
Freescale Semiconductor
Application Note

Document Number: AN5007
Rev. 0, 10/2014

Contents

Overview . 1
Metering libraries . 1

2.1 Filter library . 3
2.2 FFT library . 4
2.3 Common note for filter and FFT libraries. 4
Library performance . 5

3.1 Accuracy of FFT/Filter . 5
3.2 FFT performance. 5
3.3 Filter performance . 6
3.4 Example of resource usage. 6
Filter library usage . 6

4.1 Requirements . 6
4.2 APIs. 6
FFT library usage . 8

5.1 Requirements . 8
5.2 APIs. 9
Sampling process . 9

6.1 Filter . 11
6.2 FFT . 12
Pulse output. 13

7.1 Macro PULSE_THRES: energy of one pulse 13
7.2 Pulse output algorithm. 13
How to choose a metering library: FFT or Filter 14
References . 14

Application Hints For Using
Freescale Metering Libraries in
3-phase Power Meters
by Albert Chen and Shawn Shi
1 Overview
This application note explains the best methods for using
Freescale metering libraries in three-phase power
meters.

The metering libraries include an FFT library and a Filter
library. They both support one-phase, two-phase, and
three-phase use cases.

The supported tool chain includes IAR and CodeWarrior.

2 Metering libraries
The metering algorithms perform computations in either
the time or frequency domain.

The Filter library calculates all billing and non-billing
quantities in the time domain and the FFT library does
the same in the frequency domain.

1
2

3

4

5

6

7

8
9

© Freescale Semiconductor, Inc., 2014. All rights reserved.

Metering libraries
Figure 1. Summary of library

At the application level, a meter can sample the voltage and current signal, send that sampled information
to the library. The library can then output useful information such as:

• Active energy (kWh)

• Reactive energy (kVARh)

• Active power (P)

• Reactive power (Q)

• Apparent power (S)

• RMS voltage (URMS)

• RMS current (IRMS)

Current {i(t)}

Voltage {u(t)}

FFT lib
or

Filter lib

kWh

kVARh

P

Q

URMS

IRMS

S

Application Hints For Using Freescale Metering Libraries in 3-phase Power Meters, Rev. 0

Freescale Semiconductor2

Metering libraries
2.1 Filter library

Figure 2. Filter library framework

For more information, please refer to the “KM3x: Kinetis KM3x MCU Family” page at freescale.com.
Select the Documentation tab and look for AN4265, “Filter-Based Algorithm for Metering Applications.”

The Filter library includes

• Filter library files: meterlib.a meterlib.h

• Math library files: fraclib.a fraclib.h, …

NOTE

The file names in the library may be changed in a future release. Please refer
to the related application note.
Application Hints For Using Freescale Metering Libraries in 3-phase Power Meters, Rev. 0

Freescale Semiconductor 3

Metering libraries
2.2 FFT library

Figure 3. FFT library framework

For more information, please refer to the “KM3x: Kinetis KM3x MCU Family” page at freescale.com.
Select the Documentation tab and look for AN4255, “FFT-Based Algorithm for Metering Applications,”
and AN4847, “Using an FFT on the Sigma-Delta ADCs.”

The FFT library includes:

• FFT library files: meterlibFFT2.a metering2.h, …

• Math library files: fraclib.a fraclib.h, …

NOTE

The file names in the library may be changed in a future release. Please refer
to the related application notes.

2.3 Common note for filter and FFT libraries

Together with the metering libraries we deliver a library with simple filters and math functions
implemented in fractional arithmetic. This library is represented by the files:

• fraclib.a

• fraclib_inlines.h
Application Hints For Using Freescale Metering Libraries in 3-phase Power Meters, Rev. 0

Freescale Semiconductor4

Library performance
• fraclib.h

All filter and math functions within this library are intended to be used predominantly within the metering
libraries, so they may not work correctly with all possible input arguments; for example, when filter
coefficients are >1.0 or when dividing negative numbers. These simplifications within the fractional
library allowed us to maximize the performance of the metering libraries.

3 Library performance
One important feature of electricity meters, including electronic meters, is metering accuracy.

The accuracy of the FFT and the filter are almost identical.

3.1 Accuracy of FFT/Filter

Figure 4. FFT/filter accuracy

3.2 FFT performance
Table 1. Computing performance of FFT library1

1 CPUCLK = 47.972352 MHz, Compiler optimization = high speed, finp = 50 Hz, Cartesian form of the FFT, ARM
Cortex-M0+ core.

Number of FFT samples Computing time [ms] MCU execution cycles

8 0.24 11513

16 0.55 26384

32 1.13 54208

64 2.42 116093

128 5.36 257131
Application Hints For Using Freescale Metering Libraries in 3-phase Power Meters, Rev. 0

Freescale Semiconductor 5

Filter library usage
3.3 Filter performance

3.4 Example of resource usage

Here is the resource usage of a typical three-phase power meter design.

NOTE

The flash resource includes only application and metering library code size.

4 Filter library usage

4.1 Requirements
• Sampled values are in 24-bit data format.

If sampled values are not 24-bit data format, please convert to 24-bit.

For example, the sampled value for voltage is 16-bit, as in uint16 adc_voltage.

Please define a new variable such as: Frac32 u24_samplePh2;

Then convert it to 24-bit: u24_samplePh2 = (Frac32)temp16 << 8.

Then the variable u24_samplePh2 may be used by meterlib.

• The filter coefficient is based on 1200 Hz.

Therefore the calculation frequency is 1200 Hz.

If you want to change to another frequency, please re-create the filter coefficient table using the
Filter-Based Metering Algorithm Config Tool. This tool is included with the filter library.

4.2 APIs
1. KWH_PULS_NUM(x): represents 50% of the energy of one active pulse

Table 2. Computing performance of Filter library1

1 CPUCLK = 47.972352 MHz, Compiler optimization = high speed, f = 50 Hz, ARM Cortex-M0+ core.

Phase number Computing time [ms] MCU execution cycles

1PH 0.20 9586

2PH 0.38 18130

3PH 0.63 30218

Table 3. Resource usage

Resource usage (3PH) Flash memory RAM CPU loading CAL period

Filter 34 KB 4.3 KB 75% 1200 Hz

FFT (interpolation)
N = 64

29 KB 8 KB 70% 50 Hz

FFT (synchronous)
N = 64

22 KB 5 KB 51% 50 Hz
Application Hints For Using Freescale Metering Libraries in 3-phase Power Meters, Rev. 0

Freescale Semiconductor6

Filter library usage
#define KWH_PULS_NUM(x) FRAC48(((5e2/(x))/(U_MAX*I_MAX/3600/CALCFREQ)))

X: constant pulse number—default is 400

CALCFREQ = 1200

For example:

KWH_PULS_NUM(PULSE_NUM)

The real meaning of this macro:

Suppose the sample interval time is t(f = 1/t = CALCFREQ), when condition

P1 t + P2 t + P3t + … = 3600  1000 / x = the energy of one active pulse

Therefore

P t = 3600 1000/x

P = 3600 1000/x/t = 3600 1000  CALCFREQ/x

Therefore

0.5  P = 3600 500  CALCFREQ/x = (5e2/x) / (1 / 3600 / CALCFREQ)

U_MAX I_MAX represents MAX power.

Mathematical normalization result:

KWH_PULS_NUM(x) = 0.5  P/ (U_MAX I_MAX)=

= (5e2/x) / (U_MAX  I_MAX / 3600 / CALCFREQ)

2. KVARH_PULS_NUM(x): represents 50% of the energy of one reactive pulse

#define KVARH_PULS_NUM(x) FRAC48(((5e2/(x))/(U_MAX I_MAX/3600/CALCFREQ)))

Similar with KWH_PULS_NUM(x)

3. do_filter: calculate the energy

The frequency of this function call is 1200 Hz.

The AFE module will generate a callback function when data are converted. Within the callback
function, data are scaled by gain and offsets found during calibration, then metering library
functions are called.

void do_filter(tMETERLIB3PH_DATA p,
Frac24 u1Q, Frac24 i1Q,
Frac24 u2Q, Frac24 i2Q,
Frac24 u3Q, Frac24 i3Q,
Frac32 *whCnt, Frac32 *varCnt,
Frac64 whRes, Frac64 varRes);

Input:
tMETERLIB3PH_DATA *p: includes the filter coefficient
u1Q, i1Q, …: the calibrated sampled result
whRes, varRes: pulse resolution

Input, Output:
whCnt, varCnt: output pulse number. They would be changed if energy reach to threshold.
For example:
do_filter(mlib,
-L_mul (u1 – u1_offset, u1_gain),
Application Hints For Using Freescale Metering Libraries in 3-phase Power Meters, Rev. 0

Freescale Semiconductor 7

FFT library usage
-L_mul (i1 – i1_offset, i1_gain),
-L_mul (u2 – u2_offset, u2_gain),
-L_mul (i2 – i2_offset, i2_gain),
-L_mul (u3 – u3_offset, u3_gain),
-L_mul (i3 – i3_offset, i3_gain),
&wh_cnt, &varh_cnt,
KWH_PULS_NUM(400), KVARH_PULS_NUM(400));
void do_filter(tMETERLIB3PH_DATA *p,

Frac24 u1Q, Frac24 i1Q,
Frac24 u2Q, Frac24 i2Q,
Frac24 u3Q, Frac24 i3Q,
Frac32 *whCnt, Frac32 *varCnt,
Frac64 whRes, Frac64 varRes)

{
METERLIB3PH_RemoveDcBias(p, u1Q, i1Q, u2Q, i2Q, u3Q, i3Q);
METERLIB3PH_CalcWattHours(p, whCnt, whRes);
METERLIB3PH_CalcVarHours(p, varCnt, varRes);
METERLIB3PH_CalcAuxiliary(p);

}

4. METERLIB3PH_ReadResultsPhx
void METERLIB3PH_ReadResultsPh1(tMETERLIB3PH_DATA *p, double *urms,

double *irms, double *w, double *var,
double *va, double *umax, double *imax);

Returns auxiliary variables: IRMS, URMS, P, Q, and S

It is okay to call this function anytime.

For example:
METERLIB3PH_ReadResultsPh1((tMETERLIB3PH_DATA*)&mlib,

(double*)&U_RMS_Ph1,
(double*)&I_RMS_Ph1,
(double*)&P_Ph1,
(double*)&Q_Ph1,
(double*)&S_Ph1,
(double*)&umax_Ph1,
(double*)&imax_Ph1);

5 FFT library usage

5.1 Requirements

Call FFT function PowerCalculation every whole period.

For example:

Suppose the grid frequency is 50 Hz—each period is 20 ms.

In this scenario, call the function PowerCalculation every 20 ms.

Suppose FFT N = 64. Then every 20 ms, ensure the sampling of 64 U/I values and send these values to the
FFT function.
Application Hints For Using Freescale Metering Libraries in 3-phase Power Meters, Rev. 0

Freescale Semiconductor8

Sampling process
5.2 APIs
1. N_SAMPLES: number of samples for FFT computing (only 8, 16, 32, 64, or 128)

Defined in fft2.h

MAX_FFT_SEND = N_SAMPLES / 2

2. PowerCalculation: computes the whole power vector
typedef long afetype;
typedef unsigned long afeutype;
void PowerCalculation(afetype *voltage, afetype *current, Power_Vector *powers,
afeutype *mU, afeutype *mI);

Parameters:

• voltage: [input], array size must be N_SAMPLES

• current: [input], array size must be N_SAMPLES

• Powers: [output], the calculated result

• mU: [output], the voltage magnitudes; array size must be MAX_FFT_SEND

• mI:[output], the current magnitudes; array size must be MAX_FFT_SEND

NOTE

mU and mI are used for harmonic analysis.

For example:
afetype v_sample[N_SAMPLES]; //enter the sampled voltage value into it
afetype i_sample[N_SAMPLES]; //enter the sampled current value into it
Power_Vector p_result;
afeutype magnFFTU [MAX_FFT_SEND];
afeutype magnFFTI[MAX_FFT_SEND];
PowerCalculation(v_sample, i_sample, &p_result, magnFFTU, magnFFTI);

6 Sampling process
Here is the background for the sampling process.

1. In the current three-phase solution, we used an AFE COC event to trigger the XBAR. The XBAR
is connected to the QT timer, and the timer triggers the SAR ADC sample.

2. The CT is used for sampling the current. CT is equal to inductance, so voltage is ahead of current.

3. The AFE samples the current, and the SAR ADC samples the voltage.

4. In the current solution, read U/I values in the AFE interrupt. At this point, the current value is
correct, but voltage is the previous point value because the AFE COC event just started to trigger
the QT, and the SAR ADC has not started sampling.

5. Read the ADC values in the AFE interrupt.

6. The reserved SAR ADC conversion time is 9 s.

After calibration, we can confirm the phase compensation between voltage and current.
Application Hints For Using Freescale Metering Libraries in 3-phase Power Meters, Rev. 0

Freescale Semiconductor 9

Sampling process
Figure 5. Filter SYNC process
Application Hints For Using Freescale Metering Libraries in 3-phase Power Meters, Rev. 0

Freescale Semiconductor10

Sampling process
6.1 Filter

Figure 6. Filter sampling process

Sampling process:

1. In this case the AFE uses continuous mode with a sample rate of 6000 Hz, so the AFE sample
period is 166 s.

Grid frequency is 50Hz, so every period’s sample points equal 6000/50 = 120.

Samples = 120

Degrees between samples: 360 / 120 = 3 degrees

2. A 24 MHz timer is used to implement the U-I delay.

3. Delay counter = delay_angle  24000000 / (2 * * 50) = delay_angle  240000 /

Here the unit of the delay angle is a radian.

Delay counter = delay_angle  240000 /

If the unit of delay_angle is a degree, then

Delay counter = delay_angle  4000 / 3

Three degrees = 4000 QT counter and 0.1 degree = 133 QT counter

4. Delay time(us) = delay counter / 24

The delay counter is based on a 24 Mhz timer.

Therefore

Delay time = delay counter / 24000000 s = delay counter / 24 s

For example, suppose the delay counter = 3000; then delay time is 3000/24 = 125 s.

5. Delay angle (unit is degree) = delay time(s)  18 / 1000

Delay counter = delay_angle  4000 / 3

Therefore
Application Hints For Using Freescale Metering Libraries in 3-phase Power Meters, Rev. 0

Freescale Semiconductor 11

Sampling process
delay_angle = Delay counter  3 / 4000 = delay time  24  3 / 4000

 = delay time  18 / 1000

6. (U1, I2), (U2, I3), … are used for calculation.

U delay I 4.5 degree = 3 degree + 1.5 degree; sample interval is 3 degrees, so U/I pair should use
the Ui, Ii+1

6.2 FFT

N = 64, f= 50Hz

Figure 7. FFT sample process

1. Degrees between samples: 360 / 64 = 5.625 degrees

Sample interval = 1000000 s / N / f, when N=64, f = 50

Interval = 1000000 s / 64 / 50 = 312 s

If a 24 Mhz timer is used, then

Interval counter = 24000000 / N / f = 7500

2. Delay counter = 4.5 degrees 4000/3 = 6000, delay time = 6000/24 = 250 s.

3. (U1, I1), (U2, I2), … are used for FFT calculation

4. CT delay angle = Sample interval – delay_time, CT delay angle is constant

The unit of the CT delay angle is the timer counter.

Therefore

CT delay angle = 24000000 / N / f – delay_time

Synchronous mode - SD in HW triggered single conv. mode

SD conversion1
145us (@OSR=256)

QT counting1
6000 (@250us)

SAR conv.1
9us

Fixed I-U delay
~259us (4.5°)

SA
R

sa
m

pl
e1

SD conversion2
145us (@OSR=256)

QT counting2
6000 (@250us)

SAR conv.2
9us

1st cycle
312us (@64 samples)

2nd cycle
312us (@64 samples)

SD conversion3
145us (@OSR=256)

QT counting3
6000 (@250us)

SAR conv.3
9us

3rd cycle
312us (@64 samples)

SD

sa
m

pl
e1

Fixed I-U delay
~259us (4.5°)

Fixed I-U delay
~259us (4.5°)

SD

sa
m

pl
e2

SD

sa
m

pl
e3

SD free time SD free time SD free time

SAR
free time

SA
R

sa
m

pl
e2

SA
R

sa
m

pl
e3

SAR
free time

I1 Read

U1 Read

I2 Read I3 Read

U3 Ready U4U3 ReadU2 Ready U2 Read
Application Hints For Using Freescale Metering Libraries in 3-phase Power Meters, Rev. 0

Freescale Semiconductor12

Pulse output
Here we suppose that N = 64, so

CT delay angle = 375000 / f – delay_time

After calibration, we get the CT delay time value under N=64, f= 50.

Named QT_DELAY(50 Hz), it is a constant value

CT delay angle = 7500 – QT_DELAY(50) = 375000 / f – delay_time

Therefore

delay_time = 375000 / f – 7500 + QT_DELAY(50)

Here the unit of delay_time is timer counter (based on 24 Mhz QT timer)

With the FFT algorithm we should measure the signal frequency. So frequency(f) is a known value, while
QT_DELAY(50) was derived from the calibration phase.

In this way it is possible to calculate the delay time with any signal frequency.

7 Pulse output

7.1 Macro PULSE_THRES: energy of one pulse

#define PULSE_THRES (3600  1000  10000ll / PULSE_NUM)

Here PULSE_NUM is 400, so

PULSE_THRES = 90000000

Only when

P  t  3600  1000 / 400

Output one pulse.

So

P 3600  1000  f / 400

Here f = 10000Hz.

So

P  3600  1000  10000 / 400 = 90000000

7.2 Pulse output algorithm

Here one timer interrupt is used. The frequency is 10000 (100 s).

This interrupt priority is lower than the AFE/ADC interrupt, but higher than others.

In every timer interrupt:
energy_active += p;
if (energy_active Š PULSE_THRES) {
Application Hints For Using Freescale Metering Libraries in 3-phase Power Meters, Rev. 0

Freescale Semiconductor 13

How to choose a metering library: FFT or Filter
energy_active –= PULSE_THRES;
output active pulse

}else if (energy_active £ (0 - PULSE_THRES)) {
energy_active += PULSE_THRES;
output active pulse

}

The reactive pulse output is similar to the active pulse output.

8 How to choose a metering library: FFT or Filter
1. If you want harmonic information, use the FFT library.

Only the FFT library supports harmonic information.

2. The FFT library requires the signal frequency, so the FFT needs more hardware resources.

The FFT needs one CMP module and at least one timer channel.

Use these resources to measure the signal frequency.

Filter library doesn’t use the frequency information.

3. FFT uses more RAM resources.

FFT uses a double buffer—one is used for calculation, and the other for saving sampled values.

Therefore FFT uses more RAM.

9 References
The following documents are available on freescale.com:

• AN4265, Filter-Based Algorithm for Metering Applications, Rev. 1, 12/2013

• AN4255, FFT-Based Algorithm for Metering Applications, Rev. 1, 10/2013

• AN4847, Using an FFT on the SD ADCs, Rev. 0, 12/2013
Application Hints For Using Freescale Metering Libraries in 3-phase Power Meters, Rev. 0

Freescale Semiconductor14

Document Number: AN5007
Rev. 0

10/2014

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer’s technical experts. Freescale does not convey any

license under its patent rights nor the rights of others. Freescale sells products pursuant

to standard terms and conditions of sale, which can be found at the following address:

freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior, Kinetis, and Processor Expert are

trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Tower is a

trademark of Freescale Semiconductor, Inc. All other product or service names are the

property of their respective owners.

© 2014 Freescale Semiconductor, Inc.

	1 Overview
	2 Metering libraries
	2.1 Filter library
	2.2 FFT library
	2.3 Common note for filter and FFT libraries

	3 Library performance
	3.1 Accuracy of FFT/Filter
	3.2 FFT performance
	3.3 Filter performance
	3.4 Example of resource usage

	4 Filter library usage
	4.1 Requirements
	4.2 APIs

	5 FFT library usage
	5.1 Requirements
	5.2 APIs

	6 Sampling process
	6.1 Filter
	6.2 FFT

	7 Pulse output
	7.1 Macro PULSE_THRES: energy of one pulse
	7.2 Pulse output algorithm

	8 How to choose a metering library: FFT or Filter
	9 References

