change the number of the lower
address bits. 0 means mod is not in function.

soff/doff Value that is added after read/write to the source/destination
address.

Example:

nbytes = 32;

ssize = 1; /*2 bytes*/

dsize = 2; /*4 bytes*/

smod = 3;

dmod = 4;

soff = 2;

doff = 4;
1. After the Start bit is set, the actual transfer address is set with value from saddr.
2. Transfer 2 bytes from the actual source address and again 2 bytes from this source address to 4 bytes on the actual

destination address.
3. So, both the actual source and destination addresses increase. Twice the value of soff is added to the actual source

address because two reads are required to transfer 4 bytes. The actual destination address is increased by 4.
4. nbytes = nbytes – 4.
5. Repeat steps 2–4 once. Then, the actual source address is limited by smod.
6. Repeat steps 2–6 once. Then, the actual destination address is limited by dmod.
7. Repeat steps 2–8 once.
8. The basic transfer ends when nbytes = 0.

NOTE
It is necessary to align address on the appropriate number of last bits to avoid unexpected
results, using smod or dmod.

Description of the eDMA basic registers

Examples of Setting the DMA Controller on the Power Architecture® MPC5675K Family of
Microcontrollers, Rev. 1, 6/2012

18 Freescale Semiconductor, Inc.
General Business Information

The following figure demonstrates the above-mentioned example.

Figure 5. Flowchart of the Basic transfer

Figure 5 corresponds to the block 5 in Figure 4.

Description of the eDMA basic registers

Examples of Setting the DMA Controller on the Power Architecture® MPC5675K Family of
Microcontrollers, Rev. 1, 6/2012

Freescale Semiconductor, Inc. 19
General Business Information

2.3.3 The Minor loop
The following table describes the parameters for the minor loop.

Table 9. Minor loop parameters

Field name Description

smloe (Bit 0 in TCD Word 2) If this bit is asserted, the value of mloff is added to actual
source address at the end of the minor loop.

dmloe (Bit 1 in TCD Word 2) If this bit is asserted, the value of mloff is added to actual
destination address at the end of the minor loop

mloff Minor loop offset that is added to actual address after minor
loop ended

citer e_link (Bit 0 in TCD Word 5) Enable link on the minor loop level.

citer_linkch Linked channel

biter e_linkch (Bit 0 in TCD Word 7) Enable link on the minor loop level.

biter_linkch Linked channel

nbytes Number of bytes transmitted in one minor loop.

1. The minor loop starts after the peripheral request is asserted. The 'always requestors' don’t need a peripheral request. It
must be noted that some of the peripheral requests can be limited by the trigger.

2. After the peripheral request is asserted, the Minor loop starts the basic transfer.
3. At the end of this basic transfer the number of transferred bytes is subtracted from nbytes. The value of nbytes must be

divisible by ssize and dsize.
4. When the value of nbytes reaches 0, then the citer counter is decreased. The citer counter is already controlled by the

Major loop.

The Minor loop corresponds to the blocks 5 and 6 in Figure 6 and the Minor loop parameters are marked with red color in
Figure 3.

2.3.4 The Major loop
1. The Major loop starts by asserting the Start bit, or from any linked channel.
2. After the Start bit is asserted, the Major loop starts the first Minor loop (See The Minor loop).
3. When the Minor loop ends, the DMA decreases the citer counter.
4. When citer = 0, the whole transfer ends or starts the channel that is linked on the major loop level.

The following table depicts the main parameters for the Major loop.

Table 10. Major loop parameters

Field Description

citer Actual minor loop count

biter Basic minor loop count

Slast The offset to be added to the saddr after the Major loop ends

dlast_Sga The offset to be added to the daddr after the Major loop ends
or the address of the data structure for the Scatter-Gather
transfer.

major.e_link Enable link on the Major loop level

major-linkch Number of the linked channel

Description of the eDMA basic registers

Examples of Setting the DMA Controller on the Power Architecture® MPC5675K Family of
Microcontrollers, Rev. 1, 6/2012

20 Freescale Semiconductor, Inc.
General Business Information

2.3.5 The Minor loop link
The Minor loop link is a technique to transfer relative complex data structures such as Ethernet frames, DSPI FIFO words,
and so on. The link suggests that DMA needs more than one channel to transfer one data structure because it is not possible
to accomplish data transfer with one set of parameters. Link on the Minor loop is enabled by setting citere_link and
bitere_link bits and the number of linked channels can be determined by setting biter_linkch and citer_linkch bits. Both pairs
of these parameters must have the same value otherwise it may cause a configuration error. When the bit pairs citere_link and
bitere_link, and biter_linkch and citer_linkch are set, and nbytes has expired, the control of the data transfer is given to the
second channel. On the Major loop level, it is possible to use link with the same channel to avoid the need to assert the Start
signal for each Major loop.

NOTE
Both the channels must have the same values on the biter counters at the start of the
transition.

The end of the Major loop finishes the Minor loop link. In case the two channels are linked on the Minor loop level and the
citer counter 1 has expired, the Major loop ends the Minor loop link. However on the channel 2, one Minor loop rests. It is
possible to avoid this problem by linking Channel 1 with Channel 2 on the Major loop level. (See the flowcharts in Figure 6
and Figure 7). When the data transfer is in progress, it is not possible to make any intervention to stop it until the channel
ends the whole transfer.

When the transfer is running, it is not possible to make any correct intervention to stop it until the channel ends. It is possible
to set DMACR[CXFR] that forces the Minor loop to stop transfer but in this case, the number of data bytes transferred can't
be calculated.

The Minor loop link for two channels is shown in Figure 6. The numbers of the blocks correspond to the general data
flowchart.

Description of the eDMA basic registers

Examples of Setting the DMA Controller on the Power Architecture® MPC5675K Family of
Microcontrollers, Rev. 1, 6/2012

Freescale Semiconductor, Inc. 21
General Business Information

5. Transfer data
Apply smod,dmod,soff,doff

nbytes=nbytes–ssize

–

+

3.
Need request

?

–

+

4.
Request asserted

?

–

+

6.
nbytes=0

?

7. CITER=CITER-1

8.
CITER=0

?

5. Transfer data
Apply smod,dmod,soff,doff

nbytes=nbytes–ssize

–

+

3.
Need request

?

–

+

–

+

6.
nbytes=0

?

7. CITER=CITER-1

8.
CITER=0

?

4.
Request asserted

?

–

13. Apply mloff IF is set

+

14.
Link on the minor

loop level
?

–

13. Apply mloff IF is set

+

14.
Link on the minor

loop level
?

+ +

+ +

Figure 6. Link two channels on the Minor loop level

2.3.6 Major loop link
The Major loop link is enabled by setting majore_link and major_linkch. All Major loops must be initialized by Start bit in
TCD with the exception when a channel is started from other linked channel on this level. The following flowchart shows
link of two channels. The numbers of blocks in the following figure correspond to the numbers on the basic DMA transfer in
Figure 5.

Description of the eDMA basic registers

Examples of Setting the DMA Controller on the Power Architecture® MPC5675K Family of
Microcontrollers, Rev. 1, 6/2012

22 Freescale Semiconductor, Inc.
General Business Information

Figure 7. Basic diagram of the DMA control and data flow for link on the Major loop level

Description of the eDMA basic registers

Examples of Setting the DMA Controller on the Power Architecture® MPC5675K Family of
Microcontrollers, Rev. 1, 6/2012

Freescale Semiconductor, Inc. 23
General Business Information

2.3.7 Scatter-Gather
It is the most complex method to control a DMA data flow. When e_sg is set, the Word 6 in TCD is set as the Scatter-Gather
address (SGA). This address must be aligned on 32-bytes boundary. This address must have a structure that corresponds
exactly with TCD. When the Major loop ends on the channel, the TCD is overloaded with the structure saved on the address
saved in the dlast_sga field and the DMA engine starts data transfer controlled with the parameters loaded from it. The
drawback of this method is that additional time is needed for transfer of the structure of new parameters.

2.4 Conclusion
Following is a summary of important points from the previous sections of this application note.

• The 'always requestors' are GPIO and data memory.
• nbytes must be divisible by ssize and dsize.
• citere_link and bitere_link must have the same value.
• citer_linkch and biter_ linkch in one TCD must have the same value if citere_link and bitere_link are set.
• The last Minor loop by the Minor loop link for two channels needs to be performed with the help of Major loop

method.
• It is possible to stop the Minor loop transfer by setting DMACR[CXFR] but it is not possible to determine how many

bytes were transferred.
• It is possible to enable Minor loop offset (mloff) only if DMACR[EMLM] is set and at least one out of smloe or dmloe

is also set.
• The saddr and daddr bits are "floating“ which means that the values of all offsets and the last address must be set

carefully otherwise it causes exception.
• DMACR[HALT] stops the transfer after a channel ends the Major loop transfer.
• Set citer_linkch and biter_linkch to 0 if citere_link and bitere_link are 0, otherwise the citer and biter bits may be set on

the wrong value.
• The Major loop can be started by the Start bit in TCD or, from other channel by Major loop link.
• The Scatter-Gather address must be aligned on the 32-byte boundary.
• The transfer data structure to TCD in Scatter-Gather mode causes small delay in data transfer.
• For sending data blocks over infinite loop without intervention of the CPU, use combination of Major and Minor loops

link. In this case, use only one Major loop in one channel. See Figure 7. The numbers of blocks in this figure
correspond to the numbers on the basic DMA transfer in Figure 5.

The following sections demonstrate the examples of the links on the memory-to-memory transfer that is most instructive and
changing of address is not limited.

3 Examples of link to the DMA channels

3.1 Introduction
The following examples show possibilities of using the DMA modules in data transfer between two areas of RAM memory.
The following code is used to set the basic parameters.

struct tcd_t1
vuint32_t SADDR; /* source address */
vuint16_t SMOD:5; /* source address modulo */
vuint16_t SSIZE:3; /* source transfer size */
vuint16_t DMOD:5; /* destination address modulo */
vuint16_t DSIZE:3; /* destination transfer size */
vint16_t SOFF; /* signed source address offset */
vuint32_t SMLOE:1; /* inner (“minor”) byte count */

Examples of link to the DMA channels

Examples of Setting the DMA Controller on the Power Architecture® MPC5675K Family of
Microcontrollers, Rev. 1, 6/2012

24 Freescale Semiconductor, Inc.
General Business Information

vuint32_t DMLOE:1;
vuint32_t MLOFF:20;
vuint32_t NBYTES:10;
vint32_t SLAST; /* last destination address adjustment, or scatter/gather address (if e_sg =
1) */
vuint32_t DADDR; /* destination address */
vuint16_t CITERE_LINK:1;
vuint16_t CITER_LINKCH:6;
vuint16_t CITER:9;
vint16_t DOFF; /* signed destination address offset */
vint32_t DLAST_SGA;
vuint16_t BITERE_LINK:1; /* beginning ("major") iteration count */
vuint16_t BITER_LINKCH:6;
vuint16_t BITER:9;
vuint16_t BWC:2; /* bandwidth control */
vuint16_t MAJORLINKCH:6; /* enable channel-to-channel link */
vuint16_t DONE:1; /* channel done */
vuint16_t ACTIVE:1; /* channel active */
vuint16_t MAJORE_LINK:1; /* enable channel-to-channel link */
vuint16_t E_SG:1; /* enable scatter/gather descriptor */
vuint16_t D_REQ:1; /* disable ipd_req when done */
vuint16_t INT_HALF:1; /* interrupt on citer = (biter >> 1) */
vuint16_t INT_MAJ:1; /* interrupt on major loop completion */
vuint16_t START:1; /* explicit channel start */
} D1[32]; /* transfer_control_descriptor */

For the demonstration of data transfer, two source data array is used.

vuint16_t source_data1[80]=
{0x0100,0x0101,0x0102,0x0103,0x0104,0x0105,0x0106,0x0107,
0x0108,0x0109,0x010a,0x010b,0x010c,0x010d,0x010e,0x010f,
0x0110,0x0111,0x0112,0x0113,0x0114,0x0115,0x0116,0x0117,
0x0118,0x0119,0x011a,0x011b,0x011c,0x011d,0x011e,0x011f,
0x0120,0x0121,0x0122,0x0123,0x0124,0x0125,0x0126,0x0127,
0x0128,0x0129,0x012a,0x012b,0x012c,0x012d,0x012e,0x012f,
0x0130,0x0131,0x0132,0x0133,0x0134,0x0135,0x0136,0x0137,
0x0138,0x0139,0x013a,0x013b,0x013c,0x013d,0x013e,0x013f,
0x0140,0x0141,0x0142,0x0143,0x0144,0x0145,0x0146,0x0147,
0x0148,0x0149,0x014a,0x014b,0x014c,0x014d,0x014e,0x014f
};
vuint32_t source_data2[40]=
{0xf100f101,0xf102f103,0xf104f105,0xf106f107,
0xf108f109,0xf10af10b,0xf10cf10d,0xf10ef10f,
0xf110f111,0xf112f113,0xf114f115,0xf116f117,
0xf118f119,0xf11af11b,0xf11cf11d,0xf11ef11f,
0xf120f121,0xf122f123,0xf124f125,0xf126f127,
0xf128f129,0xf12af12b,0xf12cf12d,0xf12ef12f,
0xf130f131,0xf132f133,0xf134f135,0xf136f137,
0xf138f139,0xf13af13b,0xf13cf13d,0xf13ef13f,
0xf140f141,0xf142f143,0xf144f145,0xf146f147,
0xf148f149,0xf14af14b,0xf14cf14d,0xf14ef14f
};

and one destination data array with initial values= 0x0000:

__attribute__((aligned(32)))

 vuint16_t dest_buffer[160]=
{0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,……

 };

Examples of link to the DMA channels

Examples of Setting the DMA Controller on the Power Architecture® MPC5675K Family of
Microcontrollers, Rev. 1, 6/2012

Freescale Semiconductor, Inc. 25
General Business Information

3.2 Example 1
This basic example is very simple. DMA translated 0x50 bytes of data from array source_data1 to destination address in two
major loops.

Figure 8. Setting of the TCD1

Examples of link to the DMA channels

Examples of Setting the DMA Controller on the Power Architecture® MPC5675K Family of
Microcontrollers, Rev. 1, 6/2012

26 Freescale Semiconductor, Inc.
General Business Information

Figure 9. Dest_buffer after first Major loop

After first Minor loop, it is necessary to assert the Start bit in TCD again.

Figure 10. Dest_buffer after second Major loop

3.3 Example 2: Using the smod and dmod parameters
This example is focused on the use of smod and dmod parameters.

Examples of link to the DMA channels

Examples of Setting the DMA Controller on the Power Architecture® MPC5675K Family of
Microcontrollers, Rev. 1, 6/2012

Freescale Semiconductor, Inc. 27
General Business Information

Figure 11. Setting of the TCD1

Figure 12. Dest_buffer after first Major loop

The saddr parameter is limited with number 4 which means that it is possible to change only the lower 4 bits of saddr.

Examples of link to the DMA channels

Examples of Setting the DMA Controller on the Power Architecture® MPC5675K Family of
Microcontrollers, Rev. 1, 6/2012

28 Freescale Semiconductor, Inc.
General Business Information

Figure 13. Dest_buffer after second Major loop

Figure 14. Dest_buffer after fourth Major loop till end of the transfer

After the fourth Major loop, the Dmod parameter comes into function because Daddr is increased by 64. It suggests that the
fifth Minor loop starts to write on the same place as the first one, that is, on the address 0x40004F80. The next data transfer
from the sixth to eighth Minor loop will be written on the next address. Then the final Dest_buffer will be the same as after
the fourth Major loop.

3.4 Example 3: Minor loop link 1
This example links arrays source_data1 and source_data2 on the minor loop level.

NOTE
When the number of major loops on TCD1 is exhausted, then one minor loop rests on
TCD2. Therefore, it is necessary to use TCD1 major loop link with TCD2 and then the
last minor loop can be finished on TCD2.

Examples of link to the DMA channels

Examples of Setting the DMA Controller on the Power Architecture® MPC5675K Family of
Microcontrollers, Rev. 1, 6/2012

Freescale Semiconductor, Inc. 29
General Business Information

Figure 15. Setting of the TCD1 and TCD2 for Minor loop link 1

Figure 16. Dest_buffer after end of the transfer

3.5 Example 4: Minor loop link 2
This example is similar to the example given in Example 3: Minor loop link 1, with different offsets and nbytes. It is possible
to alternate words from source_data1 and source_data2 in dest_buffer.

Examples of link to the DMA channels

Examples of Setting the DMA Controller on the Power Architecture® MPC5675K Family of
Microcontrollers, Rev. 1, 6/2012

30 Freescale Semiconductor, Inc.
General Business Information

Figure 17. Setting of the TCD1 and TCD2 for Minor loop link 2

Figure 18. Dest_buffer after end of the transfer

NOTE
For the performance of the last Minor loop, it is necessary to use the Major loop link in
TCD1. (major e_link =1 and major_linkch=2)

Examples of link to the DMA channels

Examples of Setting the DMA Controller on the Power Architecture® MPC5675K Family of
Microcontrollers, Rev. 1, 6/2012

Freescale Semiconductor, Inc. 31
General Business Information

3.6 Example 5: Major loop link
This basic example shows the use of Major loop link. Minor loop has 16 bytes. Major loop executes four minor loops and
then continues TCD2 with similar parameters.

Figure 19. Setting of the TCD1 and TCD2 for Major loop link 2

Figure 20. Dest_buffer after the end of transfer

Examples of link to the DMA channels

Examples of Setting the DMA Controller on the Power Architecture® MPC5675K Family of
Microcontrollers, Rev. 1, 6/2012

32 Freescale Semiconductor, Inc.
General Business Information

3.7 Example 6: Scatter-Gather

Figure 21. Setting of the TCD1 and TCD2 for Major loop link 2

Figure 22. Dest_buffer after end of the scatter / gather transfer

Examples of link to the DMA channels

Examples of Setting the DMA Controller on the Power Architecture® MPC5675K Family of
Microcontrollers, Rev. 1, 6/2012

Freescale Semiconductor, Inc. 33
General Business Information

4 Summary
This application note provides specific information for implementing a DMA controller on the Power Architecture
MPC567xx processors family. For the other families of microcontrollers, there could be small differences in the performance
of the TCD block. Please see the appropriate user or reference manual on http://www.freescale.com

5 Reference
The following reference manual can be found on http://www.freescale.com

• MPC5675KRM : MPC5675K Microcontroller-Reference Manual

Summary

Examples of Setting the DMA Controller on the Power Architecture® MPC5675K Family of
Microcontrollers, Rev. 1, 6/2012

34 Freescale Semiconductor, Inc.
General Business Information

http://www.freescale.com
http://www.freescale.com

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

Document Number: AN4522
Rev. 1, 6/2012

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductors products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any liability, including without limitation
consequential or incidental damages. "Typical" parameters that may be provided in
Freescale Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters,
including "Typicals", must be validated for each customer application by customer's
technical experts. Freescale Semiconductor does not convey any license under its patent
rights nor the rights of others. Freescale Semiconductor products are not designed,
intended, or authorized for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain life, or for any other
application in which failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claims alleges
that Freescale Semiconductor was negligent regarding the design or manufacture of
the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.
For further information, see http://www.freescale.com or contact your Freescale
sales representative.

For information on Freescale's Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© 2012 Freescale Semiconductor, Inc.

	Introduction
	Features of the data transfer over DMA
	Brief description of the DMA module on the MPC5675x
	DMA channel multiplexer (DMACHMUX)

	Description of the eDMA basic registers
	DMA Control Register (DMACR)
	Transfer Control Descriptor (TCD)
	Source address
	Source modulo (smod), source size (ssize), destination modulo (dmod),destination size (dsize)
	Nbytes
	Slast
	Daddr
	Current major iteration count (citer), destination offset (doff)
	Destination address—Scatter-Gather address
	Biter and status/control bits

	Functional description of the DMA module
	Flowchart of the DMA transfer
	The Basic transfer
	The Minor loop
	The Major loop
	The Minor loop link
	Major loop link
	Scatter-Gather

	Conclusion

	Examples of link to the DMA channels
	Introduction
	Example 1
	Example 2: Using the smod and dmod parameters
	Example 3: Minor loop link 1
	Example 4: Minor loop link 2
	Example 5: Major loop link
	Example 6: Scatter-Gather

	Summary
	Reference

