

LPC800 MICROCONTROLLERS INNOVATION MADE EASY

A broad market microcontroller portfolio with exceptional ease of use and design flexibility

INTRODUCTION TO LPC800

With a clear increase in performance and improvements in power consumption and efficiency, you're likely to see significant benefits with a 32-bit microcontroller. You also get access to the broadest ecosystem of partners on the planet – the thriving Arm® Cortex®-M community.

Building on our experience as one of Arm's longest embedded partners, and as a result of our proprietary breakthroughs and technologies, our MCUs are remarkably easy to use, giving you an express route to get to market quickly.

EASE-OF-USE WITH THE LPC800

Ease-of-use in the chip

- Efficient Cortex-M0+ core architecture
- Intelligent peripheral integration for connectivity, configurable logic, and control loop
- PCB friendly package and compact form factor package options

Ease-of-use beyond the chip

- Developer-friendly MCUXpresso ecosystem with various IDEs of choice, resourceful SDK, easy-to-use configuration and visualization tools
- Compact evaluation kit for fast prototyping, with easyto-access pin headers
- Access to a vast variety of resources including reference designs, application notes, communities and other technical resources

Faster code execution

Smaller code size

it make sense - even

technology?

economically – to stick to an increasingly limiting

Lower energy consumption

nxp.com/LPC800 2

DESIGNED WITH KEY FEATURES

Flexible, easy-to-use peripherals

- ADC
- Analog Comparator
- Code Read Protection
- Flexible IO Ports
- GPIO Pin Manipulation
- I²C

- I3C
- Multi Rate Timer
- Pattern Match Engine
- Power Modes
- ROM Drivers
- SPI

- State Configurable Timer/PWM FlexTimer
- Switch Matrix
- USART

2-3x power saving compared to 8/16-bit MCUs

High performance at a low price point

40-50% smaller code size than 8/16-bit MCUs

2-10x higher performance than 8/16-bit MCUs

Single cycle IO access

3 nxp.com/LPC800

Ultra-low-power Arm Cortex-M0+ core, up to 60 MHz, delivers deterministic, real-time performance.

Conserving Flash is critical in small packages. Putting drivers and special functions in ROM makes the LPC800 exceptionally easy to use and leaves more Flash for application code.

A Flash sector size of 64 bytes simplifies code management by enabling developers to program Flash in smaller page size and use Flash like an EEPROM.

Power profiles give developers fine-grained, real-time control over power consumption. Together with four power modes, they reduce power consumption to uAs/MHz in active mode.

The patent-pending SCTimer/PWM peripheral implements virtually any timing or PWM function found on popular 8-bit MCUs, without loading a CPU.

An integrated analog comparator reduces BOM and footprint.

ENJOY THESE KEY BENEFITS

Boost Code Efficiency

- Simple C pointer: Unlike the 8-bit architecture, the LPC800 series handles standard C pointer operations easily
- Easier and more efficient math operations
- More compact Flash memory usage, cutting memory requirements by 70%

Boost Power

- Boosted power efficiency with up to 1:50 gain of performance against 8-bit MCUs
- Significantly fewer clock cycles needed for operation
- Improved recovery time with flexible options for various sleep modes, and improvements in recovery time from sleep to run
- Higher performance with low consumption results. While the LPC800 series of 32-bit Cortex-M0+ MCUs can achieve higher performance, the current consumption results are lower.
- Cortex-M0+ excels at getting the work done quickly and efficiently

Design Scalability

 Future proofing: The Cortex-M0+ based MCUs, like the LPC800 series, provide an easier path to upgrade more features to your product by migrating into other Cortex-M core architectures like the Cortex-M33 based MCX series

LPC800 PRODUCT HIGHLIGHTS

Switch Matrix

- Provides functions in the hardware for ultimate flexible signal routing inside the chip
- Most functions can be assigned through the switch matrix to any external pin which is not a power or ground pin

State Configurable Timer

- It's timer, but with a state machine!
- The SCTimer/PWM peripheral implements virtually any timing PWM function found on popular 8-bit MCUs, without loading a CPU

Pattern Match Engine

- Configurable logic block for interrupt triggering
- DIY your interrupt condition from a Boolean expression of 8 input pins

4 nxp.com/LPC800

LPC800 APPLICATIONS

The LPC800 series provides an entry-level backbone across consumer, industrial, wearable, personal computers, and gaming markets.

Environmental sensor gateway for building automation

- Low-power solution for broad range of applications
- Range of analog sensors
- Range of digital sensors

Power monitoring & battery management

- Low power solution for data center power monitoring or battery management
- Digital temperature and humidity monitors

Remote control

- Low-power solution for remote control
- ADC for analog battery monitor functionality
- GPIO for interface
- Compact package for size limited control

Lighting control

- ADC and/or ACMP
- SCTimer/PWM
- GPIO to handle switch inputs

LPC800 series MCUs will be your first and easiest choice. When you're ready to make the move to 32-bit architecture, we have the expertise and resources to make everything as simple as possible using our streamlined MCUXpresso development flow.

READY, SET, GO!

Go!

Plug in the board, update device drivers, compile and run the demo. You're done!

Download Code Bundles or examples

- <u>Application code hub</u>; software examples, code snippets, application software packs
- <u>Code bundles</u> for 8-bit migration

Download your toolchain

Select your IDE of choice; MCUXpresso for Visual Studio code, MCUXpresso IDE, IAR, or Keil. Then use our configuration and provisioning tools

Set up your development board

Begin with your LPCXpresso development board at nxp.com

5 nxp.com/LPC800

LPC800 FAMILIES

	LPC802	LPC804	LPC810	LPC820	LPC830	LPC840	LPC860
Core Freq.	15 MHz	15 MHz	30 MHz	30 MHz	30 MHz	30 MHz	60 MHz
Flash (KB)	16	32	16	32	32	64	64
RAM (KB)	2	4	4	8	4	16	8
Boot ROM	UART ISP	UART ISP	UART ISP	UART ISP	UART ISP	Yes (16 KB, support UART, I ² C, SPI ISP)	Yes (8 KB, support UART ISP)
FAIM	-	-	-	-	-	256 bits	-
	15 MHz FRO (±1%),	15 MHz FRO (±1%),	12 MHz IRC (±1.5%)	12 MHz IRC (±1.5%)	12 MHz IRC (±1.5%)	30 MHz FRO (+/-1%),	60 MHz FRO (+/-1%),
CGU	1 MHz LPOsc (±3%)	1 MHz LPOsc (±3%)	10 KHz LPO (±40%)	10 KHz LPO (±40%)	10 KHz LPO (±40%)	10 KHz LPO (±40%)	1 MHz LPOsc (+/-3%)
			1-25 MHz XOSC PLL	1-25 MHz XOSC PLL	1-25 MHz XOSC PLL	1-25 MHz XOSC PLL	1-25 MHz XOSC PLL
12-b ADC	480 KSPS, 12-ch.	480 KSPS, 12-ch.	-	1.2 MSPS, 12-ch.	1.2 MSPS, 12-ch.	1.2 MSPS, 12-ch.	1.9 MSPS, 12-ch.
DAC	-	1x 10b	-	-	-	2x 10 b	-
ACMP	1	1	1	1	-	1	1
Timer/PWM	32-b Ctimer	32-b Ctimer	SCTimer	SCTimer	SCTimer	SCTimer + 32-b CTimer	6-ch. + 4-ch. FlexTimer
Timers	2-ch. MRT, WWDT	4-ch. MRT, WWDT	4-ch. MRT, WWDT	4-ch. MRT, WWDT	4-ch. MRT, WWDT	4-ch. MRT, WWDT	4-ch. MRT, WWDT
RTC	32-b WKT	32-b WKT	32-b WKT	32-b WKT	32-b WKT	32-b WKT	32-b WKT
Switch Matrix	Yes	Yes	Yes	Yes	Yes	Yes	Yes
CAP touch	-	Yes	-	-	-	Yes	-
PLU	-	Yes	-	-	-	Yes	-
UART / SPI / I ² C	2/1/1	2/1/2	3/2/1	3/2/4	1/2/1	5/2/4	3/2/1
I3C	-	-	-	-	-	-	1x I3C
DMA	-	-	-	18-ch.	18-ch.	25-ch.	16-ch.
Voltage	1.71 to 3.6 V	1.71 to 3.6 V	1.8 to 3.6 V	1.8 to 3.6 V	1.8 to 3.6 V	1.8 to 3.6 V	1.8 to 3.6 V
Packages	16/20	20/24/33	8/16/2020	20/33	20/33	33/48/64	33/48/64
Development boards							
	OM40000	OM40001	OM13055	OM13071	OM13055	OM13097	LPCXPRESSO-
Part Numbers	LPCXpresso802	LPCXpresso804	LPCXpresso812	LPCXpresso824- MAX	LPCXpresso812	LPCXpresso845	860-MAX LPCXpresso860- MAX
LPCXpresso Development Boards							No.

LPC800 | MORE INFORMATION

LPC800 Overveiw

LPC Community

LPC800 Support

Software Options

LPC800 Designs

Training & Design Support