
© 2015 Freescale Semiconductor, Inc. All rights reserved.

FIR Filtering Using the Lightweight
Signal Processor on MPC5777M
by: Andrew Turner and Ian Howie

1 Introduction
The Lightweight Signal Processing (LSP) auxiliary

processing unit (APU) is designed to accelerate

processing applications normally suited to digital signal

processing (DSP) operations. The LSP-APU is

embedded in the e200z425n3 I/O processor found on

the Freescale’s MPC5777M device. The LSP-APU can

be used to accelerate signal processing routines such as

finite impulse response (FIR) and infinite impulse

response (IIR) filters. This is accomplished using the

standard 32-bit general purpose registers (GPRs), and

supports vector multiply/multiply accumulate/ dot

product operations using either a single or a pair of

GPR registers as a source/destination accumulator or as

a destination.

This application note details how to create an FIR filter

using the LSP-APU and the benefits it provides.

Examples are provided of the same FIR filter coded

using standard C, LSP-APU assembly functions, and

also C–level LSP intrinsic functions. This note also

provides performance comparisons of each technique.

A software package is provided with the application

note that uses the MULTI integrated development

environment tool provided by Green Hills software.

It is expected that the LSP-APU will be mainly utilized

Freescale Semiconductor, Inc. Document Number: AN5092

Application note Rev. 1 , 05/2015

Contents

1 Introduction .. 1
2 LSP comparison with SPE and SPE2 2
3 LSP –APU Programming basics .. 2

3.1 GPR Registers .. 2
3.2 GPR Register pairings ... 3
3.3 Instruction Overview ... 3
3.4 Example instructions ... 3
3.5 LSP-APU Data formats ... 4
3.6 Fractional arithmetic and its benefits to signal processing5

4 FIR Filter Introduction ... 6
4.1 Creating a 10 tap filter with LSP instructions 7
4.2 LSP Intrinsic instructions ... 11
4.3 LSP Intrinsic data Types .. 12
4.4 FIR Filter using Intrinsics .. 14

5 Performance comparisons .. 14
6 Summary .. 15
Appendix A ... 16

A.1 10 tap FIR filter using LSP-APU assembly 16
Appendix B ... 19

B.1 FIR filter written with LSP intrinsics 19

LSP–APU programming basics

FIR Filtering using the Lightweight Signal Processor on MPC5777M, Rev. 1, 05/2015

2 Freescale Semiconductor, Inc.

to perform signal processing on the 16-bit data output from the ADC modules, so the examples detailed

in the application note and software operate on 16-bit data.

2 LSP comparison with SPE and SPE2

Freescale offers different embedded signal processing solutions for different devices depending on the

target application. While the MPC5777M incorporates the LSP, other MPC5XXX Automotive

microcontrollers may use the Signal Processing Engine (SPE) or SPE2. The LSP uses a 32-bit register

model whereas the SPE /SPE2 uses a 64-bit register model. This gives the LSP less computational

performance than the SPE/SPE2, but offers benefits in current consumption. Additionally the LSP does

not contain a Floating Point unit which is present on SPE/SPE2. Existing SPE code can be ported to the

LSP but some degradation in performance should be expected.

3 LSP–APU programming basics

The LSP APU utilizes a general purpose register file with thirty-two 32-bit registers. LSP instructions

generally take elements from a first source register and operate on them with the corresponding elements

of a second source register (and/or a third source register or register pair acting as an accumulator) to

produce results. Results are placed in the destination register (32-bit results) or register pair (64-bit

results). Instructions that are vector in nature (that is, produce results of more than one element) provide

results for each element that are independent of the computation of the other elements.

3.1 GPR registers

The LSP APU requires a GPR register file with thirty-two 32-bit registers. Certain LSP APU

instructions view the 32-bit register as being composed of a vector of elements, each of which is 16 bits

wide. The most significant 16 bits are called halfword 0 (H0), the upper halfword, high halfword or even

halfword. The least significant 16 bits are called halfword 1 (H1), the lower halfword, low halfword or

odd halfword. LSP instructions write to all 32 bits of the destination register. Figure 1 illustrates this

nomenclature.

Figure 1. LSP register file nomenclature

LSP–APU programming basics

FIR Filtering using the Lightweight Signal Processor on MPC5777M, Rev. 1, 05/2015

Freescale Semiconductor, Inc. 3

3.2 GPR register pairings

Certain LSP instructions require a 64-bit source or destination. For these operands, a pair of general

purpose registers (register pair) are used. Pairs are always defined as an adjacent even/odd pair, such as

r10/r11, r12/r13, etc. Instruction encodings indicate the even register of the pair in the rD field.

3.3 Instruction overview

The following instruction types feature in the LSP-APU

• Loads and stores

— load and store 64-bit values (via register pairs)

— load and store 32-bit values

— load and store 16-bit values

— 16-bit values can be in upper and lower half of 32-bit word

— Sign extension or not

— Effective addresses must be naturally aligned for the length of the values loaded or stored

• Operations

— Arithmetic, logical, comparison, selection, movement

— Vector and scalar

• Multiply and Multiply-Accumulate

— 16 x 16 -> 16, with or without accumulation

— 16 x 16 -> 32, with or without accumulation

— 16 x 16 or 32 x 32 -> 64, with accumulation

— When accumulating, result is also written to destination register

3.4 Example instructions

LSP supports several different computational capabilities. Both modulo and saturation results can be

performed. Modulo results produce truncation of the overflow bits in a calculation. Saturation provides a

maximum or minimum representable value (for the data type) for positive or negative overflow

respectively. Instructions are provided for a wide range of computational capability. The operation types

can be divided into several basic categories:

• Simple instructions. These instructions use the corresponding elements of the operands to

produce a result that is placed in the destination register.

• Simple vector instructions. These instructions use the corresponding elements of the operands to

produce a vector result that is placed in the destination register.

— Arithmetic, shift of vector elements

— Rounding and saturation, operations

— Vector packing and unpacking operations

— Vector merge and extraction operations

LSP–APU programming basics

FIR Filtering using the Lightweight Signal Processor on MPC5777M, Rev. 1, 05/2015

4 Freescale Semiconductor, Inc.

• Complex instructions. The divide fractional instruction uses the operands to perform a fractional

divide result that is placed in the destination register.

• Multiply and accumulate instructions. These instructions perform multiply operations, optionally

add the result to the accumulator value in the destination register, and place the result into the

destination register. These instructions are composed of different multiply forms, data formats,

and data accumulate options.

• Dot product instructions. These instructions perform multiple multiply operations, optionally add

the result to the accumulator value in the destination register, and place the result into the

destination register. These instructions are composed of different forms, data formats and data

accumulate options.

• Load and store instructions. These instructions provide load and store capabilities for moving

data to and from memory. A variety of forms are provided that position data for efficient

computation.

• Compare instructions.

• Miscellaneous instructions. These instructions perform miscellaneous functions such as field

manipulation, bit-reversed and circular incrementing, count leading sign/zero bits, etc.

Full details of all instructions can be found in the LSP-APU reference manual.

An example of a 16-bit Vector addition LSP-APU instruction is shown in Figure 2, illustrating the GPR

register usage differences between a traditional classic Power PC add instruction and the LSP-APU add

half-word instruction. Mnemonics for LSP instructions generally begin with the letter(s) “z” or “zv”.

Figure 2. 16-bit vector addition example using LSP-APU

3.5 LSP-APU data formats

The LSP-APU provides two data formats. These are integer format – as traditionally used in computing,

and fractional data format which is conventionally used for DSP fractional arithmetic and is useful for

representing data converted from analog devices. In the LSP-APU, Integer formats can be signed or

unsigned, whereas the Fractional data format is treated as signed.

Unsigned integer arithmetic operations produce identical bit results as unsigned fractional values would,

therefore unsigned fractional instruction forms are not defined for LSP.

LSP–APU programming basics

FIR Filtering using the Lightweight Signal Processor on MPC5777M, Rev. 1, 05/2015

Freescale Semiconductor, Inc. 5

3.6 Fractional arithmetic and its benefits to signal processing

When multiplying two 16-bit integers the results can often require 32 bits for the result. Rather than

using integers, DSPs often use fractional arithmetic as it removes the need to deal with problematic

overflows.

 Signed fractions consist of 16- or 32-bit binary fractional values in twos complement form the range

from –1 to less than 1. Signed fractions in 1.15, or 1.31 format place the decimal point immediately to

the right of the most significant bit. The largest representable value is 1 – 2–(n–1) where n represents the

number of bits in the value. The smallest represent able value is-1. Certain computations that produce

values larger than 1–2–(n–1) or smaller than –1 set OV in the SPEFSCR.

While multiplication of two 16-bit fixed point fractional numbers can also require 32 bits to display the

result, the 32-bit result can be rounded to 16 bits introducing an error of only 2-16. This is the method

used by the LSP-APU. The format used in the examples in this application note is 1.15 (Frac16) and can

represent numbers between -1 and 1 (-2-15) (1 cannot be represented exactly). Unfortunately the

debugger and assemblers cannot represent the fractional values so the decimal equivalent is displayed.

To convert from a 16-bit integer to a fractional number simply divide by 32768. Figure 3 shows a

comparison of Signed integer format and Frac 16 format.

Figure 3. Example Multiplication of a Fractional number using LSP-APU Fractional arithmetic

instructions

Multiplication of two signed fractional value causes the result to be shifted left one bit to remove the

resultant redundant sign bit in the product. In this case, a 0 bit is concatenated as the least significant bit

of the shifted result. This can be explained using the example shown below.

• Example operation to be carried out:

• 0.75 * 0.75 = 0.5625

FIR filter introduction

FIR Filtering using the Lightweight Signal Processor on MPC5777M, Rev. 1, 05/2015

6 Freescale Semiconductor, Inc.

Multiplication example using Fractional Arithmetic instruction

• Fractional format 0.75 converted to 16-bit Integer = (0.75*32768) = 24576 = 0x6000

• Carry out multiplication 0x6000 * 0x6000 = 0x24000000

• Result Rounded to Upper 16 bits=0x2400

• Convert back to fractional: 0x 2400 / 32768 = 0.28125 //Note this is half the correct

result

• To obtain the correct result the LSP-APU left shifts the result one location

• 0x2400 = 0010 0100 0000 0000 shift left 1 = 0100 1000 0000 0000 = 0x4800

• Convert back to fractional: 0x4800/32768 = 0.5625

4 FIR filter introduction

A finite impulse response (FIR) filter is a digital signal processing procedure used to obtain a particular

impulse response of finite duration to an input through the digital suppression of unwanted components.

The FIR filter of length N multiplies N delayed signal inputs by defined filter co-efficients and sums the

results to produce a weighted average of the most recent input samples. The co-efficients values

determine which signal components are suppressed by the filter. The filter co-efficients are most easily

generated using a filter design software tool.

Figure 4. FIR Filter operation diagram

The FIR filter performs the following convolution equation

𝒚(𝒏) = 𝒉(𝒏) ∗ 𝒙(𝒏)

FIR filter introduction

FIR Filtering using the Lightweight Signal Processor on MPC5777M, Rev. 1, 05/2015

Freescale Semiconductor, Inc. 7

Convolution is a multiplication of one sample by the other and then integrating the product. For

discretely sampled time signals the integration is simply a sum, so the FIR filter can be represented by

this form:

𝒚(𝒏) = ∑𝒉(𝒌) ∗ (𝒏 − 𝒌)

𝑵−𝟏

𝒌=𝟎

An example of an N-tap filter is shown in Figure 4 where N is the number of taps, h(k) is a vector of

coefficients and x(n-k) is the input data array.

For example, the 20th element of the output vector of a 10-TAP filter can be represented as:

y(20) = h(0)·x(20) + h(1)·x(19) + h(2)·x(18) ……. + h(9).x(11) Eqn. 1

Thus, each entry in the output vector is the accumulated product of N multiplications of a coefficient by

the corresponding delayed data sample. Note that the initial outputs y(0), y(1) ….y(N-2) are not valid

until the delay line has been filled with sample x(N-1).

4.1 Creating a 10 tap filter with LSP instructions

The FIR filter can be efficiently implemented using the LSP. This section details how the FIR filter

process can be split into LSP code sections, and then how the data is then manipulated within the 32-bit

general-purpose registers (GPRs) by the LSP instructions. The diagrams can be used to aid

understanding of the corresponding code sequences in the code appendix A. The software package

associated with this application note also contains this code and the reader may wish to step though this

code sequence to gain an insight into the operation of the LSP instructions.

Stage 1:

The first step of the LSP FIR filter is to populate the general purpose registers with the filter co-

efficients and the initial data. Figure 1 and Figure 2 illustrated show how the LSP allows the ordinary

32-bit General purpose registers to be used as two discrete 16-bit registers. Figure 5 then shows how to

use this principle to vector load the co-efficients and initial data into the GPR registers. The coefficients

are loaded using a combination of zlhhsplat and zlhhsplatu instruction, and the data is loaded using a

combination of zldd(u) and zlwwu instructions. The code for this sequence can be viewed in stage 1 of

the LSP filter code shown in appendix A – FIR Filter written in LSP assembly.

Once the co-efficients and data have been loaded, the code enters the FIR filtering loop. The first stage

in the filter loop is to load the new data consisting of 2 x 16-bit ADC results into a GPR register.

Stage 2:

FIR filter introduction

FIR Filtering using the Lightweight Signal Processor on MPC5777M, Rev. 1, 05/2015

8 Freescale Semiconductor, Inc.

The input data is multiplied by the odd co-efficients. Execution of the first MAC (Multiply Accumulate

operation) instruction results in a vector containing two elements that reside in the 32-bit accumulator:

h[9].x[0] and h[9].x[1].

The next MAC instruction multiplies the next vectors of data elements and odd coefficients and

accumulates them with the previous results. Thus, with a single LSP-APU LPU-APU instruction, two

MACs are executed per clock cycle. The operation is shown visually in Figure 5 and the code sequence

is located in stage 2 of Appendix A.

Stage 3:

To shift the data through the delay line, a series of vector merge instructions are executed. This is shown

in Figure 6, where the resultant vector is the offset of the original vector. The corresponding code

sequence is shown at stage 3 of appendix A.

Stage 4:

Now that the data has been shifted one place through the delay line, a series of MAC instructions are

executed except this time multiplying the even coefficients with the input data elements. The results are

accumulated with those from stage 2. In this manner, two elements of the output vector are calculated in

parallel as illustrated in Figure 7.

Stage 5:

The calculation of the first two outputs of the filter are now stored in the output array using the zstwhedu

instruction which stores the word as halfwords from the even elements in the register pair Rs:RS+1.

Stage 6:

The data is shifted one position through the delay line, as per stage 3. This prepares the data for the

MAC instructions at the start of the filter loop.

Stage 7:

The Counter address for the filter is incremented and compared with the intended number of input

samples. If the filter has not completed it returns to the start of the main loop.

FIR filter introduction

FIR Filtering using the Lightweight Signal Processor on MPC5777M, Rev. 1, 05/2015

Freescale Semiconductor, Inc. 9

Figure 5. Vector loading of co-efficients

The delayed input data is multiplied and accumulated using the instruction “zvmhulfaas” -

(vector multiply halfwords, upper/lower, signed fractional and accumulate with saturate)

0 32 0 32

The code example uses Vector merge low/high

halfwords (zvmergelohih)

FIR filter introduction

FIR Filtering using the Lightweight Signal Processor on MPC5777M, Rev. 1, 05/2015

10 Freescale Semiconductor, Inc.

Figure 6. Vector merge instructions to delay data

FIR filter introduction

FIR Filtering using the Lightweight Signal Processor on MPC5777M, Rev. 1, 05/2015

Freescale Semiconductor, Inc. 11

Figure 7. Multiplying and accumulating the delayed input data

4.2 LSP intrinsic instructions

There are two methods available to develop functions for the LSP APU. This can be directly using the

LSP assembly instructions as detailed in the LSP APU Reference manual or using a C programming

interface model, also known as compiler intrinsic functions. The compiler intrinsics operate as a

function call that when compiled generates the LSP instruction that it represents. Coding with the

intrinsic functions provides some benefits over using the assembly as the actual register allocation is

decided by the compiler and the code generated is Power PC Embedded Application Binary Interface

(EABI) compliant. The intrinsics coding environment is also more familiar to the user and abstracts

some of the complexity from using the LSP. However because the compiler allocates register usage for

each intrinsic used, this can lead to some inefficiencies. An intrinsic call does not strictly result in

generation of a single assembly instruction when compiled. This can have a detrimental performance

effect when compared with coding that utilizes only assembly instructions.

FIR filter introduction

FIR Filtering using the Lightweight Signal Processor on MPC5777M, Rev. 1, 05/2015

12 Freescale Semiconductor, Inc.

4.3 LSP intrinsic data types

The following section lists the supported LSP data types. The compiler treats LSP data types as integer

types and uses the standard PowerPC ABI calling conventions. There are four kinds of data types:

 * Opaque data types are generic types accepted in most LSP intrinsic functions.

 * Transparent data types are accepted in place of opaque types, but are more specific and provide

better display and debugging ability in MULTI.

 * Immediate data types are accepted for intrinsics that have immediates for arguments.

 * The Condition data type is accepted in vector comparison intrinsics.

Opaque Types

Name Vector Size Element Size (Bits)

__lsp16_16__ 16 16

__lsp32_32__ 32 32

__lsp32_16__ 32 16

__lsp64_64__ 64 64

__lsp64_32__ 64 32

Transparent Types

Name Opaque Type Signedness Format

__lsp16_s16__ __lsp16_16__ signed integer

__lsp32_s32__ __lsp32_32__ signed integer

__lsp32_s16__ __lsp32_16__ signed integer

__lsp64_s64__ __lsp64_64__ signed integer

__lsp64_s32__ __lsp64_32__ signed integer

__lsp16_u16__ __lsp16_16__ unsigned integer

__lsp32_u32__ __lsp32_32__ unsigned integer

__lsp32_u16__ __lsp32_16__ unsigned integer

__lsp64_u64__ __lsp64_64__ unsigned integer

__lsp64_u32__ __lsp64_32__ unsigned integer

__lsp16_uf16__ __lsp16_16__ unsigned fraction 0.16

__lsp32_uf32__ __lsp32_32__ unsigned fraction 0.32

__lsp32_uf16__ __lsp32_16__ unsigned fraction 0.16

FIR filter introduction

FIR Filtering using the Lightweight Signal Processor on MPC5777M, Rev. 1, 05/2015

Freescale Semiconductor, Inc. 13

__lsp16_sf16__ __lsp16_16__ signed fraction 0.16

__lsp32_sf32__ __lsp32_32__ signed fraction 1.31

__lsp32_sf16__ __lsp32_16__ signed fraction 1.15

__lsp32_9_23__ __lsp32_32__ signed fraction 9.23

__lsp64_9_23__ __lsp64_32__ signed fraction 9.23

__lsp64_33_31__ __lsp64_64__ signed fraction 33.31

__lsp64_17_47__ __lsp64_64__ signed fraction 17.47

Immediate Types

Name Bits Signedness

__lsp5_uimm__ 5 unsigned

__lsp4_uimm__ 4 unsigned

__lsp5_simm__ 5 signed

__lsp2_offset__ 2 unsigned

Condition Type

Name Bits

__lsp4_crd__ 4

In addition to intrinsics explicitly defining individual LSP instructions, there exists a set of data

manipulation intrinsics. These intrinsics act like functions with parameters that are passed by value.

These intrinsics are classified into:

• Create intrinsics

— These intrinsics create new generic 64-bit opaque data types from the given inputs passed

by value. In the FIR example, the 64-bit opaque variable are initialized as:

— Coefficients1 = __ev_create_u32(h_ptr[0], h_ptr[0]);

• Get intrinsics

— These intrinsics allow the user to access data from within a specified location of the

generic 64-bit opaque data type. In the FIR example, the upper and lower results within

the 64-bit opaque variable Accumulating_Product are extracted as follows:

— y_ptr[n] = __ev_get_upper_u32(Accumulating_Product)

— y_ptr[n+1] = __ev_get_lower_u32(Accumulating_Product)

• Set intrinsics

— These intrinsics provide the capability of setting values in a 64-bit opaque data type that

Performance comparisons

FIR Filtering using the Lightweight Signal Processor on MPC5777M, Rev. 1, 05/2015

14 Freescale Semiconductor, Inc.

the intrinsic or the user specifies.

• Convert intrinsics

— These intrinsics convert a generic 64-bit opaque data type to a specific signed or unsigned

integer

4.4 FIR filter using intrinsics

The LSP 10 tap FIR filter written directly in assembly was re-written using LSP assembly intrinsics and

is shown in Appendix B. A comparison between the original LSP assembly code and the intrinsics

version should give the reader an insight into the usage of the intrinsics functions. The intrinsics FIR

filter also has two different possible configurations. The first option, (A) simply reuses the intrinsic

functions that are explicitly equivalent to the LSP assembly function to load the co-efficients and initial

data into the registers. The second option (B) uses the Create intrinsics described in above section. The

create intrinsics add readability to the code at the expense of execution time due to extra non-LSP

instructions.

5 Performance comparisons

The performance of the different 10-tap FIR filters is shown in Table 1.

Table 1. FIR filter performance comparison

FIR FILTER SOURCE

TYPE

Compiler optimisations Processor Cycle

count

Compiled functions

size (bytes)

C-Code None 47620 89

C-Code -Ospeed 10819 233

LSP Assembly None (compiler

optimization has no effect

on LSP assembly

instructions)

5639 174

LSP Intrinsics

(Equivalent Intrinsics

only)

None 6054 217

LSP Intrinsics

(Equivalent Intrinsics

only)

-Ospeed 4348 405

LSP Intrinsics (Using

create intrinsics)

None 7946 541

LSP Intrinsics (Using

create intrinsics)

-Ospeed 4669 539

Summary

FIR Filtering using the Lightweight Signal Processor on MPC5777M, Rev. 1, 05/2015

Freescale Semiconductor, Inc. 15

The code provided in the associated software package for this application note was used to obtain these

measurements. In the project all of the instructions and data for the three function types are located in

the e200z425 local data and instruction memory, guaranteeing single cycle CPU read access for fastest

code execution. The software was compiled using Green Hills software compiler version 201354. The

optimization option (–Ospeed) enables optimizations that improve both size and performance, and

additional optimizations that improve performance at the expense of size.

6 Summary

Using the LSP-APU to create digital filtering processing functions rather than C code can significantly

reduce the execution time of the Filter functions. The examples given in this application note

demonstrate how to create a simple 10 tap FIR filter using LSP assembly or Intrinsic functions. The

performance benefits of the LSP-APU code versus the C-code are apparent using the 10 tap filter, and

these benefits of using the LSP generally become even more significant as the complexity of the DSP

function increases.

In addition to the FIR filtering examples in this application note, the LSP-APU can be also used to

significantly improve the overall performance of the fixed-point arithmetic based applications, such as

motor control tasks. As the motor control applications can be complicated to develop, Freescale provides

the easy to use solution, the Automotive Math and Motor Control Library Set. This production ready

library provides the customer with highly optimized building blocks to create the motor control

application. It is available as precompiled object code for free at www.freescale.com/AutoMCLib.

Moreover it is also available in licensed source code version, further utilizing the benefits of LSP-APU

instruction set to increase the calculation speed.

http://www.freescale.com/AutoMCLib

Summary

FIR Filtering using the Lightweight Signal Processor on MPC5777M, Rev. 1, 05/2015

16 Freescale Semiconductor, Inc.

Appendix A

A.1 10 tap FIR filter using LSP-APU assembly

void fir_Signed_c(unsigned short N, short *x, short *y, short *h);

#fir_Signed16 (N, SDADC1_RESULTS, LSP_FIR_OUT, hr1);

.align 16

fir_Signed16:

#<# register definition

.equ N, r3

.equ x, r4

.equ y, r5

.equ h, r6

#co-efficients

.equ h0, r10

.equ h1, r11

.equ h2, r12

.equ h3, r13

.equ h4, r14

.equ h5, r15

.equ h6, r16

.equ h7, r17

.equ h8, r18

.equ h9, r19

#Data

.equ x0, r20

.equ x1, r21

.equ x2, r22

.equ x3, r23

.equ x4, r24

.equ x5, r25

.equ x6, r26

.equ x7, r27

.equ x8, r28

.equ x9, r29

.equ x10,r30

.equ temp, r8

.equ temp1,r9

.equ cnt, r7

Summary

FIR Filtering using the Lightweight Signal Processor on MPC5777M, Rev. 1, 05/2015

Freescale Semiconductor, Inc. 17

#>#

#--

#--- SAVING CONTEXT --

store nonvolatile registers

e_stwu r1, -28(r1) # stwu - store with update - r1 contains stack pointer. In this case local DMEM

 # store r25 to r31 onto stack

e_stmw r25, 0(r1) # stmw - store multiple word - r 14 ro r31 are volatile and as such must be saved and restored if used in the

routine

#--

#Initialize counter to zero

e_li cnt,0 # clear counter

#--

#-- STAGE 1 : LOADING THE CO-EFFICIENTS --

##load the co-efficients

zlhhsplat h0,0(h) # CO-EFFICIENT1 # zlhhsplat = Vector Load halfword into halfwords and splat rD,d(rA)

zlhhsplatu h1, 2(h) # CO-EFFICIENT2 # zlhhsplatu = Vector Load halfword into halfwords and splat [with update] rD,d(rA)

zlhhsplatu h2, 2(h) # CO-EFFICIENT3 # In both of the zlhhsplat[u] instructions the halfword addressed by rA is "splatted"

 # across the destination word rD

zlhhsplatu h3, 2(h) # CO-EFFICIENT4 #such that rD = rArA. In the case of the zlhhsplatu instruction the update immediate "u"

 # means that rA is updated to

zlhhsplatu h4, 2(h) # CO-EFFICIENT5 #the effective address + 2 bytes prior to the "splat"execution.

zlhhsplatu h5, 2(h) # CO-EFFICIENT6

zlhhsplatu h6, 2(h) # CO-EFFICIENT7

zlhhsplatu h7, 2(h) # CO-EFFICIENT8

zlhhsplatu h8, 2(h) # CO-EFFICIENT9

zlhhsplatu h9, 2(h) # CO-EFFICIENT10

#--

#-- :LOADING THE INITIAL DATA---

se_subi y, 4 # decrement y pointer - This is because zstwhedu instruction in the output loop has an

 # immediate update so the pointer must be pre decremented by 1 word prior to reaching # loop

 #Load the X-data

zldd x0, 0(x) #Loads two 32-bit registers (x0 and x1) with the 16-bit results of the first 4 ADC conversions

zlddu x2, 8(x) #Loads two 32-bit registers (x2 and x3) with the 16-bit results of the next 4 ADC conversions

zlwwu x4, 8(x) #Loads one 32-bit register (x4) with the 16-bit results of the next 2 ADC conversions

#--

#-- MAIN LOOP --

loop:

zlwwu x5, 4(x) # load in the first new data - this is not multiplied yet but is merged in during stage 4

#-- STAGE 2 : MAC THE ODD COEFFICIENTS---

multiply and accumulate using odd coefficients

Summary

FIR Filtering using the Lightweight Signal Processor on MPC5777M, Rev. 1, 05/2015

18 Freescale Semiconductor, Inc.

zvmhulsf temp, h9, x0 # InputVector_0 * Coefficients 10

zvmhulsfaas temp, h7, x1 # InputVector_1 * Coefficients 8

zvmhulsfaas temp, h5, x2 # InputVector_2 * Coefficients 6

zvmhulsfaas temp, h3, x3 # InputVector_3 * Coefficients 4

zvmhulsfaas temp, h1, x4 # InputVector_4 * Coefficients 2

#-- STAGE 3 : MERGE THE INPUT VECTORS--

#------------------- merge to rotate input data vectors so that the even coefficients multiply the corresponding delayed data ----------------------

zvmergelohih x0,x0,x1 # InputVector0 = Merge InputVector_0 & InputVector_1

zvmergelohih x1,x1,x2 # InputVector1 = Merge InputVector_1 & InputVector_2

zvmergelohih x2,x2,x3 # InputVector2 = Merge InputVector_2 & InputVector_3

zvmergelohih x3,x3,x4 # InputVector3 = Merge InputVector_3 & InputVector_4

zvmergelohih x4,x4,x5 # InputVector4 = Merge InputVector_4 & InputVector_5 --------- "New" vector comes in here

#-- STAGE 4 : MAC THE EVEN COEFFICIENTS---

multiply and accumulate using even coeffs

zvmhulsfaas temp, h8, x0 # InputVector_0 * Coefficients 9

zvmhulsfaas temp, h6, x1 # InputVector_1 * Coefficients 7

zvmhulsfaas temp, h4, x2 # InputVector_2 * Coefficients 5

zvmhulsfaas temp, h2, x3 # InputVector_3 * Coefficients 3

zvmhulsfaas temp, h0, x4 # InputVector_4 * Coefficients 1

#-- STAGE 5 : STORE OUTPUT TO ARRAY---

zstwhedu temp,4(y) # Update y address pointer by 4 immediately and then store two 16 bit results

#-- STAGE 6 : MERGE THE INPUT VECTORS--

#merge to rotate input data vectors

zvmergelohih x0,x0,x1 # InputVector0 = Merge InputVector_0 & InputVector_1

zvmergelohih x1,x1,x2 # InputVector1 = Merge InputVector_1 & InputVector_2

zvmergelohih x2,x2,x3 # InputVector2 = Merge InputVector_2 & InputVector_3

zvmergelohih x3,x3,x4 # InputVector3 = Merge InputVector_3 & InputVector_4

zvmergehiloh x4,x5,x5 # InputVector4 = InputVector_5 -------------"New" vector comes in here

#-- STAGE 7 : LOOP END TEST--

e_addi cnt, cnt, 2

cmpw cnt, N

e_bne loop

#--

#--- STAGE 8 RESTORE CONTEXT ---

--

restore non-volatile regs

e_lmw r25, 0(r1)

delete stack frame

e_addi r1, r1, 28

se_blr

Summary

FIR Filtering using the Lightweight Signal Processor on MPC5777M, Rev. 1, 05/2015

Freescale Semiconductor, Inc. 19

Appendix B

B.1 FIR filter written with LSP intrinsics
void fir_frac16_LSP__trans_intrinsic(uint16_t N, int16_t *x_ptr, int16_t *y_ptr, int16_t *h_ptr)

{

__lsp32_sf16__ InputVector0, InputVector1, InputVector2, InputVector3, InputVector4, InputVector5;

__lsp32_sf16__ Coeff1, Coeff2, Coeff3, Coeff4, Coeff5, Coeff6, Coeff7, Coeff8, Coeff9, Coeff10;

__lsp64_32__ Accumulating_Product;

int n = 0;

//--

--

//------------------------------- STAGE 1 : LOADING THE CO-EFFICIENTS ----------------------------------

// ----- Option A Load the coefficients in to registers using direct LSP equivalent instructions ---

//

#ifdef Full_Intrinsics

Coeff1 = __zlhhsplat(h_ptr, 0);

Coeff2 = __zlhhsplatu(h_ptr, 2);

Coeff3 = __zlhhsplatu(h_ptr, 4);

Coeff4 = __zlhhsplatu(h_ptr, 6);

Coeff5 = __zlhhsplatu(h_ptr, 8);

Coeff6 = __zlhhsplatu(h_ptr, 10);

Coeff7 = __zlhhsplatu(h_ptr, 12);

Coeff8 = __zlhhsplatu(h_ptr, 14);

Coeff9 = __zlhhsplatu(h_ptr, 16);

Coeff10 = __zlhhsplatu(h_ptr, 18);

//----------------------- Option B Load the co-efficients using LSP create intrinsics -----------

#else

//example usage of create intrinsics

//__lsp32_16__ __zlhhsplat __ARGS((void * a, __lsp5_uimm__ b)) __ATTRIBUTE((pure));

Coeff1 = __lsp_create_32_16(h_ptr[0], h_ptr[0]);

Coeff2 = __lsp_create_32_16(h_ptr[1], h_ptr[1]);

Coeff3 = __lsp_create_32_16(h_ptr[2], h_ptr[2]);

Coeff4 = __lsp_create_32_16(h_ptr[3], h_ptr[3]);

Coeff5 = __lsp_create_32_16(h_ptr[4], h_ptr[4]);

Summary

FIR Filtering using the Lightweight Signal Processor on MPC5777M, Rev. 1, 05/2015

20 Freescale Semiconductor, Inc.

Coeff6 = __lsp_create_32_16(h_ptr[5], h_ptr[5]);

Coeff7 = __lsp_create_32_16(h_ptr[6], h_ptr[6]);

Coeff8 = __lsp_create_32_16(h_ptr[7], h_ptr[7]);

Coeff9 = __lsp_create_32_16(h_ptr[8], h_ptr[8]);

Coeff10 = __lsp_create_32_16(h_ptr[9], h_ptr[9]);

#endif

//#---

//#----------------- : LOADING THE INITIAL DATA---

// Option A: Load the first set of data to be processed using direct LSP equivalent instructions

#ifdef Full_Intrinsics

 InputVector0 = __zlww(x_ptr,0);

 InputVector1 = __zlwwu(x_ptr,4);

 InputVector2 = __zlwwu(x_ptr,8);

 InputVector3 = __zlwwu(x_ptr,12);

 InputVector4 = __zlwwu(x_ptr,16);

#else

//Option B: Load the first set of data to be processed using LSP equivalent instructions ---------------

// Load the first set of data to be processed

InputVector0 = __lsp_create_32_16(x_ptr[n+0], x_ptr[n+1]) ;

InputVector1 = __lsp_create_32_16(x_ptr[n+2], x_ptr[n+3]) ;

InputVector2 = __lsp_create_32_16(x_ptr[n+4], x_ptr[n+5]) ;

InputVector3 = __lsp_create_32_16(x_ptr[n+6], x_ptr[n+7]) ;

InputVector4 = __lsp_create_32_16(x_ptr[n+8], x_ptr[n+9]) ;

// //if defined LSP instructions

#endif

for (n=0; n<N; n+=2)

{

#ifdef Full_Intrinsics

InputVector5 = __zlwwu(x_ptr,16);

x_ptr += 2;

#else

InputVector5 = __lsp_create_32_16(x_ptr[n+10],x_ptr[n+11]) ;

#endif

//----------------------- STAGE 2 : MAC THE ODD COEFFICIENTS--

Summary

FIR Filtering using the Lightweight Signal Processor on MPC5777M, Rev. 1, 05/2015

Freescale Semiconductor, Inc. 21

Accumulating_Product = __zvmhulsf(InputVector0, Coeff10) ;

Accumulating_Product = __zvmhulsfaas(Accumulating_Product, InputVector1, Coeff8) ;

Accumulating_Product = __zvmhulsfaas(Accumulating_Product,InputVector2, Coeff6) ;

Accumulating_Product = __zvmhulsfaas(Accumulating_Product,InputVector3, Coeff4) ;

Accumulating_Product = __zvmhulsfaas(Accumulating_Product,InputVector4, Coeff2) ;

// -------------------------------- STAGE 3 : MERGE THE INPUT VECTORS-----------------------------------

// -------- merge to rotate input data vectors so that the even coefficients ---------------------------

// -------- multiply the corresponding delayed data --

InputVector0 = __zvmergelohih(InputVector0, InputVector1);

InputVector1 = __zvmergelohih(InputVector1, InputVector2);

InputVector2 = __zvmergelohih(InputVector2, InputVector3);

InputVector3 = __zvmergelohih(InputVector3, InputVector4);

InputVector4 = __zvmergelohih(InputVector4, InputVector5);

// ---------------------- STAGE 4 : MAC THE EVEN COEFFICIENTS---

Accumulating_Product = __zvmhulsfaas(Accumulating_Product,InputVector0, Coeff9);

Accumulating_Product = __zvmhulsfaas(Accumulating_Product,InputVector1, Coeff7);

Accumulating_Product = __zvmhulsfaas(Accumulating_Product,InputVector2, Coeff5);

Accumulating_Product = __zvmhulsfaas(Accumulating_Product,InputVector3, Coeff3);

Accumulating_Product = __zvmhulsfaas(Accumulating_Product,InputVector4, Coeff1);

// ---------------------- STAGE 5 : STORE OUTPUT TO ARRAY---

 __zstwhed (Accumulating_Product, y_ptr,0);

 y_ptr =y_ptr+2;

// ---------------------- STAGE 6 : MERGE THE INPUT VECTORS---

InputVector0 = __zvmergelohih(InputVector0, InputVector1);

InputVector1 = __zvmergelohih(InputVector1, InputVector2);

InputVector2 = __zvmergelohih(InputVector2, InputVector3);

InputVector3 = __zvmergelohih(InputVector3, InputVector4);

InputVector4 = __zvmergehiloh(InputVector5, InputVector5);

}

}

#pragma ghs section vletext=default

Summary

FIR Filtering using the Lightweight Signal Processor on MPC5777M, Rev. 1, 05/2015

22 Freescale Semiconductor, Inc.

B.1.1 FIR Filter written in C

void fir_frac16_c(uint16_t N, int16_t *x, int16_t *y, int16_t *h)

{

 int32_t n, k;

 int32_t acc;

 for (n = 0; n < N; n++)

 {

 acc = 0;

 for (k = 0; k < 10; k++)

 {

 acc += h[k] * x[n+k];

 }

 y[n] = (int16_t) (acc >> 15);

 }

}

Document Number: AN5092
Rev. 1

05/2015

How to Reach Us:

Home Page:

freescale.com

Web Support:

freescale.com/support

Information in this document is provided solely to enable system and software implementers to

use Freescale products. There are no express or implied copyright licenses granted hereunder to

design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its

products for any particular purpose, nor does Freescale assume any liability arising out of the

application or use of any product or circuit, and specifically disclaims any and all liability,

including without limitation consequential or incidental damages. “Typical” parameters that may

be provided in Freescale data sheets and/or specifications can and do vary in different

applications, and actual performance may vary over time. All operating parameters, including

“typicals,” must be validated for each customer application by customer's technical experts.

Freescale does not convey any license under its patent rights nor the rights of others. Freescale

sells products pursuant to standard terms and conditions of sale, which can be found at the

following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat.

& Tm. Off. All other product or service names are the property of their respective owners.

© 2015 Freescale Semiconductor, Inc.

http://www.freescale.com/
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

