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About This Book
The primary objective of this reference manual is to describe the functionality of the microprocessors in 
the e300 core family, which are PowerPC™ microprocessors built on Power Architecture™ technology. 
The e300 designs are based on the MPC603e microprocessor. This reference manual describes the e300c1, 
e300c2, e300c3, and e300c4 configurations. Unless otherwise noted, the information presented here 
applies to all the e300 cores. The e300c1 has similar functionality to the G2_LE core and any differences 
in functionality are summarized in Table 1-7. The e300c2, e300c3, and e300c4 have similar functionality 
to the e300c1 core and any differences regarding functionality are summarized in Section 1.5, 
“Differences Between e300 Cores.” This book is intended as a companion to the Programming 
Environments Manual for 32-Bit Implementations of the PowerPC™ Architecture (referred to as the 
Programming Environments Manual), which describes the features common to PowerPC processors and 
cores and indicates those features that are optional or that may be implemented differently in the design of 
each processor and core.

NOTE
About the Companion Programming Environments Manual
The PowerPC architecture definition is flexible to support a broad range of 
processors. Note that the Programming Environments Manual describes 
only architecture features for 32-bit implementations.

Contact your sales representative, or visit the website on the inside cover of 
this manual for a copy of the Programming Environments Manual.

This reference manual and the Programming Environments Manual distinguish between the three levels, 
or programming environments as follows: 

• User instruction set architecture (UISA)—The UISA defines the architecture level to which 
user-level software should conform. The UISA defines the base user-level instruction set, 
user-level registers, data types, memory conventions, and the memory and programming models 
seen by application programmers. 

• Virtual environment architecture (VEA)—The VEA, which is the smallest component of the 
PowerPC architecture, defines additional user-level functionality that falls outside typical 
user-level software requirements. The VEA describes the memory model for an environment in 
which multiple processors or other devices can access external memory, and defines aspects of the 
cache model and cache control instructions from a user-level perspective. The resources defined 
by the VEA are particularly useful for optimizing memory accesses and for managing resources in 
an environment in which other processors and devices can access external memory.

• Operating environment architecture (OEA)—The OEA defines supervisor-level resources 
typically required by an operating system. The OEA defines the memory management model, 
supervisor-level registers, and interrupt model. 

Implementations that conform to the OEA also conform to the UISA and VEA.
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Note that some resources are defined more generally at one level in the architecture and more specifically 
at another. For example, conditions that cause a floating-point interrupt are defined by the UISA, while the 
interrupt mechanism itself is defined by the OEA.

For ease in reference, topics in this book are presented in the same order as the Programming Environments 
Manual. Topics build on one another, beginning with a description and complete summary of the e300 core 
register model and followed by the instruction set model and progressing to more specific, 
architecture-based topics regarding the cache, interrupt, and memory management models. As such, 
chapters may include information from multiple levels of the architecture. (For example, the discussion of 
the cache model uses information from both the VEA and the OEA.)

The PowerPC Architecture: A Specification for a New Family of RISC Processors defines the architecture 
from the perspective of the three programming environments and remains the defining document for the 
PowerPC architecture. For information about ordering Freescale documentation, see “Suggested Reading” 
on page xxv.

The information in this book is subject to change without notice, as described in the disclaimers on the title 
page of this book. As with any technical documentation, it is the readers’ responsibility to be sure they are 
using the most recent version of the documentation. For more information, contact your sales 
representative.

To locate any published errata or updates for this reference manual, refer to the world-wide web at 
http://www.freescale.com.

A list of major differences between the G2 core, the G2_LE core, and the e300 core configurations are 
provided in Section 1.4, “Differences Between Cores.” Furthermore, the minor differences between cores 
are documented by footnotes throughout this book.

Audience
This manual is intended to be used as a reference for many semiconductor products targeting a range of 
markets including automotive, communication, consumer, networking, and computer peripherals. It is 
intended for system software and hardware developers and applications programmers who want to develop 
products using the cores. It is assumed that the reader understands operating systems, core system design, 
and details of the PowerPC architecture.

Organization
Following is a summary and a brief description of the major sections of this manual:

• Chapter 1, “Overview,” is useful for readers who want a general understanding of e300 features 
and functions and the differences between the e300 and G2 cores. It generally describes the register 
set, instruction set and addressing modes, cache model, interrupt model, memory management 
model, instruction timing, system support interface, and debug features for the e300 core. This 
chapter indicates which features are defined by the PowerPC architecture and which ones are 
e300-specific.

• Chapter 2, “Register Model,” provides a brief synopsis of the registers implemented in the e300 
core, including architecture-defined and implementation-specific registers.
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• Chapter 3, “Instruction Set Model,” provides a brief description of the operand conventions, an 
overview of addressing modes, and a list of the instructions implemented by the e300 core. Note 
that instructions are organized by functions.

• Chapter 4, “Instruction and Data Cache Operation,” provides a discussion of the cache and 
memory model as implemented on the e300 core.

• Chapter 5, “Interrupts and Exceptions,” describes the interrupt model defined in the PowerPC 
OEA, and the specific interrupt model implemented on the e300 core. 

• Chapter 6, “Memory Management,” describes the e300 core’s implementation of the memory 
management unit specifications provided by the OEA.

• Chapter 7, “Instruction Timing,” provides information about latencies, interlocks, special 
situations, and various conditions to help make programming more efficient. This chapter is of 
special interest to software engineers and system designers. 

• Chapter 8, “Core Interface Operation,” provides an overview of individual signals of the e300 core. 
It also provides a description of the coherent system bus (CSB) bus.

• Chapter 9, “Power Management,” provides information about the power saving modes for the e300 
core.

• Chapter 10, “Debug Features,” provides information about the debug features of the e300 core. 
This chapter also describes trace facility debug features for e300 core. 

• Appendix A, “Instruction Set Listings,” lists all the PowerPC instructions while indicating those 
instructions that are not implemented by the e300 core; it also includes the instructions that are 
specific to the e300 core. Instructions are grouped according to mnemonic, opcode, function, and 
form. Also included is a quick reference table that contains general information, such as the 
architecture level, privilege level, and form, and indicates if the instruction is 64-bit and optional.

• Appendix B, “Instructions Not Implemented,” provides a list of the 32- and 64-bit instructions that 
are not implemented in the e300 core.

• Appendix C, “Revision History,” lists the major differences between revisions of this reference 
manual.

• This reference manual also includes a glossary and an index.

Suggested Reading
This section lists additional reading that provides background for the information in this reference manual, 
as well as general information about the PowerPC architecture. 

General Information

The following documentation, available through Morgan-Kaufmann Publishers, 340 Pine Street, Sixth 
Floor, San Francisco, CA, provides useful information about the PowerPC architecture and computer 
architecture in general:

• The PowerPC Architecture: A Specification for a New Family of RISC Processors, Second Edition, 
by International Business Machines, Inc. 
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For updates to the specification, see

http://www-1.ibm.com/support/docview.wss?uid=pub1sa14208300

• PowerPC Microprocessor Common Hardware Reference Platform: A System Architecture, by 
Apple Computer, Inc., International Business Machines, Inc., and Motorola, Inc.

• Computer Architecture: A Quantitative Approach, Second Edition, John L. Hennessy and 
David A. Patterson.

• Computer Organization and Design: The Hardware/Software Interface, Second Edition, 
David A. Patterson and John L. Hennessy.

• Inside Macintosh: PowerPC System Software, Addison-Wesley Publishing Company, One Jacob 
Way, Reading, MA, 01867; Tel. (800) 282-2732 (U.S.A.), (800) 637-0029 (Canada), 
(716) 871-6555 (International).

Related Documentation

Freescale documentation is available from the sources listed on the back cover of this manual; the 
document order numbers are included in parentheses for ease in ordering:

• Programming Environments Manual for 32-Bit Implementations of the PowerPC Architecture 
(MPCFPE32B)—Describes resources defined by the PowerPC architecture. 

• User’s and reference manuals—These books provide details about individual implementations and 
are intended for use with the Programming Environments Manual. 

• Addenda/errata to user’s or reference manuals—Because some processors have follow-on devices, 
an addendum is provided that describes the additional features and functionality changes. These 
addenda are intended for use with the corresponding book.

• Implementation Variances Relative to Rev. 1 of the Programming Environments Manual is 
available at http://www.freescale.com.

• Technical summaries—Each device has a technical summary that provides an overview of its 
features. This document is roughly the equivalent to the overview (Chapter 1) of an 
implementation’s user’s or reference manual.

• Application notes—These short documents contain useful information about specific design issues 
useful to programmers and engineers working with Freescale processors. 

Additional literature is published as new processors become available. For a current list of documentation, 
refer to: http://www.freescale.com.

Conventions
This document uses the following notational conventions:

mnemonics Instruction mnemonics are shown in lowercase bold

italics Italics indicate variable command parameters, for example, bcctrx
Book titles in text are set in italics

0x0 Prefix to denote hexadecimal number

0b0 Prefix to denote binary number
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rA, rB Instruction syntax used to identify a source GPR

rA|0 Contents of a specified GPR or the value 0

rD Instruction syntax used to identify a destination GPR

frA, frB, frC Instruction syntax used to identify a source FPR

frD Instruction syntax used to identify a destination FPR

REG[FIELD] Abbreviations or acronyms for registers are shown in uppercase text. Specific bits, 
fields, or ranges appear in brackets. For example, MSR[LE] refers to the 
little-endian mode enable bit in the machine state register.

x In certain contexts, such as a signal encoding, this indicates a don’t care

n Used to express an undefined numerical value

¬ NOT logical operator

& AND logical operator

| OR logical operator

Indicates reserved bits or bit fields in a register. Although these bits may be written 
to as either ones or zeros, they are always read as zeros. 

Acronyms and Abbreviations
Table i contains acronyms and abbreviations that are used in this reference manual.

Table i. Acronyms and Abbreviated Terms

Term Meaning

ABE Address bus enable

ALU Arithmetic logic unit

BAT Block address translation

BATL Block address translation lower

BATU Block address translation upper

BE Branch trace enable

BIST Built-in self test

BIU Bus interface unit

BL Block size mask

BPU Branch processing unit

BUID Bus unit ID

CE Critical interrupt enable

CIA Current instruction address

CMOS Complementary metal-oxide semiconductor

CMP IABR compare type

0 0 0 0 
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CMP2 IABR2 compare type

COP Common on-chip processor

CQ Completion queue

CR Condition register 

CSRR0 Critical interrupt save/restore register 0

CSRR1 Critical interrupt save/restore register 1

CTR Count register 

DABR Data address breakpoint register 

DABR2 Data address breakpoint register 2

DAR Data address register 

DBAT Data BAT

DBCR Data address control register

DCE Data cache enable

DCFI Data cache flash invalidate

DCMP Data TLB compare

DEC Decrementer register

DLOCK Data cache lock

DMISS Data TLB miss address

DMMU Data memory management unit

DPM Dynamic power management enable

DR Data address translation enable

DSISR Register used for determining the source of a DSI interrupt

DTLB Data translation lookaside buffer

DWLCK Data cache way-lock

EA Effective address

EAR External access register 

ECC Error checking and correction

EE External interrupt enable

FE0 Floating-point exception model 0

FE1 Floating-point exception model 1

FIFO First-in-first-out

FP Floating-point available

FPR Floating-point register

Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning
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FPSCR Floating-point status and control register 

FPU Floating-point unit 

GPR General-purpose register

HBE High BAT enable

HID0 Hardware implementation register 0

HID1 Hardware implementation register 1

HID2 Hardware implementation register 2

I Cache-inhibited

IABR Instruction address breakpoint register 1

IABR2 Instruction address breakpoint register 2

IBAT Instruction BAT

IBCR Instruction breakpoint control register

ICE Instruction cache enable

ICFI Instruction cache flash invalidate

ICMP Instruction TLB compare

IEE External interrupt enable

IEEE Institute of Electrical and Electronics Engineers

IFEM Instruction fetch enable M (bit)

ILE Interrupt little-endian mode 

ILOCK Instruction cache lock

IMISS Instruction TLB miss address

IMMU Instruction memory management unit

IP interrupt prefix

IQ Instruction queue

IR Instruction address translation enable

ITLB Instruction translation lookaside buffer

IU Integer unit

IWLCK Instruction cache way lock

L2 Secondary cache 

LE Little-endian mode enable

LET True little-endian mode bit

LIFO Last-in-first-out

LR Link register 

Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning
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LRU Least recently used

lsb Least-significant bit

LSB Least-significant byte

LSU Load/store unit

M Memory-coherent

MBAR System memory base address

ME Machine check enable

MEI Modified/exclusive/invalid

MESI Modified/exclusive/shared/invalid—cache coherency protocol

MFG Manufacturing revision tag

MJREV Major processor design revision indicator

MMU Memory management unit

MNREV Minor processor design revision indicator

MQ MQ register 

msb Most-significant bit

MSB Most-significant byte

MSR Machine state register 

NaN Not a number

NI Non-IEEE mode bit

No-op No operation

NOOPTI No-op the data cache touch instructions

OEA Operating environment architecture

PID Processor identification tag 

PIR Processor identification register

PLL Phase-locked loop

POR Power-on reset

POW Power management enable

POWER Performance optimized with enhanced RISC architecture

PR Privilege level

PROC Processor revision tag

PT Processor ID type tag

PTE Page table entry

PTEG Page table entry group

Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning
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PVR Processor version register 

RAW Read-after-write

RI Recoverable interrupt

RID Resource ID

RISC Reduced instruction set computing 

RTL Register transfer language

RWITM Read with intent to modify

SDR1 Register that specifies the page table base address for virtual-to-physical address translation

SE Single-step trace enable

SIG_TYPE Combinational signal type

SMI System management interrupt

SOC System-on-a-chip

SPR Special-purpose register

SR Segment register

SRR0 Machine status save/restore register 0 

SRR1 Machine status save/restore register 1

SRU System register unit

SVR System version register

T Translation control bit

TAP Test access port

TB Time base facility

TBL Time base lower register

TBU Time base upper register

TGPR Temporary GPR remapping

TLB Translation lookaside buffer

TTL Transistor-to-transistor logic

UIMM Unsigned immediate value

UISA User instruction set architecture

UTLB Unified translation lookaside buffer 

UUT Unit under test

VEA Virtual environment architecture

VPN Virtual page number

W Write-through

Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning
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Terminology Conventions
Table ii describes terminology conventions used in this manual.

Table iii describes instruction field notation used in this manual.

WAR Write-after-read

WAW Write-after-write

WIMG Write-through/caching-inhibited/memory-coherency enforced/guarded bits

XATC Extended address transfer code

XER Register used for indicating conditions such as carries and overflows for integer operations

Table ii. Terminology Conventions

The Architecture Specification This Manual

Data storage interrupt (DSI) DSI interrupt

Extended mnemonics Simplified mnemonics

Fixed-point unit (FXU) Integer unit (IU)

Instruction storage interrupt (ISI) ISI interrupt 

Interrupt Interrupt

Privileged mode (or privileged state) Supervisor-level privilege

Problem mode (or problem state) User-level privilege

Real address Physical address

Relocation Translation

Storage (locations) Memory 

Storage (the act of) Access

Store in Write back

Store through Write through

Table iii. Instruction Field Conventions

The Architecture Specification Equivalent to:

BA, BB, BT crbA, crbB, crbD (respectively)

BF, BFA crfD, crfS (respectively)

D d

DS ds

FLM FM

Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning
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FRA, FRB, FRC, FRT, FRS frA, frB, frC, frD, frS (respectively)

FXM CRM

RA, RB, RT, RS rA, rB, rD, rS (respectively)

SI SIMM

U IMM

UI UIMM

/, //, /// 0...0 (shaded)

Table iii. Instruction Field Conventions (continued)

The Architecture Specification Equivalent to:
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Chapter 1  
Overview
This chapter provides an overview of features for the embedded microprocessors in the e300 core family, 
which are PowerPC microprocessors built on Power Architecture technology. Throughout this chapter, the 
terms ‘e300 core’, ‘core’, and ‘processor’ are used interchangeably. The terms ‘e300c1’, ‘e300c2’, 
’e300c3’, and ‘e300c4’ are used when describing an implementation-specific feature or when a difference 
exists between different configurations. The term ‘e300’ is used when describing a feature that pertains to 
the family of e300 processors.

1.1 Overview
This section describes the details of the e300 core, provides a block diagram showing the major functional 
units (see Section 3.1.2, “Endian Modes and Byte Ordering”), and briefly describes how these units 
interact. All differences between the e300 and previous PowerPC implementations derived from the 
MPC603e processor are noted.  See Section 1.5, “Differences Between e300 Cores for a differences 
description of the e300 core configurations.

The e300 core is a low-power implementation of this microprocessor family of reduced instruction set 
computing (RISC) microprocessors. The core implements the 32-bit portion of the PowerPC architecture, 
which defines 32-bit effective addresses, integer data types of 8, 16, and 32 bits, and floating-point data 
types of 32 and 64 bits. 

The core is a superscalar processor that can issue and retire as many as three instructions per clock cycle. 
Instructions can execute out of program order for increased performance; however, the core makes 
completion appear sequential.

The e300 core integrates independent execution units including: an integer unit (IU) a floating-point unit 
(FPU), a branch processing unit (BPU), a load/store unit (LSU), and a system register unit (SRU). The 
e300c2, e300c3, and e300c4 integrate an additional integer unit for a total of two IUs. Note that the e300c2 
does not include an FPU. The ability to execute instructions in parallel and the use of simple instructions 
with rapid execution times yield high efficiency and throughput for e300-core-based systems. Most integer 
instructions execute in one clock cycle. The additional IUs along with enhanced multipliers in the e300c2, 
e300c3, and e300c4 improve multiply instructions to a maximum two-cycle latency, a significant 
improvement from previous processors. In the e300c1,  e300c3, and e300c4 cores, the FPU is pipelined so 
a single-precision multiply-add instruction can be issued and completed every clock cycle. The e300c1,  
e300c3, and e300c4 cores provide hardware support for all single- and double-precision floating-point 
operations for most value representations and all rounding modes. 
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Figure 1-1 shows a block diagram of the e300c1 core.

Figure 1-1. e300c1 Core Block Diagram
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Figure 1-2 is a block diagram of the e300c2 core. Note that it does not support floating-point operations.

Figure 1-2. e300c2 Core Block Diagram
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Figure 1-3 shows a block diagram of the e300c3 core. Note that the e300c3 supports floating-point 
operations and includes two integer units. 

Figure 1-3. e300c3 Core Block Diagram
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Figure 1-4 shows a block diagram of the e300c4 core. Note that the e300c4 supports floating-point 
operations and includes two integer units.

Figure 1-4. e300c4 Core Block Diagram
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The e300c1 and e300c4 provide independent, on-chip, 32-Kbyte, eight-way, set-associative, 
physically-addressed caches for instructions and data, and on-chip instruction and data memory 
management units (MMUs).The e300c2 and e300c3 include 16-Kbyte, four way set-associative 
instruction and data caches. The MMUs contain 64-entry, two-way, set-associative, data and instruction 
translation lookaside buffers (DTLB and ITLB) that provide support for demand-paged, virtual-memory, 
address translation, and variable-sized block translation. The TLBs use a least recently used (LRU) 
replacement algorithm and the caches use a pseudo least recently used algorithm (PLRU). 

The core also supports block address translation through the use of two independent instruction and data 
block address translation (IBAT and DBAT) arrays, each containing eight pairs of BATs, an increase from 
four pairs of each type of BATs in the G2 core. This increase provides more flexibility in protecting 
accesses and providing translation on a segment, block, or page basis for memory accesses and I/O 
accesses. Effective addresses are compared simultaneously with all eight entries in the BAT array during 
block translation. In accordance with the PowerPC architecture, if an effective address hits in both the TLB 
and BAT array, the BAT translation takes priority.

As part of the coherent system bus (CSB), the e300 core has a 64-bit data bus and a 32-bit address bus. 
During normal operation, the e300 core provides a three-state (modified, exclusive, and invalid) coherency 
protocol which is a compatible subset of a four-state (modified/exclusive/shared/invalid) MESI protocol. 
However, the e300 data cache contains a programmable MESI extension that supports the shared cache 
coherency state (similar to other PowerPC processors). Both protocols operate coherently in systems that 
contain four-state caches. The core also supports single-beat and burst data transfers for memory accesses 
and supports memory-mapped I/O operations.

The true little-endian mode is another enhanced capability of the e300 core. Unlike the PowerPC 
little-endian mode (which manipulates only the address bits), no longer supported on the e300, the true 
little-endian mode actually operates on true little-endian instructions and data from memory. 

The critical interrupt is an additional interrupt in the e300 core and has higher priority order than the 
system management interrupt. Also, debug features are improved in the e300. Additional SPRG interrupt 
handling registers are provided for enhancing flexibility for the operating system.

The e300c3 and e300c4 include a performance monitor facility that provides the ability to monitor and 
count predefined events such as core clocks, misses in the instruction cache, data cache, or L2 cache, types 
of instructions dispatched, mispredicted branches, and other occurrences. The count of such events (which 
may be an approximation) can be used to trigger the performance monitor interrupt. Section 1.1.7.5, “Core 
Performance Monitor,” describes the operation of the performance monitor diagnostic tool. This 
functionality is fully described in Chapter 11, “Performance Monitor of the e300 Core Family Reference 
Manual.
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1.1.1 Features

This section describes the major features of the e300 core:

• High-performance, superscalar microprocessor core

— As many as three instructions issued and retired per clock (two instructions plus one branch 
instruction)

— As many as five instructions in execution per clock 

— Single-cycle execution for most instructions 

— Pipelined floating-point unit (FPU) for all single- and double-precision operations (not 
included in the e300c2)

• Independent execution units and two register files

— Branch processing unit (BPU) featuring static branch prediction

— Two 32-bit integer units (IU) in the e300c2,  e300c3, and e300c4. One 32-bit integer unit (IU) 
in the e300c1

— FPU based on the IEEE Std 754™ for both single- and double-precision operations

— Load/store unit (LSU) for data transfer between data-cache and general-purpose registers 
(GPRs) and floating-point registers (FPRs) 

— System register unit (SRU) that executes condition register (CR), special-purpose register 
(SPR), and integer add/compare instructions. Add/compare instructions are also executed in 
the IUs.

— Thirty-two 32-bit GPRs for integer operands

— Thirty-two 64-bit FPRs for single- or double-precision operands 

• High instruction and data throughput

— Zero-cycle branch capability (branch folding)

— Programmable static branch prediction on unresolved conditional branches

— Two integer units with enhanced multipliers in thee300c2,  e300c3, and e300c4 for increased 
integer instruction throughput and a maximum two-cycle latency for multiply instructions

— Instruction fetch unit capable of fetching two instructions per clock from the instruction cache

— A six-entry instruction queue (IQ) that provides lookahead capability

— Independent pipelines with feed-forwarding that reduces data dependencies in hardware

— 32-Kbyte data cache and 32-Kbyte instruction cache with parity—eight-way, set-associative, 
physically addressed, PLRU replacement algorithm on the e300c1 and e300c4. 16-Kbyte, 
four-way set-associative instruction and data caches on the e300c2 and e300c3. 

— Cache write-back or write-through operation programmable on a per-page or per-block basis

— Features for instruction and data cache locking and protection

— BPU that performs CR lookahead operations

— Address translation facilities for 4-Kbyte page size, variable block size, and 256-Mbyte 
segment size 

— A 64-entry, two-way, set-associative ITLB and DTLB

— Eight-entry data and instruction BAT arrays providing 128-Kbyte to 256-Mbyte blocks
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— Software table search operations and updates supported through fast trap mechanism

— 52-bit virtual address; 32-bit physical address 

• Facilities for enhanced system performance

— A 64-bit split-transaction internal data bus interface to the coherent system bus (CSB) with 
burst transfers

— Support for one-level address pipelining on the CSB interface

— Support of core complex bus (CCB) for additional bus features on the e300c4. Note that this 
feature may not be supported on all devices using the e300c4.

— True little-endian mode for compatibility with other true little-endian devices

— Critical interrupt support

— Hardware support for misaligned little-endian accesses 

•  Integrated power management

— Internal processor/bus clock multiplier ratios

— Three power-saving modes: doze, nap, and sleep

— Automatic dynamic power reduction when internal functional units are idle

• In-system testability and debugging features through JTAG boundary-scan capability

Features specific to the e300 core not present on the G2 processors follow:

• Enhancements to the register set

— The e300 core has one more HID0 bit than the G2:

– The enable cache parity checking (ECPE) bit, HID0[1], gives the e300 core the ability to 
enable the taking of a machine check interrupt based on the detection of a cache parity error

• Enhancements to cache implementation

— 32-Kbyte data cache and 32-Kbyte instruction cache with parity—eight-way, set-associative, 
physically addressed, PLRU replacement algorithm on the e300c1 and e300c4. 16-Kbyte, 
four-way set-associative instruction and data caches on the e300c2 and e300c3.

— Full parity checking is performed on both instruction and data cache memory arrays

— Lockable L1 instruction and data caches—entire cache or on a per-way basis up to 7 of 8 ways 
on the e300c1 and e300c4 and 3 of 4 ways on the e300c2 and e300c3

— New icbt instruction supports initialization of instruction cache

— Data cache supports four-state MESI coherency protocol 

— The instruction cache is blocked only until the critical load completes (hit under reloads 
allowed)

— Instruction cancel mechanism improves utilization of instruction cache by supporting 
hits-under-cancels and misses-under-cancels.

— The critical double word is simultaneously written to the cache and forwarded to the requesting 
unit, thus minimizing stalls due to load delays.

— Data cache queue sharing makes cast-outs and snoop pushes more efficient
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— Provides for an optional data cache operation broadcast feature (enabled by HID0[ABE]) that 
allows for coherent system management. All of the data cache control instructions, except dcbz 
(dcbi, dcbf, and dcbst) require that HID0[ABE] be enabled to broadcast.

— Instruction fetch burst feature allows all instruction fetches from caching-inhibited space to be 
performed on the bus as burst transactions

• Interrupts
— The e300 core offers hardware support for misaligned little-endian accesses. Little-endian 

load/store accesses that are not on a word boundary, except for strings and multiples, generate 
interrupts under the same circumstances as big-endian accesses.

— The e300 core supports true little-endian mode to minimize the impact on software porting 
from true little-endian systems.

— An input interrupt signal, cint, is provided to trigger the critical interrupt exception on the e300 
core. The pm_event_in input signal can be used by the performance monitor counters to trigger 
an interrupt upon overflow on the e300c3 and e300c4.

• Bus clock—PLL configuration signals include seven signals for settings and control: pll_cfg[0:6].

• Debug features

— Breakpoint status recorded in DBCR and IBCR control registers

— Two signals for the debug interface: stopped and ext_halt

— Performance monitor registers for system analysis in the e300c3 and e300c4

, Figure 1-2 Figure 1-3, Figure 1-4 provide block diagrams of the e300 cores that show how the execution 
units—IU, FPU, BPU, LSU, and SRU—operate independently and in parallel. It should be noted that this 
is a conceptual diagram and does not attempt to show how these features are physically implemented on 
the device.

The e300 core provides address translation and protection facilities, including an ITLB, DTLB, and 
instruction and data BAT arrays. Instruction fetching and issuing are handled in the instruction unit. 
Translation of addresses for cache or external memory accesses are handled by the MMUs. Both units are 
discussed in more detail in Section 1.1.2, “Instruction Unit,” and Section 1.1.5.1, “Memory Management 
Units (MMUs).”

1.1.2 Instruction Unit

As shown in Figure 1-1, Figure 1-2, Figure 1-3, Figure 1-4, the e300 core instruction unit, containing a 
fetch unit, instruction queue, dispatch unit, and BPU, provides centralized control of instruction flow to 
the execution units. The instruction unit determines the address of the next instruction to be fetched based 
on information from the sequential fetcher and from the BPU. 

The instruction unit fetches the instructions from the instruction cache into the instruction queue. The BPU 
receives branch instructions from the fetcher and uses static branch prediction to allow fetching from a 
predicted instruction stream while a conditional branch is evaluated. The BPU folds out for unconditional 
branch instructions and conditional branch instructions unaffected by instructions in the execution 
pipeline.
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Instructions issued beyond a predicted branch cannot complete execution until the branch is resolved, 
preserving the programming model of sequential execution. If any of these are branch instructions, they 
are decoded but not issued. Instructions to be executed by the FPU, IU, LSU, and SRU are issued and 
allowed to progress up to the register write-back stage. Write-back is allowed when a correctly predicted 
branch is resolved, and execution continues along the predicted path. 

If branch prediction is incorrect, the instruction unit flushes all predicted path instructions, and instructions 
are issued from the correct path.

1.1.2.1 Instruction Queue and Dispatch Unit

The instruction queue (IQ), shown in Figure 1-1, Figure 1-2, Figure 1-3, Figure 1-4, holds as many as six 
instructions and loads up to two instructions from the instruction unit during a single cycle. The instruction 
fetch unit continuously loads as many instructions as space in the IQ allows. Instructions are dispatched to 
their respective execution units from the dispatch unit at a maximum rate of two instructions per cycle. 
Dispatching is facilitated to the IUs, FPU, LSU, and SRU by the provision of a reservation station at each 
unit. The dispatch unit performs source and destination register dependency checking, determines dispatch 
serializations, and inhibits subsequent instruction dispatching as required.

For a more detailed overview of instruction dispatch, see Section 1.3.5, “Instruction Timing.”

1.1.2.2 Branch Processing Unit (BPU)

The BPU receives branch instructions from the fetch unit and performs CR lookahead operations on 
conditional branches to resolve them early, achieving the effect of a zero-cycle branch in many cases.

The BPU uses a bit in the instruction encoding to predict the direction of the conditional branch. Therefore, 
when an unresolved conditional branch instruction is encountered, the core fetches instructions from the 
predicted target stream until the conditional branch is resolved.

The BPU contains an adder to compute branch target addresses and three user-control registers: the link 
register (LR), the count register (CTR), and the conditional register (CR). The BPU calculates the return 
pointer for sub-routine calls and saves it into the LR for certain types of branch instructions. The LR also 
contains the branch target address for the Branch Conditional to Link Register (bclrx) instruction. The 
CTR contains the branch target address for the Branch Conditional to Count Register (bcctrx) instruction. 
The contents of the LR and CTR can be copied to or from any GPR. Because the BPU uses dedicated 
registers rather than GPRs or FPRs, execution of branch instructions is largely independent from execution 
of integer and floating-point instructions.

1.1.3 Independent Execution Units

The PowerPC architecture’s support for independent execution units allows implementation of processors 
with out-of-order instruction execution. For example, because branch instructions do not depend on GPRs 
or FPRs, branches can often be resolved early, eliminating stalls caused by taken branches. 

The four other execution units and the completion unit are described in the following sections.
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1.1.3.1 Integer Unit (IU)

The IU executes all integer instructions. The IU executes one integer instruction at a time, performing 
computations with its arithmetic logic unit (ALU), multiplier, divider, and XER register. Most integer 
instructions are single-cycle instructions. The 32 GPRs hold integer operands. Stalls due to contention for 
GPRs are minimized by the automatic allocation of rename registers. The core writes the contents of the 
rename registers to the appropriate GPR when integer instructions are retired by the completion unit. The 
e300c2,  e300c3, and e300c4 provide two integer units for greater integer instruction throughput along 
with enhanced multipliers in each IU for faster multiply-instruction execution.

1.1.3.2 Floating-Point Unit (FPU)

The FPU contains a single-precision multiply-add array and the floating-point status and control register 
(FPSCR). The multiply-add array allows the core to efficiently implement multiply and multiply-add 
operations. The FPU is pipelined so that single- and double-precision instructions can be issued 
back-to-back. The 32 FPRs are provided to support floating-point operations. Stalls due to contention for 
FPRs are minimized by the automatic allocation of rename registers. The core writes the contents of the 
rename registers to the appropriate FPR when floating-point instructions are retired by the completion unit. 
The e300c2 does not include an FPU and does not support floating-point operations.

The e300c1,  e300c3, and e300c4 cores support all floating-point data types based on the IEEE 754 
standard (normalized, denormalized, NaN, zero, and infinity) in hardware, eliminating the latency incurred 
by software interrupt routines. 

1.1.3.3 Load/Store Unit (LSU)

The LSU executes all load and store instructions and provides the data transfer interface between the 
GPRs, FPRs, and the cache/memory subsystem. The LSU calculates effective addresses, performs data 
alignment, and provides sequencing for load/store string and multiple instructions.

Load and store instructions are issued and executed in program order; however, the memory accesses can 
occur out of order. Synchronizing instructions are provided to enforce strict ordering.

Cacheable loads, when free of data bus dependencies, can execute out of order with a maximum 
throughput of one per cycle and with a two-cycle total latency. Data returned from the cache is held in a 
rename register until the completion logic commits the value to a GPR or FPR. Stores cannot be executed 
in a predicted manner and are held in the store queue until the completion logic signals that the store 
operation is to be completed to memory. The core executes store instructions with a maximum throughput 
of one per cycle and with a three-cycle total latency. The time required to perform the actual load or store 
depends on whether the operation involves the cache, system memory, or an I/O device.

1.1.3.4 System Register Unit (SRU)

The SRU executes various system-level instructions, including condition register logical operations and 
move to/from special-purpose register instructions. It also executes integer add/compare instructions. In 
order to maintain system state, most instructions executed by the SRU are completion-serialized; that is, 
the instruction is held for execution in the SRU until all prior instructions issued have completed. Results 
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from completion-serialized instructions executed by the SRU are not available or forwarded for 
subsequent instructions until they complete.

1.1.4 Completion Unit 

The completion unit tracks instructions in program order from dispatch through execution and then 
completes. Completing an instruction commits the core to any architectural register changes caused by that 
instruction. In-order completion ensures the correct architectural state when the core must recover from a 
mispredicted branch or an interrupt.

Instruction state and other information required for completion is kept in a five-entry FIFO completion 
queue. A single completion queue entry is allocated for each instruction once it enters the execution unit 
from the dispatch unit. An available completion queue entry is a required resource for dispatch; if no 
completion entry is available, dispatch stalls. A maximum of two instructions per cycle are completed in 
order from the queue.

1.1.5 Memory Subsystem Support

The core provides separate instruction and data caches and MMUs. The core also provides an efficient 
processor bus interface to facilitate access to main memory and other bus subsystems. The memory 
subsystem support functions are described in the following sections.

1.1.5.1 Memory Management Units (MMUs)

The core MMUs support up to 4 Petabytes (252) of virtual memory and 4 Gigabytes (232) of physical 
memory (referred to as real memory in the architecture specification) for instruction and data. The MMUs 
also control access privileges for these spaces on block and page granularities. Referenced and changed 
status is maintained by the processor for each page to assist implementation of a demand-paged virtual 
memory system. Note that software assistance is required for the device to maintain reference and changed 
status. A key bit is implemented to provide information about memory protection violations prior to page 
table search operations.

The LSU calculates effective addresses for data loads and stores, performs data alignment to and from 
cache memory, and provides the sequencing for load and store string and multiple word instructions. The 
instruction unit calculates effective addresses for instruction fetching.

After an EA is generated, its higher-order bits are translated by the appropriate MMU into physical address 
bits. The lower-order EA bits are the same on the physical address which are directed to the on-chip cache 
and formed the index into a four-way set-associative tag array. After translating the address, the MMU 
passes the higher-order physical address bits to the cache and the cache lookup completes. For 
caching-inhibited accesses or accesses that miss in the cache, the untranslated lower-order address bits are 
concatenated with the translated higher-order address bits; the resulting 32-bit physical address is then 
used by the memory unit and the core interface to access external memory.

The MMU also directs the address translation and enforces the protection hierarchy programmed by the 
operating system in relation to the supervisor/user privilege level of the access and in relation to whether 
the access is a load or store. 
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For instruction fetches, the IMMU looks for the address in the ITLB and in the IBAT array. If an address 
hits both, the IBAT array translation is used. Data accesses cause a lookup in the DTLB and DBAT array. 
In most cases, the translation is in a TLB and the physical address bits are available to the on-chip cache.

The e300 core implements four more IBAT and four more DBAT entries than the G2.

When the EA misses in the TLBs, the core provides hardware assistance for software to perform a search 
of the translation tables in memory. The hardware assist consists of the following features:

• Automatic storage of the missed effective address in IMISS and DMISS 

• Automatic generation of the primary and secondary hashed real addresses of the page-table entry 
group (PTEG), which are readable from the HASH1 and HASH2 register locations.

The HASH data is generated from the contents of the IMISS or DMISS register. The register that 
is selected depends on the miss (instruction or data) that was last acknowledged.

• Automatic generation of the first word of the page table entry (PTE) of the tables being searched

• A real page address (RPA) register that matches the format of the lower word of the PTE 

• TLB access instructions (tlbli and tlbld) that are used to load an address translation into the 
instruction or data TLBs

• Shadow registers for GPR0–GPR3 that allow miss code to execute without corrupting the state of 
any of the existing GPRs. Shadow registers are used only for servicing a TLB miss.

See Section 1.3.4.2, “Implementation-Specific Memory Management,” for more information about 
memory management for the core.

1.1.5.2 Cache Units

The e300c1 and e300c4 provide independent, 32-Kbyte, eight-way, set-associative, instruction and data 
caches. The e300c2 and e300c3 provide 16-Kbyte, four-way set-associative instruction and data caches. 
The cache block is 32 bytes long. The caches adhere to a write-back policy, but the e300 core allows 
control of cacheability, write policy, and memory coherency at the page and block levels. The caches use 
a pseudo LRU replacement policy.

As shown in Figure 1-1, Figure 1-2, Figure 1-3 Figure 1-4, the caches provide a 64-bit interface to the 
instruction fetch unit and LSU. The surrounding logic selects, organizes, and forwards the requested 
information to the requesting unit. Write operations to the cache can be performed on a byte basis, and a 
complete read-modify-write operation to the cache can occur in each cycle.

The load/store and instruction fetch units provide the caches with the address of the data or instruction to 
be fetched. In the case of a cache hit, the cache returns two words to the requesting unit. 

Because the data cache tags are single-ported, simultaneous load/store and snoop accesses cause resource 
contention. Snoop accesses have the highest priority and are given first access to the tags, unless the snoop 
access coincides with a tag write; in this case the snoop is retried and must rearbitrate for cache access. 
Loads or stores deferred due to snoop accesses are performed on the clock cycle following the snoop.

The e300 core includes a new instruction cancel extension. The instruction cancel extension improves 
utilization of the instruction cache during cancel operations. It allows a new instruction fetch to be issued 
to the cache or to the bus if a canceled instruction fetch is pending or active on the bus. This supports 
hit-under-cancel and miss-under-cancel instruction fetch operations. 
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1.1.6 Bus Interface Unit (BIU)

Because the caches are on-chip, write-back caches, the most common transactions are burst-read memory 
operations, burst-write memory operations, and single-beat (noncacheable or write-through) memory read 
and write operations. There can also be address-only operations, variants of the burst and single-beat 
operations, (for example, global memory operations that are snooped and atomic memory operations), and 
address retry activity (for example, when a snooped read access hits a modified cache block).

Memory accesses can occur in single-beat (1–8 bytes) and four-beat burst (32 bytes) data transfers on the 
64-bit data bus. The address and data buses operate independently to support pipelining and split 
transactions during memory accesses.

The e300 bus interface unit (BIU) has been enhanced to allow a pipeline slot to become available once a 
previous transaction has been granted the data bus (that is, as early as when the data tenure starts rather 
than after the data tenure completes), thus allowing for greater bus utilization in systems that support it. 
This is sometimes referred to as 1 1/2-level pipelining. 

Typically, memory accesses are weakly ordered, meaning that sequences of operations, including 
load/store string and multiple instructions, do not necessarily complete in the order they begin. This weak 
ordering maximizes the efficiency of the bus without sacrificing coherency of the data. The core allows 
read operations to precede store operations (except when a dependency exists, or in cases where a 
noncacheable access is performed), and provides support for a write operation to proceed a previously 
queued read data tenure (for example, allowing a snoop push to be enveloped by the address and data 
tenures of a read operation). Because the processor can dynamically optimize run-time ordering of 
load/store traffic, overall performance is improved. 

1.1.7 System Support Functions

The e300 core implements several support functions that include power management, time 
base/decrementer registers for system timing tasks, a JTAG (based on IEEE Std 1149.1™) interface, 
hardware debug, and a phase-locked loop (PLL) clock multiplier. These system support functions are 
described in the following sections.

1.1.7.1 Power Management

The e300 core provides four power modes, selectable by setting the appropriate control bits in the machine 
state register (MSR) and the hardware implementation register 0 (HID0). When entering into a power 
mode other than full-power, the core will request entry via a qreq signal and will only enter another power 
mode after an acknowledge (qack) is received. The four power modes are as follows: 

• Full-power—This is the default power state of the e300 core. The e300 core is fully powered and 
the internal functional units are operating at the full processor clock speed. If the dynamic power 
management mode is enabled, functional units that are idle will automatically enter a low-power 
state without affecting performance, software execution, or external hardware.

• Doze—All the functional units of the e300 core are disabled except for the time base/decrementer 
registers and the bus snooping logic. When the processor is in doze mode, an external 
asynchronous interrupt, system management interrupt, decrementer interrupt, hard or soft reset, or 
machine check brings the e300 core into the full-power state. The core in doze mode maintains the 
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PLL in a fully-powered state and locked to the system external clock input (sysclk), so a transition 
to the full-power state takes only a few processor clock cycles.

• Nap—The nap mode further reduces power consumption by disabling bus snooping, leaving only 
the time base register and the PLL in a powered state. The core returns to the full-power state on 
receipt of an external asynchronous interrupt, system management interrupt, decrementer interrupt, 
hard or soft reset, or machine check input (mcp) signal. A return to full-power state from a nap state 
takes only a few processor clock cycles.

• Sleep—Sleep mode reduces power consumption to a minimum by disabling all internal functional 
units; then external system logic may disable the PLL and sysclk. Returning the core to the 
full-power state requires the enabling of the PLL and sysclk, followed by the assertion of an 
external asynchronous interrupt, system management interrupt, hard or soft reset, or mcp signal 
after the time required to relock the PLL.

1.1.7.2 Time Base/Decrementer

The time base is a 64-bit register (accessed as two 32-bit registers) that is incremented once every four bus 
clock cycles; external control of the time base is provided through the time base/decrementer clock base 
enable (tben) signal. The decrementer is a 32-bit register that generates a decrementer interrupt after a 
programmable delay. The contents of the decrementer register are decremented once every four bus clock 
cycles, and the decrementer interrupt is generated as the count passes through zero.

1.1.7.3 JTAG Test and Debug Interface

The core provides JTAG and hardware debug functions for facilitating board testing and chip debugging. 
The JTAG test interface (based on IEEE 1149.1) provides a means for boundary-scan testing of the core 
and the attached system logic. The hardware debug function accesses the JTAG test port, providing a 
means for executing test routines and facilitating chip and software debugging. 

All instruction and data address breakpoints are accessible in the IBCR and DBCR. See Section 1.3.7, 
“Debug Features,” for more information.

The stopped signal allows observation of the internal clock state, and ext_halt can be used to force the core 
into a halted state. See Chapter 5, “Interrupts and Exceptions,” for more information on test signals.

1.1.7.4 Clock Multiplier

The internal clocking of the e300 core is generated from and synchronized to the external clock signal, 
sysclk, by means of a voltage-controlled, oscillator-based PLL. The PLL provides programmable internal 
processor clock multiplier ratios which multiply the externally supplied clock frequency. The bus clock is 
the same frequency and is synchronous with sysclk. The configuration of the PLL can be read by software 
from the hardware implementation register 1 (HID1).

1.1.7.5 Core Performance Monitor

The performance monitor provides the ability to count predefined events and processor clocks associated 
with particular operations, such as cache misses, mispredicted branches, or the number of cycles an 
execution unit stalls. The count of such events can be used to trigger the performance monitor interrupt.
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The performance monitor can be used to do the following:

• Improve system performance by monitoring software execution and then recoding algorithms for 
more efficiency. For example, memory hierarchy behavior can be monitored and analyzed to 
optimize task scheduling or data distribution algorithms. 

• Characterize processors in environments not easily characterized by benchmarking.
• Help system developers bring up and debug their systems.

The performance monitor uses the following resources: 

• The performance monitor mark bit in the MSR (MSR[PMM]). This bit controls which programs 
are monitored.

• The move to/from performance monitor registers (PMR) instructions, mtpmr and mfpmr.
• The external core input, pm_event_in. 
• PMRs:

— The performance monitor counter registers (PMC0–PMC3) are 32-bit counters used to count 
software-selectable events. Each counter counts up to 128 events. UPMC0–UPMC3 provide 
user-level read access to these registers. They are identified in Table 1-5.

— The performance monitor global control register (PMGC0) controls the counting of 
performance monitor events. It takes priority over all other performance monitor control 
registers. UPMGC0 provides user-level read access to PMGC0.

— The performance monitor local control registers (PMLCa0–PMLCa3) control each individual 
performance monitor counter. Each counter has a corresponding PMLCa register. 
UPMLCa0–UPMLCa3 provide user-level read access to PMLCa0–PMLCa3).

• The performance monitor interrupt is assigned to interrupt vector 0x0F00. 

Software communication with the performance monitor is achieved through PMRs rather than SPRs. The 
PMRs are used for enabling conditions that can trigger the performance monitor interrupt. 

1.2 PowerPC Architecture Implementation
The PowerPC architecture consists of the following layers, and adherence to the PowerPC architecture can 
be measured in terms of which of the following levels of the architecture is implemented:

• User instruction set architecture (UISA)—Defines the base user-level instruction set, user-level 
registers, data types, floating-point interrupt model, memory models for a uniprocessor 
environment, and programming model for a uniprocessor environment. 

• Virtual environment architecture (VEA)—Describes the memory model for a multiprocessor 
environment, defines cache control instructions, and describes other aspects of virtual 
environments. Implementations that conform to the VEA also adhere to the UISA but may not 
necessarily adhere to the OEA.

• Operating environment architecture (OEA)—Defines the memory management model, 
supervisor-level registers, synchronization requirements, and interrupt model. Implementations 
that conform to the OEA also adhere to the UISA and VEA.

The PowerPC architecture allows a wide range of designs for such features as cache and core interface 
implementations.
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1.3 Implementation-Specific Information
This section describes the PowerPC architecture in general and specific details about the implementation 
of the e300 core as a low-power, 32-bit member of this PowerPC core family. The main topics addressed 
are as follows:

• Section 1.3.1, “Register Model,” describes the registers for the operating environment architecture 
common among e300 cores that implement the PowerPC architecture and describes the 
programming model. It also describes the additional registers that are unique to the core.

• Section 1.3.1.4, “Instruction Set and Addressing Modes,” describes the PowerPC instruction set 
and addressing modes for the OEA, and defines and describes the instructions implemented in the 
core.

• Section 1.3.2, “Cache Implementation,” describes the cache model that is defined generally for 
cores that implement the PowerPC architecture by the VEA. It also provides specific details about 
the e300 core cache implementation.

• Section 1.3.3, “Interrupt Model,” describes the interrupt model of the OEA and the differences in 
the core interrupt model.

• Section 1.3.4, “Memory Management,” describes generally the conventions for memory 
management among these cores. This section also describes the core implementation of the 32-bit 
PowerPC memory management specification. 

• Section 1.3.5, “Instruction Timing,” provides a general description of the instruction timing 
provided by the superscalar, parallel execution supported by the PowerPC architecture and the 
e300 core.

• Section 1.1.6, “Bus Interface Unit (BIU),” describes the signals implemented on the core.

The e300 core is a high-performance, superscalar processor core. The PowerPC architecture allows 
optimizing compilers to schedule instructions to maximize performance through efficient use of the 
PowerPC instruction set and register model. The multiple, independent execution units allow compilers to 
optimize instruction throughput. Compilers that take advantage of the flexibility of the PowerPC 
architecture can additionally optimize system performance. 

The following sections summarize the features of the core, including both those that are defined by the 
architecture and those that are unique to the various core implementations.

Specific features of the core are listed in Section 1.1.1, “Features.”

1.3.1 Register Model 

The PowerPC architecture defines register-to-register operations for most computational instructions. 
Source operands for these instructions are accessed from the registers or are provided as immediate values 
embedded in the instruction opcode. The three-register instruction format allows specification of a target 
register distinct from the two-source operands. Load and store instructions transfer data between registers 
and memory.

The e300 core has two levels of privilege: supervisor mode of operation (typically used by the operating 
system) and user mode of operation (used by the application software). The programming models 
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incorporate 32 GPRs, 32 FPRs, special-purpose registers (SPRs), and several miscellaneous registers. 
Each core also has its own unique set of hardware implementation (HID) registers.

Having access to privileged instructions, registers, and other resources allows the operating system to 
control the application environment (providing virtual memory and protecting operating system and 
critical machine resources). Instructions that control the state of the e300 core, the address translation 
mechanism, and supervisor registers can be executed only when the core is operating in supervisor mode.

Figure 1-5 shows all the core registers available at the user and supervisor level. The numbers to the right 
of the SPRs indicate the number that is used in the syntax of the instruction operands for the move to/from 
SPR instructions.
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Figure 1-5. e300 Programming Model—Registers
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The following sections describe the e300-core-implementation-specific features as they apply to registers.

1.3.1.1 UISA Registers

UISA registers are user-level registers that include the following.

1.3.1.1.1 General-Purpose Registers (GPRs)

The PowerPC architecture defines 32 user-level GPRs that are 32 bits wide in 32-bit cores. The GPRs serve 
as the data source or destination for all integer instructions.

1.3.1.1.2 Floating-Point Registers (FPRs)

The PowerPC architecture also defines 32 user-level, 64-bit FPRs. The FPRs serve as the data source or 
destination for floating-point instructions. These registers can contain data objects of either single- or 
double-precision floating-point formats. FPRs are not included in the e300c2 core.

1.3.1.1.3 Condition Register (CR)

The CR is a 32-bit user-level register that provides a mechanism for testing and branching. It consists of 
eight 4-bit fields that reflect the results of certain operations, such as move, integer and floating-point 
comparisons, arithmetic, and logical operations. 

1.3.1.1.4 Floating-Point Status and Control Register (FPSCR)

The user-level FPSCR contains all floating-point exception signal bits, exception summary bits, exception 
enable bits, and rounding control bits needed for compliance with the IEEE 754 standard. FPSCRs are not 
included in the e300c2 core.

1.3.1.1.5 User-Level SPRs

The PowerPC architecture defines numerous special purpose registers that serve a variety of functions, 
such as providing controls, indicating status, configuring the core, and performing special operations. 
During normal execution, a program can access the registers, as shown in Figure 1-5, depending on the 
program’s access privilege (supervisor or user, determined by the privilege-level bit, MSR[PR]). Note that 
GPRs and FPRs are accessed through operands that are part of the instructions. Access to registers can be 
explicit (that is, through the use of specific instructions for that purpose such as Move to Special-Purpose 
Register (mtspr) and Move from Special-Purpose Register (mfspr) instructions) or implicit, as the part of 
the execution of an instruction. Some registers are accessed both explicitly and implicitly. In the e300 core, 
all SPRs are 32 bits wide. 

The following SPRs are accessible by user-level software:

• Link register (LR)—The LR can be used to provide the branch target address and to hold the return 
address after branch and link instructions. The LR is 32 bits wide in 32-bit implementations.

• Count register (CTR)—The CTR is decremented and tested automatically as a result of 
branch-and-count instructions. The CTR is 32 bits wide in 32-bit implementations.
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• XER register—The 32-bit XER contains the summary overflow bit, integer carry bit, overflow bit, 
and a field specifying the number of bytes to be transferred by a Load String Word Indexed (lswx) 
or Store String Word Indexed (stswx) instruction.

1.3.1.2 VEA Registers

The VEA introduces the time base facility (TB) for reading. The TB is a 64-bit register pair whose contents 
are incremented once every four core input clock cycles. The TB consists of two 32-bit registers—time 
base upper (TBU) and time base lower (TBL). Note that the time base registers are read-only in user state. 

1.3.1.3 OEA Registers

OEA registers are supervisor-level registers that include the following.

1.3.1.3.1 Machine State Register (MSR)

The MSR is a supervisor-level register that defines the state of the core. The contents of this register are 
saved when an interrupt is taken, and restored when the interrupt handling completes. A critical interrupt 
interrupt is taken in the e300 core when the cint signal is asserted and MSR[CE] is set. The e300 core 
implements the MSR as a 32-bit register. 

1.3.1.3.2 Segment Registers (SRs)

For memory management, 32-bit processors implement sixteen 32-bit SRs. To speed access, the core 
implements the SRs as two arrays: a main array, for data memory accesses, and a shadow array, for 
instruction memory accesses. Loading a segment entry with the Move to Segment Register (mtsr) 
instruction loads both arrays.

1.3.1.3.3 Supervisor-Level SPRs

The e300 core, like the G2_LE core, has additional supervisor-level SPRs, which are shown in Figure 1-5. 
Two critical interrupt SPRs (CSRR0 and CSRR1), eight SPRGs (SPRG0–SPRG7), eight pairs of 
instruction BATs (IBAT0–IBAT7), eight pairs of data BATs (DBAT0–DBAT7), one system version 
register (SVR), one system memory base address (MBAR), one instruction address breakpoint control 
(IBCR), one data address breakpoint control (DBCR), a new instruction breakpoint register (IABR2), and 
two data address breakpoint registers (DABR and DABR2) are integrated into the core. 

Supervisor-level SPRs include the following:

• The DSISR defines the cause of data access and alignment interrupts. The cause of a DSI interrupt 
for a data breakpoint (match with DABR and DABR2) can be determined by the value of the 
DSISR[DABR] bit (bit 9). 

• The data address register (DAR) holds the address of an access after an alignment or DSI interrupt. 
For example, it contains the address of the breakpoint match condition.

• The decrementer register (DEC) is a 32-bit decrementing counter that provides a mechanism for 
causing a decrementer interrupt after a programmable delay. 

• SDR1 specifies the page table format used in virtual-to-physical address translation for pages. 
(Note that physical address is referred to as ‘real address’ in the architecture specification.)
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• The machine status save/restore register 0 (SRR0) is used for saving the address of the instruction 
that caused the interrupt, and the address to return to when a Return from Interrupt (rfi) instruction 
is executed. 

• The machine status save/restore register 1 (SRR1) is used to save machine status on interrupts and 
to restore machine status when an rfi instruction is executed.

• The SPRG0–SPRG7 registers are provided for operating system use. They reduce the latency that 
may be incurred in the saving of registers to memory while in a handler. Note that the e300 
implements four more SPRGs than the G2 (SPRG0–SPRG3).

• The time base register (TB) is a 64-bit register that maintains the time of day and operates interval 
timers. It consists of two 32-bit fields: time base upper (TBU) and time base lower (TBL).

• The processor version register (PVR) is a read-only register that identifies the version (model) and 
revision level of the processor. See Table 1-7 for the version and revision level of the PVR for the 
e300 processor core.

• Block address translation (BAT) arrays—The PowerPC architecture defines 16 BAT registers. The 
e300 core includes a total of eight pairs of DBAT and eight pairs of IBAT registers. See Figure 1-5 
for a list of the SPR numbers for the BAT arrays. 

The following supervisor-level SPRs are implementation-specific (not defined in the PowerPC 
architecture):

• DMISS and IMISS are read-only registers that are loaded automatically on an instruction or data 
TLB miss.

• HASH1 and HASH2 contain the physical addresses of the primary and secondary page table entry 
groups (PTEGs).

• ICMP and DCMP contain a duplicate of the first word in the page table entry (PTE) for which the 
table search is looking.

• The required physical address (RPA) register is loaded by the core with the second word of the 
correct PTE during a page table search.

• The system version register (SVR) is available on the e300 core, which identifies the specific 
version (model) and revision level of the system-on-a-chip (SOC) integration.

• System memory base address (MBAR) is an implementation-specific register available on the 
e300 core. It supports a temporary storage for the system-level memory map.

• The instruction and data address breakpoint registers (IABR, IABR2, DABR, DABR2) are loaded 
with an instruction or data address, respectively, that is compared to instruction addresses in the 
dispatch queue or to the data address in the LSU. When an address match occurs, a breakpoint 
interrupt is generated.

• One instruction breakpoint control register (IBCR) and one data breakpoint control register 
(DBCR) are implemented in the e300 core.

• To support critical interrupts, two registers (CSRR0 and CSRR1) are included in the e300 core.

• Eight SPRG registers (SPRG0–SPRG7) are in the e300 core.

• Block address translation (BAT) arrays—The e300 core has eight instruction and eight data BAT 
registers. 
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• The hardware implementation (HID0 and HID1) registers provide the means for enabling core 
checkstops and features and allow software to read the configuration of the PLL configuration 
signals. The HID2 register enables the true little-endian mode, cache way-locking, and the 
additional BAT registers.

Table 1-1 shows the bit definitions for HID0.

Table 1-1. e300 HID0 Bit Descriptions

Bits Name Function

0 EMCP Enable mcp. The purpose of this bit is to mask out machine check interrupts caused by assertion of 
mcp, similar to how MSR[EE] can mask external interrupts.
0 Masks mcp. Asserting mcp does not generate a machine check interrupt or a checkstop.
1 Asserting mcp causes checkstop if MSR[ME] = 0 or a machine check interrupt if ME = 1

1 ECPE Enable cache parity errors. 
0 Disables instruction and data cache parity error reporting
1 Allows a detected cache parity error to cause a machine check interrupt if MSR[ME] = 1 or a 

checkstop if MSR[ME] = 0

2 EBA Enable ap_in[0:3] and ape for address parity checking. EBA and EBD allow the processor to operate 
with memory subsystems that do not generate parity.
0 Disables address parity checking during a snoop operation
1 Allows an address parity error during snoop operations to cause a checkstop if MSR[ME] = 0 or a 

machine check interrupt if MSR[ME] = 1

3 EBD Enable dpe for data parity checking. EBA and EBD allow the processor to operate with memory 
subsystems that do not generate parity.
0 Disables data parity checking
1 Allows a data parity error during reads to cause a checkstop if MSR[ME] = 0 or a machine check 

interrupt if MSR[ME] = 1

4 SBCLK clk_out output enable. Used in conjunction with HID0[ECLK] and hreset to configure clk_out. See 
Table 1-2 for settings.

5 — Reserved, should be cleared

6 ECLK clk_out output enable. Used in conjunction with HID0[SBCLK] and the hreset signal to configure 
clk_out. See Table 1-2 for settings.

7 PAR Disable precharge of artry_out, core_abb_out, core_dbb_out, and core_shd_out. This bit should not be 
set when running with split input/output 60x bus operation. 
0 Precharge of artry_out enabled
1 Alters bus protocol slightly by preventing the processor from driving artry_out to high (negated) state. 

If this is done, the integrated device must restore the signals to the high state.

8 DOZE Doze mode enable. Operates in conjunction with MSR[POW].
0 Doze mode disabled
1 Doze mode enabled. Doze mode is invoked by setting MSR[POW] while this bit is set. In doze mode, 

the PLL, time base, and snooping remain active.

9 NAP Nap mode enable. Operates in conjunction with MSR[POW]. 
0 Nap mode disabled
1 Nap mode enabled. Nap mode is invoked by setting MSR[POW] while this bit is set. In nap mode, the 

PLL and time base remain active. 
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10 SLEEP Sleep mode enable. Operates in conjunction with MSR[POW]. 
0 Sleep mode disabled
1 Sleep mode enabled. Sleep mode is invoked by setting MSR[POW] while this bit is set. qreq is 

asserted to indicate that the processor is ready to enter sleep mode. If the system logic determines 
that the processor may enter sleep mode, the quiesce acknowledge signal, qack, is asserted back to 
the processor. Once qack assertion is detected, the processor enters sleep mode after several 
processor clocks. At this point, the system logic may turn off the PLL by first configuring pll_cfg[0:6] 
to PLL bypass mode, then disabling sysclk.

11 DPM Dynamic power management enable
0 Dynamic power management is disabled
1 Functional units enter a low-power mode automatically if the unit is idle. This does not affect 

operational performance and is transparent to software or any external hardware. 

13–141
2–15

— Reserved, should be cleared.

16 ICE Instruction cache enable
0 The instruction cache is neither accessed nor updated. All pages are accessed as if they were 

marked cache-inhibited (WIM = x1x). Potential cache accesses from the bus (snoop and cache 
operations) are ignored. In the disabled state for the L1 caches, the cache tag state bits are ignored 
and all instruction fetches are propagated to the coherent system bus (CSB) as single-beat 
transactions. For those transactions, however, ci reflects the state of the I bit in the MMU for that page 
regardless of cache disabled status. ICE is zero at power-up.

1 The instruction cache is enabled

17 DCE Data cache enable
0 The data cache is neither accessed nor updated. All pages are accessed as if they were marked 

cache-inhibited (WIM = x1x). Potential cache accesses from the bus (snoop and cache operations) 
are ignored. In the disabled state for the L1 caches, the cache tag state bits are ignored and all data 
read and write accesses are propagated to the CSB as single-beat transactions. For those 
transactions, however, ci reflects the state of the I bit in the MMU for that page regardless of cache 
disabled status. DCE is zero at power-up.

1 The data cache is enabled

18 ILOCK Instruction cache lock
0 Normal operation
1 The entire instruction cache is locked (that is, all eight ways of the cache are locked). A locked cache 

supplies data normally on a hit, but the access is treated as a cache-inhibited transaction on a miss. 
On a miss, the transaction to the bus is single-beat; however, ci still reflects the state of the I bit in the 
MMU for that page independent of cache locked or disabled status.

To prevent locking during a cache access, an isync instruction must precede the setting of ILOCK.

19 DLOCK Data cache lock
0 Normal operation
1 The entire data cache is locked (that is, all eight ways of the cache are locked). A locked cache 

supplies data normally on a hit, but is treated as a cache-inhibited transaction on a miss. On a miss, 
the transaction to the bus is single-beat; however, ci still reflects the state of the I bit in the MMU for 
that page independent of cache locked or disabled status. A snoop hit to a locked L1 data cache 
performs as if the cache were not locked. A cache block invalidated by a snoop remains invalid until 
the cache is unlocked. 

To prevent locking during a cache access, a sync instruction must precede the setting of DLOCK.

Table 1-1. e300 HID0 Bit Descriptions (continued)

Bits Name Function
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20 ICFI Instruction cache Flash invalidate
0 The instruction cache is not invalidated. The bit is cleared when the invalidation operation begins 

(usually the next cycle after the write operation to the register). The instruction cache must be 
enabled for the invalidation to occur. 

1 An invalidate operation is issued that marks the state of each instruction cache block as invalid. 
Cache access is blocked during this time. Setting ICFI clears all the valid bits of the blocks and the 
PLRU bits to point to way L0 of each set.

For the e300 core, the proper use of the ICFI and DCFI bits is to set and clear them with two consecutive 
mtspr operations. 

21 DCFI Data cache Flash invalidate 
0 The data cache is not invalidated. The bit is cleared when the invalidation operation begins (usually 

the next cycle after the write operation to the register). The data cache must be enabled for the 
invalidation to occur. 

1 An invalidate operation is issued that marks the state of each data cache block as invalid without 
writing back modified cache blocks to memory. Cache access is blocked during this time. Bus 
accesses to the cache are signaled as a miss during invalidate-all operations. Setting DCFI clears all 
the valid bits of the blocks and the PLRU bits to point to way L0 of each set. 

For the e300 core, the proper use of the ICFI and DCFI bits is to set and clear them with two consecutive 
mtspr operations. 

22–23 — Reserved, should be cleared. 

24 IFEM Enable M bit on bus for instruction fetches
0 M bit not reflected on bus for instruction fetches. Instruction fetches are treated as nonglobal on the 

bus.
1 Instruction fetches reflect the M bit from the WIM settings

25 DECAREN Decrementer auto reload 
0 Normal operation.
1 Decrementer loads last mtdec value for precise periodic interrupt.

26 — Reserved, should be cleared.

27 FBIOB Force branch indirect on the bus
0 Register indirect branch targets are fetched normally
1 Forces register indirect branch targets to be fetched externally

28 ABE Address broadcast enable. Controls whether certain address-only operations (such as cache 
operations) are broadcast on the bus.
0 Address-only operations affect only local caches and are not broadcast
1 Address-only operations are broadcast on the bus
Affected instructions are dcbi, dcbf, and dcbst. Note that these cache control instruction broadcasts 
are not snooped by the e300 core. Refer to Section 4.3.3, “Data Cache Control,” for more information.

29–30 — Reserved, should be cleared.

31 NOOPTI No-op the data cache touch instructions
0 The dcbt and dcbtst instructions are enabled
1 The dcbt and dcbtst instructions are no-oped internal to the e300 core

Table 1-1. e300 HID0 Bit Descriptions (continued)

Bits Name Function
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Table 1-2 shows how HID0[ECLK] and HID0[SBCLK] are used to configure the clk_out signal.

Table 1-3 shows the bit definitions for HID1

Table 1-4 shows the bit definitions for HID2.

Table 1-2. Using HID0[ECLK] and HID0[SBCLK] to Configure clk_out

hreset ECLK SBCLK clk_out 

Asserted x x Bus clock (small pulse for every rising edge of sysclk)

Negated 0 0 Clock output off

0 1 Core clock/2

1 0 Core clock

1 1 Bus clock

Table 1-3. HID1 Bit Descriptions

Bits Name Description

0 PC0 PLL configuration bit 0 (read-only)

1 PC1 PLL configuration bit 1 (read-only)

2 PC2 PLL configuration bit 2 (read-only)

3 PC3 PLL configuration bit 3 (read-only)

4 PC4 PLL configuration bit 4 (read-only)

5 PC5 PLL configuration bit 5 (read-only)

6 PC6 PLL configuration bit 6 (read-only)

57–303
1

— Reserved, should be cleared

Note: The clock configuration bits reflect the state of the pll_cfg[0:46] signals. 

Table 1-4. e300HID2 Bit Descriptions

Bits Name Description

0–3 — Reserved, should be cleared.

4 LET True little-endian. This bit enables true little-endian mode operation for instruction and data accesses. 
This bit is set to reflect the state of the tle signal at the negation of hreset. This bit is used in 
conjunction with MSR[LE] to determine the endian mode of operation.
0 No function Modified (PowerPC) little-endian mode, not supported in the e300 core.
1 True little-endian mode, when MSR[LE] = 1
Changing the value of this bit during normal operation is not recommended

5 IFEB Instruction fetch burst extension. This bit enables the instruction fetch burst extension.
0 Instruction fetch burst extension disabled
1 Instruction fetch burst extension enabled

6 — Reserved, should be cleared.
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7 MESISTATE MESI state enable. This bit enables the four-state MESI cache coherency protocol.
0 MESI disabled. The data cache uses a three-state MEI coherency protocol.
1 MESI enabled. The data cache uses a four-state MESI protocol.

8 IFEC Instruction fetch cancel extension. This bit enables the instruction fetch cancel extension. 
0 Instruction fetch cancel extension disabled
1 Instruction fetch cancel extension enabled

9 EBQS Enable BIU queue sharing. This bit enables data cache queue sharing. 
0  Data cache queue sharing disabled
1  Data cache queue sharing enabled

10 EBPX Enable BIU pipeline extension.This bit enables the bus interface unit pipeline extension.
0  BIU pipeline extension disabled; 1 level pipeline
1  BIU pipeline extension enabled; 1-1/2 level pipeline

11–12 — Reserved for e300c1, should be cleared.

11 ELRW Enable weighted LRU. This bit enables the use of an adjusted (weighted) LRU.
0 Normal operation.
1 The dcbt, dcbtst, and dcbz instructions use and adjusted (weighted) LRU such that they always 

select and replace the lowest unlocked way in the data cache.

12 NOKS No kill for snoop. This bit enables the forcing of kill-type snoops to flush data instead of killing it.
0 Normal operation.
1 Forces write-with-kill snoops to flush instead of kill (snoop can never kill data).

13 HBE High BAT enable. Regardless of the setting of HID2[HBE], these BATs are accessible by mfspr and 
mtspr.
0 IBAT[4–7] and DBAT[4–7] are disabled
1 IBAT[4–7] and DBAT[4–7] are enabled

14–15 — Reserved, should be cleared.
Note bit 15 was SFP—Speed for power. Allows low power consumption at the cost of frequency. 
Removed from e300. 

16–18 IWLCK[0–2] Instruction cache way-lock. Useful for locking blocks of instructions into the instruction cache for 
time-critical applications that require deterministic behavior. [David, pls fis the extra “and” in bit 
settings 100 and on for c4 products -JC----I don’t see an extra “and.” Can you point it out? -DL]
000  no ways locked
001  way 0 locked
010  way 0 through way 1 locked
011  way 0 through way 2 locked
100  way 0 through way 3 locked in e300c1 and e300c4. way 0 through way 2 locked in e300c2 and 

e300c3.
101 way 0 through way 4 locked in e300c1 and e300c4. way 0 through way 2 locked in e300c2 and 

e300c3.
110 way 0 through way 5 locked in e300c1 and e300c4. way 0 through way 2 locked in e300c2 and 

e300c3.
111 way 0 through way 6 locked in e300c1 and e300c4. way 0 through way 2 locked in e300c2 and 

e300c3.
Setting HID0[ILOCK] will lock all ways.

19 ICWP Instruction cache way protection. Used to protect locked ways in the instruction cache from being 
invalidated.
0 Instruction cache way protection disabled
1 Instruction cache way protection enabled

Table 1-4. e300HID2 Bit Descriptions (continued)

Bits Name Description
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1.3.1.4 Instruction Set and Addressing Modes

The following sections describe the PowerPC instruction set and addressing modes in general.

1.3.1.5 PowerPC Instruction Set and Addressing Modes

All PowerPC instructions are encoded as single-word (32-bit) opcodes. Instruction formats are consistent 
among all instruction types, permitting efficient decoding to occur in parallel with operand accesses. This 
fixed instruction length and consistent format simplifies instruction pipelining.

The PowerPC instructions are divided into the following categories: 

• Integer instructions—These include computational and logical instructions. 

— Integer arithmetic instructions

— Integer compare instructions

— Integer logical instructions

— Integer rotate and shift instructions

• Floating-point instructions—These include floating-point computational instructions, as well as 
instructions that affect the FPSCR.

— Floating-point arithmetic instructions

— Floating-point multiply/add instructions

— Floating-point rounding and conversion instructions

— Floating-point compare instructions

— Floating-point status and control instructions

• Load/store instructions—These include integer and floating-point load and store instructions.

— Integer load and store instructions

20–23 — Reserved, should be cleared.

24–26 DWLCK[0–2] Data cache way-lock. Useful for locking blocks of data into the data cache for time-critical applications 
where deterministic behavior is required. 
000  no ways locked
001  way 0 locked
010  way 0 through way 1 locked
011  way 0 through way 2 locked
100  way 0 through way 3 locked in e300c1 and e300c4. way 0 through way 2 locked in e300c2 and 

e300c3.
101  way 0 through way 4 locked in e300c1 and e300c4. way 0 through way 2 locked in e300c2 and 

e300c3.
110  way 0 through way 5 locked in e300c1 and e300c4. way 0 through way 2 locked in e300c2 and 

e300c3.
111  way 0 through way 6 locked in e300c1 and e300c4. way 0 through way 2 locked in e300c2 and 

e300c3.
Setting HID0[DLOCK] will lock all ways.

279–31 — Reserved, should be cleared.

Table 1-4. e300HID2 Bit Descriptions (continued)

Bits Name Description
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— Integer load and store multiple instructions

— Floating-point load and store

— Primitives used to construct atomic memory operations (lwarx and stwcx. instructions)

• Flow control instructions—These include branching instructions, condition register logical 
instructions, trap instructions, and other instructions that affect the instruction flow.

— Branch and trap instructions

— Condition register logical instructions

• Processor control instructions—These instructions are used for synchronizing memory accesses 
and management of caches, TLBs, and the segment registers. 

— Move to/from SPR instructions

— Move to/from MSR

— Move to/from PMR

— Synchronize

— Instruction synchronize

• Memory control instructions—These instructions provide control of caches, TLBs, and segment 
registers.

— Supervisor-level cache management instructions

— Translation lookaside buffer management instructions. Note that there are additional 
implementation-specific instructions.

— User-level cache instructions

— Segment register manipulation instructions

• The e300 core implements the following instructions which are defined as optional by the 
PowerPC architecture: 

— Floating Select (fsel) 
— Floating Reciprocal Estimate Single-Precision (fres)

— Floating Reciprocal Square Root Estimate (frsqrte) 

— Store Floating-Point as Integer Word (stfiwx) 

Note that this grouping of instructions does not indicate the execution unit that executes a particular 
instruction or group of instructions. 

Integer instructions operate on byte, half-word, and word operands. Floating-point instructions operate on 
single-precision (one word) and double-precision (one double word) floating-point operands. The 
PowerPC architecture uses instructions that are 4 bytes long and word-aligned. It provides for byte, 
half-word, and word operand loads and stores between memory and a set of 32 GPRs. It also provides for 
word and double-word operand loads and stores between memory and a set of 32 FPRs.

Computational instructions do not modify memory. To use a memory operand in a computation and then 
modify the same or another memory location, the memory contents must be loaded into a register, 
modified, and then written back to the target location with distinct instructions. 



Overview

e300 Power Architecture Core Family Reference Manual, Rev. 4

1-30 Freescale Semiconductor
 

The core follows the program flow when it is in the normal execution state. However, the flow of 
instructions can be interrupted directly by the execution of an instruction or by an asynchronous event. 
Either kind of interrupt may cause one of several components of the system software to be invoked.

1.3.1.6 Implementation-Specific Instruction Set

The e300 core instruction set is defined as follows: 

• The core provides hardware support for all 32-bit PowerPC instructions.

• The core provides two implementation-specific instructions used for software table search 
operations following TLB misses:

— Load Data TLB Entry (tlbld)

— Load Instruction TLB Entry (tlbli)
• The core implements the following instruction which is added to support critical interrupts (also 

supported on the G2_LE). This is a supervisor-level, context synchronizing instruction. 

— Return from Critical Interrupt (rfci)
• The core implements the following instruction which is added to support easy start-up initialization 

or reloading of the instruction cache.

— Instruction Cache Block Touch (icbt)
• The core provides the following performance monitor instructions:

— Move to Performance Monitor Register (mtpmr)

— Move from Performance Monitor Register (mfpmr)

1.3.2 Cache Implementation

The following sections describe the general cache characteristics as implemented in the PowerPC 
architecture and the core implementation.

1.3.2.1 PowerPC Cache Characteristics

The PowerPC architecture does not define hardware aspects of cache implementations. The e300 core 
controls the following memory access modes on a page or block basis: 

• Write-back/write-through mode

• Caching-inhibited mode 

• Memory coherency

Note that in the core, a cache block is defined as eight words. The VEA defines cache management 
instructions that provide a means by which the application programmer can affect the cache contents.

1.3.2.2 Implementation-Specific Cache Organization

The e300c1 and e300c4 provide independent, 32-Kbyte, eight-way, set-associative, instruction and data 
caches.The e300c2 and e300c3 provide 16-Kbyte, four-way set-associative instruction and data caches. 
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The caches are physically addressed, and the data cache can operate in either write-back or write-through 
mode as specified by the PowerPC architecture. 

The data cache is configured as 128 sets of 8 blocks each on the e300c1 and e300c4. The data cache is 
configured as 128 sets of 4 blocks each on the e300c2 and e300c3. Each block consists of 32 bytes, 2 state 
bits, and an address tag. The two state bits implement the three-state MEI (modified/exclusive/invalid) 
protocol. Each block contains eight 32-bit words. Note that the PowerPC architecture defines the term 
‘block’ as the cacheable unit. For the core, the block size is equivalent to a cache line. A block diagram of 
the data cache organization is shown in Figure 1-7.

The instruction cache is configured as 128 sets of 8 blocks each on the e300c1 and e300c4. The instruction 
cache is configured as 128 sets of 4 blocks each on the e300c2 and e300c3. Each block consists of 32 bytes, 
an address tag, and a valid bit. The instruction cache may not be written to, except through a block fill 
operation. In the e300 core, the instruction cache is blocked only until the critical load completes. The e300 
core supports instruction fetching from other instruction cache lines following the forwarding of the 
critical-first-double-word of a cache line load operation. Successive instruction fetches from the cache line 
being loaded are forwarded, and accesses to other instruction cache lines can proceed during the cache line 
load operation. The instruction cache is not snooped, and cache coherency must be maintained by 
software. A fast hardware invalidation capability is provided to support cache maintenance. The 
organization of the instruction cache for the e300c1 and e300c4 is very similar to the data cache shown in 
Figure 1-6.

Figure 1-6. e300c1 and e300c4 Data Cache Organization

The e300c2 and e300c3 data cache is configured as 128 sets of four blocks per set. The organization of the 
data cache is shown in Figure 1-7.
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Figure 1-7. e300c2 and e300c3 Data Cache Organization

Each cache block contains eight contiguous words from memory that are loaded from an 8-word boundary 
(that is, bits A[27–31] of the effective addresses are zero); thus, a cache block never crosses a page 
boundary. Misaligned accesses across a page boundary can incur a performance penalty.

The e300 core cache blocks are loaded in four beats of 64 bits each on the 64-bit data bus. The burst load 
is performed as critical-double-word-first. The data cache is blocked to internal accesses until the load 
completes; the instruction cache allows sequential fetching during a cache block load. In the core, the 
critical-double-word is simultaneously written to the cache and forwarded to the requesting unit, thus 
minimizing stalls due to load delays.

To ensure coherency among caches in a multiprocessor (or multiple caching-device) implementation, the 
core implements the MEI protocol during normal operation of the data cache. The new data cache MESI 
extension supports the additional fourth cache coherency shared state for the data cache. To support this 
feature, the shared signal, shd, has been added to the bus interface. The following four states indicate the 
state of the cache block:

• Modified—The cache block is modified with respect to system memory; that is, data for this 
address is valid only in the cache and not in system memory.

• Exclusive—This cache block holds valid data that is identical to the data at this address in system 
memory. No other cache has this data.

• Shared—Only available if HID2[MESISTATE] register bit is set. The address block is valid in the 
cache and in at least one other cache. This block is always consistent with system memory. That is, 
the shared state is shared-unmodified; there is no shared-modified state. 

• Invalid—This cache block does not hold valid data.

Cache coherency is enforced by on-chip bus snooping logic. Because the e300 core data cache tags are 
single-ported, a simultaneous load/store and snoop access represents a resource contention. The snoop 
access is given first access to the tags. The load or store then occurs on the clock following the snoop.

Parity is now integrated into both instruction and data cache memory. A machine check interrupt is now 
taken upon the detection of an instruction or data cache parity error. Parity is checked whenever valid data 
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is returned from the instruction or data cache for a cache hit or whenever valid data is read out of the cache 
for a castout or snoop-push operation. 

1.3.2.3 Instruction and Data Cache Way-Locking

The e300 core implements instruction and data cache way-locking, which guarantees that certain memory 
accesses will hit in the cache. This provides deterministic access times for those accesses. See Chapter 4, 
“Instruction and Data Cache Operation,” for more information.

1.3.3 Interrupt Model

This section describes the PowerPC interrupt model and the e300 core implementation specifically.

1.3.3.1 PowerPC Interrupt Model

The PowerPC interrupt mechanism allows the core to change to supervisor state as a result of external 
signals, errors, or unusual conditions arising in the execution of instructions. The conditions that can cause 
interrupts are called exceptions. When interrupts occur, information about the state of the core is saved to 
certain registers and the core begins execution at an address (interrupt vector) predetermined for each 
interrupt type. Interrupts are processed in supervisor mode. 

Some interrupts, such as program interrupts, can be triggered by a broad range of exception conditions. 
Other interrupts, such as the decrementer interrupt, have only a single exception condition. Exceptions and 
the interrupts they cause are described in Chapter 5, “Interrupts and Exceptions.” Although multiple 
exception conditions can map to a single interrupt vector, a more specific condition may be determined by 
examining a register associated with the interrupt—for example, the DSISR and the FPSCR. Additionally, 
some exception conditions can be explicitly enabled or disabled by software.

The PowerPC architecture requires that interrupts be handled in program order; therefore, although a 
particular implementation may recognize exception conditions out of order, they are presented strictly in 
order. When an instruction-caused interrupt is recognized, any unexecuted instructions that appear earlier 
in the instruction stream, including any that have not yet entered the execute stage, are required to complete 
before the interrupt is taken. Any interrupts caused by those instructions are handled first. Likewise, 
asynchronous, precise interrupts are recognized when they occur, but are not handled until the instruction 
currently in the completion stage successfully completes execution or generates an interrupt, and the 
completed store queue is emptied. 

Unless a catastrophic condition causes a system reset or machine check interrupt, only one interrupt is 
handled at a time. If, for example, a single instruction encounters multiple interrupt conditions, those 
conditions are handled sequentially. After the interrupt handler completes, the instruction execution 
continues until the next interrupt condition is encountered. However, in many cases there is no attempt to 
re-execute the instruction. This method of recognizing and handling interrupts sequentially guarantees that 
interrupts are recoverable.

To prevent the program state from being lost due to a system reset, a machine check interrupt, or an 
instruction-caused interrupt in the interrupt handler, interrupt handlers should save the information stored 
in SRR0 and SRR1 early and before enabling external interrupts.
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The PowerPC architecture supports four types of interrupts:

• Synchronous, precise—These are caused by instructions. All instruction-caused interrupts are 
handled precisely; that is, the machine state at the time the interrupt occurs is known and can be 
completely restored. This means that (excluding the trap and system call interrupts) the address of 
the faulting instruction is provided to the interrupt handler and neither the faulting instruction nor 
subsequent instructions in the code stream will complete execution before the interrupt is taken. 
Once the interrupt is processed, execution resumes at the address of the faulting instruction (or at 
an alternate address provided by the interrupt handler). When an interrupt is taken due to a trap or 
system call instruction, execution resumes at an address provided by the handler.

• Synchronous, imprecise—The PowerPC architecture defines two imprecise floating-point 
exception modes: recoverable and nonrecoverable. Even though the core provides a means to 
enable the imprecise modes, it implements these modes identically to the precise mode (that is, all 
enabled floating-point exceptions are always precise on the core).

• Asynchronous, maskable—The external system management interrupt (SMI) and decrementer 
interrupts are maskable, asynchronous interrupts. When these interrupts occur, their handling is 
postponed until the next instruction and any of its associated interrupts complete execution. If there 
are no instructions in the execution units, the interrupt is taken immediately upon determination of 
the correct restart address (for loading SRR0).

• Asynchronous, nonmaskable—The system reset and the machine check interrupt are nonmaskable, 
asynchronous interrupts. They may not be recoverable, or they may provide a limited degree of 
recoverability. All interrupts report recoverability through MSR[RI].

1.3.3.2 Implementation-Specific Interrupt Model

As specified by the PowerPC architecture, all interrupts can be described as either precise or imprecise and 
either synchronous or asynchronous. Asynchronous interrupts (some of which are maskable) are caused 
by events external to the processor’s execution; synchronous interrupts, which are all handled precisely by 
the e300 core, are caused by instructions. A system management interrupt is an implementation-specific 
interrupt. The interrupt classes are shown in Table 1-5. The interrupts are listed in Table 5-3 in order of 
highest to lowest priority.

Although interrupts have other characteristics, such as whether they are maskable, the distinctions shown 
in Table 1-5 define categories of interrupts that the core handles uniquely. Note that Table 1-5 includes no 
synchronous, imprecise instructions. While the PowerPC architecture supports imprecise handling of 
floating-point exceptions, the core implements floating-point exception modes as precise.

Table 1-5. Interrupt Classifications  

Synchronous/Asynchronous Precise/Imprecise Interrupt Type

Asynchronous, nonmaskable Imprecise Machine check
System reset 

Asynchronous, maskable Precise External interrupt
Decrementer
System management interrupt
Critical interrupt

Synchronous Precise Instruction-caused interrupts
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The e300 core interrupts and exception conditions that cause them are listed in Table 1-6.

Table 1-6. Exceptions and Interrupts

Interrupt Type
Vector Offset

(hex) Exception Conditions

Reserved 00000 —

System reset 00100 Caused by the assertion of either  hreset.

Machine check 00200 Caused by the assertion of the tea signal during a data bus transaction, assertion of mcp, 
an address or data parity error, or an instruction or data cache parity error. Note that the 
e300 has SRR1 register values that are different from the G2/G2_LE cores’ when a 
machine check occurs. See Table 5-14 for more information.

DSI 00300 Determined by the bit settings in the DSISR, listed as follows:
1 Set if the translation of an attempted access is not found in the primary hash table entry 

group (HTEG), or in the rehashed secondary HTEG, or in the range of a DBAT register; 
otherwise cleared 

4 Set if a memory access is not permitted by the page or DBAT protection mechanism; 
otherwise cleared 

6 Set for a store operation and cleared for a load operation
9 Set if a data address breakpoint interrupt occurs when the data [0–28] in the DABR or 

DABR2 matches the next data access (load or store instruction) to complete in the 
completion unit. The different breakpoints are enabled as follows:
• Write breakpoints enabled when DABR[30] is set
• Read breakpoints enabled when DABR[31] is set 

ISI 00400 Caused when an instruction fetch cannot be performed for any of the following reasons:
 • The effective (logical) address cannot be translated. That is, there is a page fault for this 

portion of the translation, so an ISI interrupt must be taken to load the PTE (and possibly 
the page) into memory.

 • The fetch access violates memory protection (indicated by SRR1[4] set). If the key bits 
(Ks and Kp) in the segment register and the PP bits in the PTE are set to prohibit read 
access, instructions cannot be fetched from this location.

External interrupt 00500 Caused when MSR[EE] = 1 and the int signal is asserted.

Alignment 00600 Caused when the core cannot perform a memory access for any of the reasons described 
below:
 • The operand of a floating-point load or store instruction is not word-aligned.
 • The operands of lmw, stmw, lwarx, and stwcx. instructions are not aligned.
 • The instruction is lswi, lswx, stswi, stswx, and the core is in little-endian mode. Note 

that PowerPC little-endian mode is not supported on the e300 core.
 • The operand of dcbz is in memory that is write-through-required or caching-inhibited.
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Program 00700 Caused by one of the following exception conditions, which correspond to bit settings in 
SRR1 and arise during execution of an instruction.
Floating-point enabled exception—A floating-point enabled exception condition is 
generated when the following condition is met: 

 (MSR[FE0] | MSR[FE1]) and FPSCR[FEX] is 1. 
 • FPSCR[FEX] is set by the execution of a floating-point instruction that causes an 

enabled exception or by the execution of one of the Move to FPSCR instructions that 
results in both an exception condition bit and its corresponding enable bit being set in 
the FPSCR. 

 • Illegal instruction—An illegal instruction program interrupt is generated when execution 
of an instruction is attempted with an illegal opcode or illegal combination of opcode and 
extended opcode fields (including PowerPC instructions not implemented in the core), 
or when execution of an optional instruction not provided in the core is attempted (these 
do not include those optional instructions that are treated as no-ops). 

 • Privileged instruction—A privileged instruction program interrupt is generated when the 
execution of a privileged instruction is attempted and the MSR register user privilege 
bit, MSR[PR], is set. In the e300 core, this interrupt is generated for mtspr or mfspr with 
an invalid SPR field if SPR[0] = 1 and MSR[PR] = 1. This may not be true for all cores 
that implement the PowerPC architecture.

 • Trap—A trap type program interrupt is generated when any of the conditions specified 
in a trap instruction are met.

Floating-point 
unavailable

00800 Caused by an attempt to execute a floating-point instruction (including floating-point load, 
store, and move instructions) when the floating-point available bit (MSR[FP]) is cleared. In 
the e300c2 core, any attempt to execute a floating-point instruction results in a 
floating-point unavailable exception.

Decrementer 00900 Occurs when DEC[0] changes from 0 to 1. This interrupt is enabled with MSR[EE].

Critical interrupt 00A00 Taken when cint is asserted and MSR[CE] = 1.

Reserved 00B00–00BFF —

System call 00C00 Occurs when a System Call (sc) instruction is executed.

Trace 00D00 Taken when MSR[SE] =1 or when the currently completing instruction is a branch and 
MSR[BE] =1.

Reserved 00E00 The e300 core does not generate an interrupt to this vector. Other devices may use this 
vector for floating-point assist interrupts. 

Performance 
monitor

00F00 Caused when a configured PM counter using the pm_event_in to transition overflows.

Instruction 
translation miss

01000 Caused when the effective address for an instruction fetch cannot be translated by the 
ITLB.

Data load 
translation miss

01100 Caused when the effective address for a data load operation cannot be translated by the 
DTLB.

Data store 
translation miss

01200 Caused when the effective address for a data store operation cannot be translated by the 
DTLB, or when a DTLB hit occurs and the change bit in the PTE must be set due to a data 
store operation.

Instruction 
address 
breakpoint

01300 Occurs when the address (bits 0–29) in the IABR matches the next instruction to complete 
in the completion unit, and IABR[30] is set. Note that the e300 core also implements 
IABR2, which functions identically to IABR.

Table 1-6. Exceptions and Interrupts (continued)

Interrupt Type
Vector Offset

(hex)
Exception Conditions
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1.3.4 Memory Management

The following sections describe the memory management features of the PowerPC architecture and the 
e300 core implementation, respectively.

1.3.4.1 PowerPC Memory Management

The primary functions of the MMU are to translate logical (effective) addresses to physical addresses for 
memory accesses and to provide access protection on blocks and pages of memory. 

The core generates two types of accesses that require address translation: instruction accesses and data 
accesses to memory generated by load and store instructions.

The PowerPC MMU and interrupt model support demand-paged virtual memory. Virtual memory 
management permits execution of programs larger than the size of physical memory; demand-paged 
implies that individual pages are loaded into physical memory from system memory only when they are 
first accessed by an executing program. 

The hashed page table is a variable-sized data structure that defines the mapping between virtual page 
numbers and physical page numbers. The page table size is a power of two, and its starting address is a 
multiple of its size.

The page table contains a number of page-table entry groups (PTEGs). A PTEG contains eight page-table 
entries (PTEs) of 8 bytes each; therefore, each PTEG is 64 bytes long. PTEG addresses are entry points for 
table search operations. 

Address translations are enabled by setting bits in the MSR—MSR[IR] enables instruction address 
translations, and MSR[DR] enables data address translations.

1.3.4.2 Implementation-Specific Memory Management

The instruction and data memory management units in the e300 core provide 4 Gbytes of logical address 
space accessible to supervisor and user programs with a 4-Kbyte page size and 256-Mbyte segment size. 
Block sizes range from 128 Kbytes to 256 Mbytes and are software selectable. In addition, the core uses 
an interim 52-bit virtual address and hashed page tables for generating 32-bit physical addresses. The 
MMUs in the e300 core rely on the interrupt processing mechanism for the implementation of the paged 
virtual memory environment and for enforcing protection of designated memory areas.

Instruction and data TLBs provide address translation in parallel with the on-chip cache access, incurring 
no additional time penalty in the event of a TLB hit. A TLB is a cache of the most recently used page table 

System 
management 
interrupt

01400 Caused when MSR[EE] = 1 and the smi input signal is asserted.

Reserved 01500–02FFF —

Table 1-6. Exceptions and Interrupts (continued)

Interrupt Type
Vector Offset

(hex)
Exception Conditions
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entries. Software is responsible for maintaining the consistency of the TLB with memory. The core TLBs 
are 64-entry, two-way, set-associative caches that contain instruction and data address translations. The 
core provides hardware assist for software table search operations through the hashed page table on TLB 
misses. Supervisor software can invalidate TLB entries selectively.

For instructions and data that correspond to block address translation, the e300 core provides independent 
eight-entry BAT arrays. These entries define blocks that can vary from 128 Kbytes to 256 Mbytes. The 
BAT arrays are maintained by system software. HID2[HBE] is added to the e300 for enabling or disabling 
the four additional pairs of BAT registers. However, regardless of the setting of HID2[HBE], these BATs 
are accessible by mfspr and mtspr.

As specified by the PowerPC architecture, the hashed page table is a variable-sized data structure that 
defines the mapping between virtual page numbers and physical page numbers. The page table size is a 
power of two, and its starting address is a multiple of its size.

Also as specified by the PowerPC architecture, the page table contains a number of PTEGs. A PTEG 
contains 8 PTEs of 8 bytes each; therefore, each PTEG is 64 bytes long. PTEG addresses are entry points 
for table search operations. 

1.3.5 Instruction Timing

The e300 core is a pipelined superscalar processor core. Because instruction processing is reduced into a 
series of stages, an instruction does not require all of the resources of an execution unit at the same time. 
For example, after an instruction completes the decode stage, it can pass on to the next stage, while the 
subsequent instruction can advance into the decode stage. This improves the throughput of the instruction 
flow. For example, it may take three cycles for a single floating-point instruction to execute, but if there 
are no stalls in the floating-point pipeline, a series of floating-point instructions can have a throughput of 
one instruction per cycle. 

The core instruction pipeline has four major pipeline stages, described as follows:

• The fetch pipeline stage primarily involves retrieving instructions from the memory system and 
determining the location of the next instruction fetch. Additionally, if possible, the BPU decodes 
branches during the fetch stage and folds out branch instructions before the dispatch stage.

• The dispatch pipeline stage is responsible for decoding the instructions supplied by the instruction 
fetch stage and determining which of the instructions are eligible to be dispatched in the current 
cycle. In addition, the source operands of the instructions are read from the appropriate register file 
and dispatched with the instruction to the execute pipeline stage. At the end of the dispatch pipeline 
stage, the dispatched instructions and their operands are latched by the appropriate execution unit.

• In the execute pipeline stage, each execution unit with an instruction executes the selected 
instruction (perhaps over multiple cycles), writes the instruction's result into the appropriate 
rename register, and notifies the completion stage when the execution has finished. In the case of 
an internal interrupt, the execution unit reports the interrupt to the completion/write-back pipeline 
stage and discontinues instruction execution until the interrupt is handled. The interrupt is not 
signaled until that instruction is the next to be completed. Execution of most floating-point 
instructions is pipelined within the FPU, allowing up to three instructions to execute in the FPU 
concurrently. The FPU pipeline stages are multiply, add, and round-convert. The LSU has two 
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pipeline stages: the first stage, for effective address calculation and MMU translation, and the 
second, for accessing data in the cache.

• The complete/write-back pipeline stage maintains the correct architectural machine state and 
transfers the contents of the rename registers to the GPRs and FPRs as instructions are retired. If 
the completion logic detects an instruction causing an interrupt, all subsequent instructions are 
canceled, their execution results in rename registers are discarded, and instructions are fetched 
from the correct instruction stream.

A superscalar processor core issues multiple, independent instructions into multiple pipelines, allowing 
instructions to execute in parallel. The e300c1 core has independent execution units for: integer 
instructions, floating-point instructions, branch instructions, load/store instructions, and system register 
instructions.The e300c2 does not include a floating-point unit. The e300c2, e300c3, and e300c4 provide 
two IUs, which improves the throughput of integer instructions. Thee300c2,  e300c3, and e300c4 provide 
two integer units for greater integer instruction throughput along with enhanced multipliers in each IU that 
reduce the multiply instruction latency to a maximum of two cycles. The IU and the FPU each have 
dedicated register files for maintaining operands (GPRs and FPRs, respectively), allowing integer and 
floating-point calculations to occur simultaneously without interference. The e300c2 does not include 
floating-point registers. 

The core provides support for single-cycle store, and it provides an adder/comparator in the system register 
unit that allows the dispatch and execution of multiple integer add and compare instructions on each cycle. 
Refer to Chapter 7, “Instruction Timing,” for more information.

Because the PowerPC architecture can be applied to such a wide variety of implementations, instruction 
timing among processor cores varies accordingly.

1.3.6 Core Interface
The core interface is specific for each processor core implementation.

The e300 core provides a versatile core interface that allows for a wide range of implementations. The 
interface includes a 32-bit address bus, a 64-bit data bus, and 56 control and information signals (see 
Figure 1-8). The core interface allows for address-only transactions, as well as address and data 
transactions. The core control and information signals include the address arbitration, address start, 
address transfer, transfer attribute, address termination, data arbitration, data transfer, data termination, and 
core state signals. Test and control signals provide diagnostics for selected internal circuits.
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Figure 1-8. Core Interface

The core interface supports bus pipelining, allowing the address tenure of one transaction to overlap the 
data tenure of another. The extent of the pipelining depends on external arbitration and control circuitry. 
Similarly, the core supports split-bus transactions for systems with multiple potential bus masters—one 
device can have mastership of the address bus while another has mastership of the data bus. Allowing 
multiple bus transactions to occur simultaneously increases the available bus bandwidth for other activity 
and, as a result, improves performance. 

The core clocking structure allows the bus to operate at integer multiples of the core cycle time.

The following sections describe the core bus support for memory operations. Note that some signals 
perform different functions depending on the addressing protocol used.

The e300c4 can optionally support the core complex bus (CCB). See Chapter 8, “Core Interface 
Operation,” for more information on the CCB. 

1.3.6.1 Memory Accesses

The e300 core CSB is a 64-bit data bus. 

With a 64-bit CSB, memory accesses allow transfer sizes of 8, 16, 24, 32, 40, 48, 56, or 64 bits in one bus 
clock cycle. Data transfers occur in either single-beat transactions or four-beat burst transactions. 
Single-beat transactions are caused by noncached accesses that access memory directly (that is, reads and 
writes when caching is disabled, caching-inhibited accesses, and stores in write-through mode). Four-beat 
burst transactions, which always transfer an entire cache block (32 bytes), are initiated when a line is read 
from or written to memory.

1.3.6.2 Signals

The e300 core signals are grouped as follows:

• Interrupts/Resets—These signals include the external interrupt signal (int), critical interrupt signal 
(cint), checkstop signals, performance monitor signal (pm_event_in) via the PM counters, and both 
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soft reset and hard reset signals. They are used to interrupt and, under various conditions, to reset 
the core.

• JTAG/debug interface signals—The JTAG (based on the IEEE 1149.1 standard) interface and 
debug unit provides a serial interface to the system for performing monitoring and boundary tests. 
Two additional signals are added to the e300 core to allow observation of the internal clock state 
of the core (stopped) and to allow the external input to force the core into a halted state (ext_halt).

• Core status and control—These signals include the memory reservation signal, machine quiesce 
control signals, time base/decrementer clock base enable signal, and the tlbisync signal.

• Clock control—These signals provide for system clock input and frequency control.

• Test interface signals—Signals like address matching, combinational matching, and watchpoint 
are used in the core for production testing.

• Transfer attribute signals—These signals provide information about the type of transfer, such as 
the transfer size and whether the transaction is bursted, write-through, or cache-inhibited.

NOTE

A bar over a signal name indicates that the signal is active low—for 
example, artry_in (address retry) and ts_in (transfer start). Active-low 
signals are referred to as asserted (active) when they are low and negated 
when they are high. Signals that are not active low, such as ap_in[0:3] 
(address bus parity signals) and tt_in[0:4] (transfer type signals) are 
referred to as asserted when they are high and negated when they are low. 

1.3.7 Debug Features 

Some new debug features are specific to the e300 core. Accesses to the debug facilities are available only 
in supervisor mode by using the mtspr and mfspr instructions. The e300 provides the following additional 
feature in the JTAG/debug interface: Inclusion of breakpoint status and control pins: stopped and ext_halt.

1.3.7.1 Breakpoint Signaling

The breakpoint signaling provided on the e300 core allows observability of breakpoint matches external 
to the core. The iabr, iabr2, dabr, and dabr2 breakpoint signals are asserted for at least one bus clock cycle 
when the respective breakpoint occurs. The status of the run state of the e300 core is indicated by the 
stopped pin. An asynchronous external breakpoint can be asserted to the e300 core using the ext_halt pin:

• When DBCR and IBCR are configured for an OR combinational signal type, the breakpoint signals 
iabr, iabr2 and dabr, dabr2 reflect their respective breakpoints. 

• When the DBCR and IBCR are configured for AND combinational signal type, only the iabr2 and 
dabr2 breakpoint signals are asserted after the AND condition is met (that is, both instruction 
breakpoints occurred or both data breakpoints occurred).

• When the core_stopped pin is asserted, the e300 core has entered a stopped state and all internal 
clocking has stopped, indicating that a hardware debug event has occurred.

• The ext_halt input pin can be used to force the core into halted state. The halted state may be a 
hardstop, conditional upon the HARDSTOP condition being set through the JTAG/debug interface
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The breakpoint signaling conditions are described in Chapter 10, “Debug Features.” 

1.4 Differences Between Cores
The e300 core has similar functionality to the G2_LE core. Table 1-7 describes the differences between 
the G2_LE and the e300.

Table 1-7. Differences Between e300 and G2_LE Cores

e300 Core G2_LE Core Impact

New HID0 bits — The e300 core has a new HID0 bit defined to enable cache parity 
error reporting (ECPE). 

New HID1 bits — The e300 core has new HID1 bits defined to extend the number of 
PLL configuration signals to seven (PC5, PC6).

New HID2 bits — The e300 core has new HID2 bits defined to support instruction 
fetch bursting (IFEB), MESI coherency protocol (MESI), 
instruction fetch cancels (IFEC), data cache queue sharing 
(EBQS), pipelining extension (EBPX), additional cache way 
locking (IWLCK and DWLCK), and instruction cache way 
protection (ICWP).

New PVR register value — The processor version register values differ. See Table 1-8 for 
e300 PVR values.

New IBCR and DBCR bits — The e300 core has new IBCR[IABRSTAT, IABR2STAT] and 
DBCR[DABR1STAT, DABR2STAT] fields to provide instruction and 
data address breakpoint status.

— 16-Kbyte, four-way, 
set-associative, instruction 
and data caches

Some e300 cores may have different cache sizes than the G2_LE. 

L1 cache parity — The e300 core supports parity for both instruction and data 
caches; the G2_LE does not support cache parity.

MEI or MESI coherency 
protocols

MEI protocol only The e300 supports two coherency protocols: MEI and MESI; the 
G2_LE only supports the MEI protocol. 

Instruction cancel extension — The e300 instruction cancel mechanism improves utilization of 
instruction cache by supporting ‘hits-under-cancels’ and 
‘misses-under-cancels’; the G2_LE requires the cancel to 
complete before new instruction fetches can begin.

Instruction fetch bursts to 
caching-inhibited space

Single-beat instruction 
fetches to caching-inhibited 
space

The e300’s instruction fetch burst extension allows all 
caching-inhibited instruction fetches to be performed on the bus as 
burst transactions, even though the instructions are not cached. 
This improves performance for instruction space that is 
caching-inhibited, because up to eight instructions are returned 
with one bus operation. The G2_LE core must use single-beat 
instruction fetches for caching-inhibited space, returning only two 
instructions per bus operation.

Instruction cache way 
protection

— The e300 core can protect locked ways in the instruction cache 
from invalidation; the G2_LE does not support instruction cache 
way protection.
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1.5 Differences Between e300 Cores
Table 1-8 describes the differences between the e300 cores.

Data cache queue sharing — The e300 has a new data cache queue sharing extension that 
allows the two burst-write queues in the bus unit to be used 
interchangeably for cache replacements and snoop pushes. Thus, 
the data cache can support two outstanding cache replacements 
or two outstanding snoop push operations on the bus at any given 
time. 

icbt instruction — The e300 supports a new instruction cache block touch instruction 
that facilitates preloading the instruction cache before locking; the 
G2_LE core requires speculatively fetching instructions before 
locking the instruction cache.

1-1/2-level bus pipelining 1-level bus pipelining For the e300, a new transaction can complete an address tenure 
when the previous transaction has been granted the data bus; for 
the G2_LE, a new transaction must wait until the previous data 
tenure has completed before completing its address tenure.

PowerPC little-endian not 
supported

PowerPC little-endian 
supported

PowerPC little-endian will not be supported in the e300 core, 
although true little-endian will be fully supported.

Data retry mode removed Data retry mode available drtry and drtrymode will no longer be supported on the e300 and 
future versions.

External control instructions 
removed

External control instructions 
available

The eciwx and ecowx instruction pair will not be supported on the 
e300 core. These are optional instructions in the PowerPC 
architecture.

Reduced pin mode removed Reduced pin mode available Reduced pinout mode and the signal redpinmode will not be 
supported in the e300 core.

Table 1-8. Differences Between e300 Cores

Cache Sizes Floating-Point Integer Units
Enhanced 
Multipliers 

Performance Monitor PVR

e300c1 32Kbyte, 8-way, 
set-associative 
instruction and 

data caches

Supported One Not included Not included 0x8083

e300c2 16 Kbyte, 4-way, 
set-associative 
instruction and 

data caches

Not supported Two Included Not included 0x8084

e300c3 16 Kbyte, 4-way, 
set-associative 
instruction and 

data caches

Supported Two Included Included 0x8085

Table 1-7. Differences Between e300 and G2_LE Cores (continued)

e300 Core G2_LE Core Impact
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e300c4 32Kbyte, 8-way, 
set-associative 
instruction and 

data caches

Supported Two Included Included 0x8086

Impact Some cores 
implement 
smaller L1 
instruction and 
data caches.

The e300c2 
does not 
implement 
hardware 
support for 
floating-point 
operations.

Two integer 
execution units 
provide higher 
throughput of 
integer 
operations.

The enhanced 
multipliers are 
faster and 
provide a 
maximum 
two-cycle 
latency for 
multiply 
instructions.

A performance monitor 
provides the ability to 
count predefined events 
and processor clocks 
associated with 
particular operations, 
such as cache misses, 
mispredicted branches, 
or the number of cycles 
an execution unit stalls.

The core version 
number in the 
processor version 
register (PVR) is 
listed in this table, 
and the revision 
level for each core 
starts at 0x0010 
and changes for 
each revision of 
the core.

Table 1-8. Differences Between e300 Cores (continued)

Cache Sizes Floating-Point Integer Units
Enhanced 
Multipliers 

Performance Monitor PVR
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Chapter 2  
Register Model
This chapter describes the PowerPC register model and its specific implementation on the e300 core. First, 
it outlines the register organization as defined by the three levels of the PowerPC architecture: user 
instruction set architecture (UISA), virtual environment architecture (VEA), and operating environment 
architecture (OEA). Secondly, this chapter describes the core implementation-specific registers. Full 
descriptions of the basic register set defined by the PowerPC architecture are provided in Chapter 2, 
“Register Set,” in the Programming Environments Manual. 

The PowerPC architecture defines register-to-register operations for all computational instructions. Source 
data for these instructions is accessed from the on-chip registers or is provided as an immediate value 
embedded in the opcode. The three-register instruction format allows specification of a target register 
distinct from the two source registers, thus preserving the original data for use by other instructions and 
reducing the number of instructions required for certain operations. Data is transferred between memory 
and registers with explicit load and store instructions only.

Note that there may be registers common to other processors of this family that are not implemented in the 
e300 core. When the core detects special-purpose register (SPR) encodings other than those defined in this 
document, it either takes an interrupt or it treats the instruction as a no-op. Conversely, some SPRs in the 
e300 core may not be implemented in other processors or may not be implemented in the same way. 

2.1 PowerPC Register Set
The UISA registers, shown in Figure 2-1, can be accessed by either user- or supervisor-level instructions 
(the architecture specification refers to user- and supervisor-level as problem state and privileged state, 
respectively). The general-purpose registers (GPRs) and floating-point registers (FPRs) are accessed 
through instruction operands. Floating-point registers are not supported by the e300c2 core. Access to 
registers can be explicit (that is, through the use of specific instructions for that purpose, such as the mtspr 
and mfspr instructions) or implicit as part of the execution (or side effect) of an instruction. Some registers 
are accessed both explicitly and implicitly. 

Figure 2-1 describes the registers in the e300 core. Note that the implementation-specific registers for the 
e300 core are shown in Figure 2-1.

The number to the right of the register name indicates the number that is used in the syntax of the 
instruction operands to access the register (for example, the number used to access the XER is SPR1).

For more information on the PowerPC register set, refer to Chapter 2, “Register Set,” in the Programming 
Environments Manual.
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Figure 2-1. e300 Programming Model—Registers
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The e300 core user-level registers are described as follows: 

• User-level registers (UISA)—The user-level registers can be accessed by all software with either 
user or supervisor privileges. The user-level register set includes the following:

— General-purpose registers (GPRs). The GPR file consists of thirty-two 32-bit GPRs designated 
as GPR0–GPR31. This register file serves as the data source or destination for all integer 
instructions and provides data for generating addresses. 

— Floating-point registers (FPRs). The FPR file consists of thirty-two 64-bit FPRs designated as 
FPR0–FPR31, which serves as the data source or destination for all floating-point instructions. 
These registers can contain data objects of either single- or double-precision floating-point 
format.

Before the stfd instruction is used to store the contents of an FPR to memory, the FPR must 
have been initialized after reset (explicitly loaded with any value) by using a floating-point load 
instruction.

Implementation Note—The e300c2 core does not support any floating point registers or 
instructions.

— Condition register (CR). The CR consists of 4-bit fields, CR0–CR7, that reflect the results of 
certain arithmetic operations and provides a mechanism for testing and branching.

— Floating-point status and control register (FPSCR). The FPSCR contains all floating-point 
exception signal bits, exception summary bits, exception enable bits, and rounding control bits 
needed for compliance with the IEEE 754 standard. Figure 2-2 shows the bit fields of the 
FPSCR. The FPSCR is not supported on the e300c2 core. For more detailed information on the 
FPSCR see the Programming Environments Manual.

FPSCR bits are described in Table 2-1

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 20 21 22 23 24 25 26 27 28 29 30 31

R
FX FEX VX OX UX ZX XX VXSNAN VXISI VXIDI VXZDZ VXIMZ VXVC FR FI FPRF — VXSOFT VXSQRT VXCVI VE OE UE ZE XE NI RN

W

Reset All zeros

Figure 2-2. Floating-Point Status and Control Register (FPSCR)

Table 2-1. FPSCR Bit Settings

Bits Name Description

0 FX Floating-point exception summary. Every floating-point instruction, except mtfsfi and mtfsf, implicitly sets 
FX if that instruction causes any FPSCR floating-point exception bit to transition from 0 to 1. The mcrfs, 
mtfsfi, mtfsf, mtfsb0, and mtfsb1 instructions can alter FX explicitly. This is a sticky bit.

1 FEX Floating-point enabled exception summary. Signals the occurrence of any enabled exception conditions. It 
is the logical OR of all the floating-point exception bits masked by their respective enable bits (FEX = (VX & 
VE) ^ (OX & OE) ^ (UX & UE) ^ (ZX & ZE) ^ (XX & XE)). The mcrfs, mtfsf, mtfsfi, mtfsb0, and mtfsb1 
instructions cannot alter FPSCR[FEX] explicitly. This is not a sticky bit.
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2 VX Floating-point invalid operation exception summary. This bit signals the occurrence of any invalid operation 
exception. It is the logical OR of all of the invalid operation exception bits. The mcrfs, mtfsf, mtfsfi, mtfsb0, 
and mtfsb1 instructions cannot alter FPSCR[VX] explicitly. This is not a sticky bit.

3 OX Floating-point overflow exception. This is a sticky bit. 

4 UX Floating-point underflow exception. This is a sticky bit. 

5 ZX Floating-point zero divide exception. This is a sticky bit. 

6 XX Floating-point inexact exception. This is a sticky bit. XX is the sticky version of FPSCR[FI]. A given 
instruction sets XX as follows:
 • If the instruction affects FPSCR[FI], the new value of FPSCR[XX] is obtained by logically ORing the old 

value of FPSCR[XX] with the new value of FPSCR[FI].
 • If the instruction does not affect FPSCR[FI], the value of FPSCR[XX] is unchanged. 

7 VXSNAN Floating-point invalid operation exception for SNaN. This is a sticky bit. 

8 VXISI Floating-point invalid operation exception for ∞ – ∞. This is a sticky bit.”

9 VXIDI Floating-point invalid operation exception for ∞ ÷ ∞. This is a sticky bit. 

10 VXZDZ Floating-point invalid operation exception for 0 ÷ 0. This is a sticky bit. 

11 VXIMZ Floating-point invalid operation exception for ∞ * 0. This is a sticky bit. 

12 VXVC Floating-point invalid operation exception for invalid compare. This is a sticky bit. 

13 FR Floating-point fraction rounded. The last arithmetic, rounding, or conversion instruction incremented the 
fraction. This bit is not sticky.

14 FI Floating-point fraction inexact. The last arithmetic, rounding, or conversion instruction either produced an 
inexact result during rounding or caused a disabled overflow exception. This is not a sticky bit. For more 
information regarding the relationship between FPSCR[FI] and FPSCR[XX], see the description of the 
FPSCR[XX] bit. 

15–19 FPRF Floating-point result flags. For arithmetic, rounding, and conversion instructions, FPRF is based on the result 
placed into the target register, except that if any portion of the result is undefined, the value placed here is 
undefined. 
15 Floating-point result class descriptor (C). Arithmetic, rounding, and conversion instructions may set this 

bit with the FPCC bits to indicate the class of the result.
Bits 16–19 comprise the floating-point condition code (FPCC). Floating-point compare instructions always 
set one of the FPCC bits to one and the other three FPCC bits to zero. Arithmetic, rounding, and conversion 
instructions may set the FPCC bits with the C bit to indicate the class of the result. Note that in this case the 
high-order three bits of the FPCC retain their relational significance indicating that the value is less than, 
greater than, or equal to zero.
16 Floating-point less than or negative (FL or <)
17 Floating-point greater than or positive (FG or >)
18 Floating-point equal or zero (FE or =)
19 Floating-point unordered or NaN (FU or ?)
Note that these are not sticky bits. 

20 — Reserved, should be cleared.

21 VXSOFT Floating-point invalid operation exception for software request. This is a sticky bit. This bit can be altered 
only by the mcrfs, mtfsfi, mtfsf, mtfsb0, or mtfsb1 instructions. 

22 VXSQRT Floating-point invalid operation exception for invalid square root. This is a sticky bit.

Table 2-1. FPSCR Bit Settings (continued)

Bits Name Description
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The remaining user-level registers are SPRs. Note that the PowerPC architecture provides a 
separate mechanism for accessing SPRs (the mtspr and mfspr instructions). These instructions are 
commonly used to explicitly access certain registers, while other SPRs may be accessed as the side 
effect of executing other instructions. 

— XER register (XER). The 32-bit XER indicates overflow and carries for integer operations. It 
is set implicitly by many instructions. 

— Link register (LR). The 32-bit LR provides the branch target address for the Branch 
Conditional to Link Register (bclrx) instruction and can optionally be used to hold the logical 
address (referred to as the effective address in the architecture specification) of the instruction 
that follows a branch and link instruction, typically used for linking to subroutines. 

— Count register (CTR). The 32-bit CTR can be used to hold a loop count that can be decremented 
during execution of appropriately coded branch instructions. It can also provide the branch 
target address for the Branch Conditional to Count Register (bcctrx) instruction. 

• User-level registers (VEA)—The VEA introduces the time base facility (TB) for reading. The TB 
is a 64-bit register pair whose contents are incremented once every four core input clock cycles. 
The TB consists of two 32-bit registers—time base upper (TBU) and time base lower (TBL). Note 
that the time base registers are read-only in user state. 

The core supervisor-level registers are described as follows:

• Supervisor-level registers (OEA)—The OEA defines the registers an operating system uses for 
memory management, configuration, and interrupt handling. The PowerPC architecture defines the 
following supervisor-level registers:

23 VXCVI Floating-point invalid operation exception for invalid integer convert. This is a sticky bit. 

24 VE Floating-point invalid operation exception enable. 

25 OE IEEE floating-point overflow exception enable. 

26 UE IEEE floating-point underflow exception enable. 

27 ZE IEEE floating-point zero divide exception enable. 

28 XE Floating-point inexact exception enable. 

29 NI Floating-point non-IEEE mode. If this bit is set, results need not conform with IEEE standards and the other 
FPSCR bits may have meanings other than those described here. If the bit is set and if all 
implementation-specific requirements are met and if an IEEE-conforming result of a floating-point operation 
would be a denormalized number, the result produced is zero (retaining the sign of the denormalized 
number). Any other effects associated with setting this bit are described in the user’s manual for the 
implementation.
Effects of the setting of this bit are implementation-dependent.

30–31 RN Floating-point rounding control. 
00 Round to nearest 
01 Round toward zero 
10 Round toward +infinity
11 Round toward –infinity

Table 2-1. FPSCR Bit Settings (continued)

Bits Name Description
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— Configuration registers

– Processor version register (PVR). This read-only register identifies the version (model) and 
revision level of this processor core. The contents of the PVR can be copied to a GPR by the 
mfspr instruction. Read access to the PVR is supervisor-level only; write access is not 
provided. The PVR consists of the fields as described in Table 2-2. Architecturally, the PVR 
consists of two 16-bit fields as described in Table 2-2 and Figure 2-3. The e300c1 core 
version number is 0x8083, and the revision level starts at 0x0010 and changes for each 
revision of the core. The e300c2 core version number is 0x8084, and the revision level starts 
at 0x0010. The e300c3 core version number is 0x8085, and the revision level starts at 
0x0010. The e300c4 core version number is 0x8086, and the revision level starts at 0x0010.

Table 2-3 describes some of the PVR values for e300-related devices.

Table 2-2. Architectural PVR Field Descriptions

Bits Name Description

0–15 Version A 16-bit number that uniquely identifies a particular processor version. This number can be used to 
determine the version of a processor; it may not distinguish between different end product models if more 
than one model uses the same processor. 

16–31 Revision A 16-bit number that distinguishes between various releases of a particular version (that is, an engineering 
change level). The value of the revision portion of the PVR is implementation-specific. The processor 
revision level is changed for each revision of the device. 

SPR 287 Access: Supervisor read-only

0 15 16 31

R Version Number Revision Level

W

Reset 0x8083_0010 for e300c1, 0x8084_0010 for e300c2, 0x8085_0010 for e300c3, 0x8086_1010 or 0x8086_0010 for 
e300c4

Figure 2-3. e300 Processor Version Register

Table 2-3. Assigned PVR Values

Device Name Version No. Revision No.

MPC603r (PID7) 0x0007  0x1201

G2 core—original 0x0081 0x0011

G2 core 0x8081 0x1010

G2_LE core (general-purpose) 0x8082 0x1010

G2_LE core (general-purpose) 0x8082 0x2010

MPC603e (PID6) 0x0006 0x0101

MPC603e (PID7v) 0x0007 0x0100, 
0x0201

e300c1 0x8083 0x0010

e300c2 0x8084 0x0010

e300c3 0x8085 0x0010
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– Machine state register (MSR). The MSR defines the state of the processor. The MSR can be 
modified by the Move to Machine State Register (mtmsr), System Call (sc), and Return 
from Interrupt (rfi) and Return from Critical Interrupt (rfci) instructions. It can be read by 
the Move from Machine State Register (mfmsr) instruction. Figure 2-4 shows the machine 
state register (MSR).

Table 2-4 shows the MSR bit settings.

e300c4 (used in MPC5121e) 0x8086 0x0010

e300c4 (used in MPC83xx devices) 0x8086 0x1010

Space for future versions

Access: Supervisor read/write

0 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
— POW TGPR ILE EE PR FP ME FE0 SE BE FE1 CE IP IR DR — RI LE

W

Reset 0000_0040 or 0000_0000 or 0001_0041 or 0001_0001

Figure 2-4. Machine State Register

Table 2-4. MSR Bit Settings

Bits Name Description

01 — Reserved. Full function.

1–41 — Reserved. Partial function.

5–91 — Reserved. Full function.

10–121 — Reserved. Partial function.

13 POW Power management enable (implementation-specific)
0 Disables programmable power modes (normal operation mode)
1 Enables programmable power modes (nap, doze, or sleep mode).
This bit controls the programmable power modes only; it has no effect on dynamic power management (DPM). 
MSR[POW] may be altered with an mtmsr instruction only. Also, when altering the POW bit, software may alter 
only this bit in the MSR and no others. The mtmsr instruction must be followed by a context-synchronizing 
instruction. 
See Chapter 9, “Power Management,” for more information.

14 TGPR Temporary GPR remapping (implementation-specific)
0 Normal operation
1 TGPR mode. GPR0–GPR3 are remapped to TGPR0–TGPR3 for use by TLB miss routines.
The contents of GPR0–GPR3 remain unchanged while MSR[TGPR] = 1. Attempts to use GPR4–GPR31 with 
MSR[TGPR] = 1 yield undefined results. Temporarily replaces TGPR0–TGPR3 with GPR0–GPR3 for use by 
TLB miss routines. The TGPR bit is set when either an instruction TLB miss, data read miss, or data write miss 
interrupt is taken. The TGPR bit is cleared by an rfi instruction.

Table 2-3. Assigned PVR Values (continued)

Device Name Version No. Revision No.
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15 ILE Interrupt little-endian mode. When an interrupt occurs, this bit is copied into MSR[LE] to select the endian 
mode for the context established by the interrupt.

16 EE External interrupt enable
0 The processor ignores external interrupts, system management interrupts, and decrementer interrupts.
1 The processor is enabled to take an external interrupt, system management interrupt, or decrementer 

interrupt.

17 PR Privilege level 
0 The processor can execute both user- and supervisor-level instructions
1 The processor can only execute user-level instructions

18 FP Floating-point available (this bit is read-only on the e300c2 core)
0 The processor prevents dispatch of floating-point instructions, including floating-point loads, stores, and 

moves.
1 The processor can execute floating-point instructions and can take floating-point enabled exception type 

program interrupts.

19 ME Machine check enable 
0 Machine check interrupts are disabled
1 Machine check interrupts are enabled

20 FE0 Floating-point exception mode 0 (see Table 5-9) (This bit is read-only on the e300c2 core)

21 SE Single-step trace enable
0 The processor executes instructions normally
1 The processor generates a trace interrupt upon the successful completion of the next instruction

22 BE Branch trace enable
0 The processor executes branch instructions normally
1 The processor generates a trace interrupt upon the successful completion of a branch instruction

23 FE1 Floating-point exception mode 1 (see Table 5-9) (This bit is read-only on the e300c2 core)

24 CE Critical interrupt enable (e300 implementation-specific)
0 Critical interrupts disabled
1 Critical interrupts enabled; critical interrupt and rfci instruction enabled
The critical interrupt is an asynchronous implementation-specific interrupt. The critical interrupt vector offset 
is 0x00A00. The rfci instruction is implemented to return from these interrupt handlers. Also, CSRR0 and 
CSRR1 are used to save and restore the processor state for critical interrupts. 

25 IP Interrupt prefix. The setting of this bit specifies whether an interrupt vector offset is prepended with Fs or 0s. 
In the following description, nnnnn is the offset of the interrupt. See Table 5-2.
0 Interrupts are vectored to the physical address 0x000n_nnnn
1 Interrupts are vectored to the physical address 0xFFFn_nnnn

26 IR Instruction address translation
0 Instruction address translation is disabled
1 Instruction address translation is enabled
See Chapter 6, “Memory Management.”

27 DR Data address translation   
0 Data address translation is disabled
1 Data address translation is enabled
See Chapter 6, “Memory Management.”

28–291 — Reserved. Full function. Bit 29 reserved on e300c1 and e300c2 only.

Table 2-4. MSR Bit Settings (continued)

Bits Name Description
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NOTE
The core defines MSR[13] as the power management enable (POW) bit and 
MSR[14] as the temporary GPR remapping (TGPR) bit. The e300 allocates 
MSR[24] is used to enable the critical interrupt and rfci, the return from 
critical interrupt instruction. MSR[31] is used in conjunction with 
HID2[LET] to indicate the endian mode of operation of the e300 core. 
These bits are described in Table 2-4.

— Memory management registers:

– Block-address translation (BAT) registers. The device also supports 16 block-address 
translation registers (BATs) through the use of 2 independent instruction and data block 
address translation (IBAT and DBAT) arrays, each containing 8 pairs of BATs, for a total of 
16 BAT registers. Effective addresses are compared simultaneously with all eight entries in 
the BAT array during block translation. Figure 2-1 lists SPR numbers for the BAT registers. 

– SDR1. The SDR1 register specifies the page table base address used in virtual-to-physical 
address translation. (Note that physical address is referred to as real address in the 
architecture specification.)

– Segment registers (SRs). The OEA defines sixteen 32-bit segment registers (SR0–SR15). 
The fields in the segment register are interpreted differently depending on the value of bit 0. 

— Interrupt-handling registers

– Data address register (DAR). After a data access or an alignment interrupt, the DAR is set 
to the effective address generated by the faulting instruction. 

– The SPRG0–SPRG7 registers are provided for operating system use, which reduce the 
latency that may be incurred because of saving registers to memory while in a handler and 
also assist in searching the page tables in software. If software table searching is not enabled, 
then these registers may be used for any supervisor purpose. Note that the e300 core 
implements four additional SPRGs (SPRG4–SPRG7) than previous PowerPC cores. These 

29 PMM Performance monitor mark bit (e300c3 and e300c4 only). System software can set PMM when a marked 
process is running to enable statistics to be gathered only during the execution of the marked process. 
MSR[PR] and MSR[PMM] together define a state that the processor (supervisor or user) and the process 
(marked or unmarked) may be in at any time. If this state matches an individual state specified in the PMLCan, 
the state for which monitoring is enabled, counting is enabled.

30 RI Recoverable interrupt (for system reset and machine check interrupts)
0 Interrupt is not recoverable
1 Interrupt is recoverable

31 LE Little-endian mode enable 
0 The processor runs in big-endian mode
1 The processor runs in little-endian mode. See Section 3.1.2, “Endian Modes and Byte Ordering,” for a 

description of the core operating in true little-endian mode.

1 All reserved bits should be set to zero for future compatibility.

Table 2-4. MSR Bit Settings (continued)

Bits Name Description



Register Model

e300 Power Architecture Core Family Reference Manual, Rev. 4

2-10 Freescale Semiconductor
 

additional registers are not defined by the PowerPC architecture. The format of these 
registers is defined in Section 2.2.11, “SPRG0–SPRG7.”

– DSISR. The DSISR defines the cause of data access and alignment interrupts. 

Machine status save/restore register [0–1] (SRR0, SRR1). The SRR0 and SRR1 are used to 
save machine status on interrupts and to restore machine status when an rfi instruction is 
executed. For more information refer to Chapter 6, “Memory Management.”

NOTE
The e300 core implements the KEY bit (bit 12) in the SRR1 register to 
simplify the table search software. For more information refer to Chapter 6, 
“Memory Management.”

Note that to support critical interrupts, two new registers, CSRR0 and 
CSRR1, are implemented on the e300 core, which are not defined by the 
PowerPC architecture. These registers have the same bit assignments as 
SRR0 and SRR1, albeit with different SPR numbers, as described in 
Section 2.2, “Implementation-Specific Registers.”

— Miscellaneous registers:

– The time base facility (TB) for writing. The TB is a 64-bit register pair that can be used to 
provide time-of-day or interval timing. It consists of two 32-bit registers—time base upper 
(TBU) and time base lower (TBL). The TB is incremented once every four core input clock 
cycles.

– Decrementer (DEC). The DEC register is a 32-bit decrementing counter that provides a 
mechanism for causing a decrementer interrupt after a programmable delay. The DEC is 
decremented once every four core input clock cycles.

2.2 Implementation-Specific Registers
This section describes the implementation-specific registers of the e300 core. The core defines the 
following registers used for software table search operations: DMISS, IMISS, DCMP, ICMP, HASH1, 
HASH2, and RPA. These registers should be accessed only when address translation is disabled (MSR[IR] 
and MSR[DR] are both zero). For a complete discussion, refer to Section 6.5.2, “Implementation-Specific 
Table Search Operation.” 

The implementation-specific registers also include HID0, HID1, HID2, and IABR SPRs. All of these 
registers can be accessed by supervisor-level instructions only using the SPR numbers shown in 
Figure 2-1.

In addition, the e300 core defines the following implementation-specific registers:

• Eight additional BATs (IBAT4–IBAT7 and DBAT4–DBAT7), providing better performance in 
protecting accesses on a segment, block, or page basis along with memory accesses and I/O 
accesses. See Figure 2-1 for a list of the SPR numbers for the BAT arrays. 

• Two critical interrupt registers (CSRR0, CSRR1), which are implementation-specific. The CSRR0 
and CSRR1 registers support the critical interrupt function, which have the same bit assignments 
as SRR0 and SRR1, respectively. The effective address for resuming program execution is saved 
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into CSRR0 and the content of the MSR is saved into CSRR1. An additional rfci instruction is 
implemented for supporting the return from a critical interrupt, selecting the CSRR0 and CSRR1 
registers.

• Four additional interrupt handling SPRG registers, which are provided for operating system use. 

• A new system version register (SVR). See Section 2.2.12, “System Version Register (SVR),” for 
bit definitions.

• System memory base address (MBAR) is a new implementation-specific register for the G2_LE 
core. It supports a system-level memory map. See Section 2.2.13, “System Memory Base Address 
(MBAR),” for more information.

• One new instruction address breakpoint control register (IBCR), two new data address breakpoint 
registers (DABR, DABR2), and one new data address breakpoint control register (DBCR) are 
implemented in the e300 processor core. All of these new registers, as well as the IABR2 
(instruction address breakpoint register 2), are implementation-specific and are described in the 
Section 2.2.14, “Instruction Address Breakpoint Registers (IABR and IABR2),” and 
Section 2.2.16, “Data Address Breakpoint Register (DABR and DABR2).”

• Performance monitor registers are available in the e300c3 and e300c4:

— The performance monitor counter registers (PMC0–PMC3) are 32-bit counters used to count 
software-selectable events. Each counter counts up to 128 events. UPMC0–UPMC3 provide 
user-level read access to these registers. Reference events are those that should be applicable 
to most microprocessor microarchitectures and be of general value. They are identified in 
Figure 2-1.

— The performance monitor global control register (PMGC0) controls the counting of 
performance monitor events. It takes priority over all other performance monitor control 
registers. UPMGC0 provides user-level read access to PMGC0.

— The performance monitor local control registers (PMLCa0–PMLCa3) control each individual 
performance monitor counter. Each counter has a corresponding PMLCa register. 
UPMLCa0–UPMLCa3 provide user-level read access to PMLCa0–PMLCa3).

2.2.1 Hardware Implementation Register 0 (HID0)

Figure 2-5 shows the e300 implementation of HID0. HID0 can be accessed with mtspr and mfspr using 
SPR1008.

SPR 1008 Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 14 15

R
EMCP ECPE EBA EBD SBCLK — ECLK PAR DOZE NAP SLEEP DPM — NHR

W

Reset All zeros

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
ICE DCE ILOCK DLOCK ICFI DCFI — IFEM — FBIOB ABE — NOOPTI

W

Reset All zeros

Figure 2-5. HID0 Register
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Table 2-5 shows the bit definitions for HID0.

Table 2-5. e300 HID0 Field Descriptions

Bits Name Function

0 EMCP Enable mcp. The purpose of this bit is to mask out machine check interrupts caused by assertion of mcp, 
similar to how MSR[EE] can mask external interrupts.
0 Masks mcp. Asserting mcp does not generate a machine check interrupt or a checkstop.
1 Asserting mcp causes checkstop if MSR[ME] = 0 or a machine check interrupt if ME = 1

1 ECPE Enable cache parity errors. 
0 Disables instruction and data cache parity error reporting
1 Allows a detected cache parity error to cause a machine check interrupt if MSR[ME] = 1 or a 

checkstop if MSR[ME] = 0

2 EBA Enable ap_in[0:3] and ape for address parity checking. 
0 Disables address parity checking during a snoop operation
1 Allows an address parity error during snoop operations to cause a checkstop if MSR[ME] = 0 or a 

machine check interrupt if MSR[ME] = 1

3 EBD Enable dpe for data parity checking. 
0 Disables data parity checking
1 Allows a data parity error during reads to cause a checkstop if MSR[ME] = 0 or a machine check 

interrupt if MSR[ME] = 1

4 SBCLK clk_out output enable. Used in conjunction with HID0[ECLK] and hreset to configure clk_out. 

5 — Reserved, should be cleared

6 ECLK clk_out output enable. Used in conjunction with HID0[SBCLK] and the hreset signal to configure clk_out. 

7 PAR Disable precharge of artry_out
0 Precharge of artry_out enabled
1 Alters bus protocol slightly by preventing the processor from driving artry_out to high (negated) state. 

If this is done, the integrated device must restore the signals to the high state.

8 DOZE Doze mode enable. Operates in conjunction with MSR[POW].
0 Doze mode disabled
1 Doze mode enabled. Doze mode is invoked by setting MSR[POW] while this bit is set. In doze mode, 

the PLL, time base, and snooping remain active.

9 NAP Nap mode enable. Operates in conjunction with MSR[POW]. The qreq signal is asserted to indicate that 
the processor is ready to enter nap mode. If the system logic determines that the processor may enter 
nap mode, the quiesce acknowledge signal, qack, is asserted to notify the processor.
0 Nap mode disabled
1 Nap mode enabled. Nap mode is invoked by setting MSR[POW] while this bit is set. In nap mode, the 

PLL and time base remain active. 

10 SLEEP Sleep mode enable. Operates in conjunction with MSR[POW]. 
0 Sleep mode disabled
1 Sleep mode enabled. Sleep mode is invoked by setting MSR[POW] while this bit is set. qreq is 

asserted to indicate that the processor is ready to enter sleep mode. If the system logic determines 
that the processor may enter sleep mode, the quiesce acknowledge signal, qack, is asserted back to 
the processor. Once qack assertion is detected, the processor enters sleep mode after several 
processor clocks. At this point, the system logic may turn off the PLL by first configuring pll_cfg[0:6] 
to PLL bypass mode, then disabling sysclk.
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11 DPM Dynamic power management enable
0 Dynamic power management is disabled
1 Functional units enter a low-power mode automatically if the unit is idle. This does not affect 

operational performance and is transparent to software or any external hardware. 

12–15 — Reserved, should be cleared.

16 ICE Instruction cache enable
0 The instruction cache is neither accessed nor updated. All pages are accessed as if they were 

marked cache-inhibited (WIM = x1x). Potential cache accesses from the bus (snoop and cache 
operations) are ignored. In the disabled state for the L1 caches, the cache tag state bits are ignored 
and all instruction fetches are propagated to the coherent system bus (CSB) as single-beat or burst 
transactions, depending on the value of HID2[IFEB]. For those transactions, however, ci reflects the 
state of the I bit in the MMU for that page regardless of cache disabled status. ICE is zero at power-up.

1 The instruction cache is enabled

17 DCE Data cache enable
0 The data cache is neither accessed nor updated. All pages are accessed as if they were marked 

cache-inhibited (WIM = x1x). Potential cache accesses from the bus (snoop and cache operations) 
are ignored. In the disabled state for the L1 caches, the cache tag state bits are ignored and all data 
read and write accesses are propagated to the CSB as single-beat transactions. For those 
transactions, however, ci reflects the state of the I bit in the MMU for that page regardless of cache 
disabled status. DCE is zero at power-up.

1 The data cache is enabled

18 ILOCK Instruction cache lock
0 Normal operation
1 The entire instruction cache is locked (that is, all eight ways of the cache are locked). A locked cache 

supplies data normally on a hit, but the access is treated as a cache-inhibited transaction on a miss. 
On a miss, the transaction to the bus is single-beat or burst, depending on the value of HID2[IFEB]; 
however, ci still reflects the state of the I bit in the MMU for that page, regardless of whether the cache 
is locked or disabled.

To prevent locking during a cache access, an isync instruction must precede the setting of ILOCK.

19 DLOCK Data cache lock
0 Normal operation
1 The entire data cache is locked (that is, all eight ways of the cache are locked). A locked cache 

supplies data normally on a hit, but is treated as a cache-inhibited transaction on a miss. On a miss, 
the transaction to the bus is single-beat; however, ci still reflects the state of the I bit in the MMU for 
that page regardless of whether the cache is locked or disabled. A snoop hit to a locked L1 data cache 
performs as if the cache were not locked. A cache block invalidated by a snoop remains invalid until 
the cache is unlocked. 

To prevent locking during a cache access, a sync instruction must precede the setting of DLOCK.

20 ICFI Instruction cache flash invalidate
0 The instruction cache is not invalidated. The bit is cleared when the invalidation operation begins 

(usually the next cycle after the write operation to the register). The instruction cache must be enabled 
for the invalidation to occur. 

1 An invalidate operation is issued that marks the state of each instruction cache block as invalid. 
Cache access is blocked during this time. Setting ICFI clears all the valid bits of the blocks and the 
PLRU bits to point to way L0 of each set.

For the e300 core, the proper use of the ICFI and DCFI bits is to set and clear them with two consecutive 
mtspr operations. 

Table 2-5. e300 HID0 Field Descriptions (continued)

Bits Name Function
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21 DCFI Data cache flash invalidate 
0 The data cache is not invalidated. The bit is cleared when the invalidation operation begins (usually 

the next cycle after the write operation to the register). The data cache must be enabled for the 
invalidation to occur. 

1 An invalidate operation is issued that marks the state of each data cache block as invalid without 
writing back modified cache blocks to memory. Cache access is blocked during this time. Bus 
accesses to the cache are signaled as a miss during invalidate-all operations. Setting DCFI clears all 
the valid bits of the blocks and the PLRU bits to point to way L0 of each set. 

For the e300 core, the proper use of the ICFI and DCFI bits is to set and clear them with two consecutive 
mtspr operations. 

22–23 — Reserved, should be cleared. 

24 IFEM Enable M bit on bus for instruction fetches
0 M bit not reflected on bus for instruction fetches. Instruction fetches are treated as nonglobal on the 

bus.
1 Instruction fetches reflect the M bit from the WIM settings

25 DECAREN Decrementer auto reload (not supported on the e300c1)
0 Normal operation.
1 Decrementer loads last mtdec value for precise periodic interrupt.

25–26 — Reserved, should be cleared. Bit 25 reserved in e300c1 only.

27 FBIOB Force branch indirect on the bus
0 Register indirect branch targets are fetched normally
1 Forces register indirect branch targets to be fetched externally

28 ABE Address broadcast enable. Controls whether certain address-only operations (such as cache 
operations) are broadcast on the bus.
0 Address-only operations affect only local caches and are not broadcast
1 Address-only operations are broadcast on the bus
Affected instructions are dcbi, dcbf, and dcbst. Note that these cache control instruction broadcasts 
are not snooped by the e300 core. Refer to Section 4.3.3, “Data Cache Control,” for more information.

29–30 — Reserved, should be cleared.

31 NOOPTI No-op the data cache touch instructions
0 The dcbt and dcbtst instructions are enabled
1 The dcbt and dcbtst instructions are no-oped internal to the e300 core

Table 2-5. e300 HID0 Field Descriptions (continued)

Bits Name Function
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Table 2-6 shows how HID0[SBCLK], HID0[ECLK], and hreset are used to configure clk_out. See 
Section 8.3.15.2, “Test Clock Output (core_clk_out),” for more information.

 

HID0 can be accessed with mtspr and mfspr using SPR1008.

2.2.2 Hardware Implementation Register 1 (HID1)

The e300 implementation of HID1 is shown in Figure 2-6. 

Table 2-7 shows the bit definitions for HID1.

HID1 can be accessed with mfspr using SPR1009.

Table 2-6. HID0[SBCLK] and HID0[ECLK] clk_out Configuration

hreset HID0[ECLK] HID0[SBCLK] clk_out

Asserted x x Core

Negated 0 0 Core

Negated 0 1 Core clock frequency/2

Negated 1 0 Core

Negated 1 1 Bus

SPR 1009 Access: Supervisor read/write

0 1 2 3 4 5 6 7 31

R
PC0 PC1 PC2 PC3 PC4 PC5 PC6 —

W

Reset pll_cfg[0:6] || 0x000_0000

Figure 2-6. HID1 Register

Table 2-7. HID1 Bit Settings

Bits Name Description

0 PC0 PLL configuration bit 0 (read-only)

1 PC1 PLL configuration bit 1 (read-only)

2 PC2 PLL configuration bit 2 (read-only)

3 PC3 PLL configuration bit 3 (read-only)

4 PC4 PLL configuration bit 4 (read-only)

5 PC5 PLL configuration bit 5 (read-only)

6 PC6 PLL configuration bit 6 (read-only)

7–31 — Reserved, should be cleared

Note: The clock configuration bits reflect the state of the 
pll_cfg[0:6] signals. 
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2.2.3 Hardware Implementation Register 2 (HID2)

The core implements an additional hardware implementation-dependent HID2 register, shown in 
Figure 2-7, which enables cache way-locking; the HID2 also enables true little-endian mode and the new 
additional BAT registers. It is a supervisor-only, read/write, implementation-specific special-purpose 
register (SPR) which is accessed as SPR1011 (decimal). The HID2 bits are shown in Table 2-12.

Table 2-8 describes the HID2 fields.

SPR 1011 Access: Supervisor read/write

0 3 4 5 6 7 8 9 10 11 12 13 14 15

R
— LET IFEB — MESI IFEC EBQS EBPX — HBE —

W

Reset All zeros

16 18 19 20 23 24 26 27 31

R
IWLCK ICWP — DWLCK —

W

Reset All zeros

Figure 2-7. HID2 Register

Table 2-8. e300 HID2 Field Descriptions

Bits Name Description

0–3 — Reserved, should be cleared.

4 LET True little-endian. This bit enables true little-endian mode operation for instruction and data accesses. 
This bit is set to reflect the state of the tle signal at the negation of hreset. This bit is used in conjunction 
with MSR[LE] to determine the endian mode of operation.
0 Modified (PowerPC) little-endian mode, not supported in the e300 core.
1 True little-endian mode, when MSR[LE] = 1
Changing the value of this bit during normal operation is not recommended

5 IFEB Instruction fetch burst extension. This bit enables the instruction fetch burst extension.
0 Instruction fetch burst extension disabled
1 Instruction fetch burst extension enabled

6 — Reserved, should be cleared.

7 MESISTATE MESI state enable. This bit enables the four-state MESI cache coherency protocol.
0 MESI disabled. The data cache uses a three-state MEI coherency protocol.
1 MESI enabled. The data cache uses a four-state MESI protocol.

8 IFEC Instruction fetch cancel extension. This bit enables the instruction fetch cancel extension. 
0 Instruction fetch cancel extension disabled
1 Instruction fetch cancel extension enabled

9 EBQS Enable BIU queue sharing. This bit enables data cache queue sharing. 
0  Data cache queue sharing disabled
1  Data cache queue sharing enabled

10 EBPX Enable BIU pipeline extension.This bit enables the bus interface unit pipeline extension.
0  BIU pipeline extension disabled; 1 level pipeline
1  BIU pipeline extension enabled; 1-1/2 level pipeline
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11–12 — Reserved for e300c1, should be cleared.

11 ELRW Enable weighted LRU. This bit enables the use of an adjusted (weighted) LRU.
0 Normal operation.
1 The dcbt, dcbtst, and dcbz instructions use and adjusted (weighted) LRU such that they always select 

and replace the lowest unlocked way in the data cache.

12 NOKS Reserved for e300c1, should be cleared.

For e300c2 , e300c3, and e300c4:
No kill for snoop. This bit enables the forcing of kill-type snoops to flush data instead of killing it.
0 Normal operation.
1 Forces write-with-kill snoops to flush instead of kill (snoop can never kill data).

13 HBE High BAT enable. Regardless of the setting of HID2[HBE], these BATs are accessible by mfspr and 
mtspr.
0 IBAT[4–7] and DBAT[4–7] are disabled
1 IBAT[4–7] and DBAT[4–7] are enabled

14–15 — Reserved, should be cleared. 

16–18 IWLCK[0–2] Instruction cache way-lock. Useful for locking blocks of instructions into the instruction cache for 
time-critical applications that require deterministic behavior. 

000 = no ways locked
001 = way 0 locked
010 = way 0 through way 1 locked
011 = way 0 through way 2 locked
100 = way 0 through way 3 locked in e300c1. Way 0 through way 2 locked in e300c2, e300c3 and 

e300c4.
101 = way 0 through way 4 locked in e300c1. Way 0 through way 2 locked in e300c2, e300c3 and 

e300c4.
110 = way 0 through way 5 lockedin e300c1. Way 0 through way 2 locked in e300c2, e300c3 and 

e300c4.
111 = way 0 through way 6 locked in e300c1. Way 0 through way 2 locked in e300c2, e300c3 and 

e300c4.
Setting HID0[ILOCK] will lock all ways in all e300 cores.

19 ICWP Instruction cache way protection. Used to protect locked ways in the instruction cache from being 
invalidated.
0 Instruction cache way protection disabled
1 Instruction cache way protection enabled

20–23 — Reserved, should be cleared.

Table 2-8. e300 HID2 Field Descriptions (continued)

Bits Name Description
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2.2.4 Data and Instruction TLB Miss Address Registers
(DMISS and IMISS)

DMISS and IMISS, shown in Figure 2-8, are loaded automatically on a data or instruction TLB miss. 
DMISS and IMISS contain the effective address of the access that caused the TLB miss interrupt. The 
contents are used by the core when calculating the values of HASH1 and HASH2 and by the tlbld and tlbli 
instructions when loading a new TLB entry. Note that the core always loads DMISS with a big-endian 
address, even when MSR[LE] is set. These registers are both read- and write-accessible. However, caution 
should be used when writing to these registers.

24–26 DWLCK[0–2] Data cache way-lock. Useful for locking blocks of data into the data cache for time-critical applications 
where deterministic behavior is required. 

000 = no ways locked
001 = way 0 locked
010 = way 0 through way 1 locked
011 = way 0 through way 2 locked
100 = way 0 through way 3 locked in e300c1. Way 0 through way 2 locked in e300c2, e300c3 and 

e300c4.
101 = way 0 through way 4 locked in e300c1. Way 0 through way 2 locked in e300c2, e300c3 and 

e300c4.
110 = way 0 through way 5 locked in e300c1. Way 0 through way 2 locked in e300c2, e300c3 and 

e300c4.
111 = way 0 through way 6 locked in e300c1. Way 0 through way 2 locked in e300c2, e300c3 and 

e300c4.
Setting HID0[DLOCK] will lock all ways in all e300cores.

27–31 — Reserved, should be cleared.

SPR
SPR

DMISS 976
IMISS 980

Access: Supervisor read/write

0 31

R
Effective Address

W

Reset All zeros

Figure 2-8. DMISS and IMISS Registers

Table 2-8. e300 HID2 Field Descriptions (continued)

Bits Name Description
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2.2.5 Data and Instruction TLB Compare Registers 
(DCMP and ICMP)

DCMP and ICMP, shown in Figure 2-9, contain the first word in the required PTE. The contents are 
constructed automatically from the contents of the segment registers and the effective address (DMISS or 
IMISS) when a TLB miss interrupt occurs. Each PTE read from the tables during the table search process 
should be compared with this value to determine if the PTE is a match. Upon execution of a tlbld or tlbli 
instruction, the upper 25 bits of the DCMP or ICMP register and 11 bits of the effective address are loaded 
into the first word of the selected TLB entry. These registers are read and write to the software.

Table 2-9 describes the bit settings for the DCMP and ICMP registers.

2.2.6 Primary and Secondary Hash Address Registers 
(HASH1 and HASH2)

HASH1 and HASH2, shown in Figure 2-10, contain the physical addresses of the primary and secondary 
PTEGs, respectively, for the access that caused the TLB miss interrupt. For convenience, the device 
automatically constructs the full physical address by routing SDR1 bits 0–6 into HASH1 and HASH2 and 
clearing the lower 6 address bits. These read-only registers are constructed from the DMISS or IMISS 
contents (the register choice is determined by which miss most recently occurred). 

SPR
SPR

977 (DCMP)
981 (ICMP)

Access: Supervisor read/write

0 1 24 25 26 31

R
V VSID H API

W

Reset All zeros

Figure 2-9. DCMP and ICMP Registers

Table 2-9. DCMP and ICMP Bit Settings

Bits Name Description

0 V Valid bit. Set by the processor on a TLB miss interrupt.

1–24 VSID Virtual segment ID. Copied from VSID field of corresponding segment register.

25 H Hash function identifier. Cleared by the processor on a TLB miss interrupt.

26–31 API Abbreviated page index. Copied from API of effective address.

SPR
SPR

978 (HASH1)
979 (HASH2)

Access: Supervisor read-only

0 6 7 25 26 31

R HTABORG Hashed Page Address —

W

Reset All zeros

Figure 2-10. HASH1 and HASH2 Registers
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Table 2-10 describes the bit settings of the HASH1 and HASH2 registers.

2.2.7 Required Physical Address Register (RPA)

During a page table search operation, the software must load the RPA, shown in Figure 2-11, with the 
second word of the correct PTE. When the tlbld or tlbli instruction is executed, the RPA and DMISS or 
IMISS register are merged and loaded into the selected TLB entry. The referenced (R) bit is ignored when 
the write occurs (no location exists in the TLB entry for this bit). The RPA register is read- and 
write-accessible to the software.

Table 2-11 describes the bit settings of the RPA register.

2.2.8 BAT Registers (BAT4–BAT7)

The MMU has four additional IBAT and four additional DBAT array entries that provide a mechanism for 
translating additional blocks as large as 256 Mbytes from the 32-bit effective address space into the 
physical memory space. This can be used for translating large address ranges whose mappings do not 
change frequently.

Table 2-10. HASH1 and HASH2 Bit Settings

Bits Name Description

0–6 HTABORG Copy of the upper 7 bits of the HTABORG field from SDR1

7–25 Hashed page address Address bits 7–25 of the PTEG to be searched

26–31 — Reserved

SPR 982 Access: Supervisor read/write

0 19 20 22 23 24 25 28 29 30 31

R
RPN — R C WIMG — PP

W

Reset All zeros

Figure 2-11. Required Physical Address Register (RPA)

Table 2-11. RPA Bit Settings

Bits Name Description

0–19 RPN Physical page number from PTE

20–22 — Reserved

23 R Referenced bit from PTE

24 C Changed bit from PTE

25–28 WIMG Memory/cache access attribute bits

29 — Reserved

30–31 PP Page protection bits from PTE
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BATs are software-controlled arrays that store the available block address translations on-chip. The core 
supports block address translation through the use of two independent instruction and data block address 
translation (IBAT and DBAT) arrays; each array is comprised of four additional entries used for instruction 
accesses and four additional entries used for data accesses.

IBAT4–IBAT7 and DBAT4–DBAT7 are implementation-specific registers on the e300 core, which are 
optionally enabled in HID2. The format of these registers is the same as that of IBAT0–IBAT3 and 
DBAT0–DBAT3. Each BAT array entry consists of a pair of BAT registers—an upper and a lower BAT 
register for each entry. Figure 2-12 and Figure 2-13 show the format and bit definitions of the upper and 
lower BATs for 32-bit processor cores, respectively.

The BAT registers contain the effective-to-physical address mappings for blocks of memory. This mapping 
includes the effective address bits that are compared with the effective address of the access, the 
memory/cache access mode bits (WIMG), and the protection bits for the block. The size of the block and 
the starting address of the block are defined by the physical block number (BRPN) and block size mask 
(BL) fields.

The sixteen new BAT registers are enabled by HID2[HBE]. However, regardless of the setting of this bit, 
the BAT registers are accessible by the mfspr and mtspr instructions and are only accessible to 

SPR 528 (IBAT0U)
530 (IBAT1U)
532 (IBAT2U)
534 (IBAT3U)
560 (IBAT4U)
562 (IBAT5U)
564 (IBAT6U)
566 (IBAT7U)

536 (DBAT0U)
538 (DBAT1U)
540 (DBAT2U)
542 (DBAT3U)
568 (DBAT4U)
570 (DBAT5U)
572 (DBAT6U)
574 (DBAT7U)

Access: Supervisor read/write

0 14 15 18 19 29 30 31

R
BEPI — BL Vs Vp

W

Reset All zeros

Figure 2-12. Upper BAT Register

SPR 529 (IBAT0L)
531 (IBAT1L)
533 (IBAT2L)
535 (IBAT3L)
561 (IBAT4L)
563 (IBAT5L)
565 (IBAT6L)
567 (IBAT7L)

537 (DBAT0L)
539 (DBAT1L)
541 (DBAT2L)
543 (DBAT3L)
569 (DBAT4L)
571 (DBAT5L)
573 (DBAT6L)
575 (DBAT7Ul)

Access: Supervisor read/write

0 14 15 24 25 28 29 30 31

R
BRPN — WIMG1 — PP

W

Reset All zeros
1 Neither the W or G bits of the IBAT registers should be set. Attempting to write to these bits causes 

boundedly-undefined results.

Figure 2-13. Lower BAT Register
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supervisor-level programs. See Section 2.2.3, “Hardware Implementation Register 2 (HID2),” for more 
information on the HBE bit.

2.2.9 Critical Interrupt Save/Restore Register 0 (CSRR0)

CSRR0 is used to save the return address of critical interrupts. It is set to the effective address of the 
instruction that the processor would have attempted to complete next if no critical interrupt had occurred. 
The format of CSRR0 is shown in Figure 2-14. 

For information on how specific interrupts affect CSRR0, refer to the descriptions of individual interrupts 
in Chapter 5, “Interrupts and Exceptions.”

2.2.10 Critical Interrupt Save/Restore Register 1 (CSRR1)

CSRR1 is used to save machine status on interrupts and to restore machine status when an rfci instruction 
is executed. Figure 2-15 shows the CSRR1 format.

Figure 2-15. Critical Interrupt Save/Restore Register 1 (CSRR1)

For information on how specific interrupts affect CSRR1, refer to the individual interrupts in Chapter 5, 
“Interrupts and Exceptions.”

SPR 58 Access: Supervisor read/write

0 29 30 31

R
CSRR0 —

W

Reset All zeros

Figure 2-14. Critical Interrupt Save/Restore Register 0 (CSRR0)

SPR 59 Access: Supervisor read/write

0 31

R
CSRR1

W

Reset All zeros

Figure 2-16. Critical Interrupt Save/Restore Register 0 (CSRR0)
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2.2.11 SPRG0–SPRG7

The core provides four additional SPRG (SPRG4–SPRG7) registers for general operating system use, such 
as performing a fast state save or for supporting multiprocessor implementations. The formats of the SPRG 
registers are shown in Figure 2-17. Note that SPRG4-SPRG7 are not supported in the G2 core. 

For information on conventional uses for SPRG4–SPRG7, refer to Section 5.2.1.3, “SPRG0–SPRG7.” 

2.2.12 System Version Register (SVR)

The system version register (SVR) is a 32-bit read-only register that identifies the specific version (model) 
and revision level of the system on a chip (SoC). Supervisor mode write access is reserved for future use. 
Figure 2-18 shows an implementation of the SVR, although it should be noted that this register is 
determined by the SoC.

SPR 272 (SPRG0)
273 (SPRG1)
274 (SPRG2)
275 SPRG3)

276 (SPRG4)
277 (SPRG5)
278 (SPRG6)
279 (SPRG9)

Access: Supervisor read/write

0 31

R
SPRGn

W

Reset All zeros

Figure 2-17. SPRGn Register

SPR 286 Access: Supervisor read-only

0 31

R SVR

W

Reset 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 2-18. SVR Register



Register Model

e300 Power Architecture Core Family Reference Manual, Rev. 4

2-24 Freescale Semiconductor
 

The SVR can be accessed with mfspr using SPR286. The bits in SVR are defined in Table 2-12.

Note that all bits within this register are guaranteed to be configured by the SOC and unused bits are 
cleared to zero. Also, SVR4–SVR15 are control fields for this register. 

2.2.13 System Memory Base Address (MBAR)

The core implements a new memory base address register (MBAR) to support the system level memory 
map. The MBAR can be accessed with mtspr or mfspr using SPR311 in supervisor mode. The present 
memory base address for the system memory map is stored in this register. It is important to ensure that 
the present value of the base offset is current in the system memory. 

2.2.14 Instruction Address Breakpoint Registers (IABR and IABR2)

The IABR, shown in Figure 2-19, controls the instruction address breakpoint interrupt. In the core, an 
additional address breakpoint register (IABR2) is implemented. IABR[CEA] holds an effective address to 
which each instruction’s address is compared. The interrupt is enabled by setting IABR[BE]. The interrupt 
is taken when there is an instruction address breakpoint match on the next instruction to complete. The 
instruction tagged with the match cannot complete before the breakpoint interrupt is taken. The address of 
the instruction which matches the breakpoint condition is stored in SRR0. The tagged instruction is 
completed and retired on return from the interrupt (rfi or rfci). The results are then committed to the 
destination registers and address.

Note that if IABR/IABR2 values are set to any interrupt vector, an unrecoverable processor state occurs. 

Table 2-12. System Version Register (SVR) Bit Settings

Bits Name Description

0–3 CID Company or manufacturer ID. These bits are required. 
Bit 0 must set to 1. 

4–15 SID1

1 The SoC value is an optional field assigned by the SoC design integrator.

SoC ID. This required field is used to identify the SoC device.

16–19 PROC Process revision field. This optional field is used to indicate different process revisions of the SoC.

20–23 MFG Manufacturing revision. This optional field identifies uniquely different manufacturing revisions of the SoC.

24–27 MJREV Major SoC design revision indicator. This is a required field.

28–31 MNREV Minor SoC design revision indicator. This is a required field.

SPR 1010 (IABR)
1018 (IABR2)

Access: User read/write

0 29 30 31

R
CEA BE —

W

Reset All zeros

Figure 2-19. IABR and IABR2 Registers
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The bits in the IABR and IABR2 are defined in Table 2-13. For more information about the instruction 
breakpoint interrupt, see Section 5.5.17, “Instruction Address Breakpoint Interrupt (0x01300).”

2.2.15 Instruction Address Breakpoint Control Register (IBCR)

The IBCR, shown in Figure 2-20, is a supervisor-level register with SPR309 on the e300 core, which is 
accessible only by using an mtspr or mfspr instruction. The IBCR controls the compare and match type 
conditions for IABR and IABR2. Note that IABR and IABR2 must be enabled before the effects of IBCR 
are realized. 

Table 2-14 describes the IBCR fields.

Table 2-13. Instruction Address Breakpoint Register (IABR and IABR2) Bit Settings

Bits Name Description

0–29 CEA Compare effective address. Word address to be compared.

30 BE Breakpoint enable. IABR (or IABR2) enabled. Setting this bit enables the IABR interrupt.

31 — Reserved

 SPR 309 Access: Supervisor read/write

0 5 6 7 8 9 10 11 12 13 14 15

R
—

IABR
STAT

IABR2
STAT

CMP CMP2 —
SIG_
TYPE

DNS
W

Reset All zeros

Figure 2-20. IBCR Register

Table 2-14. Instruction Address Breakpoint Control Registers (IBCR)

Bits Name Description

0–5 — Reserved

6 IABRSTAT IABR status.
0 Match on IABR has not occurred.
1 Match on IABR has occurred.

7 IABR2STAT IABR2 status.
0 Match on IABR2 has not occurred
1 Match on IABR2 has occurred

8–9 CMP IABR breakpoint compare type
00  Match if instruction’s EA equals IABR[CEA]
01  Reserved
10  Match if instruction’s EA is less than IABR[CEA]
11  Match if instruction’s EA is greater than or equal to IABR[CEA]

10–11 CMP2 IABR2 breakpoint compare type
00  Match if instruction’s EA equals IABR2[CEA]
01  Reserved
10  Match if instruction’s EA less than IABR2[CEA]
11  Match if instruction’s EA greater than or equal to IABR2[CEA]
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2.2.16 Data Address Breakpoint Register (DABR and DABR2)

The optional data address breakpoint facility on the e300 core is controlled by optional SPRs, DABR and 
DABR2. The data address breakpoint facility provides a means to detect data accesses to a designated 
double-word address. The breakpoint address is compared to the effective address of all data accesses; it 
does not apply to instruction fetches.

DABR and DABR2, the two data address breakpoint registers shown in Figure 2-21, can both cause the 
data address breakpoint interrupt. 

When an enabled data breakpoint condition matches with the address of a data access, a DSI interrupt 
occurs. When a DSI interrupt is taken to indicate a data breakpoint condition, DAR is set to the data 
address that causes the breakpoint and DSISR[9] is set. The address of the instruction associated with the 
breakpoint condition is stored in SRR0.

Note that if the DABR/DABR2 register values are set to match on any interrupt vector, an indeterminate 
or unrecoverable processor state may occur. 

Table 2-15 describes the fields in DABR and DABR2.

12 — Reserved

13 — Reserved

14 SIG_TYPE Combinational signal type
0 Instruction’s EA matches IABR[CEA] OR instruction’s EA matches IABR2[CEA]
1 Instruction’s EA matches IABR[CEA] AND instruction’s EA matches IABR2[CEA]

15 DNS Do not signal. Disable iabr and iabr2 output signals
0  Allow signal to toggle on a match
1  Do not toggle signal on match

SPR 1013 (DABR)
317 (DABR2)

Access: Supervisor read/write

0 28 29 30 31

R
CEA BT WBE RBE

W

Reset All zeros

Figure 2-21. DABR and DABR2 Registers

Table 2-15. Data Address Breakpoint Registers (DABR and DABR2) Bit Settings

Bits Name Description

0–28 CEA Data address breakpoint

29 BT Breakpoint translation enable. Match if MSR[DR] = DABR[BT].

30 WBE Data write enable. Matching on data writes enabled.

31 RBE Data read enable. Matching on data reads enabled.

Table 2-14. Instruction Address Breakpoint Control Registers (IBCR) (continued)

Bits Name Description
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A data address breakpoint match is detected for a load or store instruction if the following conditions are 
met for any byte accessed:

• EA0–EA28 = DABR[CEA]

• MSR[DR] = DABR[BT]

• The instruction is a store and DABR[WBE] = 1 or the instruction is a load and DABR[RBE] = 1

Even if the above conditions are satisfied, it is undefined whether a match occurs in the following cases:

• A store conditional indexed instruction (stwcx.) in which the store is not performed

• A load or store string instruction (lswx or stswx) with a zero length

• A dcbz, dcba, eciwx, or ecowx instruction. For the purpose of determining whether a match 
occurs, eciwx is treated as a load and dcbz, dcba, and ecowx are treated as stores. Note that eciwx 
and ecowx may generate illegal transactions in some implementations and are not supported in the 
e300.

The cache management instructions other than dcbz and dcba never cause a match. If dcbz or dcba causes 
a match, some or all of the target memory locations may have been updated.

When a match occurs, a DSI interrupt is generated. Refer to Section 5.5.3, “DSI Interrupt (0x00300),” 
more information on the data address breakpoint facility. 

2.2.17 Data Address Breakpoint Control Register (DBCR)

The DBCR is a supervisor-level register with SPR310 on the e300 core, which is accessible only by using 
mtspr and mfspr. The DBCR controls the compare and match type conditions for DABR and DABR2. 
Figure 2-22 shows the format of the DBCR.

Table 2-16 provides the description of DBCR bit settings.

SPR 310 Access: Supervisor read/write

0 5 6 7 8 9 10 11 12 13 14 15

R
—

DABR
STAT

DABR2
STAT

CMP CMP2 —
SIG_
TYPE

DNS
W

Reset All zeros

Figure 2-22. DBCR Register

Table 2-16. Data Address Breakpoint Control Registers (DBCR)

Bits Name Description

0–5 — Reserved

6 DABRSTAT DABR status
0 Match on DABR has not occurred
1 Match on DABR has occurred

15 DNS Do not signal. Disable dabr and dabr2 output signals.
0  Allow signal to toggle on a match
1  Do not toggle signal on match

16–31 — Reserved
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2.2.18 Performance Monitor Registers

The performance monitor provides a set of PMRs for defining, enabling, and counting conditions that 
trigger the performance interrupt. It also the performance monitor interrupt vector. 

The supervisor-level performance monitor registers are accessed with mtpmr and mfpmr. Attempting to 
read or write supervisor-level registers in user-mode causes a privilege exception.

The user-level performance monitor registers are read-only and are accessed with the mfpmr instruction. 
Attempting to write these user-level registers in either supervisor or user mode causes an illegal instruction 
exception.

See Chapter 11, “Performance Monitor for a detailed description of performance monitor registers.

7 DABR2STAT DABR2 status
0 Match on DABR2 has not occurred
1 Match on DABR2 has occurred

8–9 CMP DABR breakpoint compare type
00  Match if data’s EA equals DABR[CEA]
01  Reserved
10  Match if data’s EA less than DABR[CEA]
11  Match if data’s EA greater than or equal to DABR[CEA]

10–11 CMP2 DABR2 breakpoint compare type
00  Match if data’s EA equals DABR2[CEA]
01  Reserved
10  Match if data’s EA less than DABR2[CEA] 
11  Match if data’s EA greater than or equal to DABR2[CEA]

12–13 — Reserved

14 SIG_TYPE Combinational signal type
0  Data access EA matches DABR[CEA] OR EA matches DABR2[CEA]
1  Data access EA matches DABR[CEA] AND EA matches DABR2[CEA]

Table 2-16. Data Address Breakpoint Control Registers (DBCR) (continued)

Bits Name Description

15 DNS Do not signal. Disable dabr and dabr2 output signals.
0  Allow signal to toggle on a match
1  Do not toggle signal on match

16–31 — Reserved
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Chapter 3  
Instruction Set Model
This chapter describes the operand conventions as they are represented in two levels of the PowerPC 
architecture. It also provides detailed descriptions of conventions used for storing values in registers and 
memory, accessing the core registers, and the representation of data in these registers. This chapter 
explains the following:

• Operand conventions

• e300 core instruction set

3.1 Operand Conventions
This section describes the integer and floating-point operand conventions. It also describes the big- and 
little-endian byte ordering for the e300 core. Note that floating-point instructions or operands are not 
supported on the e300c2 core.

3.1.1 Data Organization in Memory and Memory Operands

Bytes in memory are numbered consecutively starting with 0. Each number is the address of the 
corresponding byte.

Memory operands may be bytes, half words, words, or double words, or, for the load/store multiple and 
move assist instructions, a sequence of bytes or words. The address of a memory operand is the address of 
its first byte (that is, of its lowest-numbered byte). Operand length is implicit for each instruction.

3.1.2 Endian Modes and Byte Ordering

The PowerPC architecture supports both big- and little-endian byte ordering. The default byte and bit 
ordering is big-endian. See Section 3.1.2, “Byte Ordering,” in the Programming Environments Manual, 
for more information about big- and little-endian byte ordering. Note that the e300 core does not support 
the modified (PowerPC) little-endian mode present in previous PowerPC cores but supports true 
little-endian mode.

True little-endian mode is supported in the e300 core to minimize the impact on software porting from true 
little-endian systems. The true little-endian mode applies for all instruction fetches and data load and store 
operations to and from memory. The e300 powers up in one of two endian modes, big-endian mode or true 
little-endian mode, selected by the tle signal at the negation of hreset. The endian mode should be set at 
the negation of hreset, and should remain unchanged by software for the duration of the system operation.

Bit 4 of HID2, (HID2[LET]) is used in conjunction with MSR[LE] to indicate the endian mode of 
operation of the e300 core as shown in Table 3-1. Note that the e300 core no longer supports modified 
(PowerPC) little-endian mode as in previous PowerPC cores.
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When the e300 core is in true little-endian mode, memory and I/O subsystems are treated as true 
little-endian. The following occurs when operating in true little-endian mode: 

• The byte reversing for instruction occurs before the instruction is decoded. 

• The byte reversing for data occurs when the data item is being moved to or from the GPR. 

Therefore, the byte reversal in little-endian mode for load or store accesses occurs between memory or the 
data cache, and the register files for the e300 core.

3.1.3 Alignment and Misaligned Accesses

The operand of a single-register memory access instruction has a natural alignment boundary equal to the 
operand length. In other words, the natural address of an operand is an integral multiple of the operand 
length. A memory operand is said to be aligned if it is aligned at its natural boundary; otherwise it is 
misaligned. For a detailed discussion about memory operands, see Chapter 3, “Operand Conventions,” in 
the Programming Environments Manual.

Operands for single-register memory access instructions have the characteristics shown in Table 3-2. 
(Although not permitted as memory operands, quad words are shown because quad-word alignment is 
desirable for certain memory operands.)

The concept of alignment is also applied more generally to data in memory. For example, a 12-byte data 
item is said to be word-aligned if its address is a multiple of four.

Implementation Notes—The following describes how the e300 core handles alignment and misaligned 
accesses:

• The core provides hardware support for some misaligned memory accesses. However, misaligned 
accesses suffer a performance degradation compared to aligned accesses of the same type.

Table 3-1. Endian Mode Indication

MSR[LE] HID2[LET] Endian Mode

0 x Big-endian

1 1 True little-endian

Table 3-2. Memory Operands

Operand Length
Addr[28–31] 

Aligned

Byte 8 bits xxxx

Half word 2 bytes xxx0

Word 4 bytes xx00

Double word 8 bytes x000

Quad word 16 bytes 0000

Note: An x in an address bit position indicates that 
the bit can be 0 or 1 regardless of the state 
of other address bits.
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• The core does not provide hardware support for floating-point load/store operations that are not 
word-aligned. In such a case, the core invokes an alignment interrupt and the interrupt handler must 
break up the misaligned access. For this reason, floating-point single- and double-word accesses 
should always be word-aligned. Note that a floating-point double-word access on a word-aligned 
boundary requires an extra cycle to complete. The e300c2 core does not support any floating-point 
operations.

Any half-word, word, double-word, and string reference access that crosses an alignment boundary must 
be broken into multiple discrete accesses. For string accesses, the hardware makes no attempt to get 
aligned to reduce the number of accesses. (Multiple word accesses are architecturally required to be 
aligned.) The resulting performance degradation depends on how well each individual access behaves with 
respect to the memory hierarchy. At a minimum, additional cache access cycles are required. More 
dramatically, each discrete access to a noncacheable page involves an individual bus operation that reduces 
the effective bus bandwidth.

The frequent use of misaligned accesses is discouraged because they can compromise the overall 
performance.

3.1.4 Floating-Point Execution Model

The e300c1 core provides hardware support for all single- and double-precision floating-point operations 
for most value representations and all rounding modes. The PowerPC architecture provides for hardware 
to implement a floating-point system as defined in ANSI/IEEE Standard 754-1985, IEEE Standard for 
Binary Floating Point Arithmetic. For detailed information about the floating-point execution model, refer 
to Chapter 3, “Operand Conventions,” in the Programming Environments Manual. Note that the e300c2 
core does not support floating-point operations.

The IEEE 754 standard includes 64- and 32-bit arithmetic. The standard requires that single-precision 
arithmetic be provided for single-precision operands. The standard permits double-precision arithmetic 
instructions to have either (or both) single-precision or double-precision operands, but states that 
single-precision arithmetic instructions should not accept double-precision operands. 

The UISA follows these guidelines: 

• Double-precision arithmetic instructions may have single-precision operands but always produce 
double-precision results.

• Single-precision arithmetic instructions require all operands to be single-precision and always 
produce single-precision results.

For arithmetic instructions, conversions from double- to single-precision must be done explicitly by 
software, while conversions from single- to double-precision are done implicitly.

All PowerPC implementations provide the equivalent of the following execution models to ensure that 
identical results are obtained. The definition of the arithmetic instructions for infinities, denormalized 
numbers, and NaNs follow conventions described in the following sections.

Although the double-precision format specifies an 11-bit exponent, exponent arithmetic uses two 
additional bit positions to avoid potential transient overflow conditions. An extra bit is required when 
denormalized double-precision numbers are prenormalized. A second bit is required to permit 
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computation of the adjusted exponent value in the following examples when the corresponding exception 
enable bit is one:

• Underflow during multiplication using a denormalized factor

• Overflow during division using a denormalized divisor

3.1.5 Effect of Operand Placement on Performance

The VEA states that the placement (location and alignment) of operands in memory affect the relative 
performance of memory accesses. The best performance is guaranteed if memory operands are aligned on 
natural boundaries. To obtain the best performance from the core, the programmer should assume the 
performance model described in Chapter 3, “Operand Conventions,” in the Programming Environments 
Manual. 

3.2 Instruction Set Summary
This section describes instructions and addressing modes defined for the e300 core. These instructions are 
divided into the following functional categories: 

• Integer instructions—These include arithmetic and logical instructions. For more information, see 
Section 3.2.4.1, “Integer Instructions.”

• Floating-point instructions—These include floating-point arithmetic instructions, as well as 
instructions that affect the floating-point status and control register (FPSCR). For more 
information, see Section 3.2.4.2, “Floating-Point Instructions.” Floating-point instructions are not 
supported on the e300c2 core.

• Load and store instructions—These include integer and floating-point load and store instructions. 
For more information, see Section 3.2.4.3, “Load and Store Instructions.”

• Flow control instructions—These include branching instructions, condition register logical 
instructions, and other instructions that affect the instruction flow. For more information, see 
Section 3.2.4.4, “Branch and Flow Control Instructions.”

• Trap instructions—These are used to test for a specified set of conditions; see Section 3.2.4.5, 
“Trap Instructions.” 

• Processor control instructions—These are used for synchronizing memory accesses and managing 
caches, TLBs, and segment registers. For more information, see Section 3.2.4.6, “Processor 
Control Instructions,” Section 3.2.5.1, “Processor Control Instructions,” and Section 3.2.6.2, 
“Processor Control Instructions—OEA.”

• Memory synchronization instructions—These are used for synchronizing memory accesses. See 
Section 3.2.4.7, “Memory Synchronization Instructions—UISA,” and Section 3.2.5.2, “Memory 
Synchronization Instructions—VEA.” 

• Memory control instructions—These provide control of caches, TLBs, and segment registers. For 
more information, see Section 3.2.5.3, “Memory Control Instructions—VEA,” and 
Section 3.2.6.3, “Memory Control Instructions—OEA.”

• System linkage instructions—These include the System Call (sc) and Return from Interrupt (rfi) 
instructions. See Section 3.2.6.1, “System Linkage Instructions.”
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Note that this grouping of instructions does not necessarily indicate the execution unit that processes a 
particular instruction or group of instructions. This information, which is useful in taking full advantage 
of the core superscalar parallel instruction execution, is provided in Chapter 8, “Instruction Set,” of the 
Programming Environments Manual.

Integer instructions operate on word operands. Floating-point instructions operate on single- and 
double-precision floating-point operands. PowerPC instructions are 4-byte words. The UISA provides for 
byte, half-word, and word operand loads and stores between memory and a set of 32 GPRs. It also provides 
for word and double-word operand loads and stores between memory and a set of 32 FPRs. Floating-point 
instructions and registers are not supported on the e300c2 core.

Arithmetic and logical instructions do not read or modify memory. To use the contents of a memory 
location in a computation and then modify the same or another memory location, the memory contents 
must be loaded into a register, modified, and then written to the target location using load and store 
instructions.

The description of each instruction includes the mnemonic and a formatted list of operands. To simplify 
assembly language programming, a set of simplified mnemonics (extended mnemonics in the architecture 
specification) and symbols is provided for some of the frequently-used instructions; see Appendix F, 
“Simplified Mnemonics,” in the Programming Environments Manual, for a complete list of simplified 
mnemonic examples.

3.2.1 Classes of Instructions

The e300 core instructions belong to one of the following three classes:

• Defined

• Illegal

• Reserved

Note that although the definitions of these terms are consistent among the processors of this family, the 
assignment of these classifications is not. For example, an instruction that is specific to 64-bit 
implementations is considered defined for 64-bit implementations but illegal for 32-bit implementations 
such as the e300 core.

The class is determined by examining the primary opcode and the extended opcode, if any. If either is not 
that of a defined instruction or of a reserved instruction, the instruction is illegal.

In future versions of the PowerPC architecture, instruction codings that are now illegal may become 
assigned to instructions in the architecture or may be reserved by being assigned to processor-specific 
instructions. 

3.2.1.1 Definition of Boundedly Undefined

If instructions are encoded with incorrectly set bits in reserved fields, the results on execution can be said 
to be boundedly undefined. If a user-level program executes the incorrectly coded instruction, the resulting 
undefined results are bounded in that a spurious change from user to supervisor state is not allowed, and 
the level of privilege exercised by the program in relation to memory access and other system resources 
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cannot be exceeded. Boundedly undefined results for a given instruction may vary between 
implementations, and between execution attempts in the same implementation.

3.2.1.2 Defined Instruction Class

Defined instructions are guaranteed to be supported in all PowerPC implementations, except as stated in 
the instruction descriptions in Chapter 8, “Instruction Set,” in the Programming Environments Manual. 
The e300 core provides hardware support for all instructions defined for 32-bit implementations.

A processor of this family invokes the illegal instruction error handler (part of the program interrupt) when 
the unimplemented PowerPC instructions are encountered so they can be emulated in software, as 
required.

A defined instruction can have invalid forms, as described in the following section.

3.2.1.3 Illegal Instruction Class

Illegal instructions are grouped into the following categories:

• Instructions not defined in the PowerPC architecture. These opcodes are available for future 
extensions of the PowerPC architecture; that is, future versions of the PowerPC architecture may 
define any of these instructions to perform new functions. 

The following primary opcodes are defined as illegal but may be used in future extensions to the 
architecture:

1, 4, 5, 6, 9, 22, 56, 57, 60, 61

• Instructions defined in the PowerPC architecture but not implemented in a specific PowerPC 
implementation. For example, instructions that can be executed on 64-bit processors are considered 
illegal by 32-bit processor cores.

The following primary opcodes are defined for 64-bit implementations only and are illegal on the 
core:

2, 30, 58, 62 

• All unused extended opcodes are illegal. The unused extended opcodes can be determined from 
information in Appendix A.2, “Instructions Sorted by Opcode,” [and Section 3.2.1.4, “Reserved 
Instruction Class.”Notice that extended opcodes for instructions that are defined only for 64-bit 
implementations are illegal in 32-bit implementations, and vice versa. 

The following primary opcodes have unused extended opcodes:

17, 19, 31, 59, 63 (primary opcodes 30 and 62 are illegal for all 32-bit implementations, but as 
64-bit opcodes they have some unused extended opcodes)

• An instruction consisting entirely of zeros is guaranteed to be an illegal instruction. This increases 
the probability that an attempt to execute data or uninitialized memory invokes the system illegal 
instruction error handler (a program interrupt). Note that if only the primary opcode consists of all 
zeros, the instruction is considered a reserved instruction. This is further described in 
Section 3.2.1.4, “Reserved Instruction Class.”
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An attempt to execute an illegal instruction invokes the illegal instruction error handler (a program 
interrupt) but has no other effect. Section 5.5.7, “Program Interrupt (0x00700),” describes illegal and 
invalid instruction interrupts.

Except for an instruction consisting entirely of binary zeros, illegal instructions are available for further 
additions to the PowerPC architecture.

3.2.1.4 Reserved Instruction Class

Reserved instructions are allocated to specific implementation-dependent purposes not defined by the 
PowerPC architecture. An attempt to execute an unimplemented reserved instruction invokes the illegal 
instruction error handler (a program interrupt). See Section 5.5.7, “Program Interrupt (0x00700),” for 
additional information about illegal and invalid instruction interrupts.

The following types of instructions are included in this class:

• Implementation-specific instructions (for example, Load Data TLB Entry (tlbld) and Load 
Instruction TLB Entry (tlbli) instructions).

• Optional instructions defined by the PowerPC architecture but not implemented by the core (for 
example, Floating Square Root (fsqrt) and Floating Square Root Single (fsqrts) instructions).

3.2.2 Addressing Modes

This section provides an overview of conventions for addressing memory and calculating effective 
addresses as defined by the PowerPC architecture for 32-bit implementations. For more detailed 
information, see “Conventions” in Chapter 4, “Addressing Modes and Instruction Set Summary,” of the 
Programming Environments Manual.

3.2.2.1 Memory Addressing

A program references memory using the effective (logical) address computed by the processor when it 
executes a memory access or branch instruction or when it fetches the next sequential instruction.

As described in Section 3.1.1, “Data Organization in Memory and Memory Operands,” bytes in memory 
are numbered consecutively starting with zero. Each number is the address of the corresponding byte.

3.2.2.2 Memory Operands

Memory operands may be bytes, half words, words, or double words, or, for the load/store multiple and 
load/store string instructions, a sequence of bytes or words. The address of a memory operand is the 
address of its first byte (that is, of its lowest-numbered byte). Operand length is implicit for each 
instruction. The PowerPC architecture supports both big- and little-endian byte ordering. The default byte 
and bit ordering is big-endian. See Section 3.1.2, “Byte Ordering,” in the Programming Environments 
Manual, for more information about big- and little-endian byte ordering.

The operand of a single-register memory access instruction has a natural alignment boundary equal to the 
operand length. In other words, the “natural” address of an operand is an integral multiple of the operand 
length. A memory operand is said to be aligned if it is aligned at its natural boundary; otherwise it is 
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misaligned. For a detailed discussion about memory operands, see Chapter 3, “Operand Conventions,” in 
the Programming Environments Manual.

3.2.2.3 Effective Address Calculation

An effective address (EA) is the 32-bit sum computed by the processor core when executing a memory 
access or branch instruction or when fetching the next sequential instruction. For a memory access 
instruction, if the sum of the effective address and the operand length exceeds the maximum effective 
address, the memory operand is considered to wrap around from the maximum effective address through 
effective address 0, as described in the following paragraphs.

Effective address computations for both data and instruction accesses use 32-bit unsigned binary 
arithmetic. A carry from bit 0 is ignored.

Load and store operations have three categories of effective address generation:

• Register indirect with immediate index mode

• Register indirect with index mode

• Register indirect mode

Section 3.2.4.3.2, “Integer Load and Store Address Generation,” describes effective address generation for 
load and store operations.

Branch instructions have three categories of effective address generation:

• Immediate

• Link register indirect

• Count register indirect

Section 3.2.4.4.1, “Branch Instruction Address Calculation,” describes branch instruction effective 
address generation.

3.2.2.4 Synchronization 

The synchronization described in this section refers to the state of the core performing the synchronization.

3.2.2.4.1 Context Synchronization

The System Call (sc) and Return from Interrupt (rfi) instructions perform context synchronization by 
allowing previously issued instructions to complete before performing a change in context. Execution of 
one of these instructions ensures the following:

• No higher priority interrupt exists (sc).

• All previous instructions have completed to a point where they can no longer cause an interrupt. If 
a prior memory access instruction causes direct-store error interrupts, the results are guaranteed to 
be determined before this instruction is executed.
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• Previous instructions complete execution in the context (privilege, protection, and address 
translation) under which they were issued.

• The instructions following the sc or rfi instruction execute in the context established by these 
instructions.

3.2.2.4.2 Execution Synchronization

An instruction is execution synchronizing if all previously initiated instructions appear to have completed 
before the instruction is initiated or, in the case of the Synchronize (sync) and Instruction Synchronize 
(isync) instructions, before the instruction completes. For example, the Move to Machine State Register 
(mtmsr) instruction is execution synchronizing. It ensures that all preceding instructions have completed 
execution and will not cause an interrupt before the instruction executes but does not ensure subsequent 
instructions execute in the newly established environment. For example, if the mtmsr sets MSR[PR], 
unless an isync immediately follows the mtmsr instruction, a privileged instruction could be executed or 
privileged access could be performed without causing an interrupt even though MSR[PR] indicates user 
mode.

3.2.2.4.3 Instruction-Related Interrupts 

There are two kinds of interrupts in the e300 core—those caused directly by the execution of an instruction 
and those caused by an asynchronous event. Either may cause components of the system software to be 
invoked.

Interrupts can be caused directly by the execution of an instruction as follows:

• An attempt to execute an illegal instruction causes the illegal instruction (program interrupt) 
handler to be invoked. An attempt by a user-level program to execute the supervisor-level 
instructions listed below causes the privileged instruction (program interrupt) handler to be 
invoked. The core provides the following supervisor-level instructions: icbt, dcbi, mfmsr, mfspr, 
mfsr, mfsrin, mtmsr, mtspr, mtsr, mtsrin, rfi, tlbie, tlbsync, tlbld, and tlbli. Note that the 
privilege level of the mfspr and mtspr instructions depends on the SPR encoding.

• An attempt to access memory that is not available (page fault) causes the ISI interrupt handler to 
be invoked.

• An attempt to access memory with an effective address alignment that is invalid for the instruction 
causes the alignment interrupt handler to be invoked.

• The execution of an sc instruction invokes the system call interrupt handler that permits a program 
to request the system to perform a service.

• The execution of a trap instruction invokes the program interrupt trap handler.

• The execution of a floating-point instruction when floating-point instructions are disabled or 
unavailable invokes the floating-point unavailable interrupt handler. 

• The execution of an instruction that causes a floating-point exception while exceptions are enabled 
in the MSR invokes the program interrupt handler. Floating-point instructions are not supported on 
the e300c2 core.

Interrupts caused by asynchronous events are described in Chapter 5, “Interrupts and Exceptions.”
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3.2.3 Instruction Set Overview

This section provides a brief overview of the PowerPC instructions implemented in the core and highlights 
any special information with respect to how the e300 core implements a particular instruction. Note that 
the categories used in this section correspond to those used in Chapter 4, “Addressing Modes and 
Instruction Set Summary,” in the Programming Environments Manual. These categorizations are 
somewhat arbitrary and are provided for the convenience of the programmer and do not necessarily reflect 
the PowerPC architecture specification.

Note that some of the instructions have the following optional features:

• CR Update—The dot (.) suffix on the mnemonic enables the update of the CR.

• Overflow option—The o suffix indicates that the overflow bit in the XER is enabled.

3.2.4 PowerPC UISA Instructions

The UISA includes the base user-level instruction set (excluding a few user-level cache control, 
synchronization, and time base instructions), user-level registers, programming model, data types, and 
addressing modes. This section discusses the instructions defined in the UISA.

3.2.4.1 Integer Instructions

This section describes the integer instructions. These consist of the following:

• Integer arithmetic instructions

• Integer compare instructions

• Integer logical instructions

• Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place results into GPRs, into the 
XER, and into condition register (CR) fields. 

3.2.4.1.1 Integer Arithmetic Instructions

Table 3-3 lists the integer arithmetic instructions for the core.

Table 3-3. Integer Arithmetic Instructions

Name Mnemonic Operand Syntax

Add add (add. addo addo.) rD,rA,rB

Add Carrying addc (addc. addco addco.) rD,rA,rB

Add Extended adde (adde. addeo addeo.) rD,rA,rB

Add Immediate addi rD,rA,SIMM

Add Immediate Carrying addic rD,rA,SIMM

Add Immediate Carrying and Record addic. rD,rA,SIMM

Add Immediate Shifted addis rD,rA,SIMM

Add to Minus One Extended addme (addme. addmeo addmeo.) rD,rA
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Although there is no Subtract Immediate instruction, its effect can be achieved by using an addi instruction 
with the immediate operand negated. Simplified mnemonics are provided that include this negation. The 
subf instructions subtract the second operand (rA) from the third operand (rB). Simplified mnemonics are 
provided in which the third operand is subtracted from the second operand. See Appendix F, “Simplified 
Mnemonics,” in the Programming Environments Manual, for examples.

3.2.4.1.2 Integer Compare Instructions

The integer compare instructions algebraically or logically compare the contents of rA with either the 
UIMM operand, the SIMM operand, or the contents of rB. The comparison is signed for the cmpi and cmp 
instructions, and unsigned for the cmpli and cmpl instructions. Table 3-4 lists the integer compare 
instructions.

The crfD operand can be omitted if the result of the comparison is to be placed in CR0. Otherwise, the 
target CR field must be specified in the instruction crfD field.

Add to Zero Extended addze (addze. addzeo addzeo.) rD,rA

Divide Word divw (divw. divwo divwo.) rD,rA,rB

Divide Word Unsigned divwu (divwu. divwuo divwuo.) rD,rA,rB

Multiply High Word mulhw (mulhw.) rD,rA,rB

Multiply High Word Unsigned mulhwu (mulhwu.) rD,rA,rB

Multiply Low mullw (mullw. mullwo mullwo.) rD,rA,rB

Multiply Low Immediate mulli rD,rA,SIMM

Negate neg (neg. nego nego.) rD,rA

Subtract From subf (subf. subfo subfo.) rD,rA,rB

Subtract From Carrying subfc (subfc. subfco subfco.) rD,rA,rB

Subtract From Extended subfe (subfe. subfeo subfeo.) rD,rA,rB

Subtract From Immediate Carrying subfic rD,rA,SIMM

Subtract From Minus One Extended subfme (subfme. subfmeo subfmeo.) rD,rA

Subtract From Zero Extended subfze (subfze. subfzeo subfzeo.) rD,rA

Table 3-4. Integer Compare Instructions

Name Mnemonic Operand Syntax

Compare cmp crfD,L,rA,rB

Compare Immediate cmpi crfD,L,rA,SIMM

Compare Logical cmpl crfD,L,rA,rB

Compare Logical Immediate cmpli crfD,L,rA,UIMM

Table 3-3. Integer Arithmetic Instructions (continued)

Name Mnemonic Operand Syntax
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For more information refer to Appendix F, “Simplified Mnemonics,” in the Programming Environments 
Manual. 

3.2.4.1.3 Integer Logical Instructions

The logical instructions shown in Table 3-5 perform bit-parallel operations. Logical instructions with the 
CR update enabled and instructions andi. and andis. set CR field CR0 to characterize the result of the 
logical operation. These fields are set as if the sign-extended low-order 32 bits of the result were 
algebraically compared to zero. Logical instructions without CR update and the remaining logical 
instructions do not modify the CR. Logical instructions do not affect the XER[SO], XER[OV], and 
XER[CA] bits.

For simplified mnemonics examples for the integer logical operations see Appendix F, “Simplified 
Mnemonics,” in the Programming Environments Manual.

3.2.4.1.4 Integer Rotate and Shift Instructions

Rotation operations are performed on data from a GPR, and the result, or a portion of the result, is returned 
to a GPR. See Appendix F, “Simplified Mnemonics,” in the Programming Environments Manual, for a 
complete list of simplified mnemonics that allows simpler coding of often-used functions such as clearing 
the left-most or right-most bits of a register, left justifying or right justifying an arbitrary field, and simple 
rotates and shifts. 

Table 3-5. Integer Logical Instructions

Name Mnemonic Operand Syntax

AND and (and.) rA,rS,rB

AND Immediate andi. rA,rS,UIMM

AND Immediate Shifted andis. rA,rS,UIMM

AND with Complement andc (andc.) rA,rS,rB

Count Leading Zeros Word cntlzw (cntlzw.) rA,rS

Equivalent eqv (eqv.) rA,rS,rB

Extend Sign Byte extsb (extsb.) rA,rS

Extend Sign Half Word extsh (extsh.) rA,rS

NAND nand (nand.) rA,rS,rB

NOR nor (nor.) rA,rS,rB

OR or (or.) rA,rS,rB

OR Immediate ori rA,rS,UIMM

OR Immediate Shifted oris rA,rS,UIMM

OR with Complement orc (orc.) rA,rS,rB

XOR xor (xor.) rA,rS,rB

XOR Immediate xori rA,rS,UIMM

XOR Immediate Shifted xoris rA,rS,UIMM
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Integer rotate instructions rotate the contents of a register. The result of the rotation is either inserted into 
the target register under control of a mask (if a mask bit is 1, the associated bit of the rotated data is placed 
into the target register; and if the mask bit is 0, the associated bit in the target register is unchanged), or 
ANDed with a mask before being placed into the target register.

The integer rotate instructions are listed in Table 3-6.

The integer shift instructions perform left and right shifts. Immediate-form logical (unsigned) shift 
operations are obtained by specifying masks and shift values for certain rotate instructions. Simplified 
mnemonics are provided, making coding of such shifts simpler and easier to understand.   

Multiple-precision shifts can be programmed as shown in Appendix C, “Multiple-Precision Shifts,” in the 
Programming Environments Manual.

The integer shift instructions are listed in Table 3-7.

3.2.4.2 Floating-Point Instructions

This section describes the floating-point instructions, which include the following:

• Floating-point arithmetic instructions

• Floating-point multiply-add instructions

• Floating-point rounding and conversion instructions

• Floating-point compare instructions

• Floating-point status and control register instructions

• Floating-point move instructions

See Section 3.2.4.3, “Load and Store Instructions,” for information about floating-point loads and stores.

Implementation Note—The e300c2 core does not support floating-point instructions.

The PowerPC architecture supports a floating-point system as defined in the IEEE 754 standard, but 
requires software support to conform with that standard. All floating-point operations conform to the IEEE 
754 standard, except if software sets the non-IEEE mode bit (NI) in the FPSCR. The e300 core is in the 

Table 3-6. Integer Rotate Instructions

Name Mnemonic Operand Syntax

Rotate Left Word Immediate then AND with Mask rlwinm (rlwinm.) rA,rS,SH,MB,ME

Rotate Left Word Immediate then Mask Insert rlwimi (rlwimi.) rA,rS,SH,MB,ME

Rotate Left Word then AND with Mask rlwnm (rlwnm.) rA,rS,rB,MB,ME

Table 3-7. Integer Shift Instructions

Name Mnemonic Operand Syntax

Shift Left Word slw (slw.) rA,rS,rB

Shift Right Algebraic Word sraw (sraw.) rA,rS,rB

Shift Right Algebraic Word Immediate srawi (srawi.) rA,rS,SH

Shift Right Word srw (srw.) rA,rS,rB
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nondenormalized mode when the NI bit is set in the FPSCR. If a denormalized result is produced, a default 
result of zero is generated. The generated zero has the same sign as the denormalized number. The core 
performs single- and double-precision floating-point operations compliant with the IEEE 754 
floating-point standard.

Implementation note—Single-precision denormalized results require two additional processor clock 
cycles to round. When loading or storing a single-precision denormalized number, the load/store unit may 
take up to 24 processor clock cycles to convert between the internal double-precision format and the 
external single-precision format.

3.2.4.2.1 Floating-Point Arithmetic Instructions

The floating-point arithmetic instructions are listed in Table 3-8.

3.2.4.2.2 Floating-Point Multiply-Add Instructions

These instructions combine multiply and add operations without an intermediate rounding operation. The 
fractional part of the intermediate product is 106 bits wide, and all 106 bits take part in the add/subtract 
portion of the instruction.

The floating-point multiply-add instructions are listed in Table 3-9.

Table 3-8. Floating-Point Arithmetic Instructions

Name Mnemonic Operand Syntax

Floating Add (Double-Precision) fadd (fadd.) frD,frA,frB

Floating Add Single fadds (fadds.) frD,frA,frB

Floating Divide (Double-Precision) fdiv (fdiv.) frD,frA,frB

Floating Divide Single fdivs (fdivs.) frD,frA,frB

Floating Multiply (Double-Precision) fmul (fmul.) frD,frA,frC

Floating Multiply Single fmuls (fmuls.) frD,frA,frC

Floating Reciprocal Estimate Single fres (fres.) frD,frB

Floating Reciprocal Square Root Estimate frsqrte (frsqrte.) frD,frB

Floating Select fsel (fsel.) frD,frA,frC,frB

Floating Subtract (Double-Precision) fsub (fsub.) frD,frA,frB

Floating Subtract Single fsubs (fsubs.) frD,frA,frB

Table 3-9. Floating-Point Multiply-Add Instructions

Name Mnemonic Operand Syntax

Floating Multiply-Add (Double-Precision) fmadd (fmadd.) frD,frA,frC,frB

Floating Multiply-Add Single fmadds (fmadds.) frD,frA,frC,frB

Floating Multiply-Subtract (Double-Precision) fmsub (fmsub.) frD,frA,frC,frB

Floating Multiply-Subtract Single fmsubs (fmsubs.) frD,frA,frC,frB

Floating Negative Multiply-Add (Double-Precision) fnmadd (fnmadd.) frD,frA,frC,frB
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Implementation note—Single-precision multiply-type instructions operate faster than their 
double-precision equivalents. See Chapter 7, “Instruction Timing,” for more information.

3.2.4.2.3 Floating-Point Rounding and Conversion Instructions

The Floating Round to Single-Precision (frsp) instruction is used to truncate a 64-bit double-precision 
number to a 32-bit single-precision floating-point number. The floating-point conversion instructions 
convert a 64-bit double-precision floating-point number to a 32-bit signed integer number.

The PowerPC architecture defines bits 0–31 of floating-point register frD as undefined when executing 
the Floating Convert to Integer Word (fctiw) and Floating Convert to Integer Word with Round Toward 
Zero (fctiwz) instructions. 

Examples of uses of these instructions to perform various conversions can be found in Appendix D, 
“Floating-Point Models,” in the Programming Environments Manual. The floating-point rounding 
instructions are shown in Table 3-10.

3.2.4.2.4 Floating-Point Compare Instructions

Floating-point compare instructions compare the contents of two floating-point registers. The comparison 
ignores the sign of zero (that is +0 = –0). The floating-point compare instructions are listed in Table 3-11.

3.2.4.2.5 Floating-Point Status and Control Register Instructions

Every FPSCR instruction appears to synchronize the effects of all floating-point instructions executed by 
a given processor. Executing an FPSCR instruction ensures that all floating-point instructions previously 
initiated by the given processor appear to have completed before the FPSCR instruction is initiated and 

Floating Negative Multiply-Add Single fnmadds (fnmadds.) frD,frA,frC,frB

Floating Negative Multiply-Subtract (Double-Precision) fnmsub (fnmsub.) frD,frA,frC,frB

Floating Negative Multiply-Subtract Single fnmsubs (fnmsubs.) frD,frA,frC,frB

Table 3-10. Floating-Point Rounding and Conversion Instructions

Name Mnemonic Operand Syntax

Floating Convert to Integer Word fctiw (fctiw.) frD,frB

Floating Convert to Integer Word with Round Toward Zero fctiwz (fctiwz.) frD,frB

Floating Round to Single-Precision frsp (frsp.) frD,frB

Table 3-11. Floating-Point Compare Instructions

Name Mnemonic Operand Syntax

Floating Compare Ordered fcmpo crfD,frA,frB

Floating Compare Unordered fcmpu crfD,frA,frB

Table 3-9. Floating-Point Multiply-Add Instructions (continued)

Name Mnemonic Operand Syntax
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that no subsequent floating-point instructions appear to be initiated by the given processor until the FPSCR 
instruction has completed. The FPSCR instructions are listed in Table 3-12.

Implementation Note—The architecture notes that, in some implementations, the Move to FPSCR Fields 
(mtfsfx) instruction may perform more slowly when only a portion of the fields are updated as opposed to 
all of the fields. This is not the case in the e300 core.

3.2.4.2.6 Floating-Point Move Instructions

Floating-point move instructions copy data from one floating-point register to another. The floating-point 
move instructions do not modify the FPSCR. The CR update option in these instructions controls the 
placing of result status into CR1. Floating-point move instructions are listed in Table 3-13.

3.2.4.3 Load and Store Instructions

Load and store instructions are issued and translated in program order; however, the accesses can occur 
out of order. Synchronizing instructions are provided to enforce strict ordering. This section describes the 
load and store instructions of the e300 core, which consist of the following:

• Integer load instructions

• Integer store instructions

• Integer load and store with byte-reverse instructions

• Integer load and store multiple instructions

• Integer load and store string instructions

• Floating-point load instructions

• Floating-point store instructions

Table 3-12. Floating-Point Status and Control Register Instructions

Name Mnemonic Operand Syntax

Move from FPSCR mffs (mffs.) frD

Move to Condition Register from FPSCR mcrfs crfD,crfS

Move to FPSCR Bit 0 mtfsb0 (mtfsb0.) crbD

Move to FPSCR Bit 1 mtfsb1 (mtfsb1.) crbD

Move to FPSCR Field Immediate mtfsfi (mtfsfi.) crfD,IMM

Move to FPSCR Fields mtfsf (mtfsf.) FM,frB

Table 3-13. Floating-Point Move Instructions

Name Mnemonic Operand Syntax

Floating Absolute Value fabs (fabs.) frD,frB

Floating Move Register fmr (fmr.) frD,frB

Floating Negate fneg (fneg.) frD,frB

Floating Negative Absolute Value fnabs (fnabs.) frD,frB
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3.2.4.3.1 Self-Modifying Code 

When a processor modifies a memory location that may be contained in the instruction cache, software 
must ensure that memory updates are visible to the instruction fetching mechanism. This can be achieved 
by the following instruction sequence:

dcbst |update memory
sync |wait for update 
icbi |remove (invalidate) copy in instruction cache
isync |remove copy in own instruction buffer

These operations are required because the data cache is a write-back cache. Since instruction fetching 
bypasses the data cache, changes to items in the data cache may not be reflected in memory until the fetch 
operations complete.

Special care must be taken to avoid coherency paradoxes in systems that implement unified secondary 
caches, and designers should carefully follow the guidelines for maintaining cache coherency that are 
provided in the VEA, and discussed in Chapter 5, “Cache Model and Memory Coherency,” in the 
Programming Environments Manual. Because the core does not broadcast the M bit for instruction fetches 
(except when HID0[IFEM] is set), external caches are subject to coherency paradoxes. 

3.2.4.3.2 Integer Load and Store Address Generation

Integer load and store operations generate effective addresses using register indirect with immediate index 
mode, register indirect with index mode, or register indirect mode. See Section 3.2.2.3, “Effective Address 
Calculation.” Note that the core is optimized for load and store operations that are aligned on natural 
boundaries, and operations that are not naturally aligned may suffer performance degradation. Refer to 
Section 5.5.6.1, “Integer Alignment Exceptions.”

3.2.4.3.3 Register Indirect Integer Load Instructions

For integer load instructions, the byte, half word, word, or double word addressed by the EA is loaded into 
rD. Many integer load instructions have an update form, in which rA is updated with the generated 
effective address. For these forms, the EA is placed into rA and the memory element (byte, half word, 
word, or double word) addressed by EA is loaded into rD.

Implementation Note—In some implementations, the load half word algebraic instructions (lha and 
lhax) and the load with update (lbzu, lbzux, lhzu, lhzux, lhau, lhaux, lwu, and lwux) instructions may 
execute with greater latency than other types of load instructions. In the e300 core, these instructions 
operate with the same latency as other load instructions. 

Table 3-14 lists the integer load instructions.

Table 3-14. Integer Load Instructions

Name Mnemonic Operand Syntax

Load Byte and Zero  lbz rD,d(rA)

Load Byte and Zero Indexed lbzx rD,rA,rB

Load Byte and Zero with Update lbzu rD,d(rA)

Load Byte and Zero with Update Indexed lbzux rD,rA,rB
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3.2.4.3.4 Integer Store Instructions 

For integer store instructions, the contents of rS are stored into the byte, half word, word, or double word 
in memory addressed by the effective address. Many store instructions have an update form, in which rA 
is updated with the EA. For these forms, the following rules apply:

• If rA ≠ 0, the EA is placed into rA.

• If rS = rA, the contents of rS are copied to the target memory element, then the generated EA is 
placed into rA (rS). 

The core defines store with update instructions with rA = 0 and integer store instructions with the CR 
update option enabled (Rc field, bit 31, in the instruction encoding = 1) to be invalid forms. Table 3-15 
provides a list of the integer store instructions for the core.

Load Half Word Algebraic lha rD,d(rA)

Load Half Word Algebraic Indexed lhax rD,rA,rB

Load Half Word Algebraic with Update lhau rD,d(rA)

Load Half Word Algebraic with Update Indexed lhaux rD,rA,rB

Load Half Word and Zero lhz rD,d(rA)

Load Half Word and Zero Indexed lhzx rD,rA,rB

Load Half Word and Zero with Update lhzu rD,d(rA)

Load Half Word and Zero with Update Indexed lhzux rD,rA,rB

Load Word and Zero lwz rD,d(rA)

Load Word and Zero Indexed lwzx rD,rA,rB

Load Word and Zero with Update lwzu rD,d(rA)

Load Word and Zero with Update Indexed lwzux rD,rA,rB

Table 3-15. Integer Store Instructions

Name Mnemonic Operand Syntax

Store Byte stb rS,d(rA)

Store Byte Indexed stbx rS,rA,rB

Store Byte with Update stbu rS,d(rA)

Store Byte with Update Indexed stbux rS,rA,rB

Store Half Word sth rS,d(rA)

Store Half Word Indexed sthx rS,rA,rB

Store Half Word with Update sthu rS,d(rA)

Store Half Word with Update Indexed sthux rS,rA,rB

Store Word stw rS,d(rA)

Store Word Indexed stwx rS,rA,rB

Table 3-14. Integer Load Instructions (continued)

Name Mnemonic Operand Syntax
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3.2.4.3.5 Integer Load and Store with Byte-Reverse Instructions

Table 3-16 describes integer load and store with byte-reverse instructions. When used in a system 
operating with the default big-endian byte order, these instructions have the effect of loading and storing 
data in little-endian order. Likewise, when used in a system operating with little-endian byte order, these 
instructions have the effect of loading and storing data in big-endian order. When operating with true 
little-endian byte order, these instructions have the effect of loading and storing data in true little-endian 
order. For more information about big- and little-endian byte ordering, see Section 3.1.2, “Byte Ordering,” 
in the Programming Environments Manual. For more information about true little-endian operation, see 
Section 3.1.2, “Endian Modes and Byte Ordering.” 

The e300 core supports the true little-endian mode. In true little-endian mode, the core treats the memory 
and I/O subsystems as little-endian memory. In this case, instruction and data bytes are reserved as follows: 

• The byte reversing for instruction accesses occurs before the instruction is decoded. 

• The byte reversing occurs for data accesses when the data item is being moved to or from the GPR. 

Therefore, byte reversal during the load or store accesses is performed between memory or the data cache, 
and the register files.

Implementation Note—In some implementations, load byte-reverse instructions (lhbrx and lwbrx) may 
have greater latency than other load instructions; however, these instructions operate with the same latency 
as other load instructions in the core.

3.2.4.3.6 Integer Load and Store Multiple Instructions

The integer load/store multiple instructions are used to move blocks of data to and from the GPRs. In some 
implementations, these instructions are likely to have greater latency and take longer to execute, perhaps 
much longer, than a sequence of individual load or store instructions that produce the same results.

Store Word with Update stwu rS,d(rA)

Store Word with Update Indexed stwux rS,rA,rB

Table 3-16. Integer Load and Store with Byte-Reverse Instructions

Name Mnemonic Operand Syntax

Load Half Word Byte-Reverse Indexed lhbrx rD,rA,rB

Load Word Byte-Reverse Indexed lwbrx rD,rA,rB

Store Half Word Byte-Reverse Indexed sthbrx rS,rA,rB

Store Word Byte-Reverse Indexed stwbrx rS,rA,rB

Table 3-15. Integer Store Instructions (continued)

Name Mnemonic Operand Syntax
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Implementation notes—The following describes the e300 core implementation of the load/store multiple 
instruction:

• The load multiple and store multiple instructions may have operands that require memory accesses 
crossing a 4-Kbyte page boundary. As a result, these instructions may be interrupted by a DSI 
interrupt associated with the address translation of the second page. In this case, the core performs 
some or all of the memory references from the first page, and none of the memory references from 
the second page before taking the interrupt. On return from the DSI interrupt, the load or store 
multiple instruction will re-execute from the beginning. For additional information, refer to “DSI 
Interrupt (0x00300)” in Chapter 6, “Interrupts,” in the Programming Environments Manual.

• The PowerPC architecture defines the load multiple word (lmw) instruction with rA in the range 
of registers to be loaded as an invalid form. It defines the load multiple and store multiple 
instructions with misaligned operands (that is, the EA is not a multiple of four) to cause an 
alignment interrupt. The core defines the load multiple word (lmw) instruction with rA in the range 
of registers to be loaded as an invalid form.

• The PowerPC architecture describes some preferred instruction forms for the integer load and store 
multiple instructions that may perform better than other forms in some implementations. None of 
these preferred forms affect instruction performance in the core.

 

3.2.4.3.7 Integer Load and Store String Instructions

The integer load and store string instructions allow movement of data from memory to registers or from 
registers to memory without concern for alignment. These instructions can be used for a short move 
between arbitrary memory locations or to initiate a long move between misaligned memory fields. 

When the core is operating with little-endian byte order, execution of a load or store string instruction 
causes the system alignment error handler to be invoked; see Section 3.1.2, “Byte Ordering,” in the 
Programming Environments Manual, for more information.

Table 3-18 lists the integer load and store string instructions.

Load string and store string instructions may involve operands that are not word-aligned. As described in 
“Alignment Interrupt (0x00600)” in Chapter 6, “Interrupts,” in the Programming Environments Manual, 

Table 3-17. Integer Load and Store Multiple Instructions

Name Mnemonic Operand Syntax

Load Multiple Word lmw rD,d(rA)

Store Multiple Word stmw rS,d(rA)

Table 3-18. Integer Load and Store String Instructions

Name Mnemonic Operand Syntax

Load String Word Immediate lswi rD,rA,NB

Load String Word Indexed lswx rD,rA,rB

Store String Word Immediate stswi rS,rA,NB

Store String Word Indexed stswx rS,rA,rB
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a misaligned string operation suffers a performance penalty compared to a word-aligned operation of the 
same type. 

When a string operation crosses a 4-Kbyte boundary, the instruction may be interrupted by a DSI interrupt 
associated with the address translation of the second page. In this case, the core performs some or all 
memory references from the first page and none from the second before taking the interrupt. On return 
from the DSI interrupt, the load or store string instruction will re-execute from the beginning. For more 
information, refer to “DSI Interrupt (0x00300)” in Chapter 6, “Interrupts,” in the Programming 
Environments Manual.

Implementation Note—If rA is in the range of registers to be loaded for a Load String Word Immediate 
(lswi) instruction or if either rA or rB is in the range of registers to be loaded for a Load String Word 
Indexed (lswx) instruction, the PowerPC architecture defines the instruction to be of an invalid form. In 
addition, the lswx and stswx instructions that specify a string length of zero are defined to be invalid by 
the PowerPC architecture. However, none of these cases hold true for the e300 core—the core treats these 
cases as valid forms.

3.2.4.3.8 Floating-Point Load and Store Address Generation

Floating-point load and store operations generate effective addresses using the register indirect with 
immediate index addressing mode and register indirect with index addressing mode (details are described 
below). Floating-point loads and stores are not supported for direct-store accesses. The use of the 
floating-point load and store operations for direct-store accesses results in a DSI interrupt.

Implementation Note—The e300c2 core does not support floating-point operations.

3.2.4.3.9 Floating-Point Load Instructions

Separate floating-point load instructions are used for single-precision and double-precision operands. 
Because FPRs support only double-precision format, the FPU converts single-precision data to 
double-precision format before loading the operands into the target FPR. This conversion is described fully 
in “Floating-Point Load Instructions” in Appendix D, “Floating-Point Models,” in the Programming 
Environments Manual. 

Implementation Note—The PowerPC architecture defines load with update instructions with rA = 0 as 
an invalid form; however, the core treats this case as a valid form.

Table 3-19 provides a list of the floating-point load instructions.

Table 3-19. Floating-Point Load Instructions

Name Mnemonic Operand Syntax

Load Floating-Point Double lfd frD,d(rA)

Load Floating-Point Double Indexed lfdx frD,rA,rB

Load Floating-Point Double with Update lfdu frD,d(rA)

Load Floating-Point Double with Update Indexed lfdux frD,rA,rB

Load Floating-Point Single lfs frD,d(rA)

Load Floating-Point Single Indexed lfsx frD,rA,rB
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3.2.4.3.10 Floating-Point Store Instructions

There are three basic forms of the store instruction—single-precision, double-precision, and integer. The 
integer form is supported by the optional stfiwx instruction. Because the FPRs support only 
double-precision format for floating-point data, the FPU converts double-precision data to 
single-precision format before storing the operands. The conversion steps are described in “Floating-Point 
Store Instructions” in Appendix D, “Floating-Point Models,” in the Programming Environments Manual. 

Implementation Note—The PowerPC architecture defines store with update instructions with rA = 0 as 
an invalid form; however, the core treats this case as valid.

Table 3-20 lists the floating-point store instructions.

3.2.4.4 Branch and Flow Control Instructions

Branch instructions are executed by the branch processing unit (BPU). The BPU receives branch 
instructions from the fetch unit and performs CR lookahead operations on conditional branches to resolve 
them early, achieving the effect of a zero-cycle branch in many cases. 

Some branch instructions can redirect instruction execution conditionally based on the value of bits in the 
CR. When the branch processor encounters one of these instructions, it scans the execution pipelines to 
determine whether an instruction in progress may affect the particular CR bit. If no interlock is found, the 
branch can be resolved immediately by checking the bit in the CR and taking the action defined for the 
branch instruction. 

If an interlock is detected, the branch is considered unresolved and the direction of the branch is predicted 
using static branch prediction as described in “Conditional Branch Control” in Chapter 4, “Addressing 
Modes and Instruction Set Summary,” in the Programming Environments Manual. The interlock is 

Load Floating-Point Single with Update lfsu frD,d(rA)

Load Floating-Point Single with Update Indexed lfsux frD,rA,rB

Table 3-20. Floating-Point Store Instructions

Name Mnemonic Operand Syntax

Store Floating-Point as Integer Word Indexed stfiwx frS,rA,rB

Store Floating-Point Double stfd frS,d(rA)

Store Floating-Point Double Indexed stfdx frS,rA,rB

Store Floating-Point Double with Update stfdu frS,d(rA)

Store Floating-Point Double with Update Indexed stfdux frS,rA,rB

Store Floating-Point Single stfs frS,d(rA)

Store Floating-Point Single Indexed stfsx frS,rA,rB

Store Floating-Point Single with Update stfsu frS,d(rA)

Store Floating-Point Single with Update Indexed stfsux frS,rA,rB

Table 3-19. Floating-Point Load Instructions (continued)

Name Mnemonic Operand Syntax
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monitored while instructions are fetched for the predicted branch. When the interlock is cleared, the branch 
processor determines whether the prediction was correct, based on the value of the CR bit. If the prediction 
is correct, the branch is considered completed and instruction fetching continues. If the prediction is 
incorrect, the fetched instructions are purged, and instruction fetching continues along the alternate path. 
See Chapter 8, “Instruction Timing,” in the Programming Environments Manual, for more information 
about how branches are executed.

3.2.4.4.1 Branch Instruction Address Calculation

Branch instructions can change the instruction sequence. Instruction addresses are always assumed to be 
word aligned; the processor ignores the two low-order bits of the generated branch target address.

Branch instructions compute the effective address (EA) of the next instruction address using the following 
addressing modes:

• Branch relative 

• Branch conditional to relative address

• Branch to absolute address 

• Branch conditional to absolute address 

• Branch conditional to link register 

• Branch conditional to count register

3.2.4.4.2 Branch Instructions

Table 3-21 lists the branch instructions provided by the processors that implement the PowerPC 
architecture. To simplify assembly language programming, a set of simplified mnemonics and symbols is 
provided for the most frequently used forms of branch conditional, compare, trap, rotate and shift, and 
certain other instructions. See Appendix F, “Simplified Mnemonics,” in the Programming Environments 
Manual, for a list of simplified mnemonic examples.

 

3.2.4.4.3 Condition Register Logical Instructions

Condition register logical instructions, shown in Table 3-22, and the Move Condition Register Field 
(mcrf) instruction are also defined as flow control instructions, although they are executed by the system 
register unit (SRU). Most instructions executed by the SRU are completion-serialized to maintain system 
state; that is, the instruction is held for execution in the SRU until all prior instructions issued have 
completed.

Table 3-21. Branch Instructions

Name Mnemonic Operand Syntax

Branch b (ba bl bla) target_addr 

Branch Conditional bc (bca bcl bcla) BO,BI,target_addr

Branch Conditional to Count Register bcctr (bcctrl) BO,BI

Branch Conditional to Link Register bclr (bclrl) BO,BI
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Note that if the LR update option is enabled for any of these instructions, these forms of the instructions 
are invalid in the e300 core.

3.2.4.5 Trap Instructions

The trap instructions shown in Table 3-23 are provided to test for a specified set of conditions. If any of 
the conditions tested by a trap instruction are met, the system trap handler is invoked. If the tested 
conditions are not met, instruction execution continues normally.

See Appendix F, “Simplified Mnemonics,” in the Programming Environments Manual, for a complete set 
of simplified mnemonics. 

3.2.4.6 Processor Control Instructions

UISA-level processor control instructions are used to read from and write to the condition register (CR).

3.2.4.6.1 Move to/from Condition Register Instructions

Table 3-24 lists the instructions provided by the core for reading from or writing to the CR.

Table 3-22. Condition Register Logical Instructions

Name Mnemonic Operand Syntax

Condition Register AND crand crbD,crbA,crbB

Condition Register AND with Complement  crandc crbD,crbA,crbB

Condition Register Equivalent creqv crbD,crbA,crbB

Condition Register NAND crnand crbD,crbA,crbB

Condition Register NOR crnor crbD,crbA,crbB

Condition Register OR cror crbD,crbA,crbB

Condition Register OR with Complement crorc crbD,crbA,crbB

Condition Register XOR crxor crbD,crbA,crbB

Move Condition Register Field mcrf crfD,crfS

Table 3-23. Trap Instructions

Name Mnemonic Operand Syntax

Trap Word tw TO,rA,rB

Trap Word Immediate twi TO,rA,SIMM

Table 3-24. Move fo/from Condition Register Instructions

Name Mnemonic Operand Syntax

Move from Condition Register mfcr rD

Move to Condition Register Fields mtcrf CRM,rS

Move to Condition Register from XER mcrxr crfD
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3.2.4.7 Memory Synchronization Instructions—UISA

Memory synchronization instructions control the order in which memory operations are completed with 
respect to asynchronous events and the order in which memory operations are seen by other processors or 
memory access mechanisms. See Chapter 2, “Instruction and Data Cache Operation,” for additional 
information about these instructions and about related aspects of memory synchronization.

The sync instruction delays execution of subsequent instructions until previous instructions have 
completed to the point that they can no longer cause an interrupt and until all previous memory accesses 
are performed globally; the sync operation is not broadcast onto the e300 core Coherent System Bus (CSB) 
interface. Additionally, all load and store cache/bus activities initiated by prior instructions are completed. 
Touch load operations (icbt, dcbt and dcbtst) are required to complete at least through address translation 
but are not required to complete on the bus.

The functions performed by the sync instruction normally take a significant amount of time to complete; 
as a result, frequent use of this instruction may adversely affect performance. In addition, the number of 
cycles required to complete a sync instruction depends on system parameters and on the processor's state 
when the instruction is issued. 

The proper paired use of the lwarx and stwcx. instructions allows programmers to emulate common 
semaphore operations such as test and set, compare and swap, exchange memory, and fetch and add. 
Examples of these operations can be found in Appendix E, “Synchronization Programming Examples,” in 
the Programming Environments Manual. Typically, the lwarx instruction should be paired with an stwcx. 
instruction with the same effective address used for both instructions of the pair. Note that the reservation 
granularity is 32 bytes.

The concept behind the use of the lwarx and stwcx. instructions is that a processor may load a semaphore 
from memory, compute a result based on the value of the semaphore, and conditionally store it back to the 
same location (only if that location has not been modified since it was first read), and determine if the store 
was successful. The conditional store is performed, based on the existence of a reservation established by 
the preceding lwarx instruction. If the reservation exists when the store is executed, the store is performed 
which sets a bit in the CR. If the reservation does not exist when the store is executed, the target memory 
location is not modified and a bit is cleared in the CR.

If the store was successful, the sequence of instructions from the read of the semaphore to the store that 
updated the semaphore appear to have been executed atomically (that is, no other processor or mechanism 
modified the semaphore location between the read and the update), thus providing the equivalent of a real 
atomic operation. However, in reality, other cores may have read from the location during this operation. 
In the e300 core, the reservations are made on behalf of aligned 32-byte sections of the memory address 
space.

The lwarx and stwcx. instructions require the EA to be aligned. Interrupt-handling software should not 
attempt to emulate a misaligned lwarx or stwcx. instruction, because there is no correct way to define the 
address associated with the reservation.

In general, the lwarx and stwcx. instructions should be used only in system programs, which can be 
invoked by application programs as needed.
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At most, one reservation exists simultaneously on any processor. The address associated with the 
reservation can be changed by a subsequent lwarx instruction. The conditional store is performed, based 
on the existence of a reservation established by the preceding lwarx regardless of whether the address 
generated by the lwarx matches that generated by the stwcx. instruction. A reservation held by the 
processor is cleared by one of the following:

• Executing an stwcx. instruction to any address

• Attempt by some other device to modify a location in the reservation granularity (32 bytes)

The lwarx and stwcx. instructions to write-through memory do not cause a DSI interrupt.

Table 3-25 lists the UISA memory synchronization instructions for the e300 core.

3.2.5 PowerPC VEA Instructions

The VEA describes the semantics of the memory model that can be assumed by software processes, and 
includes descriptions of the cache model, cache-control instructions, address aliasing, and other related 
issues.

3.2.5.1 Processor Control Instructions

The VEA defines the Move from Time Base (mftb) instruction for reading the contents of the time base 
register. The mftb is a user-level instruction, as shown in Table 3-26.

Simplified mnemonics are provided for the mftb instruction so it can be coded with the TBR name as part 
of the mnemonic rather than requiring it to be coded as an operand. The mftb instruction serves as both a 
basic and simplified mnemonic. Assemblers recognize an mftb mnemonic with two operands as the basic 
form, and an mftb mnemonic with one operand as the simplified form. Simplified mnemonics are also 
provided for Move from Time Base Upper (mftbu), a variant of the mftb instruction rather than of mfspr. 
The core ignores the extended opcode differences between mftb and mfspr by ignoring bit 25 of both 
instructions and treating them identically. Refer to Appendix F, “Simplified Mnemonics,” in the 
Programming Environments Manual.

Table 3-25. Memory Synchronization Instructions—UISA

Name Mnemonic Operand Syntax

Load Word and Reserve Indexed lwarx rD,rA,rB

Store Word Conditional Indexed stwcx. rS,rA,rB

Synchronize sync —

Table 3-26. Move from Time Base Instruction

Name Mnemonic Operand Syntax

Move from Time Base mftb rD, TBR



Instruction Set Model

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 3-27
  

3.2.5.2 Memory Synchronization Instructions—VEA

Memory synchronization instructions control the order in which memory operations are performed with 
respect to asynchronous events, and the order in which memory operations are seen by other processors or 
memory access mechanisms. See Chapter 2, “Instruction and Data Cache Operation,” for additional 
information about these instructions and about related aspects of memory synchronization.

Implementation Notes—The following describes how the core handles memory synchronization in the 
VEA.

• The Instruction Synchronize (isync) instruction causes the core to discard all prefetched 
instructions, wait for any preceding instructions to complete, and then branch to the next sequential 
instruction (having the effect of clearing the pipeline behind the isync instruction).

• The Enforce In-Order Execution of I/O (eieio) instruction is used to ensure memory reordering of 
noncacheable memory access. Because the core does not reorder noncacheable memory accesses, 
the eieio instruction is treated as a no-op. 

Table 3-27 lists the VEA memory synchronization instructions for the core.

3.2.5.3 Memory Control Instructions—VEA

Memory control instructions include the following types:

• Cache management instructions

• Segment register manipulation instructions

• Translation lookaside buffer management instructions

This section describes the user-level cache management instructions defined by the VEA. See 
Section 3.2.6.3, “Memory Control Instructions—OEA,” for information about supervisor-level cache, 
segment register manipulation, and translation lookaside buffer management instructions.

The instructions listed in Table 3-28 provide user-level programs the ability to manage on-chip caches 
when they exist.

Table 3-27. Memory Synchronization Instructions—VEA

Name Mnemonic Operand Syntax

Enforce In-Order Execution of I/O eieio —

Instruction Synchronize isync —

Table 3-28. User-Level Cache Instructions

Name Mnemonic Operand Syntax

Data Cache Block Flush dcbf rA,rB

Data Cache Block Set to Zero dcbz rA,rB

Data Cache Block Store dcbst rA,rB

Data Cache Block Touch dcbt rA,rB

Data Cache Block Touch for Store dcbtst rA,rB

Instruction Cache Block Invalidate icbi rA,rB
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As with other memory-related instructions, the effect of the cache management instructions on memory 
are weakly ordered. If the programmer needs to ensure that cache or other instructions have been 
performed with respect to all other processors and system mechanisms, a sync instruction must be placed 
in the program following those instructions.

Note that when data address translation is disabled (MSR[DR] = 0), the Data Cache Block Set to Zero 
(dcbz) instruction allocates a cache block in the cache and may not verify that the physical address is valid. 
If a cache block is created for an invalid physical address, a machine check condition may result when an 
attempt is made to write that cache block back to memory. The cache block could be written back as a 
result of the execution of an instruction that causes a cache miss and the invalid addressed cache block is 
the target for replacement or a Data Cache Block Store (dcbst) instruction.

Table 3-28 lists the cache instructions that are accessible to user-level programs.

3.2.6 PowerPC OEA Instructions

The OEA includes the structure of the memory management model, supervisor-level registers, and 
interrupt model. 

3.2.6.1 System Linkage Instructions

This section describes the system linkage instructions (see Table 3-29). The sc instruction is a user-level 
instruction that permits a user program to call on the system to perform a service and causes the processor 
to take an interrupt. The Return from Interrupt (rfi) instruction is a supervisor-level instruction that is 
useful for returning from an interrupt handler.

The Return from Critical Interrupt (rfci) instruction is a supervisor-level instruction that is implemented 
in the core. The rfci instruction is useful for returning from a critical interrupt handler. This instruction is 
described in Section 3.2.8, “Implementation-Specific Instructions.”

3.2.6.2 Processor Control Instructions—OEA

Processor control instructions are used to read from and write to the condition register (CR), machine state 
register (MSR), and special-purpose registers (SPRs), and to read from the time base register (TBU or 
TBL).

Table 3-29. System Linkage Instructions

Name Mnemonic Operand Syntax

Return from Interrupt rfi —

System Call sc —
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3.2.6.2.1 Move to/from Machine State Register Instructions

Table 3-30 lists the instructions provided by the core for reading from or writing to the MSR.

3.2.6.2.2 Move to/from Special-Purpose Register Instructions 

Simplified mnemonics are provided for the mtspr and mfspr instructions so they can be coded with the 
SPR name as part of the mnemonic rather than as a numeric operand. See Appendix F, “Simplified 
Mnemonics,” in the Programming Environments Manual, for simplified mnemonic examples. The mtspr 
and mfspr instructions are shown in Table 3-31.

For mtspr and mfspr instructions, the SPR number coded in assembly language does not appear directly 
as a 10-bit binary number in the instruction. The number coded is split into two 5-bit halves that are 
reversed in the instruction encoding, with the high-order 5 bits appearing in bits 16–20 of the instruction 
encoding and the low-order 5 bits in bits 11–15.

If the SPR field contains any value other than one of the values shown in Table 3-32, either the program 
interrupt handler is invoked or the results are boundedly undefined.

Table 3-30. Move to/from Machine State Register Instructions

Name Mnemonic Operand Syntax

Move from Machine State Register mfmsr rD

Move to Machine State Register mtmsr rS

Table 3-31. Move to/from Special-Purpose Register Instructions

Name Mnemonic Operand Syntax

Move from Special-Purpose Register mfspr rD,SPR

Move to Special-Purpose Register mtspr SPR,rS

Table 3-32. Implementation-Specific SPR Encodings (mfspr)

SPR1

Register Name Access
Decimal spr[5–9] spr[0–4]

1 00000 00001 XER User

8 00000 01000 LR User

9 00000 01001 CTR User

18 00000 10010 DSISR Supervisor

19 00000 10011 DAR Supervisor

22 00000 10110 DEC Supervisor

25 00000 11001 SDR1 Supervisor

26 00000 11010 SRR0 Supervisor

27 00000 11011 SRR1 Supervisor

58 00001 11010 CSRR02 Supervisor

59 00001 11011 CSRR1 2 Supervisor
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272 01000 10000 SPRG0 Supervisor

273 01000 10001 SPRG1 Supervisor

274 01000 10010 SPRG2 Supervisor

275 01000 10011 SPRG3 Supervisor

276 01000 10100 SPRG4 2 Supervisor

277 01000 10101 SPRG5 2 Supervisor

278 01000 10110 SPRG6 2 Supervisor

279 01000 10111 SPRG7 2 Supervisor

284 01000 11100 TBL Supervisor

285 01000 11101 TBU Supervisor

286 01000 11110 SVR 2 Supervisor

287 01000 11111 PVR Supervisor

309 01001 10101 IBCR 2 Supervisor

310 01001 10110 DBCR 2 Supervisor

311 01001 10111 MBAR 2 Supervisor

317 01001 11101 DABR2 2 Supervisor

528 10000 10000 IBAT0U Supervisor

529 10000 10001 IBAT0L Supervisor

530 10000 10010 IBAT1U Supervisor

531 10000 10011 IBAT1L Supervisor

532 10000 10100 IBAT2U Supervisor

533 10000 10101 IBAT2L Supervisor

534 10000 10110 IBAT3U Supervisor

535 10000 10111 IBAT3L Supervisor

536 10000 11000 DBAT0U Supervisor

537 10000 11001 DBAT0L Supervisor

538 10000 11010 DBAT1U Supervisor

539 10000 11011 DBAT1L Supervisor

540 10000 11100 DBAT2U Supervisor

541 10000 11101 DBAT2L Supervisor

542 10000 11110 DBAT3U Supervisor

543 10000 11111 DBAT3L Supervisor

560 10001 10000 IBAT4U 2 Supervisor

Table 3-32. Implementation-Specific SPR Encodings (mfspr) (continued)

SPR1

Register Name Access
Decimal spr[5–9] spr[0–4]
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561 10001 10001 IBAT4L 2 Supervisor

562 10001 10010 IBAT5U 2 Supervisor

563 10001 10011 IBAT5L 2 Supervisor

564 10001 10100 IBAT6U 2 Supervisor

565 10001 10101 IBAT6L 2 Supervisor

566 10001 10110 IBAT7U 2 Supervisor

567 10001 10111 IBAT7L 2 Supervisor

568 10001 11000 DBAT4U 2 Supervisor

569 10001 11001 DBAT4L 2 Supervisor

570 10001 11010 DBAT5U 2 Supervisor

571 10001 11011 DBAT5L 2 Supervisor

572 10001 11100 DBAT6U 2 Supervisor

573 10001 11101 DBAT6L Supervisor

574 10001 11110 DBAT7U 2 Supervisor

575 10001 11111 DBAT7L 2 Supervisor

976 11110 10000 DMISS Supervisor

977 11110 10001 DCMP Supervisor

978 11110 10010 HASH1 Supervisor

979 11110 10011 HASH2 Supervisor

980 11110 10100 IMISS Supervisor

981 11110 10101 ICMP Supervisor

982 11110 10110 RPA Supervisor

1008 11111 10000 HID0 Supervisor

1009 11111 10001 HID1 Supervisor

1010 11111 10010 IABR Supervisor

1011 11111 10011 HID2 Supervisor

1013 11111 10101 DABR 2 Supervisor

1018 11111 11010 IABR2 2 Supervisor

1 Note that the order of the two 5-bit halves of the SPR number is reversed 
compared with actual instruction coding. 

For mtspr and mfspr instructions, the SPR number coded in assembly 
language does not appear directly as a 10-bit binary number in the instruction. 
The number coded is split into two 5-bit halves that are reversed in the 
instruction, with the high-order 5 bits appearing in bits 16–20 of the instruction 
and the low-order 5 bits in bits 11–15. 

2 These registers are implementation-specific for e300 core only.

Table 3-32. Implementation-Specific SPR Encodings (mfspr) (continued)

SPR1

Register Name Access
Decimal spr[5–9] spr[0–4]
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Implementation note—The core ignores the extended opcode differences between mftb and mfspr by 
ignoring TB[25] and treating both instructions identically.

3.2.6.2.3 Move to/from Performance Monitor Register Instructions

The APU defines instructions for reading and writing the PMRs as shown in Table 3-33.

3.2.6.3 Memory Control Instructions—OEA

This section describes memory control instructions, which include the following types:

• Cache management instructions

• Segment register manipulation instructions

• Translation lookaside buffer management instructions

3.2.6.3.1 Supervisor-Level Cache Management Instruction

The supervisor-level cache management instruction in the PowerPC architecture, dcbi, is used to 
invalidate individual cache blocks.  The icbt instruction, another supervisor-level instruction, performs a 
bus read operation from the bus and allocates into the instruction cache. This instruction is new to the e300 
core, and supplements the instruction cache locking mechanisms and the new lock-protect feature. The 
user-level dcbf instruction, described in Section 3.2.5.3, “Memory Control Instructions—VEA,” and 
Section 2.5.2, “Cache Control Instructions,” should be used when the program needs to invalidate cache 
blocks. Note that the dcbf instruction causes modified blocks to be flushed to system memory if they are 
the target of a dcbf instruction, whereas, by definition in the PowerPC architecture, the dcbi instruction 
only invalidates modified blocks.

3.2.6.3.2 Segment Register Manipulation Instructions

The instructions listed in Table 3-34 provide access to the segment registers for the e300 core. These 
instructions operate completely independently from the MSR[IR] and MSR[DR] bit settings. Refer to 
“Synchronization Requirements for Special Registers and TLBs” in Chapter 2, “Register Set,” in the 
Programming Environments Manual, for serialization requirements and other recommended precautions 
to observe when manipulating the segment registers.

Table 3-33. Performance Monitor APU Instructions

Name Mnemonic Syntax

Move from Performance Monitor Register mfpmr rD,PMRN

Move to Performance Monitor Register mtpmr PMRN,rS

Table 3-34. Segment Register Manipulation Instructions

Name Mnemonic Operand Syntax

Move from Segment Register mfsr rD,SR

Move from Segment Register Indirect mfsrin rD,rB
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3.2.6.3.3 Translation Lookaside Buffer Management Instructions

The address translation mechanism is defined in terms of segment descriptors and page table entries 
(PTEs) used by the processors to locate the effective-to-physical address mapping for a particular access. 
The PTEs reside in page tables in memory. As defined for 32-bit implementations by the PowerPC 
architecture, segment descriptors reside in 16 on-chip segment registers.

The e300 core provides the ability to invalidate a TLB entry. The TLB Invalidate Entry (tlbie) instruction 
invalidates the TLB entry indexed by the EA, and operates on both the instruction and data TLBs 
simultaneously invalidating four TLB entries (both sets in each TLB). The index corresponds to bits 15–19 
of the EA. To invalidate all entries within both TLBs, 32 tlbie instructions should be issued, incrementing 
this field by one each time. 

The core provides two implementation-specific instructions (tlbld and tlbli) that are used by software table 
search operations following TLB misses to load TLB entries on-chip.

For more information on tlbld and tlbli refer to Section 3.2.8, “Implementation-Specific Instructions.”

Note that the tlbia instruction is not implemented on the core.

Refer to Chapter 6, “Memory Management,” for more information about the TLB operations for the core. 
Table 3-35 lists the TLB instructions.

Because the presence and exact semantics of the translation lookaside buffer management instructions is 
implementation-dependent, system software should incorporate uses of the instructions into subroutines 
to maximize compatibility with programs written for other processors.

For more information on the PowerPC instruction set, refer to Chapter 4, “Addressing Modes and 
Instruction Set Summary,” and Chapter 8, “Instruction Set,” in the Programming Environments Manual.

3.2.7 Recommended Simplified Mnemonics

To simplify assembly language programs, a set of simplified mnemonics is provided for some of the most 
frequently used operations (such as no-op, load immediate, load address, move register, and complement 
register). PowerPC compliant assemblers provide the simplified mnemonics listed in “Recommended 

Move to Segment Register mtsr SR,rS

Move to Segment Register Indirect mtsrin rS,rB

Table 3-35. Translation Lookaside Buffer Management Instructions

Name Mnemonic Operand Syntax

Load Data TLB Entry tlbld rB

Load Instruction TLB Entry tlbli rB

TLB Invalidate Entry tlbie rB

TLB Synchronize tlbsync —

Table 3-34. Segment Register Manipulation Instructions (continued)

Name Mnemonic Operand Syntax
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Simplified Mnemonics” in Appendix F, “Simplified Mnemonics,” in the Programming Environments 
Manual, and listed with some of the instruction descriptions in this chapter. Programs written to be 
portable across the various assemblers for the PowerPC architecture should not assume the existence of 
mnemonics not described in this document. 

For a complete list of simplified mnemonics, see Appendix F, “Simplified Mnemonics,” in the 
Programming Environments Manual.
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3.2.8 Implementation-Specific Instructions 

This section provides a detailed look at the e300 core implementation-specific instructions—icbt, tlbld, 
tlbli, and rfci.
.

The instruction is a hint that the performance will be improved if the block containing the instruction 
addressed by the EA is fetched into the instruction cache, because the program will execute from the 
addressed location. Executing an icbt instruction does not cause any interrupt to be invoked.

If the EA specifies a location outside of the main memory, the instruction is treated as a no-op. Also, the 
icbt instruction is treated as a no-op if touch load operation is disabled by the HID0[NOPTI] configuration 
bit. The icbt instruction is effective regardless of WIMG settings, instruction or data cache enable status, 
or the instruction cache lock status.

This is a supervisor-level, context synchronizing instruction. It is e300-specific and not part of the 
PowerPC instruction set.

Other registers altered: 

• None

icbt icbt 
Integer Unit

0 5 6 10 11 15 16 20 21 30 31

EA is the sum (rA|0) + (rB)

0 0 0 0 0 A B31

b’111111 b’0000010110
22 0

Reserved

Instruction Cache Block Touch
icbt rA, rB
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tlbld tlbld 
Load Data TLB Entry Integer Unit

tlbld rB

EA ← (rB)
TLB entry created from DCMP and RPA
DTLB entry selected by EA[15-19] and SRR1[WAY] ← created TLB entry

The EA is the contents of rB. The tlbld instruction loads the contents of the data PTE compare (DCMP) 
and required physical address (RPA) registers into the first word of the selected data TLB entry. The 
specific DTLB entry to be loaded is selected by the EA and SRR1[WAY] bit.

The tlbld instruction should only be executed when address translation is disabled (MSR[IR] = 0 and 
MSR[DR] = 0). 

Note that it is possible to execute the tlbld instruction when address translation is enabled; however, 
extreme caution should be used in doing so. If data address translation is set (MSR[DR] = 1) tlbld must 
be preceded by a sync instruction and succeeded by a context synchronizing instruction. 

Also, note that care should be taken to avoid modification of the instruction TLB entries that translate 
current instruction prefetch addresses.

This is a supervisor-level instruction; it is also an e300 core-specific instruction, and not part of the 
PowerPC instruction set.

Other registers altered: 

• None

0 5 6 10 11 15 16 20 21 30 31

31 00000  00000 B 978 0
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tlbli tlbli 
Load Instruction TLB Entry Integer Unit

tlbld rB

EA ← (rB)
TLB entry created from ICMP and RPA
ITLB entry selected by EA[15-19] and SRR1[WAY] ← created TLB entry

The EA is the contents of rB. The tlbli instruction loads the contents of the instruction PTE compare 
(ICMP) and required physical address (RPA) registers into the first word of the selected instruction TLB 
entry. The specific ITLB entry to be loaded is selected by the EA and SRR1[WAY] bit.

The tlbli instruction should only be executed when address translation is disabled (MSR[IR] = 0 and 
MSR[DR] = 0). 

Note that it is possible to execute the tlbld instruction when address translation is enabled; however, 
extreme caution should be used in doing so. If instruction address translation is set (MSR[IR] = 1), tlbli 
must be followed by a context synchronizing instruction such as isync or rfi. 

Also, note that care should be taken to avoid modification of the instruction TLB entries that translate 
current instruction prefetch addresses.

This is a supervisor-level instruction; it is also an e300 core-specific instruction, and not part of the 
PowerPC instruction set.

Other registers altered: 

• None

0 5 6 10 11 15 16 20 21 31

31 00000  00000 B 1010 0
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rfci rfci 
Return from Critical Interrupt

MSR[16–27, 30–31] ← CSRR1[16–27, 30–31]
NIA ←iea CSRR0[0–29] || 0b00

Bits CSRR1[16-27, 30–31] are placed into the corresponding bits of the MSR. If the new MSR value does 
not enable any pending interrupts, then the next instruction is fetched, under control of the new MSR value, 
from the address CSRR0[0–29] || 0b00. If the new MSR value enables one or more pending interrupts, the 
interrupt associated with the highest priority pending interrupt is generated; in this case the value placed 
into CSRR0 by the interrupt processing mechanism is the address of the instruction that would have been 
executed next had the interrupt not occurred. Note that an implementation may define additional MSR bits, 
and in this case, may also cause them to be saved to CSRR1 from MSR on an interrupt and restored to 
MSR from CSRR1 on an rfci.

This is a supervisor-level, context synchronizing instruction. This instruction is defined only for 32-bit 
implementations. 

Other registers altered:

• MSR

0 5 6 10 11 15 16 20 21 30 31

19 00 000 0 0000 0000 0 51 0
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The following instruction has been added to support performance monitor operations:

PMRN denotes a performance monitor register as listed in Table 11-1 and Table 11-2.

The contents of the designated performance monitor register are placed into GPR[rD].

When MSR[PR] = 1, specifying a performance monitor register that is not implemented and is not 
privileged (PMRN[5] = 0) results in an illegal instruction exception-type program interrupt. When 
MSR[PR]=1, specifying a performance monitor register that is privileged (PMRN[5] = 1) results in a 
privileged instruction execution-type program interrupt. When MSR[PR] = 0, specifying an 
unimplemented performance monitor register is boundedly undefined.

Other registers altered:

• None

PMRN denotes a performance monitor register, as listed in Table 11-1 and Table 11-2.

The contents of GPR[rS] are placed into the designated performance monitor register. 

When MSR[PR] = 1, specifying a performance monitor register that is not implemented and is not 
privileged (PMRN[5] = 0) results in an illegal instruction exception-type program interrupt. When 
MSR[PR]=1, specifying a performance monitor register that is privileged (PMRN[5] = 1) results in a 

mfpmr mfpmr 
Integer Unit

0 5 6 10 11 15 16 20 21 31

GPR (rD) <-- PMREG(PMRN)

PMRN5-9 PMRN0-4 0  1  0  1  0  0  1  1  1  0  0

Move From Performance Monitor Register
mfpmr rD, PMRN

rD0  1  1  1  1  1

mtpmr mtpmr 
Integer Unit

0 5 6 10 11 15 16 20 21 31

 PMREG(PMRN) <-- GPR (rS)

PMRN5-9 PMRN0-4 0  1  1  1  0  0  1  1  1  0  0

Move to Performance Monitor Register
mtpmr PMRN, rS

rS0  1  1  1  1  1
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privileged instruction execution-type program interrupt. When MSR[PR] = 0, specifying an 
unimplemented performance monitor register is boundedly undefined.

Other registers altered:

• None
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Chapter 4  
Instruction and Data Cache Operation
This chapter describes the organization of the cache, cache coherency protocols, cache control 
instructions, and various cache operations. It describes the interaction between the caches, the load/store 
unit, the instruction unit, and the memory subsystem. It also describes the cache way-locking features 
provided in the core.

Note that in this chapter the term ‘multiprocessor’ is used in the context of maintaining cache coherency. 
These multiprocessor devices could be actual processors and other devices that can access system memory, 
maintain their own caches, and function as bus masters requiring cache coherency.

4.1 Introduction
The core provides two independent L1 instruction and data caches to allow the registers and execution 
units rapid access to instructions and data. 

4.1.1 Instruction and Data Cache Features

The cache implementation has the following characteristics:

• Harvard architecture—separate instruction and data caches

• 32-Kbyte instruction and data caches on e300c1 and e300c4; 16-Kbyte caches on e300c2 and 
e300c3

• Eight-way, set-associativity on e300c1 and e300c4, and four-way set-associative on e300c2 and 
e300c3

• Physically addressed cache directories. The physical (real) address tag is stored in the cache 
directory.

• 32-byte cache blocks. A cache block is the block of memory that a coherency state describes, also 
referred to as a cache line.

• A four-state modified/exclusive/shared/invalid (MESI), or a three-state modified/exclusive/invalid 
(MEI) coherency protocol for the data cache

• Two status bits for each data cache block to indicate the coherency state as follows:

— Modified (M)

— Exclusive (E)

— Shared (S)

— Invalid (I)

• A single status bit for each instruction cache block that allows encoding for the following two 
possible states:
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— Invalid

— Valid

• Cache locking:

— Entire cache locking for each cache by setting the appropriate bits in the HID0

— Way-locking support for instruction and data caches using controls in HID2

• Cache invalidation by setting the appropriate bits in HID0

• A pseudo least-recently-used (PLRU) replacement algorithm within each set

• An instruction cancel mechanism that improves use of instruction cache by supporting 
hits-under-cancels and misses-under-cancels

• Data cache queue sharing that makes cast-outs and snoop pushes more efficient

• New icbt instruction supports initializing instruction cache

• An instruction fetch burst feature that allows all instruction fetches from caching-inhibited space 
to be performed on the bus as burst transactions

• Parity support for both instruction and data caches

4.1.2 Overview

The core supports a fully coherent, 4-Gbyte physical memory address space. Bus snooping is used to 
ensure the coherency of global memory with respect to the data cache.

On a cache miss, cache blocks are loaded in four beats of 64 bits each when the core is configured for a 
64-bit data bus; when the core is configured for a 32-bit bus, cache block loads are performed as eight beats 
of 32 bits each. Regardless of the bus size, the burst load is performed as a critical-double-word-first 
operation. 

For data cache loads, the data cache is blocked to internal accesses until the load completes. The 
critical-double-word is written to the cache and forwarded to the requesting unit, minimizing stalls due to 
load delays. Note that the cache line being filled cannot be accessed internally until the fill completes. 

The instruction cache allows sequential fetching during a cache block load; the instruction cache is 
blocked only until the cache line load completes.

Both caches are tightly coupled to the core bus interface unit (BIU) to allow efficient access to the system 
memory controller and other bus masters. The core load/store unit (LSU) is also directly coupled to the 
data cache to allow the efficient movement of data to and from the general-purpose and floating-point 
registers. The core bus interface unit receives requests for bus operations from the instruction and data 
caches, and executes the operations according to the coherent system bus (CSB) protocol. The BIU 
provides transaction queuing, prioritization, and bus control logic. The BIU also captures snoop addresses 
for data cache, address queue, and memory reservation (lwarx and stwcx. instruction) operations. The 
instruction cache is not snooped; therefore, instruction cache coherency must be maintained by software. 

The LSU provides the data transfer interface between the data cache and the GPRs and FPRs. It provides 
all logic required to calculate effective addresses, handle data alignment to and from the data cache, and 
provides sequencing for load and store string and multiple operations. As shown in Figure 1-1, the caches 
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provide a 64-bit interface to the instruction fetcher and LSU. Write operations to the data cache can be 
performed on a byte, half-word, word, or double-word basis. 

4.2 Data Cache Organization
The e300c1 and e300c4 data cache is configured as 128 sets of eight blocks per set. The organization of 
the e300c1 and e300c4 data cache is shown in Figure 4-1.

Figure 4-1. e300c1 and e300c4 Data Cache Organization

The e300c2 and e300c3 data cache is configured as 128 sets of four blocks per set. The organization of the 
e300c2 and e300c3 data cache is shown in Figure 4-2.

Figure 4-2. e300c2 and e300c3 Data Cache Organization
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Each block consists of 32 bytes of data, 32 parity bits, state bits, and an address tag. Each cache block 
contains eight contiguous words from memory that are loaded from an eight-word boundary (that is, bits 
A27–A31 are not part of the cache block address); thus, a cache block never crosses a page boundary. 
Misaligned accesses across a page boundary can incur a performance penalty. 

Bits A20–A26 provide an index to select a set. Bits A27–A31 select a byte within a block. The tags consists 
of bits PA0–PA19. Address translation occurs in parallel, such that higher-order bits (the tag bits in the 
cache) are physical.

The state bits implement either a standard, four-state MESI coherency protocol or a three-state MEI 
protocol. Cache coherency is enforced by on-chip bus snooping logic. Since the data cache tags are 
single-ported, a load or store, simultaneous with a snoop access, represents a resource contention. The 
snoop access is given first access to the tags. Load or store operations can be performed to the cache on 
the clock cycle immediately following a snoop access if the snoop misses. Snoop hits may block the data 
cache for two or more cycles, depending on whether a copy back to main memory is required. The 
replacement algorithm is a PLRU algorithm; that is, the pseudo least-recently used block is filled with new 
data on a cache miss.

4.3 Instruction Cache Organization
The e300c1 and e300c4 instruction cache also consists of 128 sets of eight blocks per set. The e300c1 and 
e300c4 instruction cache organization is shown in Figure 4-3. 

Figure 4-3. e300c1 and e300c4 Instruction Cache Organization
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Figure 4-4. e300c2 and e300c3 Instruction Cache Organization
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• Memory coherency (M bit)

• Guarded memory (G bit)

The WIMG attributes are programmed by the operating system for each page and block. The W and I 
attributes control how the processor performing an access uses its own cache. The M attribute ensures that 
coherency is maintained for all copies of the addressed memory location. The G attribute prevents 
speculative (referred to as ‘out-of-order’ in the architecture specification) loading and prefetching from 
the addressed memory location. These bits allow both uniprocessor and multiprocessor system designs to 
exploit numerous system-level performance optimizations. 

For accesses performed with real addressing mode (MSR[IR] = 0 or MSR[DR] = 0 for instruction or data 
access, respectively), the WIMG bits are automatically generated as 0b0011 (the data is write-back, 
caching is enabled, memory coherency is enforced, and memory is guarded). 

Careless use of these bits may create situations where coherency paradoxes are observed by the processor. 
In particular, this can happen when the state of these bits is changed without appropriate precautions. For 
example, when flushing the pages that correspond to the changed bits from the caches of all processors in 
the system is required, or when the address translations of aliased physical addresses (referred to as real 
addresses in the architecture specification), specify different values for any of the WIM bits). The core 
considers any of these cases to be a programming error that may compromise the coherency of memory. 
These paradoxes can occur within a single processor or across several devices, as described in 
Section 4.4.2.4, “Coherency in Single-Processor Systems.”

4.4.1.1 Write-Through Attribute (W)

When an access is designated as write-through (W = 1), if the data is in the cache, a store operation updates 
the cached copy of the data. In addition, the update is written to the external memory location (as described 
below). 

While the PowerPC architecture permits multiple store instructions to be combined for write-through 
accesses except when the store instructions are separated by a sync or eieio instruction, the e300 core does 
not implement this combined-store capability. A store operation that uses the write-through attribute may 
cause any part of valid data in the cache to be written back to main memory. The eieio instruction is treated 
as a no-op by the e300 core.

The definition of the external memory location to be written to, in addition to the on-chip cache, depends 
on the implementation of the memory system and can be illustrated by the following examples:

• RAM—The store is sent to the RAM controller to be written into the target RAM.

• I/O device—The store is sent to the memory-mapped I/O control hardware to be written to the 
target register or memory location.

In systems with multilevel caching, the store must be written to at least a depth in the memory hierarchy 
that is seen by all processors and devices.

Accesses that correspond to W = 0 are considered write-back. For this case, although the store operation 
is performed to the cache, it is only made to external memory when a copy-back operation is required. Use 
of the write-back mode (W = 0) can improve overall performance for areas of the memory space that are 
seldom referenced by other masters in the system. 
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4.4.1.2 Caching-Inhibited Attribute (I)

If I = 1, the memory access is completed by referencing the location in main memory, bypassing the 
on-chip cache. During the access, the addressed location is not loaded into the cache, nor is the location 
allocated in the cache. It is considered a programming error if a copy of the target location of an access to 
caching-inhibited memory is resident in the cache. Software must ensure that the location has not been 
previously loaded into the cache, or, if it has, that it has been flushed from the cache. 

The PowerPC architecture permits data accesses from more than one instruction to be combined for 
caching-inhibited operations, except when the accesses are separated by a sync instruction or by an eieio 
instruction when the page or block is also designated as guarded. This combined-access capability is not 
implemented on the e300 core. The eieio instruction is treated as a no-op by the e300 core.

The caching-inhibited (I) bit in the core also controls whether load and store operations are strongly or 
weakly ordered. If an I/O device requires load and store accesses to occur in program order, then the I bit 
for the page must be set. Refer to Section 4.4.3.2, “Sequential Consistency of Memory Accesses,” for more 
information.

4.4.1.3 Memory Coherency Attribute (M)

When an access requires coherency, the processor performing the access must inform the coherency 
mechanisms throughout the system that the access requires memory coherency. The M attribute 
determines the kind of access performed on the bus (global or local). This attribute is provided to allow 
improved performance in systems where hardware-enforced coherency is relatively slow and where 
software is able to enforce the required coherency. When M = 0, the processor does not enforce data 
coherency. When M = 1, the processor enforces data coherency, and the corresponding access is 
considered to be a global access. 

When the M attribute is set, and the access is performed, the global signal is asserted to indicate that the 
access is global. Snooping devices affected by the access must then respond to this global access if their 
data is modified by signaling retry and by updating the memory location.

For instruction accesses, HID0[IFEM] control how accesses are performed (global or local) on the bus. If 
translation is enabled, setting IFEM causes the core to reflect the M bit state on the bus during instruction 
fetches.

4.4.1.4 Guarded Attribute (G)

When the guarded bit is set, the memory area (block or page) is designated as guarded. This setting can be 
used to protect certain memory areas from read accesses made by the processor that are not dictated 
directly by the program. If there are areas of memory that are not fully populated (in other words, there are 
holes in the memory map within this area), this setting can protect the system from undesired accesses 
caused by speculative load operations or instruction prefetches that could lead to the generation of the 
machine check interrupt. Also, the guarded bit can be used to prevent speculative load operations or 
prefetches from occurring to certain peripheral devices where such speculative accesses could produce 
undesired results (for example, a destructive read from a FIFO buffer). 
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The processor will perform speculative out-of-order accesses to this area of memory, only as follows:

• Speculative load operations from guarded memory areas are performed only if the corresponding 
data is resident in the cache.

• The processor prefetches from guarded areas, but only when required, and only within the memory 
boundary dictated by the cache block. That is, if an instruction is certain to be required for 
execution by the program, it is fetched and the remaining instructions in the block may be 
prefetched, even if the area is guarded.

4.4.1.5 W, I, and M Bit Combinations

Table 4-1 summarizes the six combinations of the WIM bits. A setting of zero or one for the G bit is 
allowed for each of these WIM bit combinations.

 

4.4.2 Coherency Support 

The data cache of the e300 core supports both the three-state MEI and four-state MESI cache coherency 
protocols, as selected by the HID2[MESI] control parameter. For these modes, each 32-byte block in the 
data cache is always in one of the following states: modified (M), exclusive (E), shared (S), or invalid (I). 
The shared state is only available in MESI protocol mode. The instruction cache always operates in a 
reduced two-state mode using the states: valid (V) or invalid (I). Cache blocks in the instruction cache are 
never modified.

Table 4-1. Combinations of W, I, and M Bits

WIM Setting Meaning

000 Data may be cached.
Loads or stores whose target hits in the cache use that entry in the cache.
Memory coherency is not enforced by hardware.

001 Data may be cached.
Loads or stores whose target hits in the cache use that entry in the cache. 
Memory coherency is enforced by hardware.

n10 Caching is inhibited.
The access is performed to external memory, completely bypassing the cache. 
Memory coherency is not enforced by hardware.

n11 Caching is inhibited.
The access is performed to external memory, completely bypassing the cache. 
Memory coherency must be enforced by external hardware (processor provides hardware indication that 
access is global).

100 Data may be cached. 
Load operations whose target hits in the cache use that entry in the cache.
Stores are written to external memory. The target location of the store may be cached and is updated on a hit. 
Memory coherency is not enforced by hardware.

101 Data may be cached. 
Load operations whose target hits in the cache use that entry in the cache.
Stores are written to external memory. The target location of the store may be cached and is updated on a hit. 
Memory coherency is enforced by hardware.
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The four MESI states are defined in Table 4-2.

4.4.2.1 MEI Coherency Protocol

The default cache coherency protocol is a coherent subset of the standard MESI four-state cache protocol 
that omits the shared state. Since data cannot be shared using MEI, the e300 core signals all cache block 
fills as if they were write misses (read-with-intent-to-modify, or RWITM), flushing the corresponding 
copies of the data in all caches external to the core prior to the core cache block fill operation. Following 
the cache block load, the core is the exclusive owner of the data and may write to it without a bus broadcast 
transaction. 

To maintain this coherency, all global reads observed on the bus by the e300 core are snooped as if they 
are writes, causing the core to write a modified cache block back to memory and invalidate the cache 
block, or simply invalidate the cache block if it is unmodified. The exception to this rule occurs when a 
snooped transaction is a single-beat read (implying caching-inhibited), in which case the core does not 
invalidate the snooped cache block. If the cache block is modified, the block is written back to memory, 
and the cache block is marked exclusive. If the cache block is marked exclusive when snooped, no bus 
action is taken, and the cache block remains in the exclusive state. This treatment of caching-inhibited 
reads decreases the possibility of data thrashing by allowing noncaching devices to read data without 
invalidating the entry from the core data cache.

4.4.2.1.1 MEI State Transitions

Figure 4-5 shows the state transitions when the core is configured for MEI coherency protocol 
(HID2[MESI] = 0). Figure 4-5 assumes that the WIM bits for the page or block are set to 001; that is, 
write-back, caching-not-inhibited, and memory-coherency-required. The MEI protocol is the default 
cache coherency protocol for the e300 core.

Table 4-2. MEI/MESI State Definitions

MESI State Definition

Modified (M) The addressed cache block is valid only in the cache. The cache block is modified with respect to system 
memory—that is, the modified data in the cache block has not been written back to memory. 

Exclusive (E) The addressed block is in this cache only. The data in this cache block is consistent with system memory. 

Shared (S) The addressed cache block is valid in this cache, and the data in the block is consistent with system memory. 
Unlike the exclusive state, however, the block may also simultaneously be in the shared state in another cache 
in the system. The data in the block may be read at any time by this processor; however, before it may be written 
with any newer data by this processor, it must first be removed (de-allocated) from all other caches in the 
system. 
Note: This state is only available when HID2[MESI] is set. 

Invalid (I) This state indicates that the addressed cache block is not resident in the cache.
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Figure 4-5. MEI Cache Coherency Protocol—State Diagram (WIM = 001)
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4.4.2.2.1 MESI State Transitions

Figure 4-6 shows the state transitions when the core is configured for MESI coherency protocol 
(HID2[MESI] = 1). Figure 4-6 assumes that the WIM bits for the page or block are set to 001; that is, 
write-back, caching-not-inhibited, and memory-coherency-required.

Figure 4-6. MESI Cache Coherency Protocol—State Diagram (WIM = 001)
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4.4.2.3 Load and Store Coherency Summary

Table 4-4 provides a summary of memory coherency actions performed by the e300 core on load 
operations. Caching-inhibited cases are not considered in this table.

Table 4-4 provides an overview of memory coherency actions on store operations. This table does not 
include caching-inhibited or write-through cases.

The RWITM transactions involve selecting a replacement class and casting-out modified data that may 
have resided in that replacement class.

4.4.2.4 Coherency in Single-Processor Systems

The following situations concerning coherency can be encountered within a single-processor system:

• Load or store to a caching-inhibited page (WIM = 0bx1x) and a cache hit occurs.

Caching is inhibited for this page (I = 1)—Load or store operations to a caching-inhibited page that 
hit in the cache cause boundedly undefined results.

Table 4-3. Memory Coherency Actions on Load Operations

Cache State
Transaction 
Generated External Response Action

M None Don’t care Read from cache

E None Don’t care Read from cache

S1

1 MESI mode only

None Don’t care Read from cache

I READ No response Load data and mark exclusive

I READ Share signaled1 Load data and mark shared1

I READ Retry signaled Retry read operation

Table 4-4. Memory Coherency Actions on Store Operations

Cache State
Transaction
Generated

External Response Action

M None Don’t care Modify cache

E None Don’t care Modify cache and mark modified

S1

1 MESI mode only

RWITM No response Load data, modify it, and mark as modified

S1 RWITM Retry signaled Retry the RWITM

I RWITM No response Load data, modify it, and mark as modified

I RWITM Retry signaled Retry the RWITM
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• Store to a page marked write-through (WIM = 0b10x) and a cache read hit to a modified cache 
block.

This page is marked as write-through (W = 1)—The core pushes the modified cache block to 
memory and the block remains marked modified (M).

Note that when WIM bits are changed, it is critical that the cache contents reflect the new WIM bit settings. 
For example, if a block or page that had allowed caching becomes caching-inhibited, software should 
ensure that the appropriate cache blocks are flushed to memory and invalidated.

4.4.3 Core-Initiated Load/Store Operations

Load and store operations are assumed to be weakly ordered. In general, the load/store unit (LSU) can 
perform load operations that occur later in the program ahead of store operations, even when the data cache 
is disabled. Any load followed by any store is performed in order. See Section 4.4.3.2, “Sequential 
Consistency of Memory Accesses” for more information. 

4.4.3.1 Performed Loads and Stores

The PowerPC architecture defines a performed load operation as one that has the addressed memory 
location bound to the target register of the load instruction. The architecture defines a performed store 
operation as one where the stored value is the value that any other processor will receive when executing 
a load operation (that is, of course, until it is changed again). With respect to the core, caching-allowed 
(WIMG = n0nn) loads and caching-allowed write-back (WIMG = 00nn) stores are performed when they 
have arbitrated to address the cache block in the data cache or the coherent system bus (CSB). Loads are 
considered performed at the data cache only if the cache contains a valid copy of that address. Write-back 
stores are considered performed at the data cache only if the cache contains a valid copy of that address. 
Caching-inhibited (WIMG = n1nn) loads, caching-inhibited (WIMG = n1nn) stores, and write-through 
(WIMG = 10nn) stores are performed when they have been successfully presented to the CSB. 

4.4.3.2 Sequential Consistency of Memory Accesses

The PowerPC architecture requires that all memory operations executed by a single processor be 
sequentially consistent with respect to that processor. This means that all memory accesses appear to be 
executed in program order with respect to interrupts and data dependencies.

The e300 load/store unit is very simple, allowing only one load at a time and only one (or one-and-a-half) 
stores at a time. However, loads are allowed to bypass caching-allowed stores once interrupt checking has 
been performed for the store, but data dependency checking is handled in the load/store unit so that a load 
will not bypass a store with an address match. Loads do not bypass caching-inhibited stores.

Although memory accesses that miss in the cache are forwarded to the CSB interface, all potential 
synchronous interrupts have been resolved before the cache. In addition, although subsequent memory 
accesses can address the cache, full coherency checking between the cache and the memory queue is 
provided to avoid dependency conflicts.
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4.4.3.3 Enforcing Load/Store Ordering

As defined by the PowerPC architecture, the eieio instruction provides an ordering function for the effects 
of certain classes of load and store instructions executed by a given processor. These classes of instructions 
are automatically ordered by the LSU on the e300 core, and thus core treats the eieio instruction as a no-op. 

For the e300 core, caching-inhibited load and store operations are performed in strict program order. 
Therefore, the caching-inhibited WIMG bit may be used to strictly order memory accesses. In addition, 
the sync instruction may be used to enforce the ordering of any class of load/store operations. The sync 
instruction provides a stronger ordering on the bus by requiring the transaction to complete on the bus. The 
e300 does not broadcast eieio and sync instructions. 

4.4.3.4 Atomic Memory References

The Load Word and Reserve Indexed (lwarx) and Store Word Conditional Indexed (stwcx.) instructions 
provide an atomic update function for a single, aligned word of memory. While an lwarx instruction 
should normally be paired with an stwcx. instruction with the same effective address, an stwcx. instruction 
to any address will cancel the reservation. For detailed information on these instructions, refer to 
Chapter 3, “Instruction Set Model,” in this book and Chapter 8, “Instruction Set,” in the Programming 
Environments Manual. 

4.5 Cache Control
The core provides several means of cache control through the use of the memory/cache access attributes 
(WIMG bits), implementation-specific control bits in the HID0 and HID2 registers, and dedicated cache 
control instructions. Memory block/page level cache control is provided by the WIMG bits as described 
in Section 4.4.1, “Memory/Cache Access Attributes (WIMG Bits).” The following sections describe the 
HID0/HID2 register controls and the cache control instructions.

4.5.1 Cache Control Parameters in HID0 and HID2

The L1 caches are controlled by programming specific bits in the HID0 and HID2 special-purpose 
registers. This section describes the HID register cache control bits.

4.5.1.1 Cache Parity Error Reporting—HID0[ECPE]

Both instruction and data caches support parity generation, checking, and reporting. Cache parity 
generation is always on and stored in the cache, but the reporting of cache parity errors is enabled or 
disabled by using the enable cache parity error bit, HID0[ECPE]. When cache parity errors are enabled, 
instruction and data cache parity errors are reported by a machine check interrupt.

4.5.1.2 Data Cache Enable—HID0[DCE]

The data cache may be disabled by using the data cache enable bit, HID0[DCE]. DCE is cleared on 
power-up, disabling the data cache. When the data cache is in the disabled state (HID0[DCE] = 0), the 
cache tag state bits are ignored, and all accesses are propagated to the CSB as single-beat transactions. 
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The changing of the DCE bit must be preceded by a sync instruction to prevent the cache from being 
enabled or disabled in the middle of a data access. In addition, the cache must be globally flushed before 
it is disabled to prevent coherency problems when it is re-enabled.

Although snooping is not performed when the data cache is disabled, cache operations (caused by the 
dcbz, dcbf, dcbst, and dcbi instructions) are not affected by disabling the cache. Thus, there is a risk of 
coherency errors.

Regardless of the state of DCE, load and store operations are assumed to be weakly ordered. Thus, the LSU 
can perform load operations that occur later in the program ahead of store operations, even when the data 
cache is disabled. However, strongly ordered load and store operations can be enforced through the setting 
of the I bit (of the page WIMG bits) when address translation is enabled. Note that when address translation 
is disabled, the default WIMG bits cause the I bit to be cleared (accesses are assumed to be 
caching-allowed); thus, the accesses are weakly ordered. Refer to Section 4.4.1.2, “Caching-Inhibited 
Attribute (I),” for a description of the operation of the I bit, and Section 6.2, “Real Addressing Mode,” for 
a description of the WIMG bits when address translation is disabled.

4.5.1.3 Data Cache Lock—HID0[DLOCK]

The entire contents of the data cache may be locked by setting the data cache lock bit, HID0[DLOCK]. 
For a locked data cache, there are no new tag allocations except those caused by dcbz instructions. The 
setting of DLOCK must be preceded by a sync instruction to prevent the cache from being locked during 
a data access.

A locked data cache supplies data normally on a cache hit, but cache misses are treated as 
caching-inhibited accesses. On a miss, the transaction to the CSB is single-beat; however, ci still reflects 
the state of the I bit in the MMU for that page, regardless of whether the cache is locked or disabled. A 
snoop hit to a locked data cache performs as if the cache were not locked. Any cache block invalidated by 
a snoop hit remains invalid until the cache is unlocked.

The e300 core also provides data cache way-locking in addition to entire data cache locking as described 
in Section 4.5.1.4, “Data Cache Way-lock—HID2[DWLCK].”

4.5.1.4 Data Cache Way-lock—HID2[DWLCK]

Locking only a portion of the data cache is accomplished by locking ways within the cache using 
HID2[DWLCK]. Locking always begins with the first way (way 0) and is sequential. That is, it is valid to 
lock ways 0, 1, and 2, but it is not possible to lock just way 0 and way 2. When using way-locking (without 
DLOCK) at least one way is always left unlocked. The maximum number of lockable ways is seven on 
e300c1 and e300c4 and three ways on e300c2 and e300c3.

4.5.1.5 Data Cache Flash Invalidate—HID0[DCFI]

The data cache flash invalidate bit, HID0[DCFI], is used to invalidate the entire data cache in a single 
operation. Note that using DCFI invalidates the cache in a single cycle on e300c1; however, on e300c2 and 
e300c3 and e300c4, DCFI is a 128-cycle sequential reset of the cache. There is no broadcast of a flash 
invalidate operation, and any modified data in the cache is lost. Flash invalidation of the data cache is 
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accomplished by setting DCFI and subsequently clearing DCFI in two consecutive mtspr[HID0] 
instructions.

The data cache is automatically invalidated when the core is powered up and during a hard reset. However, 
a soft reset does not automatically invalidate the data cache. Software must set and clear HID0[DCFI] to 
invalidate the entire data cache after a soft reset. 

4.5.1.6 Instruction Cache Enable—HID0[ICE] 

The instruction cache may be disabled through the use of the instruction cache enable bit, HID0[ICE]. ICE 
is cleared at power-on reset, disabling the instruction cache. To prevent the cache from being enabled or 
disabled in the middle of an instruction fetch, an isync instruction should be issued before changing the 
value of ICE.

When the instruction cache is in the disabled state, the cache tag state bits are ignored and all accesses are 
propagated to the bus as single-beat transactions when HID2[IFEB] is cleared; when HID2[IFEB] is set, 
all accesses are propagated as burst transactions. Note that disabling the instruction cache does not affect 
the translation logic; translation for instruction accesses is controlled by MSR[IR].

4.5.1.7 Instruction Cache Lock—HID0[ILOCK]

The entire contents of the instruction cache may be locked through the use of HID0[ILOCK]. A locked 
instruction cache supplies instructions normally on a cache hit, but cache misses are treated as 
caching-inhibited accesses. On a miss, the transaction to the CSB is single-beat; however, ci still reflects 
the state of the I bit in the MMU for that page, regardless of whether the cache is locked or disabled. The 
setting of the ILOCK bit must be preceded by an isync instruction to prevent the instruction cache from 
being locked during an instruction access.

The core also provides instruction cache way-locking in addition to entire instruction cache locking, as 
described in Section 4.10, “Applications Information—Cache Locking.”

4.5.1.8 Instruction Cache Way-Lock—HID2[IWLCK]

Locking only a portion of the instruction cache is accomplished by locking ways within the cache using 
HID2[IWLCK]. Locking always begins with the first way (way 0) and is sequential. That is, it is valid to 
lock ways 0, 1, and 2, but it is not possible to lock just way 0 and way 2. Way-locking (without ILOCK) 
always leaves at least one way unlocked. The maximum number of lockable ways is seven on e300c1 and 
e300c4 and three ways on e300c2 and e300c3.

4.5.1.9 Instruction Cache Flash Invalidate—HID0[ICFI]

The instruction cache flash invalidate bit, HID0[ICFI], is used to invalidate the entire instruction cache in 
a single operation. Note that using ICFI invalidates the cache in a single cycle on e300c1; however, on 
e300c2, e300c3 and e300c4, ICFI is a 128-cycle sequential reset of the cache. Flash invalidation of the 
instruction cache is accomplished by setting ICFI and subsequently clearing ICFI in two consecutive 
mtspr[HID0] instructions.
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The instruction cache is automatically invalidated when the core is powered up and during a hard reset. 
However, a soft reset does not automatically invalidate the instruction cache. Software must set and clear 
HID0[ICFI] to invalidate the entire instruction cache after a soft reset. 

4.5.1.10 Instruction Cache Way Protect—HID2[ICWP]

Typically, instruction cache management routines rely on icbi instructions or flash invalidate 
(HID0[ICFI]) operations to clear out part or all of the instruction cache for program-related operations, 
such as for process changes or MMU page deallocation. Often, these cache management operations clear 
out both the locked and unlocked portions of the instruction cache (icbi invalidates all ways of a cache set 
unconditionally, and HID0[ICFI] invalidates the entire instruction cache unconditionally). 

The e300 core has a new instruction cache way protection feature. By setting HID2[ICWP] = 1, any locked 
ways in the instruction cache are protected from cache block (icbi) or flash (HID0[ICFI]) invalidation. 
This allows any locked portion of the instruction cache to have the same persistence as main memory, 
while still allowing the remaining unlocked portions of the instruction cache to be managed by the 
program.

4.5.1.11 Cache Operation Broadcasting—HID0[ABE]

In MEI mode, the core does not broadcast cache operations caused by cache instructions. They are 
intended for the management of the local cache but not for other caches in the system. The HID0[ABE] 
bit enables the cache management instructions to unconditionally cause a bus transaction (either a push as 
a result of modified data that needs to be written back to memory or an address-only transaction). The use 
of ABE is generally intended to extend cache management to a front-side level-2 cache. In MESI mode, 
the cache management instructions are automatically broadcast on the bus as defined by the M-bit of the 
WIMG field.

4.5.2 Cache Control Instructions

The PowerPC architecture defines instructions for controlling both the instruction and data caches when 
they exist. The core interprets the cache control instructions (dcbt, dcbtst, dcbz, dcbst, dcbf, dcbi, icbt, 
and icbi) as if they pertain only to the core caches. They are not intended for use in managing other caches 
in the system.

The dcbz instruction causes an address-only broadcast on the bus if the addressed cache block is marked 
memory-coherency-required (global) through the WIMG bits. This broadcast is performed for coherency 
reasons; the dcbz instruction is effectively a normal store class instruction. 

In MEI mode, the execution of a dcbf, dcbi, or dcbst instruction causes an address-only broadcast if the 
HID0[ABE] bit is set. Also, in MEI mode, the dcbz instruction is the only cache operation that is snooped 
by the core.

In MESI mode, the execution of the dcbf, dcbi, and dcbst instructions are broadcast if the HID0[ABE] bit 
is set or if the addressed cache block is marked memory-coherency-required. Also in MESI mode, the core 
snoops the dcbst, dcbz, dcbf, and dcbi instructions. 
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The ability of the core to optionally perform address-only broadcasts when executing the dcbi, dcbf, and 
dcbst instructions allows for managing coherency of external caches if they are present. 

4.5.2.1 Data Cache Block Touch (dcbt) Instruction

This instruction provides a method for improving performance through the use of software-initiated 
prefetch hints. The core performs the fetch when the address hits in the TLB or BAT registers, and when 
it is a permitted load access from the addressed page. The operation is treated similarly to a byte load 
operation with respect to coherency.

The dcbt instruction which misses in the data cache is treated as a burst read operation on the bus, with a 
transaction type of RWITM if operating in three-state MEI mode, or READ if operating in four-state MESI 
mode. The resulting cache line is marked as exclusive if operating in three-state MEI mode. If operating 
in four-state MESI mode, it is marked as exclusive or shared, depending on the shared indication on the 
CSB.

The dcbt instruction is treated as a no-op if any of the following apply: 

• It hits in the data cache.

• The target address is mapped to caching-inhibited (even if the data cache is disabled).

• Touch load operations are disabled by HID0[NOPTI].

• The target address is mapped as guarded.

• The address translation does not hit in the TLB or BAT mechanism.

• The address translation does not have load access permission.

4.5.2.2 Data Cache Block Touch for Store (dcbtst) Instruction

The dcbtst instruction, like the data cache block touch instruction (dcbt), allows software to prefetch a 
cache block in anticipation of a store operation (RWITM).

The dcbtst instruction is treated similarly to the dcbt instruction, except that the transaction type RWITM 
is always used if operating in 4-state MESI mode, and the resulting cache line is always marked as 
exclusive (not modified). When operating in MEI mode, the dcbtst has exactly the same behavior as dcbt. 

4.5.2.3 Data Cache Block Clear to Zero (dcbz) Instruction

If the block containing the byte addressed by the EA is in the data cache, all bytes are cleared.

If memory coherency is required (WIMG = nn1n), the dcbz instruction broadcasts on the bus on a cache 
miss or hit to a shared block. It is the only cache control instruction that may broadcast without being 
specifically enabled using HID0[ABE]. The dcbz instruction is essentially a store operation rather than a 
cache management operation and, therefore, always participates in normal cache coherency as directed by 
the M-bit.

The core initiates an alignment interrupt when the operand of a dcbz is in a page that is write-through or 
caching-inhibited or when the data cache is disabled. The dcbz instruction is not executed in these cases. 

If the dcbz instruction is otherwise not aborted, it allocates into the cache and performs an address 
broadcast, if necessary, for normal store coherency. The resulting cache line is marked as modified. In the 
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case where the dcbz operation hits in the cache, it re-allocates to that cache line. Note that the dcbz 
instruction ignores HID0[DLOCK] setting and always allocates a tag. That is, when DLOCK is set, the 
dcbz occurs as if the cache were not locked.

4.5.2.4 Data Cache Block Store (dcbst) Instruction

This instruction is treated as a load to the addressed byte with respect to address translation and protection.

If the address hits in the data cache, the target cache line is pushed to memory as a burst write bus 
transaction. The cache line remains in the data cache and is marked as exclusive if operating in MEI mode, 
or marked as shared if operating in MESI mode. If no push is required from the data cache, the dcbst 
instruction instead conditionally generates an address broadcast operation on the bus. The address 
broadcast is contingent upon whether HID0[ABE] is set, or whether the target address is mapped as 
memory-coherency-required (M = 1) in MESI mode.

The dcbst instruction is always effective on the data cache or the bus, regardless of WIMG settings or 
whether the data cache is enabled. 

4.5.2.5 Data Cache Block Flush (dcbf) Instruction

The effective address is computed, translated, and checked for protection violations as defined in the 
PowerPC architecture. This instruction is treated as a load to the addressed byte with respect to address 
translation and protection.

If the address hits in the cache, and the block is in the modified state, the modified block is written back 
to memory and the cache block is invalidated. If the address hits in the cache, and the cache block is in the 
exclusive or shared state, the cache block is invalidated. If the address misses in the cache, no action is 
taken. 

The function of this instruction is independent of the WIMG bit settings of the block or PTE containing 
the effective address. However, the execution of dcbf broadcasts an address-only flush transaction on the 
CSB if HID0[ABE] is set or if operating in four-state MESI mode and the target address is marked 
memory-coherency-required. Execution of a dcbf instruction affects the cache even if the cache is 
disabled.

4.5.2.6 Data Cache Block Invalidate (dcbi) Instruction

The effective address is computed, translated, and checked for protection violations as defined in the 
PowerPC architecture. This instruction is treated as a store to the addressed byte with respect to address 
translation and protection.

The dcbi instruction should be used with caution on the e300 core. 

If the address hits in the cache, the cache block is invalidated, regardless of the state of the cache block. 
Even if the cache block is modified, it is not pushed to main memory and the associated data is lost. 
Because this instruction may effectively destroy modified data, it is privileged (that is, dcbi is available to 
programs at the supervisor privilege level, MSR[PR] = 0). A BAT or TLB protection violation for a dcbi 
translation generates a DSI interrupt.
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The function of this instruction is independent of the WIMG bit settings of the block or PTE containing 
the effective address. However, the execution of dcbi broadcasts an address-only kill transaction on the 
CSB if HID0[ABE] is set or if operating in four-state MESI mode and the target address is marked 
memory-coherency-required. Execution of a dcbi instruction affects the cache even if the cache is 
disabled.

4.5.2.7 Instruction Cache Block Touch (icbt) Instruction

The icbt instruction performs a bus read operation from the bus and allocates into the instruction cache. 
This instruction is new to the e300 core, and supplements the instruction cache locking mechanisms and 
the new way-protect feature.

The icbt instruction is treated as a no-op if touch load operation is disabled by HID0[NOPTI]. 

The icbt instruction is effective, regardless of WIMG settings, instruction or data cache enable status, and 
the instruction cache lock status (that is, unconditional allocate). This allows the icbt instruction to easily 
initialize the locked portion of the instruction cache before enabling. 

Note that to prevent user-level code from inadvertently overwriting a supervisor-level page that has been 
locked in the instruction cache, that page of memory should be protected with appropriate MMU 
translation and access privileges, or by using HID0[NOPTI] to treat the icbt instruction as a no-op.

The icbt instruction is dispatched to the load/store unit and data cache, and, therefore, goes through 
data-side address translation. It is treated similarly to dcbt for translation and storage protection purposes. 
The data cache then issues the icbt operation to the bus unit without checking for a data cache hit. 
Therefore, if the instruction block is already residing in the data cache (for example, due to self-modifying 
code), the program must first perform a dcbf of that address to flush that data block back to main memory 
for the subsequent icbt. 

A sync instruction must follow an icbt instruction to ensure all cache load operations are completed. An 
isync instruction must also follow an icbt if the newly touched and loaded instructions is expected to be 
fetched immediately after the icbt is executed. 

4.5.2.8 Instruction Cache Block Invalidate (icbi) Instruction

The icbi instruction unconditionally invalidates all ways of the target cache set (that is, icbi invalidates by 
tag index only). No address comparison is performed to check for a cache hit. The icbi instruction does 
not broadcast to the bus. 

If the instruction cache way-protect bit, HID2[ICWP], is set, only the non-locked ways of the instruction 
cache set are invalidated by the icbi instruction.

An icbi instruction should always be followed by a sync and an isync instruction. This ensures that the 
effects of the icbi are seen by the instruction fetches following the icbi itself. For self-modifying code, the 
following sequence should be used to synchronize the instruction stream:

1. dcbst (push new code from the data cache out to memory)

2. sync (wait for the dcbst to complete)

3. icbi (invalidate the old instruction cache entry in this processor)
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4. sync (wait for the icbi to complete its bus operation)

5. isync (re-sync this processor’s instruction fetch)

The second sync instruction ensures completion of all prior icbi instructions. Note that the second sync 
instruction is not shown in Section 5.1.5.2, “Instruction Cache Instructions,” in The Programming 
Environments Manual. 

Since the sync instruction strongly serializes the memory subsystem, performance of code containing 
several icbi instructions can be improved by batching the icbi instructions together such that only one sync 
instruction is used to synchronize all the icbi instructions in the batch.

4.6 Cache Operations
This section describes the three types of operations that can occur to the caches, and how these operations 
are implemented in the e300 core.

4.6.1 Data Cache Fill Operations

A cache block fill is caused by a cacheable load or store miss in the cache. The cache block that 
corresponds to the missed address is updated by a burst transfer of the data from system memory. If a read 
miss occurs in a system with multiple bus masters, and the data is modified in another cache, the modified 
data is first written to external memory before the cache fill occurs.

When the core is configured with a 64-bit data bus, cache blocks are loaded in four beats of 8 bytes each. 
When the core is configured with a 32-bit bus, cache block loads are performed with eight beats of 4 bytes 
each. The burst load is performed as critical-double-word-first. The data cache is blocked to subsequent 
load/store operations until the load completes. The critical-double-word is simultaneously written to the 
cache and forwarded to the requesting unit, thus minimizing stalls due to load delays.

4.6.2 Instruction Cache Fill Operations

When the core is configured with a 64-bit data bus, instruction cache blocks are loaded in four beats of 8 
bytes each. When the core is configured with a 32-bit bus, cache block loads are performed with eight beats 
of 4 bytes each. The burst fetch is performed as critical-double-word-first. On a cache miss, the critical 
and following double words fetched from memory are simultaneously written to the instruction cache and 
forwarded to the dispatch queue, thus minimizing stalls due to cache fill latency. The instruction cache 
allows sequential fetching from the remainder of the cache block during a cache block load. 

4.6.3 Instruction Fetch Cancel Extension

In superscalar architectures, instructions are routinely fetched ahead of the time they are needed, but these 
prefetched instructions may be cancelled due to instruction redirection, such as by branches or interrupts. 
The instruction fetch cancel extension improves the utilization of the instruction cache during such cancel 
operations. 
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The instruction fetch cancel extension allows a new instruction fetch to be issued to the cache or to the bus 
if a cancelled instruction fetch is pending or active on the bus. This supports hit-under-cancel and 
miss-under-cancel instruction fetch operations. This feature is enabled using HID2[IFEC].

4.6.4 Data Cache Cast-Out Operations

The core uses a PLRU replacement algorithm to determine which of the possible cache locations should 
be used for a cache update on a cache miss. Adding a new block to the cache causes any modified data 
associated with the replacement element to be written back, or cast out, to system memory to maintain 
memory coherence. Refer to Section 4.6.7, “Cache Block Replacement Selection,” for more information 
on how the replacement block is selected.

4.6.5 Cache Block Push Operation

When a cache block in the core is snooped and hit by another bus master and the data is modified, the cache 
block must be written to memory and made available to the snooping device. The cache block that is hit, 
is pushed out onto the CSB. If the snooped transaction is a write-with-kill transaction that hits a modified 
cache block, no push will be performed.

There is no snooping of the instruction cache.

4.6.6 Data Cache Queue Sharing Extension

In previous G2 cores, two write queues are available for data cache burst write operations: one reserved 
for cache replacements only, and one for snoop pushes only. (There is also a third write queue always 
available for non-burst write operations.) 

The e300 features a data cache queue sharing extension that allows the two burst write queues in the bus 
unit to be used interchangeably, or shared, for cache replacements and snoop pushes. This allows the data 
cache to support two outstanding cache replacements or two outstanding snoop push operations on the bus 
at any given time. This supports greater bus throughput between the data cache and memory, and less stall 
latency during data cache miss operations due to unavailable bus queues. However, when queue sharing is 
enabled, the snoop queue may not be available because there may be 2 pending cast-outs. In this case, there 
may be a window-of-opportunity push from an address other than the snooped address.

Queue-sharing is enabled by setting HID2[EBQS].

4.6.7 Cache Block Replacement Selection

The instruction and data caches both use a three-step selection process to determine which cache way will 
be used for the instruction or data. First, the core determines if there is a hit to a valid way. If there is a hit, 
then that way is selected. Next, the core checks to see if there are any invalid ways in the set and chooses 
the lowest-order, invalid way as the recipient. Last, when there is not a hit, but all eight ways in the set are 
valid (and not locked), the PLRU algorithm is used to select the replacement target. 
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For e300c1 and e300c4, there are 7 PLRU bits, B[0–6] for each set in the cache. A way is selected for 
replacement according to the PLRU bit encodings shown in Table 4-5.

For e300c2 and e300c3, the B0 bit is always 0, so there are effectively only 3 PLRU bits (B1, B3, and B4) 
for each set in the cache. A way is selected for replacement according to the PLRU bit encodings shown 
in Table 4-6. 

Table 4-5. e300c1 PLRU Replacement Way Selection

If the PLRU bits are:
Then the way selected 

for replacement is:

B0

0

B1

0
B3

0 w0

0 0 1 w1

0 1
B4

0 w2

0 1 1 w3

1

B2

0
B5

0 w4

1 0 1 w5

1 1
B6

0 w6

1 1 1 w7

Table 4-6. e300c2 PLRU Replacement Way Selection

If the PLRU bits are:
Then the way selected 

for replacement is:

B1

0
B3

0 w0

0 1 w1

1
B4

0 w2

1 1 w3
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The PLRU algorithm is shown graphically in Figure 4-7.

Figure 4-7. PLRU Replacement Algorithm

Note: B0 = 0 always taken on e300c2.

During power-up or hard reset, all the valid bits of the ways are cleared and the PLRU bits are cleared to 
point to way 0 of each set. This is also the state of the data or instruction cache after setting their respective 
flash invalidate bits (HID0[DCFI] or HID0[ICFI]). 
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w7
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w6

B1 = 0 B1 = 1

B0 = 1

B6 = 0 B6 = 1

select
w5
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w4

B5 = 0 B5 = 1
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w3
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w2

B4 = 0 B4 = 1
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w1
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w0

B3 = 0 B3 = 1

B2 = 0 B2 = 1

any hit ?

any invalid ?

use PLRU

replace 1st hitting way
(w0, or w1, or w2...)

PLRU bits: B0...B6

(w0, or w1, or w2...)

(after way-lock override)

B0 = 0

replace lowest-order, invalid way
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Each time a cache block is accessed, it is tagged as the most recently used way of the set. For every hit in 
the cache or when a new block is reloaded, the PLRU bits for the set are updated using the rules specified 
in Table 4-7.

Note that for the e300c1 and e300c4 only 3 PLRU bits are updated for any given access and for the e300c2 
and e300c3 only 2 PLRU bits are updated for any given access.

In the case of way-locking, the PLRU value read from the cache is first modified before using it to ensure 
that a locked way is not selected. Because way-locking involves locking an incrementing range of ways 
starting with way 0 (way 0, or way 0–1, or way 0–2, etc.), the appropriate bits of the PLRU value are 
simply overridden to 1 in an incrementing fashion away from the locked ways to prevent that range of 
ways from being selected. In the binary tree figure, this can be visually described as forcing the bits 
required to reach the locked ways to the value 1 so that the binary tree is traversed down one of the 
remaining branches.

The final PLRU value for the selected way of the cache set is written back to the cache for load hits, store 
hits (including dcbz), and normal cache allocations. The value written back is adjusted to ensure that way 
will not be immediately selected the next time(s) a replacement is required for that particular cache set. 
The PLRU value written back is the PLRU value pointing to that way with its three critical bits inverted. 
The three critical bits are the three bits that were traversed down the binary tree to reach the final way 
selection. The remaining bits are left unchanged. Inverting the three critical bits essentially converts the 
PLRU value to a PMRU (pseudo most-recently-used) value. In the case of way-locking, the way-locking 
override described above is not factored into the PLRU write-back value. In the case of a cache hit, the 
PLRU write-back value has the three critical bits inverted for the specific hitting way. 

4.7 L1 Cache Parity
The e300 core includes parity checking for both the instruction and data caches. A machine check interrupt 
is taken upon detecting an instruction or data cache parity error when HID0[ECPE] and MSR[ME] are 

Table 4-7. PLRU Bit Update Rules 

If the 
current 

access is 
to:

Then the PLRU bits in the set are changed to:

B01

1 Note that the e300c2 only has 4 ways, so B0 is always 0.

B1 B2 B3 B4 B5 B6

w0 1 1 x 1 x x x

w1 1 1 x 0 x x x

w2 1 0 x x 1 x x

w3 1 0 x x 0 x x

w4 0 x 1 x x 1 x

w5 0 x 1 x x 0 x

w6 0 x 0 x x x 1

w7 0 x 0 x x x 0

x = Does not change
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both set. For the instruction cache, parity is checked for instruction fetches that hit in the cache. For the 
data cache, parity is checked for loads that hit in the cache as well as for any cache line writes to memory 
(replacement copy-backs, dcbf/dcbst pushes, and snoop copy-backs). Note that data and instruction cache 
parity generation and checking are always on; the ECPE parameter simply enables reporting of parity 
errors.

The state of SRR1 reflects the additional machine check conditions of instruction cache parity error (bit 
10) or data cache parity error (bit 11). Cache parity errors are logged as non-recoverable. Refer to 
Section 5.5.2, “Machine Check Interrupt (0x00200),” for more information.

4.8 Bus Interface
The bus interface buffers receive requests from the instruction and data caches, and execute the requests 
per the CSB protocol. They include address register queues, prioritization logic, and bus control logic. The 
bus interface also captures snoop addresses for snooping in the cache and address register queues, snoops 
for reservations, and holds the touch load address for the cache. All data storage for the address register 
buffers (load and store data buffers) is located in the cache logic. The data buffers are considered 
temporary storage for the cache and not part of the bus interface.

The general functions and features of the bus interface are as follows:

• Address register buffers that include:

— Instruction cache load address buffer

— Data cache load address buffer

— Data cache cast-out/store address buffers (associated data line buffer located in cache)

— Data cache single-beat write address buffers (associated data line buffer located in cache)

— Data cache snoop copy-back address buffer (associated data line buffer located in cache)

— Reservation address buffer for snoop monitoring

• Pipeline collision detection for data cache buffers

• Reservation address snooping for lwarx/stwcx. instructions

• One-level or one-and-a-half-level address pipelining

• Load-ahead-of-store capability
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Figure 4-8 is a conceptual block diagram of the bus interface. The address register queues hold transaction 
requests that the bus interface may issue on the CSB independently of the other requests. The bus interface 
may have up to two transactions operating at any given time through the use of address pipelining.

Figure 4-8. Bus Interface Address Buffers

4.9 Caches and CSB Transactions
The core transfers data to and from the data cache in single-beat transactions of two words, or in four-beat 
transactions of eight words which fill a cache block.

4.9.1 Single-Beat Transactions

Single-beat bus transactions can transfer from 1 to 8 bytes to or from the core. Single-beat transactions can 
be caused by cache write-through accesses, caching-inhibited accesses (I bit of the WIMG bits for the page 
is set), accesses that miss when the cache is locked (HID0[DLOCK] is set), accesses when the cache is 
disabled (HID0[DCE] bit is cleared), and misaligned accesses. 

4.9.2 Burst Transactions

Burst transactions on the core always transfer eight words of data at a time and are aligned to a 
double-word boundary. Burst transactions have an assumed address order. For caching-allowed read 
operations or caching-allowed, non-write-through write operations that miss the cache, the core presents 
the double-word aligned address associated with the load or store instruction that initiated the transaction. 

As shown in Figure 4-9, this quad word contains the address of the load or store that missed the cache. 
This minimizes latency by allowing the critical code or data to be forwarded to the processor before the 
rest of the block is filled. For all other burst operations, however, the entire block is transferred in order 
(eight-word aligned). Critical-double-word-first fetching on a cache miss applies to both the data and 
instruction cache.
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Figure 4-9. Double-Word Address Ordering—Critical-Double-Word-First

4.9.3 Instruction Fetch Burst Enable for Caching-Inhibited Space

In the G2 core, all instruction fetches to caching-inhibited (CI) space results in single-beat bus transactions 
and in the fetched instructions not being cached. The ci_b signal reflects the setting of the I bit for the block 
or page that contains the address of the current transaction.

In the e300 core, the instruction fetch burst enable extension allows all instruction fetches from 
caching-inhibited instruction space to be performed on the CSB as burst transactions, similar to 
caching-allowed instruction space, even though the instructions are not cached. This allows for greater 
performance to instruction space that is not desired to be cached. With this performance extension, up to 
an entire cache line may be returned (up to 8 instructions) with one bus operation. The remaining 
instructions in the burst transaction that follow the critical instruction are forwarded to the instruction fetch 
unit as they are normally requested, until an instruction redirect or instruction stall occurs. Because 
instruction fetching does not normally wrap within the cache line, an instruction fetch initiated to double 
word address 3 of a 32-byte block is still performed as a single-beat read on the CSB. This feature is 
enabled by setting the HID2[IFEB] register bit. 

When the HID2[IFEB] register bit is set and the HID0[ICE] register bit is cleared (instruction cache 
disabled), any instruction fetch results in burst transactions on the bus, similar to caching-allowed 
instruction space, but the instruction is not cached.

This feature should not be enabled for systems that do not support bursting from all caching-inhibited 
instruction space which could otherwise be accessed while burst mode is enabled. This feature affects only 
caching-inhibited instruction fetches, not caching-inhibited load or store operations.

e300 Core Cache Address
Bits 27:28

Beat

Beat

A B C D

0 0 0 1 1 0 1 1

A B C D

0 1 2 3

If the address requested is in double-word A, the address placed on the bus is that of double-word A, and
the four data beats are ordered in the following manner:

If the address requested is in double-word C, the address placed on the bus will be that of double-word C,
and the four data beats are ordered in the following manner:

C D A B

0 1 2 3
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4.9.4 CSB Operations Caused by Cache Control Instructions

Table 4-8 provides an overview of the bus operations initiated by cache control instructions. The cache 
control, TLB management, and synchronization instructions supported by the core may affect or be 
affected by the operation of the CSB. None of the instructions actively broadcast through address-only 
transactions on the bus (except for dcbz), and no broadcasts by other masters are snooped by the core 
(except for kills and those required by the MESI protocol). The operation of the instructions, however, may 
indirectly cause bus transactions to be performed, or their completion may be linked to the bus. Table 4-8 
summarizes how these instructions may operate with respect to the CSB.

Table 4-8 assumes that the WIM bits are set to 001; that is, since the cache is operating in write-back mode, 
caching is permitted and coherency is enforced. Table 4-8 does not include caching-inhibited or 
write-through cases, nor does it completely describe the mechanisms for the operations described. 

4.9.5 Snooping

The core maintains data cache coherency in hardware by coordinating activity between the data cache, 
memory system, and bus interface logic. 

Table 4-8. e300 Bus Operations Caused by Cache Control Instructions 

Operation Cache State Next Cache State CSB Operation Comment

sync Don’t care No change None Waits for data path related queues to 
complete bus activity

icbi Don’t care I None —

dcbi Don’t care I None or Kill block Broadcast dependent on whether 
HID0[ABE] is set in MEI mode

dcbf M I Write-with-kill Block is pushed

dcbf E, S, I I None or Write Broadcast dependent on whether 
HID0[ABE] is set in MEI mode

dcbst M E (MEI -mode)
S (MESI-mode)

Write Block is pushed

dcbst E, S, I No change None —

dcbz E M None Clear all bytes in the block

dcbz S M Kill block Invalidate cache line
Allocate the tag
Clear all bytes in the block

dcbz I M Kill block —

dcbt M, E No change None —

dcbt I No change Read-with-intent-
to-modify (MEI)
Read (MESI)

Load the block into cache

dcbtst I No change Read-with-intent-
to-modify

Load the block into cache

dcbtst E, M No change None —
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The global (gbl) signal, asserted as part of the address attributes during a bus transaction, enables the 
snooping hardware of the core. Address bus masters assert gbl to indicate that the current transaction is a 
global access (that is, an access to memory shared by more than one device). If gbl is not asserted for the 
transaction, that transaction is not snooped by the core. The gbl signal is not asserted for instruction fetches 
(except when HID0[IFEM] is set and the instruction address is marked memory-coherency-required); gbl 
is asserted for all data read or write operations when using real addressing mode. 

Normally, gbl reflects the M-bit value specified for the memory reference in the corresponding MMU 
translation descriptor(s). Care must be taken to minimize the number of pages marked as global, because 
the retry protocol enforces coherency and this incurs additional overhead. 

As global bus transactions are performed on the bus by other bus masters, the core bus snooping logic 
monitors the addresses that are referenced. These addresses are compared with the cache tags. If there is a 
snoop hit, the core bus snooping logic responds with the appropriate snoop status (for example, a retry). 
Additional snoop action may be forwarded to the cache as a result of a snoop hit in some cases (a cache 
push of modified data or cache block invalidation). The specific response depends on the transaction type. 
There are several bus transaction types defined for the CSB. The core snoops these transactions and 
performs the appropriate action to maintain memory coherency as described in Table 4-9. 

 

Table 4-9. Snoop Response to CSB Transactions 

Snooped Transaction 
Type

e300 Core Response

Clean block MEI: No action is taken
MESI: The clean block operation is an address-only bus transaction initiated when a dcbst 
instruction is executed.The core may have the following response: 
 • If the addressed block is in the invalid or shared state, no action is taken and the state of the 

addressed block is unchanged.
 • If the addressed block is in the exclusive state, the address snoop forces the state of the 

addressed block to shared.
 • If the addressed block is in the modified state, the address snoop signals retry and initiate a push 

of the modified block out of the cache and changes the state of the block to shared. 

Flush block MEI: No action is taken
MESI: The flush block operation is an address-only bus transaction that initiates when a dcbf 
instruction is executed. The core may have the following response: 
 • If the addressed block is in the invalid state, no action is taken.
 • If the addressed block is in the exclusive or shared state, the address snoop forces the state of 

the addressed block to invalid. 
 • If the addressed block is in the modified state, the address snoop signals retry and initiates a 

flush of the modified block out of the cache and changes the state of the block to invalid.
 • Any associated reservation is canceled.

Write-with-flush
Write-with-flush-atomic 

MEI/MESI: Write-with-flush and write-with-flush-atomic operations occur after the processor issues 
a store or stwcx. instruction, respectively. 
 • If the addressed block is in the invalid state, no action is taken.
 • If the addressed block is in the shared state, the address snoop forces the state of the 

addressed block to invalid. 
 • If the addressed block is in the exclusive state, the address snoop forces the state of the 

addressed block to invalid. 
 • If the addressed block is in the modified state, the address snoop signals retry initiate a push of 

the modified block out of the cache, and change the state of the block to invalid.
 • Any associated reservation is canceled.
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Kill block MEI/MESI: The kill block operation is an address-only bus transaction initiated when a dcbz 
instruction is executed. When snooped by the core, the addressed cache block is invalidated if in 
the exclusive or shared state, or flushed to memory and invalidated if in the modified state; and any 
associated reservation is canceled.

Write-with-kill MEI/MESI: In a write-with-kill operation, the core snoops the cache for a copy of the addressed 
block. If one is found, an additional snoop action is initiated internally and the cache block is forced 
to the invalid state, killing modified data that may have been in the block. Any reservation 
associated with the block is also canceled. 
There is an exception to this rule, if there is any pending single-beat-write atomic write-through 
(stwcx.) in BIU, the core treats the write-with-kill as if it were a write-with-flush bus transaction. 

Read 
Read-atomic 

MEI: The read operation is used by most single-beat-read and burst read operations on the bus. 
All burst reads observed on the bus are snooped as if they were writes (RWITM), causing the 
addressed cache block to be flushed. A read on the bus with the gbl signal asserted causes the 
following responses:
 • If the addressed block in the cache is in the invalid state, the core takes no action.
 • If the addressed block in the cache is in the exclusive state, the block is invalidated.
 • If the addressed block in the cache is in the modified state, the block is flushed to memory and 

the block is invalidated.
 • If the snooped transaction is a single-beat-read (caching-inhibited) and the block in the cache is 

in the exclusive state, the snoop causes no bus activity and the block remains in the exclusive 
state. If the block is in the cache in the modified state, the core initiates a push of the modified 
block out to memory and marks the cache block as exclusive.

Read-atomic operations appear on the bus in response to lwarx instructions and generate the 
same snooping responses as read operations.
MESI: The read operation is used by most single-beat-read and burst read operations on the bus. 
In the MESI protocol, burst reads are treated as reads. All burst reads observed on the bus are 
snooped as if they were reads. A read on the bus with the gbl signal asserted causes the following 
responses:
 • If the addressed block in the cache is in the invalid state, the core takes no action.
 • If the addressed block in the cache is in the exclusive state, the core signals shared and the 

address snoop forces the state of the addressed block to shared. 
 • If the addressed block in the cache is in the modified state, the address snoop signals retry and 

shared and initiates a push of the modified block out of the cache and changes the state of the 
block to shared. 

Read-atomic operations appear on the bus in response to lwarx instructions and generate the 
same snooping responses as read operations.

Read-with-intent-to-
modify (RWITM) 
RWITM-atomic

MEI/MESI: A RWITM operation is issued to acquire exclusive use of a memory location for the 
purpose of modifying it. 
 • If the addressed block is in the invalid state, the core takes no action. 
 • If the addressed block in the cache is in the exclusive or shared state, the core initiates an 

additional snoop action to change the state of the cache block to invalid. 
 • If the addressed block in the cache is in the modified state, the block is flushed to memory and 

the block is invalidated.
 • Any associated reservation is canceled (MESI state only).
The RWITM-atomic operations appear on the bus in response to stwcx. instructions and are 
snooped like RWITM instructions.

sync No action is taken

TLB invalidate No action is taken

Table 4-9. Snoop Response to CSB Transactions  (continued)

Snooped Transaction 
Type

e300 Core Response
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In addition to the retries described in Table 4-9, the core may signal retry for any bus transaction due to 
internal conflicts that prevent the appropriate snooping. The following scenarios cause the core to signal 
a retry:

• Snoop hits to a block in the M state (flush or clean)

This case is a normal snoop hit and results in retry being signaled if the snooped transaction is a 
flush or clean request. If the snooped transaction is a kill request, retry is not signaled.

• Snoop hits to line in the cast-out buffer. The cast-out buffer is kept coherent with main memory, 
and snoop operations that hit in the cast-out buffer cause retry to be signaled.

• Snoop attempt during the tag allocation period from dcbz instruction or load or store operations. 
During the execution of a dcbz instruction or during a load or store operation that requires a cache 
line cast-out, the cache tags are inaccessible during the first and last cycle of the operation. The 
period of any associated cast-out due to reallocation overlaps the tag allocate period.

• Snoop attempt during the cycle when a dcbf, dcbst, or dcbi instruction is updating the tag. If the 
EA of a dcbf or dcbst instruction hits in the cache, the tag will be changed to its new state. During 
that clock, the tag is not accessible and snoop transactions during that cycle cause retry to be 
signaled.

• Snoop hits in the data load buffer for a burst read while the data is still being transferred from 
memory (that is, data is in transit).

• Other internal resource collisions

While the e300 core provides the hardware required to monitor bus traffic for coherency, the core data 
cache tags are single-ported, and a simultaneous load or store and snoop access represent a resource 
conflict. In general, the snoop access has highest priority and is given first access to the tags. A pending 
load or store access will then occur on the clock following the snoop. However, the snoop is not given 
priority into the tags when the snoop coincides with a tag write (for example, validation after a cache block 
load). In these situations, the snoop is retried and must re-arbitrate before the lookup is possible.

Occasionally, cache snoops cannot be serviced and must be retried. These retries occur if the cache is busy 
with a burst read or write when the snoop operation takes place.

It is possible for a snoop to hit a modified cache block that is already in the process of being written to the 
copy-back buffer for replacement purposes. If this happens, the core retries the snoop, and raises the 
priority of the cast-out operation to allow it to occur on the CSB before the cache block fill.

4.10 Applications Information—Cache Locking
This section describes the entire cache locking and cache way-locking features of the e300 core. 

4.10.1 Cache Locking Terminology

Cache locking refers to the ability to prevent some or all of a processor’s instruction or data cache from 
being overwritten. Cache locking can be set for either an entire cache or for individual ways within the 
cache as follows:

• Entire cache locking—When an entire cache is locked, data for read hits within the cache are 
supplied to the requesting unit in the same manner as hits from an unlocked cache. Similarly, writes 
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that hit in the data cache are written to the cache in the same way as write hits to an unlocked cache. 
However, any access that misses in the cache is treated as a caching-inhibited access. Cache entries 
that are invalid at the time of locking remain invalid and inaccessible until the cache is unlocked. 
When the cache has been unlocked, all entries (including invalid entries) are available. Entire cache 
locking is inefficient if the number of instructions or the size of data to be locked is small compared 
to the cache size.

• Way-locking—Locking only a portion of the cache is accomplished by locking ways within the 
cache. Locking always begins with the first way (way 0) and is sequential; that is, locking ways 0, 
1, and 2 is possible, but it is not possible to lock only way 0 and way 2. When using way-locking, 
at least one way must be left unlocked. The maximum number of lockable ways is seven on the 
e300c1 and e300c4 core (way 0–way 6) and three on the e300c2 and e300c3 (way 0–way 2). 

Unlike entire cache locking, invalid entries in a locked way are accessible and available for data 
replacement. As hits to the cache fill invalid entries within a locked way, the entries become valid 
and locked. This behavior differs from entire cache locking in which invalid entries cannot be 
allocated. Unlocked ways of the cache behave normally.

Table 4-10 summarizes the e300 core cache organization.

4.10.2 Cache Locking Register Summary

Table 4-11 through Table 4-13 outline the registers and bits used to perform cache locking on the e300 
core. Refer to Section 2.2.1, “Hardware Implementation Register 0 (HID0),” for a complete description of 
the HID0 and MSR registers. Refer to Section 2.2.3, “Hardware Implementation Register 2 (HID2),” for 
a complete description of the HID2 register.

Table 4-10. Cache Organization

Instruction Cache Size Data Cache Size Associativity Block Size Way Size

e300c1 32 Kbytes 32 Kbytes 8-way 8 words 4 Kbytes

e300c2 16 Kbytes 16 Kbytes 4-way 8 words 4 Kbytes

e300c3 16 Kbytes 16 Kbytes 4-way 8 words 4 Kbytes

e300c4 32 Kbytes 32 Kbytes 8-way 8 words 4 Kbytes

Table 4-11. HID0 Bits Used to Perform Cache Locking

Bits Name Description

16 ICE Instruction cache enable. This bit must be set for instruction cache locking. See 
Section 4.10.3.1.1, “Enabling the Data Cache.”

17 DCE Data cache enable. This bit must be set for data cache locking. See Section 4.10.3.1.1, 
“Enabling the Data Cache.”

18 ILOCK Instruction cache lock. Set to lock the entire instruction cache. See Section 4.10.3.2.5, 
“Locking the Entire Instruction Cache.”

19 DLOCK Data cache lock. Set to lock the entire data cache. See Section 4.10.3.1.6, “Locking the Entire 
Data Cache.”
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4.10.3 Performing Cache Locking

This section outlines the basic procedures for locking the data and instruction caches and provides some 
example code for locking the caches. The procedures for the data cache are described first, followed by 
the corresponding sections for locking the instruction cache. 

The basic procedures for cache locking are as follows:

• Enabling the cache

• Enabling address translation for example code

• Disabling interrupts

• Loading the cache

• Locking the cache (entire cache locking or cache way-locking)

In addition, this section describes how to invalidate the data and instruction caches, even when they are 
locked.

20 ICFI Instruction cache flash invalidate. Setting and then clearing this bit invalidates the entire 
instruction cache. See Section 4.10.3.2.7, “Invalidating the Instruction Cache (Even if 
Locked).”

21 DCFI Data cache flash invalidate. Setting and then clearing this bit invalidates the entire data cache. 
See Section 4.10.3.1.4, “Invalidating the Data Cache.”

Table 4-12. HID2 Bits Used to Perform Cache Way-locking

Bits Name Description

16–18 IWLCK Instruction cache way-lock. These bits are used to lock individual ways in the instruction 
cache. See Section 4.10.3.2.6, “Way-Locking the Instruction Cache.”

24–26 DWLCK Data cache way-lock. These bits are used to lock individual ways in the data cache. See 
Section 4.10.3.1.7, “Way-Locking the Data Cache.”

Table 4-13. MSR Bits Used to Perform Cache Locking

Bits Name Description

16 EE External interrupt enable. This bit must be cleared during instruction and data cache loading. See 
Section 4.10.3.1.3, “Disabling Interrupts for Data Cache Locking.”

19 ME Machine check enable. This bit must be cleared during instruction and data cache loading. See 
Section 4.10.3.1.3, “Disabling Interrupts for Data Cache Locking.”

26 IR Instruction address translation. This bit must be set to enable instruction address translation by the MMU. See 
Section 4.10.3.1.2, “Address Translation for Data Cache Locking.”

27 DR Data address translation. This bit must be set to enable data address translation by the MMU. See 
Section 4.10.3.1.2, “Address Translation for Data Cache Locking.”

Table 4-11. HID0 Bits Used to Perform Cache Locking (continued)

Bits Name Description
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4.10.3.1 Data Cache Locking—Procedures

This section describes the procedures for performing data cache locking on the e300 core.

4.10.3.1.1 Enabling the Data Cache

To lock the data cache, the data cache enable bit HID0[DCE], bit 17, must be set. The following assembly 
code enables the data cache:

# Enable the data cache. This corresponds
# to setting DCE bit in HID0 (bit 17) 

mfspr r1, HID0
ori r1, r1, 0x4000
sync
mtspr HID0, r1
isync

4.10.3.1.2 Address Translation for Data Cache Locking

Two distinct memory areas must be set up to enable cache locking:

• The first area is where the code that performs the locking resides and is executed.

• The second area is where the data to be locked resides.

Both areas of memory must be in locations that are translated by the memory management unit (MMU). 
This translation can be performed either with the page table or the block address translation (BAT) 
registers.

For the purposes of the cache locking example in this document, the two areas of memory are defined using 
the BAT registers. The first area is a 1-Mbyte area in the upper region of memory that contains the code 
performing the cache locking. The second area is a 256-Mbyte block of memory (not all of the 256 Mbytes 
of memory is locked in the cache; this area is set up as an example) that contains the data to lock. Both 
memory areas use identity translation (the logical memory address equals the physical memory address).

Table 4-14 summarizes the BAT settings used in this example.

The block address translation upper (BATU) and block address translation lower (BATL) settings in 
Table 4-14 can be used for both instruction block address translation (IBAT) and data block address 
translation (DBAT) registers. After the BAT registers have been set up, the MMU must be enabled. The 
following assembly code enables both instruction and data memory address translation:

# Enable instruction and data memory address translation. This
# corresponds to setting IR and DR in the MSR (bits 26 & 27)

Table 4-14. Example BAT Settings for Cache Locking

 Area Base Address Memory Size WIMG Bits BATU Setting BATL Setting

First 0xFFF0_0000 1 Mbyte 0b01001 0xFFF0_001F 0xFFF0_00021

1 Caching-inhibited memory is not a requirement for data cache locking. A setting of 0xFFF0_0002 with a 
corresponding WIMG of 0b0000 marks the memory area as caching-allowed.

Second 0x0000_0000 256 Mbyte 0b0000 0x0000_1FFF 0x0000_0002
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mfmsr r1
ori r1, r1, 0x0030
sync
mtmsr r1
isync

4.10.3.1.3 Disabling Interrupts for Data Cache Locking

To ensure that interrupt handler routines do not execute while the cache is being loaded (which could 
possibly pollute the cache with undesired contents), all interrupts must be disabled. This is accomplished 
by clearing the appropriate bits in the machine state register (MSR). See Table 4-15 for the bits within the 
MSR that must be cleared to ensure that interrupts are disabled.

The following assembly code disables all asynchronous interrupts:
# Clear the following bits from the MSR:
#    EE  (16)     ME  (19)
#    FE0 (20)     FE1 (23)
# ME (24)

mfmsr r1
lis r2, 0xFFFF
ori r2, r2, 0x667F
and r1, r1, r2
sync
mtmsr r1
isync

4.10.3.1.4 Invalidating the Data Cache

If a non-empty data cache has modified data, and the data cannot be discarded, the data cache must be 
flushed before it can be invalidated. Data cache flushing is accomplished by filling the data cache with 
known data and performing a flash invalidate or a series of dcbf instructions that force a flush and 
invalidation of the data cache block. 

The following code sequence shows how to flush the data cache:
# r6 contains a block-aligned address in memory with which to fill
# the data cache. For this example, address 0x0 is used

li      r6, 0x0

# CTR = number of data blocks to load

Table 4-15. MSR Bits for Disabling Interrupts

Bits Name Description

16 EE External interrupt enable

19 ME Machine check enable

20 FE01

1 The floating-point exception may not need to be disabled because the example code shown in 
this document that performs cache locking does not execute any floating-point operations. 

Floating-point exception mode 0

23 FE11 Floating-point exception mode 1

24 CE Critical interrupt enable
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# e300c1 and e300c4 number of blocks = (32K) / (32 Bytes/block)
#  = 2^15 / 2^5 = 2^9 = 0x400
# e300c2 and e300c3 number of blocks = (16K) / (32 Bytes/block)
#  = 2^14 / 2^5 = 2^8 = 0x200

li      r1, 0x400 # Use e300c1 and e30c4 value for this example
mtctr   r1

# Save the total number of blocks in cache to r8
mr      r8, r1

# Load the entire cache with known data
loop: lwz     r2, 0(r6)

addi    r6, r6, 32      # Find the next block
bdnz    loop            # Decrement the counter, and 

# branch if CTR != 0

# Now, flush the cache with dcbf instructions
li      r6, 0x0         # Address of first block

mtctr   r8              # Number of blocks
loop2:

dcbf    r0, r6
addi    r6, r6, 32      # Find the next block
bdnz    loop2           # Decrement the counter, and

#   branch if CTR != 0

If the content of the data cache does not need to be flushed to memory, the cache can be directly 
invalidated. The entire data cache is invalidated through the data cache flash invalidate bit HID0[DCFI], 
bit 21. Setting HID0[DCFI] and then immediately clearing it causes the entire data cache to be invalidated. 
The following assembly code invalidates the entire data cache (does not flush modified entries):
# Set and then clear the HID0[DCFI] bit, bit 21

mfspr r1, HID0
mr r2, r1
ori r1, r1, 0x0400
sync
isync
mtspr HID0, r1
mtspr HID0, r2
isync

4.10.3.1.5 Loading the Data Cache

This section explains loading data into the data cache. The data cache can be loaded in several ways. The 
example in this document loads the data from memory. The following assembly code loads the data cache:
# Assuming interrupts are turned off, cache has been flushed,
# MMU on, and loading from contiguous caching-allowed memory.
# r6  = Starting address of code to lock
# r20 = Temporary register for loading into
# CTR = Number of cache blocks to lock

loop: lwz r20, 0(r6) # Load data into d-cache
addi r6, r6, 32 # Find next block to load
bdnz loop # CTR = CTR-1, branch if CTR != 0
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4.10.3.1.6 Locking the Entire Data Cache

Locking of the entire data cache is controlled by the data cache lock bit (HID0[DLOCK], bit 19). Setting 
HID0[DLOCK] to 1 locks the entire data cache. To unlock the data, the HID0[DLOCK] must be cleared 
to 0. Setting the DLOCK bit must be preceded by a sync instruction to prevent the data cache from being 
locked during a data access. The following assembly code locks the entire data cache:
# Set the DLOCK bit in HID0 (bit 19)

mfspr r1, HID0
ori r1, r1, 0x1000
sync
mtspr HID0, r1
isync

NOTE
The dcbz instruction ignores DLOCK and always allocates a tag. Therefore, 
it is recommended that, when setting DLOCK the user also set the way-lock 
bits to lock the maximum number of ways. Refer to Section 4.10.3.1.7, 
“Way-Locking the Data Cache,” for more information.

4.10.3.1.7 Way-Locking the Data Cache 

Data cache way-locking is controlled by HID2[DWLCK], bits 24–26. Table 4-16 shows the 
HID2[DWLCK[0–2]] settings for the e300c1 and e300c4 core embedded processor.

Table 4-16. e300c1 and e300c4 Core DWLCK[0–2] Encodings

DWLCK[0:2] Ways Locked

0b000 No ways locked

0b001 Way 0 locked

0b010 Ways 0 and 1 locked

0b011 Ways 0, 1, and 2 locked

0b100 Ways 0, 1, 2, and 3 locked

0b101 Ways 0, 1, 2, 3, and 4 locked

0b110 Ways 0, 1, 2, 3, 4, and 5 locked

0b111 Ways 0, 1, 2, 3, 4, 5, and 6 locked
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Table 4-16 shows the HID2[DWLCK[0–2]] settings for the e300c2 and e300c3 core embedded processor.

Note that on the e300c2 and e300c3, values greater than 0b011 are reserved but default to the maximum 
number of ways locked (Ways 0,1, and 2).

The following assembly code locks way 0 of the e300 core data cache:
# Lock way 0 of the data cache
# This corresponds to setting dwlck(0-2) 0b001 (bits 24-26)

mfspr r1, HID2
lis r2, 0xFFFF
ori r2, r2, 0xFF1F
and r1, r1, r2
ori r1, r1, 0x0020
sync
mtspr HID2, r1
isync

4.10.3.1.8 Invalidating the Data Cache (Even if Locked)

There are two methods for invalidating the instruction or data cache:

• Invalidate the entire cache by setting and then immediately clearing the data cache flash invalidate 
bit HID0[DCFI], bit 21. Even when a cache is locked, toggling the DCFI bit invalidates all of the 
data cache.

• The data cache block invalidate (dcbi) instruction can be used to invalidate individual cache 
blocks.

4.10.3.2 Instruction Cache Locking—Procedures

This section describes the procedures for performing instruction cache locking on the e300 core.

Table 4-17. e300c2 and e300c3 Core DWLCK[0–2] Encodings

DWLCK[0:2] Ways Locked

0b000 No ways locked

0b001 Way 0 locked

0b010 Ways 0 and 1 locked

0b011 Ways 0, 1, and 2 locked

0b100 Reserved (Ways 0, 1, and 2 locked)

0b101 Reserved (Ways 0, 1, and 2 locked)

0b110 Reserved (Ways 0, 1, and 2 locked)

0b111 Reserved (Ways 0, 1, and 2 locked)
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4.10.3.2.1 Enabling the Instruction Cache

To lock the instruction cache, the instruction cache enable bit HID0[ICE], bit 16 must be set.
# Enable the data cache. This corresponds
# to setting DCE bit in HID0 (bit 17)

mfspr r1, HID0
ori r1, r1, 0x8000
sync
mtspr HID0, r1
isync

4.10.3.2.2 Address Translation for Instruction Cache Locking

Two distinct memory areas must be set up to enable cache locking: 

• The first area is where the code that performs the locking resides and is executed.

• The second area is where the instructions to be locked reside.

Both areas of memory must be in locations that are translated by the memory management unit (MMU). 
This translation can be performed either with the page table or the block address translation (BAT) 
registers. 

For the purposes of the cache locking example in this document, two areas of memory are defined using 
the BAT registers. The first area is a 1-Mbyte area in the upper region of memory that contains the code 
performing the cache locking. This area of memory must be caching-inhibited for instruction cache 
locking. The second area is a 256-Mbyte block of memory that contains the instructions to lock (not all of 
the 256 Mbytes of memory is locked in the cache; this area is set up as an example). Both memory areas 
use identity translation (the logical memory address equals the physical memory address). Table 4-18 
summarizes the BAT settings used in this example. 

The block address translation upper (BATU) and block address translation lower (BATL) settings in 
Table 4-18 can be used for both instruction block address translation (IBAT) and data block address 
translation (DBAT) registers. After the BAT registers have been set up, the MMU must be enabled. 

The following assembly code enables both instruction and data memory address translation:
# Enable instruction and data memory address translation. This
# corresponds to setting IR and DR in the MSR (bits 26 & 27)

mfmsr r1
ori r1, r1, 0x0030

Table 4-18. Example BAT Settings for Cache Locking

 Area Base Address Memory Size WIMG Bits BATU Setting BATL Setting

First 0xFFF0_0000 1 Mbyte 0b0100 1 0xFFF0_001F 0xFFF0_00221

1 0xFFF0_0022 defines a caching-inhibited memory area used for instruction cache locking and corresponds 
to a WIMG of 0b0100. Caching-inhibited memory is not a requirement for data cache locking. A setting of 
0xFFF0_0002 with a corresponding WIMG of 0b0000 marks the memory area as caching-allowed.

Second 0x0000_0000 256 Mbytes 0b0000 0x0000_1FFF 0x0000_0002
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sync
mtmsr r1
isync

4.10.3.2.3 Disabling Interrupts for Instruction Cache Locking

To ensure that interrupt handler routines do not execute while the cache is being loaded (which could 
possibly pollute the cache with undesired contents) all interrupts must be disabled. This is accomplished 
by clearing the appropriate bits in the machine state register (MSR). See Table 4-19 for the bits within the 
MSR that must be cleared to ensure that interrupts are disabled.

The following assembly code disables all asynchronous interrupts:
# Clear the following bits from the MSR:
#    EE  (16)     ME  (19)
#    FE0 (20)     FE1 (23)
# ME (24)

mfmsr r1
lis r2, 0xFFFF
ori r2, r2, 0x667F
and r1, r1, r2
sync
mtmsr r1
isync

4.10.3.2.4 Preloading Instructions into the Instruction Cache

To optimize performance, processors that implement the PowerPC architecture automatically prefetch 
instructions into the instruction cache. This feature can be used to preload explicit instructions into the 
cache even when it is known that their execution will be canceled. Although the execution of the 
instructions is canceled, the instructions remain valid in the instruction cache. 

Because instructions are intentionally executed speculatively, care must be taken to ensure that all I/O 
memory is marked guarded. Otherwise, speculative loads and stores to I/O space could potentially cause 
data loss. See the Programming Environments Manual for a full discussion of guarded memory.

The code that prefetches must be in caching-inhibited memory as in the following example:
# Assuming interrupts are disabled, cache has been flushed,
# the MMU is on, and we are executing in a caching-inhibited

Table 4-19. MSR Bits for Disabling Interrupts

Bit Name Description

16 EE External interrupt enable

19 ME Machine check enable

20 FE01

1 The floating-point exception may not need to be disabled because the example code shown 
in this document that performs cache locking does not execute any floating-point operations. 

Floating-point exception mode 0

23 FE1 1 Floating-point exception mode 1

24 CE Critical interrupt enable
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# location in memory
# LR and r6 = Starting address of code to lock
# CTR = Number of cache blocks to lock
# r2 = non-zero numerator and denominator
# ‘loop’ must begin on an 8-byte boundary to ensure that
#    the divw and beqlr+ are fetched on the same cycle.

.orig 0xFFF04000

loop: divw. r2, r2, r2 # LONG divide w/ non-zero result
beqlr+ # Cause the prefetch to happen

addi r6, r6, 32 # Find next block to prefetch
mtlr r6 # set the next block
bdnz- loop # Decrement the counter and

# branch if CTR != 0 

In the above example, both the divw and beqlr+ instructions are fetched at the same time (this assumes a 
64-bit data bus; the preloading code does not work for a 32-bit data bus) due to their placement on a 
double-word boundary. The divide instruction was chosen because it takes many cycles to execute. During 
execution of the divide, the processor starts fetching instructions speculatively at the target destination of 
the branch instruction. The speculation occurs because the branch is statically predicted as taken. This 
speculative fetching causes the cache block that is pointed to by the link register (LR) to be loaded into the 
cache. Because the divw. instruction always produces a non-zero result, the beqlr+ is not taken and 
execution of all speculatively fetched instructions is canceled. However, the instructions remain valid in 
the cache.

If the destination instruction stream contains an unconditional branch to another memory location, it is 
possible to also prefetch the destination of the unconditional branch instruction. This does not cause a 
problem if the destination of the unconditional branch is also inside the area of memory that needs to be 
preloaded. But if the destination of the unconditional branch is not in the area of memory to be loaded, 
then care must be taken to ensure that the branch destination is to an area of memory that is 
caching-inhibited. Otherwise, unintentional instructions may be locked in the cache and the desired 
instructions may not be in their expected way within the cache.

The icbt is a new feature to the e300 core and supplements the instruction cache locking mechanisms and 
the new way-protect feature. The icbt instruction performs a bus read operation from the bus and allocates 
into the instruction cache. 

The icbt instruction functions independently of WIMG settings, instruction or data cache enable status, or 
the instruction cache lock status (i.e. unconditional allocate). This allows the icbt instruction to be used to 
easily initialize the locked portion of the instruction cache before enabling. 

Note that to prevent user-mode code from inadvertently over-writing a supervisor-mode page that has been 
locked in the instruction cache, that page of memory should be protected with appropriate MMU 
translation and access privileges, or HID0[NOPTI] should be set in order to no-op further uses of the 
instruction.

The icbt instruction is dispatched to the load/store unit and data cache, and therefore goes through 
data-side address translation. It is treated similarly to dcbt for translation and storage protection purposes. 
The data cache then issues the icbt operation to the bus unit without checking for a data cache hit. 
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Therefore if the instruction block may already be residing in the data cache (because of self-modifying 
code, for example), the program must first perform a dcbf or dcbst of that address to flush that data block 
back to main memory for the icbt to access it. 

A sync instruction must follow an icbt instruction to ensure all cache load operations are completed. An 
isync instruction must also follow an icbt if instruction fetching to the newly touched and loaded 
instructions may occur immediately after the icbt was executed. 

4.10.3.2.5 Locking the Entire Instruction Cache

Locking the entire instruction cache is controlled by the instruction cache lock bit (HID0[ILOCK], bit 18). 
Setting HID0[ILOCK] locks the entire instruction cache, and clearing HID0[ILOCK] allows the 
instruction cache to operate normally. The setting of the HID0[ILOCK] should be preceded by an isync 
instruction to prevent the instruction cache from being locked during an instruction access. The following 
assembly code locks the contents of the entire instruction cache.
# Set the ILOCK bit in HID0 (bit 18)

mfspr r1, HID0
ori r1, r1, 0x2000
sync
isync
mtspr HID0, r1
isync

4.10.3.2.6 Way-Locking the Instruction Cache

Instruction cache way-locking is controlled by the HID2[IWLCK], bits 16–18. Table 4-20 shows the 
HID2[IWLCK[0–2]] settings for the core.

Table 4-20. e300c1 and e300c4 Core IWLCK[0–2] Encodings

IWLCK[0:2] Ways Locked

0b000 No ways locked

0b001 Way 0 locked

0b010 Ways 0 and 1 locked

0b011 Ways 0, 1, and 2 locked

0b100 Ways 0, 1, 2, and 3 locked

0b101 Ways 0, 1, 2, 3, and 4 locked

0b110 Ways 0, 1, 2, 3, 4, and 5 locked

0b111 Ways 0, 1, 2, 3, 4, 5, and 6 locked
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Table 4-16 shows the HID2[IWLCK[0–2]] settings for the e300c2 and e300c3.

Note that on the e300c2 and e300c3, values greater than 0b011 are reserved but default to the maximum 
number of ways locked (Ways 0,1, and 2).

The following assembly code locks way 0 of the core instruction cache:
# Lock way 0 of the instruction cache
# This corresponds to setting iwlck(0–2) to 0b001 (bits 16–18)

mfspr r1, HID2
lis r2, 0xFFFF
ori r2, r2, 0x1FFF
and r1, r1, r2
ori r1, r1, 0x2000
sync
isync
mtspr HID2, r1
isync

4.10.3.2.7 Invalidating the Instruction Cache (Even if Locked)

There are two methods for invalidating the instruction cache. In the first way, invalidate the entire cache 
by setting and then immediately clearing the instruction cache flash invalidate bit (HID0[ICFI], bit 20). 
Even when a cache is locked, toggling the ICFI bit invalidates all of the instruction cache. The following 
assembly code invalidates the entire instruction cache:
# Set and then clear the HIDO[ICFI] bit, bit 20

mfspr r1, HID0
mr r2, r1
ori r1, r1, 0x0800
sync
isync
mtspr HID0, r1
mtspr HID0, r2
isync

Table 4-21. e300c2 Core IWLCK[0–2] Encodings

IWLCK[0:2] Ways Locked

0b000 No ways locked

0b001 Way 0 locked

0b010 Ways 0 and 1 locked

0b011 Ways 0, 1, and 2 locked

0b100 Reserved (Ways 0, 1, and 2 locked)

0b101 Reserved (Ways 0, 1, and 2 locked)

0b110 Reserved (Ways 0, 1, and 2 locked)

0b111 Reserved (Ways 0, 1, and 2 locked)
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In the second method, the instruction cache block invalidate (icbi) instruction can be used to invalidate 
individual cache blocks. The icbi instruction invalidates blocks in an entirely locked instruction cache. The 
icbi instruction also may invalidate way-locked blocks within the instruction cache. 

4.10.3.2.8 Instruction Cache Way Protection

The instruction cache way-protect extension supplements the existing cache lock capability of the 
instruction cache. For normal operation, from one to all ways (eight ways for 32Kbyte caches/four ways 
for 16Kbyte caches) of the instruction cache may be locked using HID2[IWLCK] and HID0[ILOCK]. The 
locking mechanism normally allows a portion or all of the instruction cache to be used as a very fast, 
always resident, program memory. Specifically, pages of memory (up to a full 4Kbytes per page per way) 
may be locked in the instruction cache and used as fast, always-resident program memory, while allowing 
the remaining unlocked portion of the instruction cache to continue to operate as normal cache for the 
remaining program.

Normal instruction cache management, however, typically relies on the icbi instruction and the flash 
invalidate mechanism (HID0[ICFI]) to routinely clear out part or all of the instruction cache for 
program-related operations, such as process changes and MMU page deallocation. These cache 
management operations clear out both the locked and unlocked portions of the cache (icbi invalidates all 
ways of a cache set unconditionally, and HID0[ICFI] clears the entire instruction cache unconditionally).

In the e300 core, the new instruction cache way protect extension prevents the locked portion of the 
instruction cache from being invalidated by the icbi instruction or by the flash invalidate mechanism 
(HID0[ICFI]). This allows the locked portion of the instruction cache to have the same persistence as main 
memory, while still allowing the remaining unlocked portion of the instruction cache to be managed by the 
program. This way-protect extension is enabled by setting HID2[ICWP]. 

In addition to the way-protect extension, the instruction cache block touch (icbt) instruction is added to 
support easy start-up initialization or reloading of the instruction cache. This specifically supports the 
way-lock and way-protect mechanism by allowing the locked portion of the cache to be easily initialized 
in a predictable fashion. (The natural prefetch mechanism of super-scalar processors otherwise precludes 
this.) 

The icbt instruction allocates blocks into the instruction cache, regardless of WIMG settings or whether 
the instruction cache is enabled, so that the instruction cache can be easily locked and preloaded before 
turning on. In addition, in case of a cache hit, the icbt instruction will re-write to the same hitting line, so 
that an existing locked and protected page in the instruction cache can be easily re-loaded with a different 
program without going back to an initial start-up state. 
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Chapter 5  
Interrupts and Exceptions
The PowerPC interrupt mechanism allows the processor to change to supervisor state as a result of external 
signals, errors, or unusual conditions arising in the execution of instructions. When interrupts occur, 
information about the state of the processor is saved to certain registers and the processor begins execution 
at an address (interrupt vector) predetermined for each interrupt. Processing of interrupts occurs in 
supervisor mode.

Although multiple exception conditions can map to a single interrupt vector, a more specific condition may 
be determined by examining a register associated with the interrupt or exception that causes it—for 
example, the DSISR or FPSCR. Additionally, certain exception conditions and interrupts can be explicitly 
enabled or disabled by software. 

The PowerPC architecture requires that interrupts be handled in program order; therefore, although a 
particular implementation may recognize interrupt conditions out of order, they are handled strictly in 
order with respect to the instruction stream. When an instruction-caused interrupt is recognized, any 
unexecuted instructions that appear earlier in the instruction stream, including any that have not yet entered 
the execute state, are required to complete before the interrupt is taken. Any interrupts caused by those 
instructions are handled first. Likewise, interrupts that are asynchronous and precise are recognized when 
they occur, but are not handled until the instruction currently in the completion stage successfully 
completes execution or generates an interrupt, and the completed store queue is emptied (see Section 7.1, 
“Terminology and Conventions,” for the definition). An instruction is said to have completed when the 
results of that instruction’s execution have been committed to the registers defined by the architecture (for 
example, the GPRs or FPRs, rather than rename buffers). If a single instruction encounters multiple 
exception conditions, those exceptions are taken and handled sequentially. Likewise, interrupts that are 
asynchronous are recognized when they occur, but are not handled until the next instruction to complete 
in program order successfully completes. Throughout this chapter, the phrase ‘next instruction’ implies the 
next instruction to complete in program order.

Note that interrupts can occur while an interrupt handler routine is executing, and multiple interrupts can 
become nested. It is up to the interrupt handler to save the states to allow control to ultimately return to the 
original excepting program.

Unless a catastrophic condition causes a system reset or machine check interrupt, only one interrupt is 
handled at a time. If, for example, a single instruction encounters multiple interrupt conditions, those 
conditions are handled sequentially. After the interrupt handler is finished, instruction execution continues 
until the next interrupt is encountered. However, in many cases there is no attempt to re-execute the 
instruction. This method of recognizing and handling interrupts sequentially guarantees that interrupts are 
recoverable.

To prevent loss of state information, interrupt handlers should save the information stored in SRR0 and 
SRR1 (or in CSRR0/CSRR1 for critical interrupts) soon after the interrupt is taken. This prevents loss of 
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information due to a system reset or machine check interrupt or to an instruction-caused interrupt in the 
interrupt handler before disabling external interrupts.

In this chapter, the following terminology is used to describe the various stages of exception processing:

Exception A condition that, if enabled, generates an interrupt. 

Recognition Interrupt recognition occurs when the exception that can cause an interrupt is 
identified by the processor. 

Taken An interrupt is said to be taken when control of instruction execution is passed to 
the interrupt handler; that is, the context is saved and the instruction at the 
appropriate vector offset is fetched and the interrupt handler routing is executed in 
supervisor mode.

Handling Interrupt handling is performed by the software linked to the appropriate vector 
offset. Interrupt handling is performed at the supervisor-level.

5.1 Interrupt Classes
The PowerPC architecture supports four types of interrupts:

• Synchronous, precise—These are caused by instructions. All instruction-caused interrupts are 
handled precisely; that is, the machine state at the time the interrupt occurs is known and can be 
completely restored. This means that (excluding the trap and system call interrupts) the address of 
the faulting instruction is provided to the interrupt handler and that neither the faulting instruction 
nor subsequent instructions in the code stream will complete execution before the interrupt is 
taken. Once the interrupt is processed, execution resumes at the address of the faulting instruction 
(or at an alternate address provided by the interrupt handler). When an interrupt is taken due to a 
trap or system call instruction, execution resumes at an address provided by the handler.

• Synchronous, imprecise—The PowerPC architecture defines two imprecise floating-point 
exception modes: recoverable and nonrecoverable. Even though the e300 core provides a means to 
enable the imprecise modes, it implements these modes identically to the precise mode (that is, all 
enabled floating-point exceptions are always precise on the e300 core). These are not implemented 
on the e300c2 core as it does not support floating-point instructions.

• Asynchronous, maskable—The external interrupt (int), system management interrupt (smi), 
decrementer interrupt, and critical interrupt (cint) are maskable asynchronous interrupts. When 
these interrupts occur, their handling is postponed until the next instruction completes execution 
and until any interrupts associated with that instruction complete execution. If there are no 
instructions in the execution units, the interrupt is taken immediately upon determination of the 
correct restart address (for loading SRR0).

• Asynchronous, nonmaskable—There are two nonmaskable asynchronous interrupts: system reset 
and the machine check interrupt. These interrupts may not be recoverable, or may provide a limited 
degree of recoverability. All interrupts report recoverability through the MSR[RI] bit. 
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The e300 core interrupt classes are shown in Table 5-1.

Table 5-1 defines interrupt categories that are handled uniquely by the e300 core. Note that Table 5-1 
includes no synchronous imprecise interrupts. While the PowerPC architecture supports imprecise 
handling of floating-point exceptions, the e300 core implements them as precise. Although the PowerPC 
architecture specifies that the recognition of the machine check interrupt is nonmaskable, on the e300 core 
the stimuli that cause this interrupt are maskable. For example, the machine check interrupt is caused by 
the assertion of tea, ape, dpe, or mcp. However, mcp, ape, and dpe can be disabled by bits 0, 2, and 3, 
respectively, in HID0. Therefore, the machine check caused by asserting tea is the only truly nonmaskable 
machine check interrupt. 

The e300 core interrupts, and conditions that cause them, are listed in Table 5-2.Note that the e300c2 core 
does not support floating-point operations. 

Table 5-1. Interrupt Classifications

Synchronous/Asynchronous Precise/Imprecise Interrupt Type

Asynchronous, nonmaskable Imprecise Machine check
System reset

Asynchronous, maskable Precise External interrupt
Decrementer
System management interrupt
Critical interrupt 

Synchronous Precise Instruction-caused interrupts

Table 5-2. Interrupts and Exception Conditions

Interrupt Type
Vector Offset

(hex)
Exception Conditions

Reserved 00000 —

System reset 00100 A system reset is caused by the assertion of either sreset or hreset.

Machine check 00200 A machine check is caused by the assertion of the tea signal during a data bus transaction, 
assertion of mcp, an address or data parity error, or an instruction or data cache parity 
error. Note that when a machine check occurs, the e300 has SRR1 register values that are 
different from the G2/G2_LE cores because the e300 core supports cache parity. See 
Table 5-14 for more information.

DSI 00300 The cause of a DSI interrupt can be determined by the bit settings in the DSISR, listed as 
follows:
1 Set if the translation of an attempted access is not found in the primary hash table entry 

group (HTEG), or in the rehashed secondary HTEG, or in the range of a DBAT register; 
otherwise cleared. 

4 Set if a memory access is not permitted by the page or DBAT protection mechanism; 
otherwise cleared. 

6 Set for a store operation and cleared for a load operation
9 Set if a data address breakpoint interrupt occurs when the data [0–28] in the DABR or 

DABR2 matches the next data access (load or store instruction) to complete in the 
completion unit. The different breakpoints are enabled as follows:
• Write breakpoints enabled when DABR[30] is set
• Read breakpoints enabled when DABR[31] is set 
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ISI 00400 An ISI interrupt is caused when an instruction fetch cannot be performed for any of the 
following reasons:
 • The effective (logical) address cannot be translated. That is, there is a page fault for this 

portion of the translation, so an ISI interrupt must be taken to load the PTE (and possibly 
the page) into memory.

 • The fetch access violates memory protection (indicated by SRR1[4] set). If the key bits 
(Ks and Kp) in the segment register and the PP bits in the PTE are set to prohibit read 
access, instructions cannot be fetched from this location.

External interrupt 00500 An external interrupt is caused when MSR[EE] = 1 and the int signal is asserted.

Alignment 00600 An alignment interrupt is caused when the core cannot perform a memory access for any 
of the reasons described below:
 • The operand of a floating-point load or store instruction is not word-aligned.
 • The operands of lmw, stmw, lwarx, and stwcx. instructions are not aligned.
 • The operand of a load, store, load multiple, store multiple, load string, or store string 

instruction crosses a protection boundary.
 • The instruction is lswi, lswx, stswi, stswx, and the core is in little-endian mode. Note 

that PowerPC little-endian mode is not supported on the e300 core.
 • The operand of dcbz is in memory that is write-through-required or caching-inhibited.

Program 00700 A program interrupt is caused by one of the following exceptions, which correspond to bit 
settings in SRR1 and arise during execution of an instruction.
Floating-point enabled exception—A floating-point enabled exception condition is 
generated when the following condition is met: 

 (MSR[FE0] | MSR[FE1]) & FPSCR[FEX] is 1. 
 • FPSCR[FEX] is set by the execution of a floating-point instruction that causes an 

enabled exception or by the execution of one of the ‘move to FPSCR’ instructions that 
results in both an exception condition bit and its corresponding enable bit being set in 
the FPSCR. 

 • Illegal instruction—An illegal instruction program exception is generated when 
execution of an instruction is attempted with an illegal opcode or illegal combination of 
opcode and extended opcode fields (including PowerPC instructions not implemented 
in the core), or when execution of an optional instruction not provided in the core is 
attempted (these do not include those optional instructions that are treated as no-ops). 

 • Privileged instruction—A privileged instruction type program exception is generated 
when the execution of a privileged instruction is attempted and the MSR register user 
privilege bit, MSR[PR], is set. In the e300 core, this exception is generated for mtspr or 
mfspr with an invalid SPR field if SPR[0] = 1 and MSR[PR] = 1. This may not be true 
for all cores that implement the PowerPC architecture.

 • Trap—A trap type program exception is generated when any of the conditions specified 
in a trap instruction is met.

Floating-point 
unavailable

00800 A floating-point unavailable interrupt is caused by an attempt to execute a floating-point 
instruction (including floating-point load, store, and move instructions) when the 
floating-point available bit is cleared (MSR[FP] = 0). 

Decrementer 00900 The decrementer interrupt occurs when DEC[0] changes from 0 to 1. This interrupt is 
enabled with MSR[EE].

Critical interrupt 00A00 A critical interrupt is taken when cint is asserted and MSR[CE] = 1.

Reserved 00B00–00BFF —

System call 00C00 A system call interrupt occurs when a System Call (sc) instruction is executed.

Table 5-2. Interrupts and Exception Conditions (continued)

Interrupt Type
Vector Offset

(hex)
Exception Conditions
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Interrupts are roughly prioritized by class, as follows:

1. Nonmaskable, asynchronous interrupts have priority over all other interrupts— system reset and 
machine check interrupts (although the machine check exception conditions can be disabled so the 
condition causes the processor to go directly into the checkstop state). These interrupts cannot be 
delayed and do not wait for the completion of any precise interrupt handling. 

2. Synchronous, precise interrupts are caused by instructions and are taken in strict program order. 

3. Maskable asynchronous interrupts (for example, external interrupt and decrementer interrupts) are 
delayed until higher priority interrupts are taken. 

System reset and machine check interrupts may occur at any time and are not delayed even if an interrupt 
is being handled. As a result, state information for the interrupted interrupt may be lost; therefore, these 
interrupts are typically nonrecoverable. 

All other interrupts have lower priority than system reset and machine check interrupts, and the interrupt 
may not be taken immediately when it is recognized.

Trace 00D00 A trace interrupt is taken when MSR[SE] =1 or when the currently completing instruction 
is a branch and MSR[BE] =1.

Reserved 00E00 The e300 core does not generate an interrupt to this vector. Other devices may use this 
vector for floating-point assist interrupts. 

Performance 
monitor

00F00 Caused when performance monitor counters using the pm_event_in to transition 
overflows.

Instruction 
translation miss

01000 An instruction translation miss interrupt is caused when the effective address for an 
instruction fetch cannot be translated by the ITLB.

Data load 
translation miss

01100 A data load translation miss interrupt is caused when the effective address for a data load 
operation cannot be translated by the DTLB.

Data store 
translation miss

01200 A data store translation miss interrupt is caused when the effective address for a data store 
operation cannot be translated by the DTLB, or where a DTLB hit occurs, and the change 
bit in the PTE must be set due to a data store operation.

Instruction 
address 
breakpoint

01300 An instruction address breakpoint interrupt occurs when the address (bits 0–29) in the 
IABR matches the next instruction to complete in the completion unit, and IABR[30] is set. 
Note that the e300 core also implements IABR2, which functions identically to IABR.

System 
management 
interrupt

01400 A system management interrupt is caused when MSR[EE] = 1 and the smi input signal is 
asserted.

Reserved 01500–02FFF —

Table 5-2. Interrupts and Exception Conditions (continued)

Interrupt Type
Vector Offset

(hex)
Exception Conditions



Interrupts and Exceptions

e300 Power Architecture Core Family Reference Manual, Rev. 4

5-6 Freescale Semiconductor
 

5.1.1 Interrupt Priorities

The interrupts are listed in Table 5-3 in order of highest to lowest priority.

Table 5-3. Interrupt Priorities

Interrupt 
Category

Priority Interrupt Cause

Asynchronous 0 System reset hreset 

1 Machine check tea, mcp, ape, or dpe

2 System reset sreset

3 Critical interrupt cint. See Section 5.2.1.2, “CSRR0 and CSRR1 Bit Settings,” for more 
information 

4 System management 
interrupt

smi

5 External interrupt int

6 Performance monitor 
interrupt

Performance monitor counters using the pm_event_in to transition 
overflows.

7 Decrementer interrupt Decrementer passed through 0x0000_0000

Instruction fetch 0 ITLB miss Instruction TLB miss

1 Instruction access Instruction access interrupt

Instruction 
dispatch/
execution

0 IABR Instruction address breakpoint interrupt

1 Program Program interrupt due to the following:
 • Illegal instruction
 • Privileged instruction
 • Trap

2 System call System call interrupt

3 Floating-point unavailable Floating-point unavailable interrupt 

4 Program Floating-point enabled interrupt

5 Alignment One to the following:
 • Floating-point not word-aligned 
 • lmw, stmw, lwarx, or stwcx. not word-aligned
 • ecwix or ecowx operands not aligned
 • String access with little-endian bit (MSR[LE]) set 
 • The operand of a load, store, load multiple, store multiple, load 

string, or store string instruction crosses a protection boundary.
 • The instruction is lswi, lswx, stswi, stswx, and the core is in 

little-endian mode. Note that PowerPC little-endian mode is not 
supported on the e300 core.

6 Data access BAT page protection violation

7 DTLB miss A store or load miss

8 Alignment A dcbz to a write-through or caching-inhibited page

9 Data access A TLB page protection violation

10 DTLB miss A change bit not set on a store operation

Post-instruction 
execution

0 Trace One of the following:
 • MSR[SE] = 1
 • MSR[BE] = 1 for branches
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Interrupt priorities are described in detail in “Interrupt Priorities,” in Chapter 6, “Interrupts,” in the 
Programming Environments Manual.

5.1.2 Summary of Front-End Interrupt Handling

The following list of interrupt categories describes how the e300 core handles interrupts up to the point of 
signaling the appropriate interrupt to occur. Note that a recoverable state is reached if the completed store 
queue is empty (drained, not canceled) and any instruction that is next in program order and has been 
signaled to complete has completed. If MSR[RI] is clear, the core is in a nonrecoverable state by default. 
Also, completion of an instruction is defined as performing all architectural register writes associated with 
that instruction, and then removing that instruction from the completion buffer queue.

• Asynchronous nonmaskable nonrecoverable—(system reset caused by the assertion of hreset). 
These interrupts have highest priority and are taken immediately regardless of other pending 
interrupts or recoverability. A nonpredicted address is guaranteed.

• Asynchronous maskable nonrecoverable—(machine check). A machine check interrupt takes 
priority over any other pending interrupt except a nonrecoverable system reset caused by the 
assertion of either hreset or internally during POR. A machine check interrupt is taken immediately 
regardless of recoverability. A machine check interrupt can occur only if the machine check enable 
bit, MSR[ME], is set. If MSR[ME] is cleared, the processor goes directly into checkstop state when 
a machine check exception condition occurs. A nonpredicted address is guaranteed.

• Asynchronous nonmaskable recoverable—(system reset caused by the assertion of sreset). This 
interrupt takes priority over any other pending interrupts except nonrecoverable interrupts listed 
above. This interrupt is taken immediately when a recoverable state is reached.

• Asynchronous maskable recoverable—(system management interrupt, critical interrupt, external 
interrupt, decrementer interrupt). Before handling this type of interrupt, the next instruction in 
program order must complete or except. If this action causes another type of interrupt, that interrupt 
is taken and the asynchronous maskable recoverable interrupt remains pending. Once an 
instruction can complete without causing an interrupt, further instruction completion is halted 
while the interrupt not taken remains pending. The interrupt is taken when a recoverable state is 
reached.

• Instruction fetch—(ITLB, ISI). When this type of interrupt is detected, dispatch is halted and the 
current instruction stream is allowed to drain. If completing any instructions in this stream causes 
an interrupt, that interrupt is taken and the instruction fetch interrupt is forgotten. Otherwise, as 
soon as the machine is empty and a recoverable state is reached, the instruction fetch interrupt is 
taken.

• Instruction dispatch/execution—(program, DSI, alignment, emulation trap, system call, DTLB 
miss on load or store, IABR). This type of interrupt is determined at dispatch or execution of an 
instruction. The interrupt remains pending until all instructions in program order before the 
interrupt-causing instruction are completed. The interrupt is then taken without completing the 
interrupt-causing instruction. If any other exception condition is created in completing these 
previous instructions in the machine, that interrupt takes priority over the pending instruction 
dispatch/execution interrupt, which is then forgotten.

• Post-instruction execution—(trace). This type of interrupt is generated following execution and 
completion of an instruction while a trace mode is enabled. If executing the instruction produces 
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conditions for another type of interrupt, that interrupt is taken and the post-instruction execution 
interrupt is forgotten for that instruction.

5.2 Interrupt Processing
When an interrupt is taken, the processor uses the save/restore registers, SRR0 and SRR1, to save the 
contents of the machine state register for user-level mode and to identify where instruction execution 
should resume after the interrupt is handled.

5.2.1 Interrupt Processing Registers

The e300 core implements the SRR0 and SRR1 registers that are used for saving processor state on an 
interrupt. Additionally, the e300 core implements CSRR0 and CSRR1 to specifically save state for critical 
interrupt interrupts.

5.2.1.1 SRR0 and SRR1 Bit Settings

When an interrupt occurs, SRR0 is set to point to the instruction at which instruction processing should 
resume when the interrupt handler returns control to the interrupted process. All instructions in the 
program flow preceding this one will have completed and no subsequent instruction will have completed. 
This may be the address of the instruction that caused the interrupt or the next one (as in the case of a 
system call interrupt). The instruction addressed can be determined from the interrupt type and status bits. 
This address is used to resume instruction processing in the interrupted process, typically when an rfi 
instruction is executed. The SRR0 register is shown in Figure 5-1.

The save/restore register 1 (SRR1) is used to save machine status (the contents of the MSR) on interrupts 
and to restore those values when rfi is executed. SRR1 is shown in Figure 5-2.

SPR 26 Access: Supervisor read/write

0 31

R
SRR0 (holds EA for resuming program execution)

W

Reset All zeros

Figure 5-1. Machine Status Save/Restore Register 0 (SRR0)

SPR 27 Access: Supervisor read/write

0 31

R
Interrupt-specific information and MSR bit values

W

Reset All zeros

Figure 5-2. Machine Status Save/Restore Register 1 (SRR1)
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Typically, when an interrupt occurs, SRR1[0–15] are loaded with interrupt-specific information and bits 
16–31 of MSR are placed into the corresponding bit positions of SRR1. The e300 core loads SRR1 with 
specific bits for handling machine check interrupts, as shown in Table 5-4.

The e300 core loads SRR1 with specific bits for handling program interrupts, as shown in Table 5-5.

Table 5-4. SRR1 Bit Settings for Machine Check Interrupts

Bits Name Description

0–9 — Cleared

10 ICPE Instruction cache parity error 

11 DCPE Data cache parity error

12 MCP Machine check

13 TEA TEA error

14 DPE Data parity error

15 APE Address parity error

16–29 MSR[16–29] Copy of MSR bits16–29

30 MSR[30] Cleared for instruction cache parity error, data cache parity error, tea, dpe, ape; copied from MSR[30] 
for mcp. If mcp and tea are asserted simultaneously, then SRR1[30] is cleared and the interrupt is not 
recoverable.

31 MSR[31] Copy of MSR[31]

Table 5-5. SRR1 Bit Settings for Program Interrupts

Bits Name Description

0–10 — Cleared

11 — Floating-point enabled program exception. Otherwise cleared.

12 — Illegal instruction program exception. Otherwise cleared.

13 — Privileged instruction program exception. Otherwise cleared.

14 — Trap program exception. Otherwise cleared.

15 — Set if SRR0 contains the address of a subsequent instruction. Cleared if SRR0 contains the address of 
the instruction causing the exception condition.

16–29 MSR[16–29] Copy of MSR bits 16–29

30 MSR[30] Cleared for instruction cache parity error, data cache parity error, tea, dpe, ape; copied from MSR[30] 
for mcp. If mcp and tea are asserted simultaneously, then SRR1[30] is cleared and the interrupt is not 
recoverable.

31 MSR[31] Copy of MSR[31]
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The e300 core loads SRR1 with specific bits for handling the three TLB miss interrupts, as shown in 
Table 5-6.

Note that in some implementations, every instruction fetch when MSR[IR] = 1 and every instruction 
execution requiring address translation when MSR[DR] = 1 may modify SRR1.

5.2.1.2 CSRR0 and CSRR1 Bit Settings

The e300 core also implements the CSRR0 and CSRR1 to save state for critical interrupt interrupts only. 
Note that the values saved in CSRR0 are the same as those saved in SRR0 for all other interrupts, and the 
values saved in CSRR1 are the same as those saved in the MSR for critical interrupts. CSRR0 and CSRR1 
have unique SPR numbers, as described in Chapter 2, “Register Model.”

Figure 5-3 shows the format of CSRR0.

When a critical interrupt occurs, CSRR0 is set to point to an instruction such that all prior instructions have 
completed execution and no subsequent instruction has begun execution. When an rfci instruction is 
executed, the contents of CSRR0 are copied to the next instruction address—the 32-bit address of the next 
instruction to be executed. 

Table 5-6. SRR1 Bit Settings for Software Table Search Operations

Bits Name Description

0–3 CRF0 Copy of condition register field 0 (CR0)

4 — Reserved

5–9 MSR[5–9] Copy of MSR bits 5–9

10–11 — Reserved

12 KEY TLB miss protection key

13 I/D Instruction/data TLB miss
0 DTLB miss
1 ITLB miss

14 WAY Bit 14 indicates which TLB associativity set should be replaced
0 Set 0
1 Set 1

15 S/L Store/load protection instruction
0 Load miss
1 Store miss

16–31 MSR[16–31] Copy of MSR bits 16–31

SPR 58 Access: Supervisor read/write

0 29 30 31

R
CSRR0 —

W

Reset All zeros

Figure 5-3. Critical Interrupt Save/Restore Register 0 (CSRR0)
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Figure 5-4 shows the format of CSRR1.

When an interrupt occurs, CSRR1[0–31] are loaded with the values of MSR[0–31], which are placed in 
corresponding CSRR1 bit positions. When rfci executes, MSR[0–31] are loaded from CSRR1[0–31]. 

5.2.1.3 SPRG0–SPRG7

The e300 core provides eight SPRG (SPRG4–SPRG7) registers for general operating system use, such as 
performing a fast state save or for supporting multiprocessor implementations. SPRG0–SPRG7 have 
unique SPR numbers, as described in Chapter 2, “Register Model.” The formats of SPRG4–SPRG7 are 
shown in Figure 5-5.

Table 5-7 describes conventional uses of SPRG4 –SPRG7 for the e300 core.

SPR 59 Access: Supervisor read/write

0 31

R
CSRR1

W

Reset All zeros

Figure 5-4. Critical Interrupt Save/Restore Register 1 (CSRR1)

SPR 272 (SPRG0)
273 (SPRG1)
274 (SPRG2)
275 SPRG3)

276 (SPRG4)
277 (SPRG5)
278 (SPRG6)
279 (SPRG9)

Access: Supervisor read/write

0 31

R
SPRGn

W

Reset All zeros

Figure 5-5. SPRGn Register

Table 5-7. Conventional Uses of SPRG0–SPRG7

Register Descriptions

SPRG0 SPRG0 may be used by the operating system as needed.

SPRG1 SPRG1 may be used by the operating system as needed.

SPRG2 SPRG2may be used by the operating system as needed.

SPRG3 SPRG3 may be used by the operating system as needed.

SPRG4 Software may load a unique physical address in this register to identify an area of memory reserved for use by the 
first-level interrupt handler. This area must be unique for each processor in the system. 

SPRG5 SPRG5 may be used as a scratch register by the first-level interrupt handler to save the content of a GPR. That GPR 
then can be loaded from SPRG4 and used as a base register to save other GPRs to memory.

SPRG6 SPRG6 may be used by the operating system as needed.

SPRG7 SPRG7 may be used by the operating system as needed.
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5.2.1.4 MSR Bit Settings

The MSR is shown in Figure 5-6. When an interrupt occurs, MSR bits, as described in Table 5-8, are 
altered as determined by the interrupt. 

Table 5-8 shows the bit definitions for the MSR. Full function reserved bits are saved in SRR1 when an 
interrupt occurs; partial function reserved bits are not saved.

Access: Supervisor read/write

0 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
— POW TGPR ILE EE PR FP ME FE0 SE BE FE1 CE IP IR DR — RI LE

W

Reset 0000_0040 or 0000_0000 or 0001_0041 or 0001_0001

Figure 5-6. Machine State Register (MSR)

Table 5-8. MSR Bit Settings

Bits Name Description

0 — Reserved. Full function.

1–4 — Reserved. Partial function.

5–9 — Reserved. Full function.

10–12 — Reserved. Partial function.

13 POW Power management enable (implementation-specific)
0 Disables programmable power modes (normal operation mode)
1 Enables programmable power modes (nap, doze, or sleep mode)
This bit controls the programmable power modes only; it has no effect on dynamic power management (DPM). 
MSR[POW] may be altered with an mtmsr instruction only. Also, when altering the POW bit, software may alter 
only this bit in the MSR and no others. The mtmsr instruction must be followed by a context-synchronizing 
instruction. 
See Chapter 9, “Power Management,” for more information.

14 TGPR Temporary GPR remapping (implementation-specific)
0 Normal operation
1 TGPR mode. GPR0–GPR3 are remapped to TGPR0–TGPR3 for use by TLB miss routines
The contents of GPR0–GPR3 remain unchanged while MSR[TGPR] = 1. Attempts to use GPR4–GPR31 with 
MSR[TGPR] = 1 yield undefined results. Temporarily replaces TGPR0–TGPR3 with GPR0–GPR3 for use by 
TLB miss routines. The TGPR bit is set when either an instruction TLB miss, data read miss, or data write miss 
interrupt is taken. The TGPR bit is cleared by an rfi instruction.

15 ILE Interrupt little-endian mode. When an interrupt occurs, this bit is copied into MSR[LE] to select the endian mode 
for the context established by the interrupt.

16 EE External interrupt enable
0 The processor ignores external interrupts, system management interrupts, and decrementer interrupts.
1 The processor is enabled to take an external interrupt, system management interrupt, or decrementer 

interrupt.

17 PR Privilege level 
0 The processor can execute both user- and supervisor-level instructions (supervisor mode).
1 The processor can only execute user-level instructions (user mode).
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18 FP Floating-point available (this bit is read-only on the e300c2 core)
0 The processor prevents dispatch of floating-point instructions, including floating-point loads, stores, and 

moves. If execution of one of these types of instructions is attempted, a floating-point unavailable interrupt 
occurs.

1 The processor can execute floating-point instructions, and can take floating-point enabled type program 
interrupts.

19 ME Machine check enable 
0 Machine check interrupts are disabled
1 Machine check interrupts are enabled

20 FE0 Floating-point interrupt mode 0 (see Table 5-9) (this bit is read-only on the e300c2 core)

21 SE Single-step trace enable
0 The processor executes instructions normally
1 The processor generates a trace interrupt on the successful completion of the next instruction

22 BE Branch trace enable
0 The processor executes branch instructions normally
1 The processor generates a trace interrupt upon the successful completion of a branch instruction

23 FE1 Floating-point interrupt mode 1 (see Table 5-9) (this bit is read-only on the e300c2 core)

24 CE Critical interrupt enable 
0 Critical interrupts disabled
1 Critical interrupts enabled; critical interrupt and rfci instruction enabled.
The critical interrupt is an asynchronous implementation-specific interrupt. The critical = interrupt vector offset 
is 0x00A00. The Return From Critical Interrupt (rfci) instruction is implemented to return from these interrupts. 
Also, CSRR0 and CSRR1, are used to save and restore the processor state for critical interrupts. 

25 IP Interrupt prefix. Specifies whether an interrupt vector offset is prepended with Fs or 0s. In the following 
description, nnnnn is the offset of the interrupt. See Table 5-2.
0 Interrupts are vectored to the physical address 0x000n_nnnn
1 Interrupts are vectored to the physical address 0xFFFn_nnnn

26 IR Instruction address translation
0 Instruction address translation is disabled
1 Instruction address translation is enabled
See Chapter 6, “Memory Management.”

27 DR Data address translation
0 Data address translation is disabled
1 Data address translation is enabled
See Chapter 6, “Memory Management.”

28–29 — Reserved. Full function. Bit 29 reserved on e300c1 and e300c2 only.

29 PMM Performance monitor mark bit (e300c3 and e300c4 only). System software can set PMM when a marked 
process is running to enable statistics to be gathered only during the execution of the marked process. 
MSR[PR] and MSR[PMM] together define a state that the processor (supervisor or user) and the process 
(marked or unmarked) may be in at any time. If this state matches an individual state specified in the PMLCan, 
the state for which monitoring is enabled, counting is enabled.

Table 5-8. MSR Bit Settings (continued)

Bits Name Description



Interrupts and Exceptions

e300 Power Architecture Core Family Reference Manual, Rev. 4

5-14 Freescale Semiconductor
 

The IEEE floating-point exception mode bits (FE0 and FE1) together define whether floating-point 
exceptions are handled precisely, imprecisely, or if they are taken at all. The possible settings and default 
conditions for the e300 core are shown in Table 5-9. For further details, see Chapter 6, “Interrupts,” in the 
Programming Environments Manual.

 

MSR bits are guaranteed to be written to SRR1 when the first instruction of the interrupt handler is 
encountered.

5.2.2 Enabling and Disabling Exceptions and Interrupts

When an exception condition exists that may cause an interrupt to be generated, it must be determined 
whether the interrupt is enabled for that condition as follows: 

• IEEE floating-point enabled exceptions (which can generate a program interrupt) are ignored when 
both MSR[FE0] and MSR[FE1] are cleared. If either of these bits are set, all IEEE-enabled 
floating-point exceptions are taken and cause a program interrupt.

• Asynchronous, maskable interrupts (that is, the external, system management, and decrementer 
interrupts) are enabled by setting the MSR[EE] bit. When MSR[EE] = 0, recognition of these 
interrupt conditions is delayed. MSR[EE] is cleared automatically when an interrupt is taken, to 
delay recognition of conditions causing those interrupts. 

• A machine check interrupt can occur only if the machine check enable bit, MSR[ME], is set. If 
MSR[ME] is cleared, the processor goes directly into checkstop state when a machine check 
exception condition occurs. Individual machine check exceptions can be enabled and disabled 
through bits in the HID0 register, as described in Table 2-5.

• The e300 core enables the critical interrupt with the MSR[CE] bit. 

• System reset interrupts cannot be masked. 

30 RI Recoverable interrupt (for system reset and machine check interrupts)
0 Interrupt is not recoverable
1 Interrupt is recoverable

31 LE Little-endian mode enable 
0 The processor runs in big-endian mode
1 The processor runs in little-endian mode. For the e300 core, see Section 3.1.2, “Endian Modes and Byte 

Ordering,” for a definition of the core operating in true little-endian mode.

Table 5-9. IEEE Floating-Point Exception Mode Bits

FE0 FE1 Mode

0 0 Floating-point exceptions disabled

0 1 Floating-point imprecise nonrecoverable1

1 Not implemented in the e300 core.

1 0 Floating-point imprecise recoverable 1

1 1 Floating-point precise mode

Table 5-8. MSR Bit Settings (continued)

Bits Name Description
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5.2.3 Steps for Interrupt Processing 

After it is determined that the interrupt can be taken (by confirming that any instruction-caused interrupts 
occurring earlier in the instruction stream have been handled, and by confirming that the interrupt is 
enabled for the exception condition), the processor does the following: 

1. The machine status save/restore register 0 (SRR0) is loaded with an instruction address that 
depends on the type of interrupt. See the individual interrupt description for details about how this 
register is used for specific interrupts.

2. SRR1[1–4, 10–15] are loaded with information specific to the interrupt type.

3. SRR1[5–9, 16–31] are loaded with a copy of the corresponding bits of the MSR. 

4. The MSR is set as described in Table 5-8. The new values take effect beginning with the fetching 
of the first instruction of the interrupt-handler routine located at the interrupt vector address. 

Note that MSR[IR] and MSR[DR] are cleared for all interrupt types; therefore, address translation 
is disabled for both instruction fetches and data accesses beginning with the first instruction of the 
interrupt-handler routine. 

5. Instruction fetch and execution resumes, using the new MSR value, at a location specific to the 
interrupt type. The location is determined by adding the interrupt's vector (see Table 5-2) to the 
base address determined by MSR[IP]. If IP is cleared, interrupts are vectored to the physical 
address 0x000n_nnnn. If IP is set, interrupts are vectored to the physical address 0xFFFn_nnnn. 
For a machine check interrupt that occurs when MSR[ME] = 0 (machine check interrupts are 
disabled), the processor enters the checkstop state (the machine stops executing instructions). See 
Section 5.5.2, “Machine Check Interrupt (0x00200).”

Note that the same steps occur when a critical interrupt occurs (and is enabled) for the e300 core, except 
that CSRR0 is set instead of SRR0 and CSRR1 is set instead of SRR1.

5.2.4 Setting MSR[RI]

The operating system should handle MSR[RI] as follows:

• In the machine check and system reset interrupts—If SRR1[RI] is cleared, the interrupt is not 
recoverable. If it is set, the interrupt is recoverable with respect to the processor.

• In each interrupt handler—When enough state information has been saved that a machine check or 
system reset interrupt can reconstruct the previous state, set MSR[RI].

• In each interrupt handler—Clear MSR[RI], set the SRR0 and SRR1 (or CSRR0 and CSRR1) 
registers appropriately, and then execute rfi (or rfci).

• Note that the RI bit being set indicates that, with respect to the processor, enough processor state 
data is valid for the processor to continue, but it does not guarantee that the interrupted process can 
resume.
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5.2.5 Returning from an Interrupt with rfi 

The Return From Interrupt (rfi) instruction performs context synchronization by allowing previously 
issued instructions to complete before returning to the interrupted process. In general, execution of the rfi 
instruction ensures the following:

• All previous instructions have completed to a point where they can no longer cause an interrupt. 

• Previous instructions complete execution in the context (privilege, protection, and address 
translation) under which they were issued.

• The rfi instruction copies SRR1 bits back into the MSR. 

• The instructions following this instruction execute in the context established by this instruction.

For a complete description of context synchronization, refer to Chapter 6, “Interrupts,” in the 
Programming Environments Manual.

5.2.6 Returning from an Interrupt with rfci 

The Return From Critical Interrupt (rfci) is a e300 core-only supervisor level instruction that performs 
context synchronization by allowing previously issued instructions to complete before returning to the 
interrupted process. The rfci instruction performs the same functions as rfi, except that it uses CSRR0 and 
CSRR1 to restore the processor state. Thus, execution of the rfci instruction ensures the following:

• CSRR1[0, 5–9, 16–31] are placed into the corresponding bits of the MSR. If the new MSR value 
does not enable any pending interrupts, the next instruction is fetched from the address defined by 
CSRR0[0–29] || 0b00.

• If the new MSR value enables one or more pending interrupts, the interrupt associated with the 
highest priority pending interrupt is generated. In this case, the interrupt processing mechanism 
places in SRR0 the address of the instruction which would have executed next had the interrupt not 
occurred. 

5.3 Process Switching
The operating system should execute one of the following when processes are switched: 

• The sync instruction, which orders the effects of instruction execution. All instructions previously 
initiated appear to have completed before the sync instruction completes, and no subsequent 
instructions appear to be initiated until the sync instruction completes. For an example showing the 
use of a sync instruction, see Chapter 2, “Register Set,” of the Programming Environments 
Manual. 

• The isync instruction, which waits for all previous instructions to complete and then discards any 
fetched instructions, causing subsequent instructions to be fetched (or refetched) from memory and 
to execute in the context (privilege, translation, protection, etc.) established by the previous 
instructions. 

• The stwcx. instruction, to clear any outstanding reservations, which ensures that an lwarx 
instruction in the old process is not paired with an stwcx. instruction in the new process.

The operating system should set the MSR[RI] bit as described in Section 5.2.4, “Setting MSR[RI].”
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5.4 Interrupt Latencies
Latencies for taking various interrupts depend on the state of the machine when the exception conditions 
occur. This latency may be as short as one cycle, in which case an interrupt is signaled in the cycle 
following the appearance of the exception condition. The latencies are as follows:

• Hard reset and machine check—In most cases, a hard reset or machine check interrupt will have a 
single-cycle latency. A two- to three-cycle delay may occur only when a predicted instruction is 
next to complete, and the branch guess that forced this instruction to be predicted was resolved to 
be incorrect. 

• Soft reset—The latency of a soft reset interrupt is affected by recoverability. The time to reach a 
recoverable state may depend on the time needed to complete or except an instruction at the point 
of completion, the time needed to drain the completed store queue (see Section 7.1, “Terminology 
and Conventions,” for the definition), and the time waiting for a correct empty state so that a valid 
MSR[IP] may be saved. For lower-priority externally-generated interrupts, a delay may be incurred 
waiting for another interrupt generated while reaching a recoverable state to be serviced.

Further delays are possible for other types of interrupts depending on the number and type of instructions 
that must be completed before those interrupts may be serviced. See Section 5.1.2, “Summary of 
Front-End Interrupt Handling,” to determine possible maximum latencies for different interrupts.

5.5 Interrupt Definitions
Table 5-10 shows all the types of interrupts that can occur with the e300 core and the MSR bit settings 
when the processor transitions to supervisor mode. The state of these bits prior to the interrupt is typically 
stored in SRR1 (or CSRR1 for critical interrupts on the e300 core). Note that MSR[CE] is cleared for the 
system reset, machine check, and critical interrupts.

Table 5-10. MSR Setting Due to Interrupt

Interrupt Type 
MSR Bit

POW TGPR ILE EE PR FP ME FE0 SE BE FE1 CE1 IP IR DR RI LE

System reset 0 0 — 0 0 0 — 0 0 0 0 0 1 0 0 0 ILE

Machine check 0 0 — 0 0 0 0 0 0 0 0 0 — 0 0 0 ILE

DSI 0 0 — 0 0 0 — 0 0 0 0 — — 0 0 0 ILE

ISI 0 0 — 0 0 0 — 0 0 0 0 — — 0 0 0 ILE

External 0 0 — 0 0 0 — 0 0 0 0 — — 0 0 0 ILE

Alignment 0 0 — 0 0 0 — 0 0 0 0 — — 0 0 0 ILE

Program 0 0 — 0 0 0 — 0 0 0 0 — — 0 0 0 ILE

Floating-point 
unavailable

0 0 — 0 0 0 — 0 0 0 0 — — 0 0 0 ILE

Decrementer 0 0 — 0 0 0 — 0 0 0 0 — — 0 0 0 ILE

Critical Interrupt 0 0 — 0 0 0 — 0 0 0 0 0 — 0 0 0 ILE

System call 0 0 — 0 0 0 — 0 0 0 0 — — 0 0 0 ILE

Trace 0 0 — 0 0 0 — 0 0 0 0 — — 0 0 0 ILE
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5.5.1 Reset Interrupts (0x00100)

The system reset interrupt is a nonmaskable, asynchronous interrupt signaled to the e300 core either 
through the assertion of the reset signals (sreset or hreset). The assertion of the soft reset signal, sreset, 
causes the system reset interrupt to be taken and the physical base address of the handler is determined by 
the MSR[IP] bit. 

The assertion of the hard reset signal, hreset, causes the system reset interrupt to be taken. 

Note that there are some byte ordering precautions necessary when coming out of reset in big-endian mode 
and switching to little-endian mode. The following sections describe the differences between a hard and 
soft reset and the byte ordering implications for reset interrupt handling. 

5.5.1.1 Hard Reset and Power-On Reset

As described in Section 5.1.2, “Summary of Front-End Interrupt Handling,” the hard reset interrupt is a 
nonrecoverable, nonmaskable asynchronous interrupt. When hreset is asserted or at power-on reset (POR), 
the e300 core immediately branches to the address determined by the state of the msrip signal, as described 
in Table 5-11, without attempting to reach a recoverable state.

ITLB miss 0 1 — 0 0 0 — 0 0 0 0 — — 0 0 0 ILE

DTLB miss on load 0 1 — 0 0 0 — 0 0 0 0 — — 0 0 0 ILE

DTLB miss on store 0 1 — 0 0 0 — 0 0 0 0 — — 0 0 0 ILE

Instruction address 
breakpoint

0 0 — 0 0 0 — 0 0 0 0 — — 0 0 0 ILE

System management
interrupt

0 0 — 0 0 0 — 0 0 0 0 — — 0 0 0 ILE

Note:
0 Bit is cleared.
1 Bit is set.
ILE Bit is copied from the ILE bit in the MSR.
— Bit is not altered.
Reserved bits are read as if written as 0. 

1 e300 core only.

Table 5-11. Hard Reset MSR Value and Interrupt Vector

msrip MSR[0–31]
Fetch Instructions from Handler 

at System Reset Vector

Asserted 0x0000_0040 (MSR[IP] = 1) 0xFFF0_0100

Negated 0x0000_0000 (MSR[IP] = 0) 0x0000_0100

Table 5-10. MSR Setting Due to Interrupt (continued)

Interrupt Type 
MSR Bit

POW TGPR ILE EE PR FP ME FE0 SE BE FE1 CE1 IP IR DR RI LE
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A hard reset has the highest priority of any interrupt, and is always nonrecoverable. Table 5-12 shows the 
state of the machine just before it fetches the first instruction of the system reset handler after a hard reset.

The hreset signal can be asserted for the following reasons:

• System power-on reset

• System reset from a panel switch

The following is also true after a hard reset operation:

• External checkstops are enabled

• The on-chip test interface has given control of the I/Os to the rest of the chip for functional use

• Because the reset interrupt has data and instruction translation disabled (MSR[DR] and MSR[IR] 
both cleared), the chip operates in real addressing mode as described in Section 6.2, “Real 
Addressing Mode.”

5.5.1.2 Soft Reset

As described in Section 5.1.2, “Summary of Front-End Interrupt Handling,” the soft reset interrupt is a 
type of system reset interrupt that is recoverable, nonmaskable, and asynchronous. When sreset is asserted, 
the processor attempts to reach a recoverable state by allowing the next instruction to either complete or 

Table 5-12. Settings Caused by Hard Reset

Register Setting Register Setting

GPRs Unknown PVR See Table 2-2 

FPRs Unknown HID0 0000_0000

FPSCR 00000000 HID1 0000_0000

CR All 0s HID2 0000_0000 or 0800_0000

SRs Unknown DMISS and IMISS All 0s

MSR 0000_0040 or 0000_0000 or 
0001_0041 or 0001_0001

DCMP and ICMP All 0s

XER 0000_0000 RPA All 0s

TBU 0000_0000 IABR All 0s

TBL 0000_0000 DSISR 0000_0000

LR 0000_0000 DAR 0000_0000

CTR 0000_0000 DEC FFFF_FFFF

SDR1 0000_0000 HASH1 0000_0000

SRR0 (and CSRR0) 0000_0000 HASH2 0000_0000

SRR1 (and CSRR1) 0000_0000 TLBs Unknown

SPRGs 0000_0000 Cache All cache blocks invalidated

Tag directory All 0s. (However, LRU bits are 
initialized so each side of the 
cache has a unique LRU value.)

BATs Unknown
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cause an interrupt, blocking the completion of subsequent instructions, and allowing the completed store 
queue to drain (see Section 7.1, “Terminology and Conventions,” for the definition). 

Unlike a hard reset, no registers or latches are initialized; however, the instruction cache is disabled 
(HID0[ICE] = 0). After sreset is recognized as asserted, the processor begins fetching instructions from 
the system reset routine at offset 0x0100. When a soft reset occurs, registers are set as shown in Table 5-13. 
A soft reset is recoverable provided that attaining the recoverable state does not cause a machine check 
interrupt. This interrupt case is third in priority, following hard reset and machine check. 

When a soft reset occurs, registers are set as shown in Table 5-13 in addition to the clearing of HID0[ICE].

5.5.1.3 Byte Ordering Considerations

All interrupt routines are executed in the endian mode determined by the setting of the MSR[ILE], 
MSR[LE], and HID2[LET] bits (see Table 1-6 for endian mode indication) when the interrupt is taken. A 
special case is the system reset interrupt for both hard and soft reset for the e300 core. When the tle signal 
is negated at the time hreset is negated, the system interrupt handler of the device enters into big-endian 
mode. If MSR[ILE], MSR[LE], and HID2[LET] are subsequently set (during or after the reset routine has 
completed), a subsequent soft reset causes the system reset interrupt handler to be entered in true 
little-endian mode, potentially resulting in illegal instruction execution (if the beginning of the handler is 
written assuming big-endian code). Note that the reverse occurs for true little-endian mode.

The following assembly language code highlights register settings necessary when in big-endian mode 
coming out of hard reset and subsequently changing the processor state to true little-endian mode and 
setting the MSR[ILE], MSR[LE], and HID2[LET] bits. The first eight instructions of the system reset 
interrupt handler is written in big-endian format, in order to facilitate the mode switch. The rest of the reset 
handler is written in true little-endian format for the remaining supervisor or OS code. This reset code 
assumes that caching is not enabled out of reset. Due to the complexities involved with keeping the 
memory system coherent, it is strongly recommended not to change endinaness at any other time once it 
is determined at hard reset.
.orig 0xFFF0 0100 # default IP vector
# Begin HRESET_ handler with Big-Endian Mode
xor r2,r2,r2  initialize register
xor r1,r1,r1 # initialize register
oris    r2,r2,0x0800 # set bit in r2 for HID2[4]LET
mtspr   HID2,r2 # load HID2 setting LET bit

Table 5-13. Soft Reset Interrupt—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to complete next if no 
interrupt conditions were present.

SRR1 0–15 Cleared
16–31 Loaded from MSR[16–31]. Note that if the processor state is corrupted to the extent that execution cannot 

be reliably restarted, SRR1[30] is cleared.

MSR POW 0
TGPR 0
ILE —
EE 0
PR 0

FP 0
ME —
FE0 0
SE 0
BE 0

FE1 0
CE 0
IP —
IR 0
DR 0

RI 0
LE Set to value of ILE
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oris   r1,r1,0x0001 # set bit in r1 for MSR[15]ILE
ori r1,r1,0x0001 # set bit in r1 for MSR[31]LE
mtmsr   r1 # load MSR setting ILE and LE bits
isync # wait for all instructions to complete

# End Big-Endian mode, True Little-Endian enabled
# modify the 8 Big-Endian instructions into valid True Little-Endian instructions
# True Little-Endian Mode
mtspr   SRR1,r1 # load the Machine State with LE enabled
xor r0,r0,r0 # initialize register
oris    r0,r0,0x0001 # set Starting address at b’0001 0000
mtspr   SRR0,r0 # load the next instruction address 
# whatever instructions the supervisor/OS wants.
rfi # return from HRESET_ interrupt routine
# End HRESET_ handler in True Little-Endian Mode

See Section 3.1.2, “Endian Modes and Byte Ordering,” for more information on the endian modes of the 
e300 core.

5.5.2 Machine Check Interrupt (0x00200)

The e300 core conditionally initiates a machine check interrupt after detecting the assertion of the tea or 
mcp signals on the coherent system bus (CSB) (assuming the machine check is enabled with 
MSR[ME] = 1). The assertion of one of these signals indicates that a bus error occurred and the system 
terminates the current transaction. One clock cycle after the signal is asserted, the data bus signals go to 
the high-impedance state; however, data entering the GPR or the cache is not invalidated. Note that if 
HID0[EMCP] is cleared, the core ignores the assertion of the mcp signal but continues to monitor the tea 
signal.

A machine check interrupt also occurs when an address or data parity error is detected on the bus and the 
address or data parity error is enabled in HID0. See Section 2.2.1, “Hardware Implementation Register 0 
(HID0),” for more information.

Note that the e300 core makes no attempt to force recoverability on a machine check; however, it does 
guarantee that the machine check interrupt is always taken immediately upon request, with a nonpredicted 
address saved in SRR0, regardless of the current machine state. Because pending stores in the store queue 
(see Figure 7-6) are not canceled when a machine check interrupt occurs, two consecutive stores that result 
in the assertion of tea can cause the processor to checkstop. To prevent a checkstop in this case, a sync 
instruction must be placed between two stores that can result in assertion of tea.

Software can use the machine check interrupt handler in a recoverable mode to probe memory. For this 
case, a sync, load, sync instruction sequence is used. If the load access results in a system error (for 
example, the assertion of tea), the processor can handle this in a recoverable state. If the sync instruction 
is not used, a second access to the same address as the first load could cause the processor to enter the 
checkstop state. 

If the MSR[ME] bit is set, the interrupt is recognized and handled; otherwise, the e300 core attempts to 
enter an internal checkstop. Note that the resulting machine check interrupt has priority over any interrupts 
caused by the instruction that generated the bus operation.
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Machine check interrupts are only enabled when MSR[ME] = 1; this is described in Section 5.5.2.1, 
“Machine Check Interrupt Enabled (MSR[ME] = 1).” If MSR[ME] = 0 and a machine check occurs, the 
processor enters the checkstop state; this is described in Section 5.5.2.2, “Checkstop State 
(MSR[ME] = 0).”

5.5.2.1 Machine Check Interrupt Enabled (MSR[ME] = 1)

When a machine check interrupt is taken, registers are updated as shown in Table 5-14.

When a machine check interrupt is taken, instruction execution for the handler begins at offset 0x00200 
from the physical base address indicated by MSR[IP]. 

In order to return to the main program, the interrupt handler should do the following:

1. SRR0 and SRR1 should be given the values to be used by the rfi instruction

2. Execute rfi

5.5.2.2 Checkstop State (MSR[ME] = 0)

When the e300 core enters the checkstop state, it asserts the checkstop output signal, ckstp_out. The 
following events cause the e300 core to enter the checkstop state:

• Machine check interrupt occurs with MSR[ME] cleared

• External checkstop input, ckstp_in, is asserted.

Table 5-14. Machine Check Interrupt—Register Settings 

Register Setting Description

SRR0 Set to the address of the next instruction that would have been completed in the interrupted instruction stream. 
Neither this instruction nor any others beyond it will have been completed. All preceding instructions will have 
been completed.

SRR1 0–9 Cleared
10 Instruction cache parity error caused interrupt
11 Data cache parity error caused interrupt
12 mcp—Machine check signal caused interrupt
13 tea—Transfer error acknowledge signal caused interrupt
14 dpe—Data parity error condition (and signal assertion) caused interrupt
15 ape—Address parity error condition (and signal assertion) caused interrupt
16–29Loaded from MSR[16–29]
30 0 for instruction cache parity error, data cache parity error, tea, dpe, ape;

loaded from MSR[30] for mcp. If mcp and tea are asserted simultaneously, then SRR1[30] is cleared and 
the interrupt is not recoverable.

31 Loaded from MSR[31]

MSR POW 0
TGPR 0
ILE —
EE 0
PR 0

FP 0
ME —
FE0 0
SE 0
BE 0

FE1 0
CE 0
IP —
IR 0
DR 0

RI 0
LE Set to value of ILE

Note: When a machine check interrupt is taken, the interrupt should set MSR[ME] as soon as it is practical to handle another 
tea assertion. Otherwise, subsequent tea assertions cause the processor to automatically enter the checkstop state.
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When a processor is in the checkstop state, instruction processing is suspended and generally cannot be 
restarted without resetting the processor. The contents of all latches are frozen within two cycles upon 
entering the checkstop state so that the state of the processor can be analyzed as an aid in problem 
determination.

Note that not all processors that implement the PowerPC architecture provide the same level of error 
checking. The reasons a processor can enter checkstop state are implementation-dependent.

5.5.3 DSI Interrupt (0x00300)

A DSI interrupt occurs when no higher priority interrupt exists and a data memory access cannot be 
performed. The condition that caused the DSI interrupt can be determined by reading the DSISR register, 
a supervisor-level SPR (SPR18) that can be read by using the mfspr instruction. Bit settings are provided 
in Table 5-15. Table 5-15 also indicates the memory element that is saved to the DAR.

DSI interrupts can occur for any of the following reasons:

• The instruction is not supported for the type of memory addressed

Table 5-15. DSI Interrupt—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that caused the interrupt.

SRR1 0–15 Cleared
16–31 Loaded with MSR[16–31]

MSR POW 0
TGPR 0
ILE —
EE 0
PR 0

FP 0
ME —
FE0 0
SE 0
BE 0

FE1 0
CE —
IP —
IR 0
DR 0

RI 0
LE Set to value of ILE

DSISR 0 Cleared
1 Set by the data TLB miss interrupt the translation of an attempted access is not found in the primary hash 

table entry group (HTEG), or in the rehashed secondary HTEG, or in the range of a DBAT register; 
otherwise cleared. 

2–3 Cleared
4 Set if a memory access is not permitted by the page or BAT protection mechanism; otherwise

cleared. 
5 Cleared
6 Set for a store operation and cleared for a load operation
9 Set if a data address breakpoint interrupt occurs when the data (bit 29) in the DABR or DABR2 matches 

the next data access (load or store instruction) to complete in the completion unit. The different 
breakpoints are enabled as follows:
• Write breakpoints enabled when DABR[30] is set
• Read breakpoints enabled when DABR[31] is set

7–31 Cleared

DAR Set to the effective address of a memory element as described in the following list:
 • A byte in the first word accessed in the page that caused the DSI interrupt, for a byte, half word, or word 

memory access.
 • A byte in the first word accessed in the BAT area that caused the DSI interrupt for a byte, half word, or word 

access to a BAT area. 
 • A byte in the block that caused the interrupt for icbi, dcbz, dcbst, dcbf, or dcbi instructions.
 • The EA that causes a data breakpoint.
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• The attempted access violates the memory protection defined by SR[Ks,Kp], PTE[PP], or 
DBATn[PP].

Note that the OEA specifies an additional case that may cause a DSI interrupt—when an effective address 
for a load, store, or cache operation cannot be translated by the TLBs. On the e300 core, this condition 
causes a TLB miss interrupt instead. These scenarios are common among all processors that implement 
the PowerPC architecture. 

Finally, the e300 core causes a DSI interrupt when either DABR or DABR2 is enabled and the address of 
an access matches with the value in the CEA field and the breakpoint is enabled for the type of access (read 
or write) in DABR/DABR2. See Chapter 10, “Debug Features,” for more information.

DSI interrupts can be generated by load/store instructions and cache control instructions (dcbi, dcbz, 
dcbst, and dcbf). 

The e300 core supports the crossing of page boundaries. However, if the second page has a translation 
error or protection violation associated with it, the e300 core takes the DSI interrupt in the middle of the 
instruction. In this case, the instruction is re-executed.

If an stwcx. instruction has an effective address for which a normal store operation would cause a DSI 
interrupt, the e300 core takes the DSI interrupt without checking for the reservation.

If the XER indicates that the byte count for an lswi or stswi instruction is zero, a DSI interrupt does not 
occur, regardless of the effective address. 

The condition that caused the interrupt is defined in the DSISR. These conditions also use the data address 
register (DAR) as shown in Table 5-15.

When a DSI interrupt is taken, instruction execution for the handler begins at offset 0x00300 from the 
physical base address indicated by MSR[IP].

The architecture permits certain instructions to be partially executed when they cause a DSI interrupt. 
These are as follows:

• Load string instructions—some registers in the range of registers to be loaded may have been 
loaded.

• Store multiple or store string instructions—some bytes of memory in the range addressed may have 
been updated.

In these cases, the number of registers and amount of memory altered are instruction- and 
boundary-dependent. However, memory protection is not violated. 

For update forms, the update register (rA) is not altered.

5.5.4 ISI Interrupt (0x00400)

The ISI interrupt is implemented as it is defined by the PowerPC architecture. An ISI interrupt occurs when 
no higher priority interrupt exists and an attempt to fetch the next instruction fails for any of the following 
reasons:

• If an instruction TLB miss fails to find the desired PTE, then a page fault is synthesized. The ITLB 
miss handler branches to the ISI interrupt to retrieve the translation from a storage device. 



Interrupts and Exceptions

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 5-25
  

• An attempt is made to fetch an instruction from no-execute memory

• The fetch access violates memory protection

Register settings for this interrupt are described in Chapter 6, “Interrupts,” in the Programming 
Environments Manual.

When an ISI interrupt is taken, instruction execution for the handler begins at offset 0x00400 from the 
physical base address indicated by MSR[IP].

5.5.5 External Interrupt (0x00500)

An external interrupt is signaled to the e300 core by the assertion of the int signal as described in 
Section 8.3.1, “External Interrupts.” The interrupt may not be recognized if a higher priority interrupt 
occurs simultaneously or if the MSR[EE] bit is cleared when int is asserted. 

After the int is recognized, the e300 core generates a recoverable halt to instruction completion. The e300 
core allows the next instruction in program order to complete, including handling any interrupts that 
instruction may generate. However, the e300 core blocks subsequent instructions from completing and 
allows any outstanding stores to occur to system memory. If any other interrupts are encountered in this 
process, they are taken first and the external interrupt is delayed until a recoverable halt is achieved. At 
this time, the e300 core saves the state information and takes the external interrupt as defined by the 
PowerPC architecture.

The register settings for the external interrupt are shown in Table 5-16.

When an external interrupt is taken, instruction execution for the handler begins at offset 0x00500 from 
the physical base address indicated by MSR[IP].

The e300 core only recognizes the interrupt condition (int asserted) if the MSR[EE] bit is set; it ignores 
the interrupt condition if the MSR[EE] bit is cleared. To guarantee that the external interrupt is taken, the 
int signal must be held asserted until the e300 core takes the interrupt. If the int signal is negated before 
the interrupt is taken, the e300 core is not guaranteed to take an external interrupt. The interrupt handler 
must send a command to the device that asserted int, acknowledging the interrupt and instructing the 
device to negate int before the handler re-enables recognition of external interrupts.

Table 5-16. External Interrupt—Register Settings

Register Setting 

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next if no 
interrupt conditions were present.

SRR1 0–15 Cleared
16–31 Loaded from MSR[16–31]

MSR POW 0
TGPR 0
ILE —
EE 0
PR 0

FP 0
ME —
FE0 0
SE 0
BE 0

FE1 0
CE —
IP —
IR 0
DR 0

RI 0
LE Set to value of ILE
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5.5.6 Alignment Interrupt (0x00600)

This section describes conditions that can cause alignment interrupts in the e300 core. The e300 core 
implements the alignment interrupt as it is defined in the PowerPC architecture. For information on bit 
settings and how interrupt conditions are detected, refer to the Programming Environments Manual. Note 
that the PowerPC architecture allows individual processors to determine whether an interrupt is required 
to handle various alignment conditions.

Similar to DSI interrupts, alignment interrupts use the SRR0 and SRR1 to save the machine state and the 
DSISR to determine the source of the interrupt. The e300 core initiates an alignment interrupt when it 
detects any of the following conditions:

• The operand of a floating-point load or store operation is not word-aligned

• The operand of an lmw, stmw, lwarx, or stwcx. instruction is not word-aligned.

• A multiple or string access is attempted with the MSR[LE] bit set

• The operand of a dcbz instruction is in a page that is write-through or caching-inhibited

• The instruction is lswi, lswx, stswi, stswx, and the core is in little-endian mode. This applies to 
both PowerPC little-endian in previous cores and true little-endian mode for the e300 core. Note 
that the e300 core does not support PowerPC (modified) little-endian mode.

Note that the e300 core does not generate an alignment interrupt for a misaligned little-endian access 
(MSR[LE] = 1).

The register settings for alignment interrupts are shown in Table 5-16.

The architecture does not support the use of a misaligned EA by lwarx or stwcx. instructions. If one of 
these instructions specifies a misaligned EA, the interrupt handler should not emulate the instruction, but 
should treat the occurrence as a programming error.

Table 5-17. Alignment Interrupt—Register Settings

Register Setting

SRR0 Set to the effective address of the instruction that caused the interrupt

SRR1 0–15 Cleared
16–31 Loaded from MSR[16–31]

MSR POW 0
TGPR 0
ILE —
EE 0
PR 0

FP 0
ME —
FE0 0
SE 0
BE 0

FE1 0
CE —
IP —
IR 0
DR 0

RI 0
LE Set to value of ILE
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5.5.6.1 Integer Alignment Exceptions 

The e300 core is optimized for load and store operations that are aligned on natural boundaries. Operations 
that are not naturally aligned may suffer performance degradation, depending on the type of operation, the 
boundaries crossed, and the mode that the processor is in during execution. More specifically, these 
operations may either cause an alignment interrupt or they may cause the processor to break the memory 
access into multiple, smaller accesses with respect to the cache and the memory subsystem.

The e300 core can initiate an alignment interrupt for the access shown in Table 5-18. In this case, the 
appropriate range check is performed before the instruction begins execution. As a result, if an alignment 
interrupt is taken, it is guaranteed that no portion of the instruction has been executed.

A page-address translation access occurs when MSR[DR] is set and there is not a match in the BAT. Note 
the following points:

• The following is true for all loads and stores except strings/multiples (note that these four cases do 
not cause an alignment interrupt in the e300c2 core):

— Byte operands never cause an alignment interrupt

— Half-word operands can cause an alignment interrupt if the EA ends in 0xFFF

— Word operands can cause an alignment interrupt if the EA ends in 0xFFD–FFF

— Double-word operands cause an alignment interrupt if the EA ends in 
0xFF9–FFF

DSISR 0–11 Cleared
12–13Cleared. (Note that these bits can be set by several 64-bit PowerPC instructions that are not supported 

in the e300 core.)
14 Cleared
15–16For instructions that use register indirect with index addressing—set to bits 29–30 of the instruction

For instructions that use register indirect with immediate index addressing—cleared
17 For instructions that use register indirect with index addressing—set to bit 25 of the instruction

For instructions that use register indirect with immediate index addressing—set to bit 5 of the instruction
18–21For instructions that use register indirect with index addressing—set to bits 21–24 of the instruction

For instructions that use register indirect with immediate index addressing—set to bits 1–4 of the 
instruction

22–26Set to bits 6–10 (identifying either the source or destination) of the instruction. Undefined for dcbz.
27–31Set to bits 11–15 of the instruction (rA).

Set to either bits 11–15 of the instruction or to any register number not in the range of registers loaded by 
a valid form instruction, for lmw, lswi, and lswx instructions. Otherwise undefined.

DAR Set to the EA of the data access as computed by the instruction causing the alignment interrupt. When the 
operand of an lmw, stmw, lwarx, or stwcx. instruction is not word-aligned, that address value + 4 is stored into 
the DAR.

Table 5-18. Access Types

MSR[DR] SR[T] Access Type

1 0 Page-address translation access

Table 5-17. Alignment Interrupt—Register Settings (continued)

Register Setting
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• The dcbz instruction causes an alignment interrupt if the access is to a page or block with the W 
(write-through) or I (cache-inhibit) bit set in the TLB or BAT, respectively.

A misaligned memory access that does not cause an alignment interrupt do not perform as well as an 
aligned access of the same type. The resulting performance degradation due to misaligned accesses 
depends on how well each individual access behaves with respect to the memory hierarchy. At a minimum, 
additional cache access cycles are required that can delay other processor resources from using the cache. 
More dramatically, for an access to a noncacheable page, each discrete access involves individual 
processor bus operations that reduce the effective bandwidth of that bus.

Finally, note that when the e300 core is in page address translation mode, there is no special handling for 
accesses that fall into BAT regions.

5.5.6.2 Load/Store Multiple Alignment Exceptions 

Most alignment interrupts store the address as computed by the instruction in the DAR. However, when 
the operand of an lmw, stmw, lwarx, or stwcx. instruction is not word-aligned that address value + 4 is 
stored into the DAR. 

5.5.7 Program Interrupt (0x00700)

The e300 core implements the program interrupt as it is defined by the PowerPC architecture (OEA). A 
program interrupt occurs when no higher priority interrupt exists and one or more of the exception 
conditions defined in the OEA occur. 

When a program interrupt is taken, instruction execution for the handler begins at offset 0x00700 from the 
physical base address indicated by MSR[IP]. The exception conditions are as follows:

• Floating-point enabled exception—These exceptions correspond to IEEE-defined exception 
conditions, such as overflows, and divide by zeros that may occur during the execution of a 
floating-point arithmetic instruction. As a group, these exceptions are enabled by the FE0 and FE1 
bits in the MSR. Individual conditions are enabled by specific bits in the FPSCR. For general 
information about this interrupt, see the Programming Environments Manual. For more 
information about how these exceptions are implemented in the e300 core, see Section 5.5.7.1, 
“IEEE Floating-Point Exception Program Interrupts.”

• Illegal instruction—An illegal instruction program interrupt is generated when execution of an 
instruction is attempted with an illegal opcode or illegal combination of opcode and extended 
opcode fields (including PowerPC instructions not implemented in the e300 core). These do not 
include those optional instructions treated as no-ops.

• Privileged instruction—A privileged instruction type program interrupt is generated when the 
execution of a privileged instruction is attempted and the MSR register user privilege bit, 
MSR[PR], is set. In the e300 core, this interrupt is generated for mtspr or mfspr with an invalid 
SPR field if SPR[0] = 1 and MSR[PR] = 1. This may not be true for all processors that implement 
the PowerPC architecture.

• Trap—A trap type program interrupt is generated when any of the conditions specified in a trap 
instruction is met.
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5.5.7.1 IEEE Floating-Point Exception Program Interrupts

Floating-point exceptions are signaled by condition bits set in the floating-point status and control register 
(FPSCR). They can cause the system floating-point enabled interrupt handler to be invoked. The e300 core 
handles all floating-point exceptions precisely. The e300 core implements the FPSCR as it is defined by 
the PowerPC architecture; for more information about the FPSCR, see the Programming Environments 
Manual.

Floating-point operations that change exception sticky bits in the FPSCR may suffer a performance 
penalty. When an exception is disabled in the FPSCR and MSR[FE] = 0, updates to the FPSCR exception 
sticky bits are serialized at the completion stage. This serialization may result in a one- or two-cycle 
execution delay. The penalty is incurred only when the exception bit is changed and not on subsequent 
operations with the same exception. See Chapter 7, “Instruction Timing,” for a full description of 
completion serialization.

When an exception is enabled in the FPSCR, the instruction traps to the emulation trap interrupt vector 
without updating the FPSCR or the target FPR. The emulation trap interrupt handler is required to 
complete the instruction. The emulation trap interrupt handler is invoked regardless of the FE setting in 
the MSR.

The two IEEE floating-point imprecise modes, defined by the PowerPC architecture when MSR[FE0] ≠ 
MSR[FE1], are treated as precise (that is, MSR[FE0] = MSR[FE1] = 1). This is regardless of the setting 
of MSR[NI]. 

For the highest and most predictable floating-point performance, all exceptions should be disabled in the 
FPSCR and MSR. For more information about the program exception, see the Programming Environments 
Manual. 

5.5.7.2 Illegal, Reserved, and Unimplemented Instructions Program Interrupts

In accordance with the PowerPC architecture, the e300 core considers all instructions defined for 64-bit 
implementations and unimplemented optional instructions, such as fsqrt, eciwx, and ecowx as illegal and 
takes a program interrupt when one of these instructions is encountered. Likewise, if a supervisor-level 
instruction is encountered when the processor is in user-level mode, a privileged instruction-type program 
interrupt is taken. 

5.5.8 Floating-Point Unavailable Interrupt (0x00800)

A floating-point unavailable interrupt occurs when no higher priority interrupt exists, an attempt is made 
to execute a floating-point instruction (including floating-point load, store, and move instructions), and the 
floating-point available bit in the MSR is disabled (MSR[FP] = 0). Register settings for this interrupt are 
described in Chapter 6, “Interrupts,” in the Programming Environments Manual

When a floating-point unavailable interrupt is taken, instruction execution for the handler begins at offset 
0x00800 from the physical base address indicated by MSR[IP].
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5.5.9 Decrementer Interrupt (0x00900)

The e300 core implements the decrementer interrupt as it is defined in the PowerPC architecture. A 
decrementer interrupt request is made when the decrementer counts down through zero. The request is held 
until there are no higher priority interrupts and MSR[EE] = 1. At this point the decrementer interrupt is 
taken. If multiple decrementer interrupt requests are received before the first can be reported, only one 
interrupt is reported. The occurrence of a decrementer interrupt cancels the request. Register settings for 
this interrupt are described in Chapter 6, “Interrupts,” in the Programming Environments Manual.

When a decrementer interrupt is taken, instruction execution for the handler begins at offset 0x00900 from 
the physical base address indicated by MSR[IP].

5.5.10 Critical Interrupt (0x00A00)

A critical interrupt is signaled to the e300 core by the assertion of the int signal. The interrupt may not be 
recognized if a higher priority interrupt occurs simultaneously or if the MSR[CE] bit is cleared when cint 
is asserted. 

The following events occur when the e300 recognizes the assertion of cint:

• Multi-cycle instructions not in the completion stage are terminated

• Outstanding load or store instructions that have not been completed are terminated

• Any outstanding page table search activity is terminated

• The effective address for resuming program execution is saved into CSRR0

• The contents of MSR are saved into CSRR1

• The MSR register is loaded with all zeros except the IP, ILE, and ME bits which remain unchanged

• Interrupt processing starts at offset value 0x00A00 from the physical base address indicated by 
MSR[IP]

Some types of instructions (for example load multiple/string and floating-point instructions) cause 
additional interrupt recognition latency. Timing critical applications must consider these instruction 
execution latencies in calculating worst-case interrupt recognition latency.

Upon returning from a critical interrupt routine, the core restarts any terminated or uncompleted 
instructions, including terminated load multiple or load string instructions. Note that these restarted load 
instructions may cause side-effects on peripheral devices that have auto-decrementer or status bit changes 
caused by the subsequent load accesses.
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The register settings for the critical interrupt are shown in Table 5-16.

The e300 core only recognizes the interrupt condition (cint asserted) if the MSR[CE] bit is set; it ignores 
the interrupt condition if the MSR[CE] bit is cleared. To guarantee that the critical interrupt is taken, the 
cint signal must be held asserted until the e300 core takes the interrupt. If the cint signal is negated before 
the interrupt is taken, the e300 core is not guaranteed to take a critical interrupt. The interrupt must send a 
command to the device that asserted cint, acknowledging the interrupt and instructing the device to negate 
cint before the handler re-enables recognition of critical interrupts.

The additional SPRG4–7 registers on the e300 core can reduce overall latency for critical interrupts, as 
fewer GPRs need to be saved upon entering a critical interrupt routine. The e300 core also implements the 
rfci instruction for specifically returning from critical interrupt routines and restoring the processor state 
from CSRR0 and CSRR1.

5.5.11 System Call Interrupt (0x00C00)

The e300 core implements the system call interrupt as it is defined by the PowerPC architecture. A system 
call interrupt request is made when a system call (sc) instruction is completed. If no higher priority 
interrupt exists, the system call interrupt is taken, with SRR0 being set to the EA of the instruction 
following the sc instruction. Register settings for this interrupt are described in Chapter 6, “Interrupts,” in 
the Programming Environments Manual.

When a system call interrupt is taken, instruction execution for the handler begins at offset 0x00C00 from 
the physical base address indicated by MSR[IP]. 

5.5.12 Trace Interrupt (0x00D00)

The trace interrupt is taken under one of the following conditions:

• When MSR[SE] is set, a single-step instruction trace interrupt is taken when no higher priority 
interrupt exists and any instruction (other than rfi, rfci, mtmsr, or isync) is successfully completed. 
Note that other processors will take the trace interrupt on isync instructions (when MSR[SE] is 
set); the e300 core does not take the trace interrupt on isync instructions. Single-step instruction 
trace mode is described in Section 5.5.12.1, “Single-Step Instruction Trace Mode.”

Table 5-19. Critical Interrupt—Register Settings

Register Setting 

CSRR0 Set to the effective address of the instruction that the processor would have attempted to execute next if no 
interrupt conditions were present.

CSRR1 0–15 Cleared
16–31 Loaded from MSR[16–31]

MSR POW 0
TGPR 0
ILE —
EE 0
PR 0

FP 0
ME —
FE0 0
SE 0
BE 0

FE1 0
CE 0
IP —
IR 0
DR 0

RI 0
LE Set to value of ILE
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• When MSR[BE] is set, the branch trace interrupt is taken after each branch instruction is 
completed.

• The e300 core deviates from the architecture by not taking trace interrupts on isync instructions. 
Single-step instruction trace mode is described in Section 5.5.12.2, “Branch Trace Mode.”

Successful completion implies that the instruction caused no other interrupts. A trace interrupt is never 
taken for an sc or trap instruction that takes a trap interrupt. 

MSR[SE] and MSR[BE] are cleared when the trace interrupt is taken. In the normal use of this function, 
MSR[SE] and MSR[BE] are restored when the interrupt handler returns to the interrupted program using 
an rfi instruction.

Register settings for the trace mode are described in Table 5-20.

 If trace and breakpoint conditions occur simultaneously, the breakpoint conditions receive higher priority.

When a trace interrupt is taken, instruction execution for the handler begins at offset 0x00D00 from the 
base address indicated by MSR[IP].

5.5.12.1 Single-Step Instruction Trace Mode

The single-step instruction trace mode is enabled by setting MSR[SE]. Encountering the single-step 
breakpoint causes the following action—trap to address vector 0x00D00.

The single-step trace action traps after an instruction execution and completion.

5.5.12.2 Branch Trace Mode

The branch trace mode is enabled by setting MSR[BE]. Encountering the branch trace breakpoint causes 
the following action—trap to interrupt vector 0x00D00.

The branch trace action is to trap after the completion of any branch instruction whenever MSR[BE] is set.

5.5.13 Performance Monitor Interrupt (0x00F00)

The performance monitor interrupt is triggered by an enabled condition or event. The only performance 
monitor enabled condition or event defined is the following:

• A PMCn overflow condition occurs when both of the following are true:

Table 5-20. Trace Interrupt—Register Settings

Register Setting Description

SRR0 Set to the address of the instruction following the one for which the trace interrupt was generated.

SRR1 0–15 Cleared 
16–31 Loaded from MSR[16–31]

MSR POW 0
TGPR 0
ILE —
EE 0
PR 0

FP 0
ME —
FE0 0
SE 0
BE 0

FE1 0
CE —
IP —
IR 0
DR 0

RI 0
LE Set to value of ILE
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— The counter’s overflow condition is enabled; PMLCan[CE] is set.
— The counter indicates an overflow; PMCn[OV] is set.

If PMGC0[PMIE] is set, an enabled condition or event triggers the signaling of a performance monitor 
exception.

If PMGC0[FCECE] is set, an enabled condition or event also triggers all performance monitor counters to 
freeze.

5.5.14 Instruction TLB Miss Interrupt (0x01000)

When the effective address for an instruction load, store, or cache operation cannot be translated by the 
ITLB, an instruction TLB miss interrupt is generated. Register settings for the instruction and data TLB 
miss interrupts are described in Table 5-21.

If the instruction TLB miss interrupt fails to find the desired PTE, then a page fault must be synthesized. 
The handler must restore the machine state and clear MSR[TGPR] before invoking the ISI interrupt 
(0x00400). 

Software table search operations are discussed in Chapter 6, “Memory Management.”

When an instruction TLB miss interrupt is taken, instruction execution for the handler begins at offset 
0x01000 from the physical base address indicated by MSR[IP].

5.5.15 Data TLB Miss on Load Interrupt (0x01100)

When the effective address for a data load or cache operation cannot be translated by the DTLB, a data 
TLB miss on load interrupt is generated. Register settings for the instruction and data TLB miss interrupts 
are described in Table 5-21.

If a data TLB miss interrupt fails to find the desired PTE, then a page fault must be synthesized. The 
handler must restore the machine state and clear MSR[TGPR] before invoking the DSI interrupt 
(0x00300). 

Software table search operations are discussed inChapter 6, “Memory Management.”

When a data TLB miss on load interrupt is taken, instruction execution for the handler begins at offset 
0x01100 from the physical base address indicated by MSR[IP].
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5.5.16 Data TLB Miss on Store Interrupt (0x01200)

When the effective address for a data store or cache operation cannot be translated by the DTLB, a data 
TLB miss on store interrupt is generated. The data TLB miss on store interrupt is also taken when the 
changed bit (C = 0) for a DTLB entry needs to be updated for a store operation. Register settings for the 
instruction and data TLB miss interrupts are described in Table 5-21.

If a data TLB miss interrupt handler fails to find the desired PTE, then a page fault must be synthesized. 
The handler must restore the machine state and clear MSR[TGPR] before invoking the DSI interrupt 
(0x00300). 

Software table search operations are discussed in Chapter 6, “Memory Management.”

When a data TLB miss on store interrupt is taken, instruction execution for the handler begins at offset 
0x01200 from the physical base address indicated by MSR[IP].

5.5.17 Instruction Address Breakpoint Interrupt (0x01300)

The instruction address breakpoint is controlled by the IABR special purpose register. Bits [0–29] of IABR 
holds an effective address to which each instruction’s address is compared. The interrupt is enabled by 
setting bit 30 in the IABR. The interrupt is taken when an instruction breakpoint address matches on the 
next instruction to complete. The instruction tagged with the match is not completed before the instruction 
address breakpoint interrupt is taken.

The breakpoint action can be trapped to interrupt vector 0x01300 (default).

Table 5-21. Instruction and Data TLB Miss Interrupts—Register Settings

Register Setting Description

SRR0 Set to the address of the next instruction to be executed in the program for which the TLB miss interrupt was 
generated.

SRR1 0–3 Loaded from condition register CR0 field
4–11 Cleared
12 KEY. Key for TLB miss (SR[Ks] or SR[Kp], depending on whether the access is a user or supervisor 

access). 
13 D/I. Data or instruction access.

0 = Data TLB miss
1 = Instruction TLB miss

14 WAY. Next TLB set to be replaced (set per LRU).
0 = Replace TLB associativity set 0
1 = Replace TLB associativity set 1

15 S/L. Store or load data access.
0 = Data TLB miss on load
1 = Data TLB miss on store (or C = 0)

16–31Loaded from MSR[16–31]

MSR POW 0
TGPR 1
ILE —
EE 0
PR 0

FP 0
ME —
FE0 0
SE 0
BE 0

FE1 0
CE —
IP —
IR 0
DR 0

RI 0
LE Set to value of ILE
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Note that the e300 core has a second instruction address breakpoint register, IABR2, that functions 
identically to IABR, and allows for two instruction breakpoints to be enabled.

The bit settings for when an instruction address breakpoint interrupt is taken are shown in Table 5-22.

The default breakpoint action is to trap before the execution of the matching instruction.

Table 5-23 shows the priority of actions taken when more than one mode is enabled for the same 
instruction.

 If trace and breakpoint conditions occur simultaneously, the breakpoint conditions receive higher priority.

The e300 core requires that an mtspr instruction that updates the IABR be followed by a 
context-synchronizing instruction. If the mtspr instruction enables the instruction address breakpoint 
interrupt, the context-synchronizing instruction cannot generate a breakpoint response. The e300 core also 
cannot block a breakpoint response on the context-synchronizing instruction if the breakpoint was disabled 
by the mtspr instruction. See “Synchronization Requirements for Special Registers and TLBs” in Chapter 
2, “Register Set,” in the Programming Environments Manual, for more information on this requirement.

Section 2.2.14, “Instruction Address Breakpoint Registers (IABR and IABR2),” and Chapter 10, “Debug 
Features,” provide more information about the instruction breakpoint facility.

Table 5-22. Instruction Address Breakpoint Interrupt—Register Settings

Register Setting Description

SRR0 Set to the address of the next instruction to be executed in the program for which the TLB miss interrupt was 
generated.

SRR1 0–15 Cleared 
16–31 Loaded from MSR[16–31]

MSR POW 0
TGPR 0
ILE —
EE 0
PR 0

FP 0
ME —
FE0 0
SE 0
BE 0

FE1 0
CE —
IP —
IR 0
DR 0

RI 0
LE Set to value of ILE

Table 5-23. Breakpoint Action for Multiple Modes Enabled for the Same Address

IABR[IE] MSR[BE] MSR[SE] First Action Next Action Comments

1 1 0 Instruction address 
breakpoint

Trace (branch) Enabling both modes is useful only if both trace and 
address breakpoint interrupts are needed.

1 0 1 Instruction address 
breakpoint

Trace 
(single-step)

Enabling both modes is useful only if different 
breakpoint actions are required.

0 1 1 Trace (branch) None The action for branch trace and single-step trace is the 
same. Enabling both trace modes is redundant except 
for hard stop on branches.

1 1 1 Instruction address 
breakpoint

Trace Enabling all modes is redundant. This entry is for 
clarification only.



Interrupts and Exceptions

e300 Power Architecture Core Family Reference Manual, Rev. 4

5-36 Freescale Semiconductor
 

5.5.18 System Management Interrupt (0x01400)

The system management interrupt behaves like an external interrupt except for the signal asserted and the 
vector taken. A system management interrupt is signaled to the e300 core by the assertion of the smi signal. 
The interrupt may not be recognized if a higher priority interrupt occurs simultaneously or if MSR[EE] is 
cleared when smi is asserted. Note that smi takes priority over int if they are recognized simultaneously.

After the smi is detected (and provided that MSR[EE] is set), the e300 core generates a recoverable halt to 
instruction completion. The e300 core requires the next instruction in program order to complete or except, 
block completion of any following instructions, and allow the completed store queue to drain (see 
Section 7.1, “Terminology and Conventions,” for the definition). If any higher priority interrupts are 
encountered in this process, they are taken first and the system management interrupt is delayed until a 
recoverable halt is achieved. At this time the e300 core saves state information and takes the system 
management interrupt. 

The register settings for the external interrupt are shown in Table 5-24.

When a system management interrupt is taken, instruction execution for the handler begins at offset 
0x01400 from the physical base address indicated by MSR[IP].

The e300 core recognizes the interrupt condition (smi asserted) only if the MSR[EE] bit is set; otherwise, 
the interrupt condition is ignored. To guarantee that the external interrupt is taken, the smi signal must be 
held active until the e300 core takes the interrupt. If the smi signal is negated before the interrupt is taken, 
the e300 core is not guaranteed to take a system management interrupt. The interrupt handler must send a 
command to the device that asserted smi, acknowledging the interrupt and instructing the device to negate 
smi.

Table 5-24. System Management Interrupt—Register Settings

Register Setting Description

SRR0 Set to the effective address of the instruction that the processor would have attempted to complete next if no 
interrupt conditions were present.

SRR1 0–15 Cleared 
16–31 Loaded from MSR[16–31]

MSR POW 0
TGPR 0
ILE —
EE 0
PR 0

FP 0
ME —
FE0 0
SE 0
BE 0

FE1 0
CE —
IP —
IR 0
DR 0

RI 0
LE Set to value of ILE
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Chapter 6  
Memory Management 
This chapter describes the e300 core implementation of the memory management unit (MMU) 
specifications provided by the PowerPC operating environment architecture (OEA). The MMU 
implementation of the e300 core is the same as that of previous PowerPC microprocessors. However, the 
e300 core implements four additional IBAT entries and four additional DBAT entries.

The primary function of the MMU in a processor of this family is the translation of logical (effective) 
addresses to physical addresses (referred to as real addresses in the architecture specification) for memory 
accesses, and I/O accesses (I/O accesses are assumed to be memory-mapped). In addition, the MMU 
provides access protection on a segment, block, or page basis. This chapter describes the specific hardware 
used to implement the MMU model of the OEA in the core. Refer to Chapter 7, “Memory Management,” 
in the Programming Environments Manual for a complete description of the conceptual model.

Two general types of accesses generated by processors that implement the PowerPC architecture require 
address translation—instruction accesses, and data accesses to memory generated by load and store 
instructions. Generally, the address translation mechanism is defined in terms of segment descriptors and 
page tables defined by the PowerPC architecture for locating the effective-to-physical address mapping for 
instruction and data accesses. The segment information translates the effective address to an interim virtual 
address and the page table information translates the virtual address to a physical address. 

The segment descriptors, used to generate the interim virtual addresses, are stored as on-chip segment 
registers on 32-bit implementations (such as the e300 core). In addition, two translation lookaside buffers 
(TLBs) are implemented on the core to keep recently-used page address translations on-chip. Although the 
OEA describes one MMU (conceptually), the core hardware maintains separate TLBs and table search 
resources for instruction and data accesses that can be accessed independently (and simultaneously). 
Therefore, the core is described as having two MMUs, one for instruction accesses (IMMU) and one for 
data accesses (DMMU). 

The block address translation (BAT) mechanism is a software-controlled array that stores the available 
block address translations on-chip. BAT array entries are implemented as pairs of BAT registers that are 
accessible as supervisor-level special-purpose registers (SPRs). There are separate instruction and data 
BAT mechanisms, and in the e300 core, they reside in the instruction and data MMUs, respectively.

The MMUs, together with the interrupt processing mechanism, provide the necessary support for the 
operating system to implement a paged virtual memory environment and for enforcing protection of 
designated memory areas. Interrupt processing is described in Chapter 5, “Interrupts and Exceptions.” 
Section 5.2, “Interrupt Processing,” describes the MSR which controls some of the critical functionality 
of the MMUs.
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6.1 MMU Features
The e300 core completely implements all features required by the memory management specification of 
the OEA for 32-bit implementations. Thus, it provides 4 Gbytes of effective address space accessible to 
supervisor and user programs with a 4-Kbyte page size and 256-Mbyte segment size. In addition, the 
MMUs of 32-bit processors use an interim virtual address (52 bits) and hashed page tables in the 
generation of 32-bit physical addresses. These processors also have a BAT mechanism for mapping large 
blocks of memory. Block sizes range from 128 Kbytes to 256 Mbytes and are software-programmable. 

Table 6-1 summarizes all e300 core MMU features including the architectural features of PowerPC MMUs 
(defined by the OEA) for 32-bit processors and the implementation-specific features provided by the core.

Table 6-1. MMU Features Summary

Feature Category
Architecturally Defined/

e300 Core-Specific
Feature

Address ranges Architecturally defined 232 bytes of effective address

252 bytes of virtual address

232 bytes of physical address

Page size Architecturally defined 4 Kbytes

Segment size Architecturally defined 256 Mbytes

Block address 
translation

Architecturally defined Range of 128 Kbytes–256 Mbytes sizes

Implemented with IBAT and DBAT registers in BAT array

Memory protection Architecturally defined Segments selectable as no-execute

Pages selectable as user/supervisor and read-only

Blocks selectable as user/supervisor and read-only

Page history Architecturally defined Reference and change bits defined and maintained

Page address 
translation

Architecturally defined Translations stored as PTEs in hashed page tables in memory

Page table size determined by mask in SDR1 register

TLBs Architecturally defined Instructions for maintaining optional TLBs (tlbie instruction in G2 
core)

e300 core-specific 64-entry (32-entry byway), two-way set-associative ITLB
64-entry(32-entry byway), two-way set-associative DTLB

Segment descriptors Architecturally defined Stored as segment registers on-chip 
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6.1.1 Memory Addressing

A program references memory using the effective (logical) address computed by the processor when it 
executes a load, store, or cache instruction, and when it fetches the next instruction. The effective address 
is translated to a physical address according to the procedures described in Chapter 7, “Memory 
Management,” in the Programming Environments Manual, augmented with information in this chapter. 
The memory subsystem uses the physical address for the access.

For a complete discussion of effective address calculation, see Section 3.2.2.3, “Effective Address 
Calculation.”

6.1.2 MMU Organization

Figure 6-1 shows the conceptual organization of a PowerPC MMU in a 32-bit implementation; note that 
it does not describe the specific hardware used to implement the memory management function for a 
particular processor. Processors may optionally implement on-chip TLBs and may optionally support the 
automatic search of the page tables for PTEs. In addition, other hardware features (invisible to the system 
software) not depicted in the figure may be implemented. 

Figure 6-2 and Figure 6-3 show the conceptual organization of the core instruction and data MMUs, 
respectively. The instruction addresses shown in Figure 6-2 are generated by the processor for sequential 
instruction fetches and addresses that correspond to a change of program flow. Data addresses shown in 
Figure 6-3 are generated by load and store instructions and by cache instructions. 

As shown in the figures, after an address is generated, the higher-order bits of the effective address, 
EA0–EA19 (or a smaller set of address bits, EA0–EAn, in the cases of blocks), are translated into physical 
address bits PA0–PA19. The lower-order address bits, A20–A31, are untranslated and, therefore, identical 
for both effective and physical addresses. After translating the address, the MMUs pass the resulting 32-bit 
physical address to the memory subsystem. 

Page table search 
support

e300 core-specific Three MMU interrupts defined: ITLB miss, DTLB miss on load, and 
DTLB miss on store (or C = 0); MMU-related bits set in SRR1 for 
these interrupts.

IMISS and DMISS registers (missed effective address)
HASH1 and HASH2 registers (PTEG addr)
ICMP and DCMP registers (for comparing PTEs)
RPA register (for loading TLBs)

tlbli rB instruction for loading ITLB entries
tlbld rB instruction for loading DTLB entries

Shadow registers for GPR0–GPR3 (can use r0–r3 in table search 
handler without corruption of r0–r3 in context that was previously 
executing), called TGPR0–TGPR3.

Table 6-1. MMU Features Summary (continued)

Feature Category
Architecturally Defined/

e300 Core-Specific
Feature
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In addition to the higher-order address bits, the MMUs automatically keep an indicator of whether each 
access was generated as an instruction or data access and a supervisor/user indicator that reflects the state 
of the PR bit of the MSR when the effective address was generated. In addition, for data accesses, there is 
an indicator of whether the access is for a load or a store operation. This information is then used by the 
MMUs to appropriately direct the address translation and to enforce the protection hierarchy programmed 
by the operating system. Section 5.2, “Interrupt Processing,” describes the MSR, which controls some of 
the critical functionality of the MMUs.

The figures show how the A20–A26 address bits index into the on-chip instruction and data caches to 
select a cache set. The remaining physical address bits are then compared with the tag fields (comprised 
of bits PA0–PA19) of the four selected cache blocks to determine if a cache hit has occurred. In the case 
of a cache miss, the instruction or data access is then forwarded to the bus interface unit which then 
initiates a Coherent System Bus (CSB) access to the memory subsystem. 
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Figure 6-1. MMU Conceptual Block Diagram—32-Bit Implementations
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Figure 6-2. e300 Core IMMU Block Diagram
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Figure 6-3. e300 Core DMMU Block Diagram
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6.1.3 Address Translation Mechanisms

Processors that implement the PowerPC architecture support the following four types of address 
translation:

• Page address translation—translates the page frame address for a 4-Kbyte page size.

• Block address translation—translates the block number for blocks that range in size from 128 
Kbytes to 256 Mbytes.

• Direct-store interface address translation—used to generate direct-store interface accesses on the 
external bus; not implemented in the e300 core.

• Real addressing mode translation—when address translation is disabled, the physical address is 
identical to the effective address. 

Figure 6-4 shows the three implemented address translation mechanisms provided by the MMUs. The 
segment descriptors shown in the figure, control the page address translation mechanism. When an access 
uses page address translation, the appropriate segment descriptor is required. In 32-bit implementations, 
one of the 16 on-chip segment registers (which contain segment descriptors) is selected by the 4 
highest-order effective address bits. 

A control bit in the corresponding segment descriptor then determines if the access is to memory 
(memory-mapped) or to the direct-store interface space (selected when the direct-store translation control 
bit (T bit) in the corresponding segment descriptor is set). Note that the direct-store interface existed in 
previous processors only for compatibility with I/O devices that use this interface. When an access is 
determined to be to the direct-store interface space, the core takes a DSI interrupt as described in 
Section 5.5.3, “DSI Interrupt (0x00300),” if it is a data access. The G2 core takes an ISI interrupt as 
described in Section 5.5.4, “ISI Interrupt (0x00400),” if it is an instruction access.

For memory accesses translated by a segment descriptor, the interim virtual address is generated using the 
information in the segment descriptor. Page address translation corresponds to the conversion of this 
virtual address into the 32-bit physical address used by the memory subsystem. In most cases, the physical 
address for the page resides in an on-chip TLB and is available for quick access.   However, if the page 
address translation misses in an on-chip TLB, the MMU causes a search of the page tables in memory 
(using the virtual address information and a hashing function) to locate the required physical address. 
When this occurs, the core vectors to the interrupt handlers that search the page tables with software.

Block address translation occurs in parallel with page address translation and is similar to page address 
translation; however, fewer higher-order effective address bits are translated into physical address bits 
(more lower-order address bits (at least 17) are untranslated to form the offset into a block). Also, instead 
of segment descriptors and a TLB, block address translations use the on-chip BAT registers as a BAT array. 
If an effective address matches the corresponding field of a BAT register, the information in the BAT 
register is used to generate the physical address; in this case, the results of the page translation (occurring 
in parallel) are ignored (even if the segment corresponds to the direct-store interface space).
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Figure 6-4. Address Translation Types

6.1.4 Memory Protection Facilities

In addition to the translation of effective addresses to physical addresses, the MMUs provide access 
protection of supervisor areas from user access and can designate areas of memory as read-only, as well 
as, no-execute or guarded. Table 6-2 shows the eight protection options supported by the MMUs for pages.

Table 6-2. Access Protection Options for Pages

Option
User Read

User 
Write

Supervisor Read
Supervisor 

Write
I-Fetch Data I-Fetch Data

Supervisor-only X X X √ √ √

Supervisor-only-no-execute X X X X √ √
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0 31
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DSI/ISI Interrupt
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The operating system programs whether instructions can be fetched from an area of memory by 
appropriately using the no-execute option provided in the segment descriptor. Each of the remaining 
options is enforced, based on a combination of information in the segment descriptor and the page table 
entry. Thus, the supervisor-only option allows only read and write operations generated while the 
processor is operating in supervisor mode (corresponding to MSR[PR] = 0) to access the page. User 
accesses that map into a supervisor-only page cause an interrupt to be taken.

Finally, there is a facility in the VEA and OEA that allows pages or blocks to be designated as guarded, 
preventing out-of order accesses that may cause undesired side effects. For example, areas of the memory 
map that are used to control I/O devices can be marked as guarded so that accesses (for example, 
instruction prefetches) do not occur unless they are explicitly required by the program.

For more information on memory protection, see “Memory Protection Facilities” in Chapter 7, “Memory 
Management,” in the Programming Environments Manual.

6.1.5 Page History Information

The MMUs of these processors also define reference (R) and change (C) bits in the page address 
translation mechanism that can be used as history information relevant to the page. This information can 
then be used by the operating system to determine the areas of memory to write back to disk when new 
pages must be allocated in main memory. While these bits are initially programmed by the operating 
system into the page table, the architecture specifies that the R and C bits may be maintained either by the 
processor hardware (automatically) or by some software-assist mechanism that updates these bits when 
required as needed by the core. The software table search routines used by the core set the R bit when a 
PTE is accessed; the core causes an interrupt (to vector to the software table search routines) when the C 
bit in the corresponding TLB entry requires updating. See Section 6.4.1.3, “Scenarios for Reference and 
Change Bit Recording,” for more details.

Supervisor-write-only √ √ X √ √ √

Supervisor-write-only-no-execute X √ X X √ √

Both user/supervisor √ √ √ √ √ √

Both user/supervisor-no-execute X √ √ X √ √

Both read-only √ √ X √ √ X

Both read-only-no-execute X √ X X √ X

Note:
√  access permitted.

 X protection violation.

Table 6-2. Access Protection Options for Pages (continued)

Option
User Read

User 
Write

Supervisor Read
Supervisor 

Write
I-Fetch Data I-Fetch Data
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6.1.6 General Flow of MMU Address Translation

The following sections describe the general flow used by processors that implement the PowerPC 
architecture to translate effective addresses to virtual and then physical addresses. 

6.1.6.1 Real Addressing Mode and Block Address Translation Selection

When an instruction or data access is generated and the corresponding instruction or data translation is 
disabled (MSR[IR] = 0 or MSR[DR] = 0), real addressing mode translation is used (physical address 
equals effective address) and the access continues to the memory subsystem as described in Section 6.2, 
“Real Addressing Mode.” 

Figure 6-5 shows the flow used by the MMUs in determining whether to select real addressing mode, 
block address translation, or to use the segment descriptor to select page address translation. 

Note that if the BAT array search results in a hit, the access is qualified with the appropriate protection bits. 
If the access violates the protection mechanism, an interrupt (ISI or DSI interrupt) is generated.

Figure 6-5. General Flow of Address Translation (Real Addressing Mode and Block)

Perform Address Translation 
with Segment Descriptor 

Access Faulted

Compare Address with 
Instruction or Data BAT 
Array (As Appropriate)

Translate Address

Perform Real
Addressing Mode 

Translation

Effective Address
Generated

Continue Access
to Memory
Subsystem

Instruction
Translation Enabled 

(MSR[IR] =1)

Data
Translation Enabled 

(MSR[DR] = 1)

(see Figure 6-6)

Instruction
Translation Disabled 

(MSR[IR] = 0)

Data
Translation Disabled 

(MSR[DR] = 0)

BAT Array
Hit

I-Access

Access 
Protected

Access 
Permitted

Perform Real 
Addressing Mode 

Translation

(see the Programming
Environments Manual)

BAT Array
Miss

D-Access



Memory Management

e300 Power Architecture Core Family Reference Manual, Rev. 4

6-12 Freescale Semiconductor
 

6.1.6.2 Page Address Translation Selection 

If address translation is enabled (real addressing mode not selected) and the effective address information 
does not match with a BAT array entry, then the segment descriptor must be located. Once the segment 
descriptor is located, the T bit in the segment descriptor selects whether the translation is to a page or to a 
direct-store interface segment, as shown in Figure 6-6. Note that the e300 core does not implement the 
direct-store interface, and accesses to these segments cause a DSI interrupt. In addition, Figure 6-6 also 
shows the way the no-execute protection is enforced; if the N bit in the segment descriptor is set and the 
access is an instruction fetch, the access is faulted as described in Chapter 7, “Memory Management,” in 
the Programming Environments Manual. Note that the figure shows the flow for these cases as described 
by the OEA and, therefore, the TLB references are shown as optional. Since the core implements TLBs, 
these branches are valid, and described in more detail throughout this chapter.

If the T bit in the corresponding segment descriptor is zero, page address translation is selected. The 
information in the segment descriptor is then used to generate the 52-bit virtual address. The virtual 
address is then used to identify the page address translation information (stored as page table entries 
(PTEs) in a page table in memory). For increased performance, the core has two TLBs to store 
recently-used PTEs on-chip.

If an access hits in the appropriate TLB, the page translation occurs and the physical address bits are 
forwarded to the memory subsystem. If the required PTE is not resident, the MMU requires a search of the 
page table. In this case, the core traps to one of three interrupt handlers for the system software to perform 
the page table search. If the PTE is successfully matched, a new TLB entry is created and the page 
translation is once again attempted. This time, the TLB is guaranteed to hit. Once the PTE is located, the 
access is qualified with the appropriate protection bits. If the access is a protection violation (not allowed), 
an interrupt (instruction access or data access) is generated.

If the PTE is not found by the table search operation, a page fault condition exists, and the TLB miss 
interrupt handlers synthesize either an ISI or DSI interrupt to handle the page fault.
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Figure 6-6. General Flow of Page and Direct-Store Interface Address Translation
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6.1.7 MMU Interrupts Summary

In order to complete any memory access, the effective address must be translated to a physical address. In 
the e300 core, an MMU interrupt condition occurs if this translation fails for one of the following reasons:

• Page fault—There is no valid page table entry to identify the page specified by the effective address 
(and segment descriptor) and there is no valid BAT translation.

• An address translation is found but the access is not allowed by the memory protection 
mechanism.

Additionally, because the core relies on software to perform table search operations, the processor also 
takes an interrupt when one of the following occurs:

• There is a miss in the corresponding (instruction or data) TLB.

• The page table requires an update to the change (C) bit.

The state saved by the processor for each of these interrupts contains information that identifies the address 
of the failing instruction. Refer to Chapter 5, “Interrupts and Exceptions,” for a more detailed description 
of interrupt processing.

Because a page fault condition (PTE not found in the page tables in memory) is detected by the software 
that performs the table search operation (and not the core hardware), it does not cause a core interrupt, in 
the strictest sense, in that interrupt processing as described in Chapter 5, “Interrupts and Exceptions,” does 
not occur. However, in order to maintain architectural compatibility with software written for other devices 
that implement the PowerPC architecture, the software that detects this condition should synthesize an 
interrupt by setting the appropriate bits in the DSISR or SRR1 and branching to the ISI or DSI handler. 
Refer to Section 6.5.2, “Implementation-Specific Table Search Operation,” for more information and 
examples of this interrupt software. The remainder of this chapter assumes that the table search software 
emulates this interrupt and refers to this condition as an interrupt.

The translation exception conditions defined by the OEA for 32-bit implementations cause either the ISI 
or the DSI interrupt to be taken as shown in Table 6-3.

Table 6-3. Translation Exception Conditions

Exception Condition Description Interrupt 

Page fault (no PTE found) No matching PTE found in page tables (and no 
matching BAT array entry)

I access: ISI interrupt1

SRR1[1] = 1

D access: DSI interrupt 1

DSISR[1] =1

Block protection violation Conditions described for block in “Block Memory 
Protection” in Chapter 7, “Memory Management,” in 
the Programming Environments Manual.“

I access: ISI interrupt
SRR1[4] = 1

D access: DSI interrupt
DSISR[4] =1 

Page protection violation Conditions described for page in “Page Memory 
Protection” in Chapter 7, “Memory Management,” in 
the Programming Environments Manual.

I access: ISI interrupt2

SRR1[4] = 1

D access: DSI interrupt 2

DSISR[4] =1 
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In addition to the translation exceptions, there are other MMU-related conditions (some of them defined 
as implementation-specific and, therefore, not required by the architecture) that can cause an interrupt to 
occur in the core. These exception conditions map to the processor interrupt as shown in Table 6-4. For 
example, the core also defines three exception conditions to support software table searching. The only 
exception conditions that occur for data accesses when MSR[DR] = 0, are the conditions that cause the 
alignment interrupt. For more detailed information about the conditions that cause the alignment interrupt 
(in particular for string/multiple instructions), see Section 5.5.6, “Alignment Interrupt (0x00600).”

No-execute protection violation Attempt to fetch instruction when SR[N] = 1 ISI interrupt 
SRR1[3] = 1

Instruction fetch from direct-store 
segment

Attempt to fetch instruction when SR[T] = 1 ISI interrupt 
SRR1[3] =1

Data access to direct-store segment 
(including floating-point accesses3) 

Attempt to perform load or store (including 
floating-point load or store) when SR[T] = 1

DSI interrupt
DSISR[5] =1

Instruction fetch from guarded memory 
with MSR[IR] = 1

Attempt to fetch instruction when MSR[IR] = 1 and 
either matching xBAT[G] = 1, or no matching BAT 
entry and PTE[G] = 1. 

ISI interrupt 
SRR1[3] =1

1 The e300 core hardware does not vector to these interrupts automatically. It is assumed that the software that performs the 
table search operation vectors to these interrupts and sets the appropriate bits when a page fault condition occurs.

2 The table search software can also vector to these exception conditions.
3 Floating-point not supported on the e300c2.

Table 6-4. Other MMU Exception Conditions

Exception Condition Description Interrupt 

TLB miss for an instruction fetch No matching entry found in ITLB Instruction TLB miss interrupt
SRR1[13] = 1
MSR[14] = 1

TLB miss for a data load access No matching entry found in DTLB for data load 
access

Data TLB miss on load interrupt
SRR1[13] = 0
SRR1[15] = 1
MSR[14] = 1

TLB miss for a data store, or store 
and C = 0

No matching entry found in DTLB for data store 
access or matching DLTB entry has C = 0 and 
the access is a store

Data TLB miss on store interrupt, or 
store and C = 0

SRR1[13] = 0
SRR1[15] =0
MSR[14] = 1

dcbz with W = 1 or I = 1 dcbz instruction to write-through or 
cache-inhibited segment or block

Alignment interrupt (not required by 
architecture for this condition)

dcbz when the data cache is locked The dcbz instruction takes an alignment 
interrupt if the data cache is locked (HID0 bits 
18 and 19) when it is executed

Alignment interrupt

lwarx or stwcx. instruction to 
direct-store segment 

Reservation instruction or external control 
instruction when SR[T] =1 

DSI interrupt 
DSISR[5] = 1

Table 6-3. Translation Exception Conditions (continued)

Exception Condition Description Interrupt 
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Note that some exception conditions depend on whether the memory area is set up as write-through 
(W = 1) or cache-inhibited (I = 1). These bits are described fully in “Memory/ Cache Access Attributes” 
in Chapter 5, “Cache Model and Memory Coherency,” in the Programming Environments Manual. Refer 
to Chapter 5, “Interrupts and Exceptions,” and to Chapter 6, “Interrupts,” in the Programming 
Environments Manual for a complete description of the SRR1 and DSISR settings.

6.1.8 MMU Instructions and Register Summary

The MMU instructions and registers provide the operating system with the ability to set up the block 
address translation areas and the page tables in memory. 

Note that because the implementation of TLBs is optional, the instructions that refer to these structures are 
also optional. However, because these structures serve as caches of the page table, the architecture 
specifies a software protocol for maintaining coherency between these caches and the tables in memory 
whenever changes are made to the tables in memory. When the tables in memory are changed, the 
operating system purges these caches of the corresponding entries, allowing the translation caching 
mechanism to refetch from the tables when the corresponding entries are required.

Note that the e300 core implements all TLB-related instructions except tlbia, which is treated as an illegal 
instruction. The core also uses some implementation-specific instructions to load two on-chip TLBs.

Because the MMU specification for these processors is so flexible, it is recommended that the software 
that uses these instructions and registers be encapsulated into subroutines to minimize the impact of 
migrating across the family of implementations.

Table 6-5 summarizes e300 core instructions that specifically control the MMU. For more detailed 
information about the instructions, refer to Chapter 3, “Instruction Set Model,” in this book and Chapter 
8, “Instruction Set,” in the Programming Environments Manual.

Floating-point load or store to 
direct-store segment1

FP memory access when SR[T] = 1 See data access to direct-store 
segment in Table 6-3

Load or store that results in a 
direct-store error

Does not occur in G2 core Does not apply

lmw, stmw, lswi, lswx, stswi, or 
stswx instruction attempted in 
little-endian mode

lmw, stmw, lswi, lswx, stswi, or stswx 
instruction attempted while MSR[LE] = 1.

Alignment interrupt 

Operand misalignment Translation enabled and operand is misaligned 
as described in Chapter 5, “Interrupts and 
Exceptions.”

Alignment interrupt (some of these 
cases are implementation-specific)

1 Floating-point not supported on the e300c2.

Table 6-4. Other MMU Exception Conditions (continued)

Exception Condition Description Interrupt 
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Table 6-6 summarizes the registers that the operating system uses to program the e300 core MMUs. These 
registers are accessible to supervisor-level software only. These registers are described in Chapter 2, 
“Register Set,” in the Programming Environments Manual. For e300 core-specific registers, see 
Chapter 2, “Register Model,” of this book.

Table 6-5. Instruction Summary—MMU Control

Instruction Description

mtsr SR,rS Move to Segment Register
SR[SR#]← rS

mtsrin rS,rB Move to Segment Register Indirect
SR[rB[0–3]]← rS

mfsr rD,SR Move from Segment Register
rD←SR[SR#]

mfsrin rD,rB Move from Segment Register Indirect
rD←SR[rB[0–3]] 

tlbie rB1

1 These instructions are defined by the PowerPC architecture, but are optional.

TLB Invalidate Entry
For effective address specified by rB, TLB[V]← 0
The tlbie instruction invalidates both TLB entries indexed by the EA, and operates on both the instruction and 
data TLBs simultaneously invalidating four TLB entries. The index corresponds to bits 15–19 of the EA. 
Software must ensure that instruction fetches or memory references to the virtual pages specified by the tlbie 
instruction have been completed prior to executing the tlbie instruction.

tlbsync 1 TLB Synchronize
Synchronizes the execution of all other tlbie instructions in the system. In the e300 core, when the tlbisync 
signal is negated, instruction execution may continue or resume after the completion of a tlbsync instruction. 
When the tlbisync signal is asserted, instruction execution stops after the completion of a tlbsync instruction. 

tlbli
(implementation
-specific)

Load Instruction TLB Entry
Loads the contents of the ICMP and RPA registers into the ITLB.

tlbld
(implementation
-specific)

Load Data TLB Entry
Loads the contents of the DCMP and RPA registers into the DTLB.

Table 6-6. MMU Registers

Register Description

Segment registers
(SR0–SR15)

The sixteen 32-bit segment registers are present only in 32-bit implementations of the PowerPC 
architecture. The fields in the segment register are interpreted differently depending on the value 
of bit 0. The segment registers are accessed by the mtsr, mtsrin, mfsr, and mfsrin instructions.

BAT registers 
e300: (IBAT0U–IBAT7U, 
IBAT0L–IBAT7L, 
DBAT0U–DBAT7U, and 
DBAT0L–DBAT7L)

The e300 core has 32 BAT registers, organized as 8 pairs of instruction BAT registers 
(IBAT0U–IBAT7U paired with IBAT0L–IBAT7L) and 8 pairs of data BAT registers 
(DBAT0U–DBAT7U paired with DBAT0L–DBAT7L).
The BAT registers are defined as 32-bit registers in 32-bit implementations. These are 
special-purpose registers that are accessed by the mtspr and mfspr instructions, regardless of 
the setting of HID2[13].
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Note that the core contains other features that do not specifically control the MMU, but are implemented 
to increase performance and flexibility. These are:

• Complete set of shadow segment registers for the instruction MMU. These registers are invisible 
to the programming model, as described in Section 6.4.3, “TLB Description.”

• Temporary GPR0–GPR3. These registers are available as r0–r3 when MSR[TGPR] is set. The 
core automatically sets MSR[TGPR] whenever one of the three TLB miss interrupts occurs, 
allowing these interrupt handlers to have four registers that are used as scratchpad space, without 
having to save or restore this part of the machine state that existed when the interrupt occurred. 
Note that MSR[TGPR] is restored to the value in SRR1 when the rfi instruction is executed. Refer 
to Section 6.5.2, “Implementation-Specific Table Search Operation,” for code examples that take 
advantage of these registers.

In addition, the core also automatically saves the values of CR[CR0] of the executing context to 
SRR1[0–3] whenever one of the three TLB miss interrupts occurs. Thus, the interrupt handler can set 
CR[CR0] bits and branch accordingly in the interrupt handler routine, without having to save the existing 
CR[CR0] bits. However, the interrupt handler must restore these bits to CR[CR0] before executing the rfi 
instruction. There are also four other bits saved in SRR1 whenever a TLB miss interrupt occurs that give 
information about whether the access was an instruction or data access; and if it was a data access, whether 
it was for a load or a store instruction. Also, these bits give some information related to the protection 
attributes for the access, and which set in the TLB will be replaced when the next TLB entry is loaded. 
Refer to Section 6.5.2.1, “Resources for Table Search Operations,” for more information on these bits and 
their use.

SDR1 The SDR1 register specifies the variable used in accessing the page tables in memory. SDR1 is 
defined as a 32-bit register for 32-bit implementations. This is a special-purpose register that is 
accessed by the mtspr and mfspr instructions.

Instruction TLB miss address 
and data TLB miss address 
registers (IMISS and DMISS)

When a TLB miss interrupt occurs, the IMISS or DMISS register contains the 32-bit effective 
address of the instruction or data access, respectively, that caused the miss. Note that the e300 
core always loads a big-endian address into the DMISS register.
These registers are implementation-specific.

Primary and secondary hash 
address registers (HASH1 
and HASH2)

The HASH1 and HASH2 registers contain the primary and secondary PTEG addresses that 
correspond to the address causing a TLB miss. These PTEG addresses are automatically 
derived by the core by performing the primary and secondary hashing function on the contents 
of IMISS or DMISS, for an ITLB or DTLB miss interrupt, respectively.
These registers are implementation-specific.

Instruction and data PTE 
compare registers 
(ICMP and DCMP)

The ICMP and DCMP registers contain the word to be compared with the first word of a PTE in 
the table search software routine to determine if a PTE contains the address translation for the 
instruction or data access. The contents of ICMP and DCMP are automatically derived by the 
core when a TLB miss interrupt occurs.
These registers are implementation-specific.

Required physical address 
register (RPA)

The system software loads a TLB entry by loading the second word of the matching PTE entry 
into the RPA register and then executing the tlbli or tlbld instruction (for loading the ITLB or 
DTLB, respectively). 
This register is implementation-specific.

Table 6-6. MMU Registers (continued)

Register Description
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6.2 Real Addressing Mode
If address translation is disabled (MSR[IR] = 0 or MSR[DR] = 0) for a particular access, the effective 
address is treated as the physical address and is passed directly to the memory subsystem as described in 
Chapter 7, “Memory Management,” in the Programming Environments Manual. 

Note that the default WIMG bits (0b0011) cause data accesses to be considered cacheable (I = 0) and, thus, 
load and store accesses are weakly ordered. This is the case, even if the data cache is disabled in the HID0 
register (as it is out of hard reset). If I/O devices require load and store accesses to occur in strict program 
order (strongly ordered), translation must be enabled so that the corresponding I bit can be set. Also, for 
instruction accesses, the default memory access mode bits (WIMG) are 0b0001. That is, instruction 
accesses are considered cacheable (I = 0), and the memory is guarded. Again, instruction cache accesses 
are considered cacheable even if the instruction cache is disabled in the HID0 register (as it is out of hard 
reset). The W and M bits have no effect on the instruction cache.

For information on the synchronization requirements for changes to MSR[IR] and MSR[DR], refer to 
“Synchronization Requirements for Special Registers and for Lookaside Buffers” in Chapter 2, “Register 
Set,” in the Programming Environments Manual.

6.3 Block Address Translation
The block address translation (BAT) mechanism in the OEA provides a way to map ranges of effective 
addresses larger than a single page into contiguous areas of physical memory. Such areas can be used for 
data that is not subject to normal virtual memory handling (paging), such as a memory-mapped display 
buffer or an extremely large array of numerical data.

The software model for block address translation in the e300 core is described in Chapter 7, “Memory 
Management,” in the Programming Environments Manual for 32-bit implementations. However, note that 
for improved performance, the e300 core contains twice as many BAT registers as previous PowerPC 
cores, as shown in Figure 6-2 and Figure 6-3.

Implementation Note—The BAT registers are not initialized by the hardware after the power-up or reset 
sequence. Consequently, all valid bits in both instruction and data BAT areas must be explicitly cleared 
before setting any BAT area for the first time and before enabling translation. Also, note that software must 
avoid overlapping blocks while updating a BAT area or areas. Even if translation is disabled, multiple BAT 
area hits (with the valid bits set) can corrupt the remaining portion (any bits except the valid bits) of the 
BAT registers.

Thus, multiple BAT hits (with valid bits set) are considered a programming error whether translation is 
enabled or disabled, and can lead to unpredictable results if translation is enabled, (or if translation is 
disabled, when translation is eventually enabled). For the case of unused BATs (if translation is to be 
enabled), it is sufficient precaution to simply clear the valid bits of the unused BAT entries.

6.4 Memory Segment Model
The core adheres to the memory segment model as defined in Chapter 7, “Memory Management,” in the 
Programming Environments Manual for 32-bit implementations. Memory in the OEA is divided into 
256-Mbyte segments. This segmented memory model provides a way to map 4-Kbyte pages of effective 
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addresses to 4-Kbyte pages in physical memory (page address translation), while providing the 
programming flexibility afforded by a large virtual address space (52 bits). 

The segment/page address translation mechanism may be superseded by the BAT mechanism described in 
Section 6.3, “Block Address Translation.” If not, the translation proceeds in the following two steps: 

1. From effective address to the virtual address (which never exists as a specific entity, but can be 
considered to be the concatenation of the virtual page number and the byte offset within a page).

2. From virtual address to physical address.

The following section highlights those areas of the memory segment model defined by the OEA that are 
specific to the e300 core.

6.4.1 Page History Recording

Reference (R) and change (C) bits reside in each PTE to keep history information about the page. They are 
maintained by a combination of the core hardware and the table search software. The operating system 
uses this information to determine which areas of memory to write back to disk when new pages must be 
allocated in main memory. Reference and change recording is performed only for accesses made with page 
address translation and not for translations made with the BAT mechanism or for accesses that correspond 
to direct-store interface (T = 1) segments. Furthermore, R and C bits are maintained only for accesses made 
while address translation is enabled (MSR[IR] = 1 or MSR[DR] = 1). 

In the e300 core, the reference and change bits are updated as follows:

• For TLB hits, the C bit is updated according to Table 6-7.

• For TLB misses, when a table search operation is in progress to locate a PTE, the R and C bits are 
updated (set, if required) to reflect the status of the page based on this access.

Table 6-7 shows that the status of the C bit in the TLB entry (in the case of a TLB hit) is what causes the 
processor to update the C bit in the PTE (the R bit is assumed to be set in the page tables if there is a TLB 
hit). Therefore, when software clears the R and C bits in the page tables in memory, it must invalidate the 
TLB entries associated with the pages whose reference and change bits were cleared. 

The core causes the R bit to be set for the execution of the dcbt or dcbtst instruction to that page (by 
causing a TLB miss interrupt to load the TLB entry in the case of a TLB miss). However, neither of these 
instructions causes the C bit to be set.

Table 6-7. Table Search Operations to Update History Bits—TLB Hit Case

R and C Bits in 
TLB Entry

Processor Action

00 Combination does not occur 

01 Combination does not occur

10 Read:
Write: 

No special action
Table search operation required to update C.
Causes a data TLB miss on store interrupt.

11 No special action for read or write
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As defined by the PowerPC architecture, the reference and change bits are updated as if address translation 
were disabled (real addressing mode translation). Additionally, these updates should be performed with 
single-beat read and byte write transactions on the bus.

6.4.1.1 Reference Bit

The reference (R) bit of a page is located in the PTE in the page table. Every time a page is referenced (with 
a read or write access) and the R bit is zero, the R bit is then set in the page table. The OEA specifies that 
the reference bit may be set immediately, or the setting may be delayed until the memory access is 
determined to be successful. Because the reference to a page is what causes a PTE to be loaded into the 
TLB, the reference bit in all core TLB entries is effectively always set. The processor never automatically 
clears the reference bit. 

The reference bit is only a hint to the operating system about the activity of a page. At times, the reference 
bit may be set by software although the access was not logically required by the program, or even if the 
access was prevented by memory protection. Examples of this in these systems include the following:

• Fetching of instructions not subsequently executed 

• Accesses generated by an lswx or stswx instruction with a zero length

• Accesses generated by a stwcx. instruction when no store is performed because a reservation does 
not exist

• Accesses that cause interrupts and are not completed

6.4.1.2 Change Bit

The change bit of a page is located both in the PTE in the page table and in the copy of the PTE loaded into 
the TLB (if a TLB is implemented, as in the e300 core). Whenever a data store instruction is executed 
successfully, if the TLB search (for page address translation) results in a hit, the change bit in the matching 
TLB entry is checked. If it is already set, the processor does not change the C bit. If the TLB change bit is 
0, it is set and a table search operation is performed to also set the C bit in the corresponding PTE in the 
page table. The e300 core causes a data TLB miss on store interrupt for this case so that the software can 
perform the table search operation for setting the C bit. Refer to Section 6.5.2, “Implementation-Specific 
Table Search Operation,” for an example code sequence that handles these conditions.

The change bit (in both the TLB and PTE in the page tables) is set only when a store operation is allowed 
by the page memory protection mechanism and all conditional branches occurring earlier in the program 
have been resolved (such that the store is guaranteed to be in the execution path). Furthermore, the 
following conditions may cause the C bit to be set:

• The execution of an stwcx. instruction is allowed by the memory protection mechanism, but a store 
operation is not performed because no reservation exists.

• The execution of an stswx instruction is allowed by the memory protection mechanism, but a store 
operation is not performed because the specified length is zero.

• The store operation is not performed because an interrupt occurs before the store is performed.

Again, note that although the execution of the dcbt and dcbtst instructions may cause the R bit to be set, 
they never cause the C bit to be set.
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6.4.1.3 Scenarios for Reference and Change Bit Recording

This section provides a summary of the model (defined by the OEA) that is used by the processors for 
maintaining the reference and change bits. In some scenarios, the bits are guaranteed to be set by the 
processor, in some scenarios, the architecture allows that the bits may be set (not absolutely required), and 
in some scenarios, the bits are guaranteed to not be set. 

In implementations that do not maintain the R and C bits in hardware (such as the e300 core), software 
assistance is required. For these processors, the information in this section still applies, except that the 
software performing the updates is constrained to the rules described (that is, must set bits shown as 
guaranteed to be set and must not set bits shown as guaranteed to not be set).

Table 6-8 defines a prioritized list of the R and C bit settings for all scenarios. The entries in the table are 
prioritized from top to bottom, such that a matching scenario occurring closer to the top of the table takes 
precedence over a matching scenario closer to the bottom of the table. For example, if an stwcx. instruction 
causes a protection violation and there is no reservation, the C bit is not altered, as shown for the protection 
violation case. Note that in the table, load operations include those generated by load instructions, by the 
eciwx instruction, and by the cache management instructions that are treated as a load with respect to 
address translation. Similarly, store operations include those operations generated by store instructions, by 
the ecowx instruction, and by the cache management instructions that are treated as a store with respect to 
address translation. Note that the e300 core does not support the eciwx or ecowx instructions, which are 
optional in the PowerPC architecture. In the columns for the e300 core, the combination of the core itself 
and the software used to search the page tables (described in Section 6.5.2, “Implementation-Specific 
Table Search Operation”) is assumed.

Table 6-8. Model for Guaranteed R and C Bit Settings

Priority Scenario
R Bit Set C Bit Set

OEA G2 Core OEA G2 Core

1 No-execute protection violation No No No No

2 Page protection violation Maybe Yes No No

3 Out-of-order instruction fetch or load operation Maybe No No No

4 Out-of-order store operation for instructions that will cause no other kind of 
precise interrupt (in the absence of system-caused, imprecise, or 
floating-point assist interrupts1

Maybe2 No No No

5 All other out-of-order store operations Maybe 1 No Maybe 1 No

6 Zero-length load (lswx) Maybe Yes No No

7 Zero-length store (stswx) Maybe 1 Yes Maybe 1 Yes

8 Store conditional (stwcx.) that does not store Maybe 1 Yes Maybe 1 Yes

9 In-order instruction fetch Yes3 Yes No No

10 Load instruction or eciwx4 Yes Yes No No

11 Store instruction, ecowx3 or dcbz instruction Yes Yes Yes Yes

12 dcbt, dcbtst, dcbst, or dcbf instruction Maybe Yes No No
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For more information, see “Page History Recording” in Chapter 7, “Memory Management,” of the 
Programming Environments Manual.

6.4.2 Page Memory Protection

The e300 core implements page memory protection as it is defined in Chapter 7, “Memory Management,” 
in the Programming Environments Manual.

6.4.3 TLB Description

This section describes the hardware resources provided in the e300 core to facilitate the page address 
translation process. Note that the hardware implementation of the MMU is not specified by the 
architecture, and while this description applies to the e300 core, it does not necessarily apply to other 
processors of this family.

6.4.3.1 TLB Organization

Because the e300 core has two MMUs (IMMU and DMMU) that operate in parallel, some of the MMU 
resources are shared, and some are actually duplicated (shadowed) in each MMU to maximize 
performance. Figure 6-7 shows the relationships between these resources within both the IMMU and 
DMMU and how the various portions of the effective address are used in the address translation process.

While both MMUs can be accessed simultaneously (both sets of segment registers and TLBs can be 
accessed in the same clock), when there is an exception condition, only one interrupt is reported at a time. 
ITLB miss interrupts are reported when there are no more instructions to be dispatched or retired (the 
pipeline is empty). Refer to Chapter 7, “Instruction Timing,” for more detailed information about the 
internal pipelines and the reporting of interrupts.

As TLB entries are on-chip copies of PTEs in the page tables in memory, they are similar in structure. TLB 
entries consist of two words; the high-order word contains the VSID and API fields of the high-order word 
of the PTE and the low-order word contains the RPN, C bit, WIMG bits, and PP bits (as in the low-order 
word of the PTE). In order to uniquely identify a TLB entry as the required PTE, the TLB entry also 
contains five more bits of the page index, EA[10–14] (in addition to the API bits of the PTE).

13 icbi instruction Maybe 1 No No 1 No

14 dcbi5 instruction Maybe 1 Yes Maybe 1 Yes

1 Floating-point not supported on the e300c2.
2 If C is set, R is guaranteed to also be set.
3 This includes the case when the instruction was fetched out-of-order and R was not set (does not apply for the e300 core).
4 Not supported on the e300 core.
5 The dcbi instruction should never be used on the e300 core.

Table 6-8. Model for Guaranteed R and C Bit Settings (continued)

Priority Scenario
R Bit Set C Bit Set

OEA G2 Core OEA G2 Core
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When an instruction or data access occurs, the effective address is routed to the appropriate MMU. 
EA[0–3] select 1 of the 16 segment registers and the remaining effective address bits and the virtual 
address from the segment register is passed to the TLB. EA[15–19] then select two entries in the TLB; the 
valid bit is checked and EA[10–14], VSID, and API fields (EA[4–9]) for the access are then compared 
with the corresponding values in the TLB entries. If one of the entries hits, the PP bits are checked for a 
protection violation, and the C bit is checked. If these bits do not cause an interrupt, the RPN value is 
passed to the memory subsystem and the WIMG bits are then used as attributes for the access.

Also, note that the segment registers do not have a valid bit, and so they should also be initialized before 
translation is enabled.

Figure 6-7. Segment Register and TLB Organization
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6.4.3.2 TLB Entry Invalidation

For processors, such as the e300 core, that implement TLB structures to maintain on-chip copies of the 
PTEs that are resident in physical memory, the optional tlbie instruction provides a way to invalidate the 
TLB entries. Note that the execution of the tlbie instruction in the e300 core invalidates four entries—both 
the ITLB entries indexed by EA[15–19] and both the indexed entries of the DTLB. 

The architecture allows tlbie to optionally enable a TLB invalidate signaling mechanism in hardware so 
that other processors also invalidate their resident copies of the matching PTE. The core does not signal 
the TLB invalidation to other processors and does not perform any action when a TLB invalidation is 
performed by another processor. 

The tlbsync instruction causes instruction execution to stop if the tlbisync input signal is also asserted. If 
tlbisync is negated, instruction execution may continue or resume after the completion of a tlbsync 
instruction. 

The tlbia instruction is not implemented in the e300 core and when its opcode is encountered, an illegal 
instruction program interrupt is generated. To invalidate all entries of both TLBs, 32 tlbie instructions must 
be executed, incrementing the value in EA[15–19] by 1 each time. See Chapter 8, “Instruction Set,” in the 
Programming Environments Manual for detailed information about the tlbie instruction.

6.4.4 Page Address Translation Summary

Figure 6-8 provides the detailed flow for the page address translation mechanism. The figure includes the 
checking of the N bit in the segment descriptor and then expands on the TLB Hit branch of Figure 6-6. The 
detailed flow for the TLB Miss branch is described in Section 6.5.1, “Page Table Search 
Operation—Conceptual Flow.” Note that as in the case of block address translation, if the dcbz instruction 
is attempted to be executed either in write-through mode or as cache-inhibited (W = 1 or I = 1), the 
alignment interrupt is generated. The checking of memory protection violation conditions for page address 
translation is described in Chapter 7, “Memory Management,” in the Programming Environments Manual 
for 32-bit implementations.

6.5 Page Table Search Operation
As stated earlier, the operating system must synthesize the table search algorithm for setting up the tables. 
The core TLB miss interrupt handlers also use this algorithm (with the assistance of some 
hardware-generated values) to load TLB entries when TLB misses occur, as described in Section 6.5.2, 
“Implementation-Specific Table Search Operation.” 

6.5.1 Page Table Search Operation—Conceptual Flow

The table search process for a processor of this family varies slightly for 64- and 32-bit implementations. 
The main differences are the address ranges and PTE formats specified. See the Programming 
Environments Manual for the PTE format. An outline of the page table search process performed by a 
32-bit implementation is as follows:

1. The 32-bit physical address of the primary PTEG is generated as described in Chapter 7, “Memory 
Management,” in the Programming Environments Manual for 32-bit implementations.
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2. The first PTE (PTE0) in the primary PTEG is read from memory. PTE reads should occur with an 
implied WIM memory/cache mode control bit setting of 0b001. Therefore, they are considered 
cacheable and burst in from memory and placed in the cache. 

Figure 6-8. Page Address Translation Flow for 32-Bit Implementations—TLB Hit
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3. The PTE in the selected PTEG is tested for a match with the virtual page number (VPN) of the 
access. The VPN is the VSID concatenated with the page index field of the virtual address. For a 
match to occur, the following must be true:

— PTE[H] = 0

— PTE[V] = 1

— PTE[VSID] = VA[0–23]

— PTE[API] = VA[24–29]

4. If a match is not found, step 3 is repeated for each of the other seven PTEs in the primary PTEG. If 
a match is found, the table search process continues as described in step 8. If a match is not found 
within the eight PTEs of the primary PTEG, the address of the secondary PTEG is generated.

5. The first PTE (PTE0) in the secondary PTEG is read from memory. Again, because PTE reads 
typically have a WIM bit combination of 0b001, an entire cache line is burst into the on-chip cache. 

6. The PTE in the selected secondary PTEG is tested for a match with the virtual page number (VPN) 
of the access. For a match to occur, the following must be true:

— PTE[H] = 1

— PTE[V] = 1

— PTE[VSID] = VA[0–23]

— PTE[API] = VA[24–29]

7. If a match is not found, step 6 is repeated for each of the other seven PTEs in the secondary PTEG. 

8. If a match is found, the PTE is written into the on-chip TLB and the R bit is updated in the PTE in 
memory (if necessary). If there is no memory protection violation, the C bit is also updated in 
memory and the table search is complete. 

9. If no match is found in the eight PTEs of the secondary PTEG, the search fails and a page fault 
interrupt condition occurs (either an ISI or DSI interrupt). Note that the software routines that 
implement this algorithm must synthesize this condition by appropriately setting the SRR1 or 
DSISR and branching to the ISI or DSI handler routine.

Reads from memory for table search operations should be performed as global (but not exclusive), 
cacheable operations, and can be loaded into the on-chip cache.

Figure 6-9 and Figure 6-10 provide conceptual flow diagrams of primary and secondary page table search 
operations as described in the OEA for 32-bit processors. Recall that the architecture allows 
implementations to perform the page table search operations automatically (in hardware) or with software 
assistance (may be required), as is the case with the e300 core. Also, the elements in the figure that apply 
to TLBs are shown as optional because TLBs are not required by the architecture. 
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Figure 6-9. Primary Page Table Search—Conceptual Flow
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Figure 6-10. Secondary Page Table Search Flow—Conceptual Flow
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appropriate TLB, the processor vectors to one of the three TLB miss interrupt handlers so that the software 
can perform a table search operation and load the TLB. When this occurs, the processor automatically 
saves information about the access and the executing context. Table 6-9 provides a summary of the 
implementation-specific interrupts, registers, and instructions that can be used by the TLB miss interrupt 
handler software in e300 core systems. Refer to Chapter 5, “Interrupts and Exceptions,” for more 
information about interrupt processing.

In addition, the core contains the following features that do not specifically control the MMU, but that are 
implemented to increase performance and flexibility in the software table search routines whenever one of 
the three TLB miss interrupts occurs:

• Temporary GPR0–GPR3. These registers are available as r0–r3 when MSR[TGPR] is set. The 
e300 core automatically sets MSR[TGPR] for these cases, allowing these interrupt handlers to have 
four registers that are used as scratchpad space, without having to save or restore this part of the 
machine state that existed when the interrupt occurred. Note that MSR[TGPR] is cleared when the 
rfi instruction is executed because the old MSR value (with MSR[TGPR] = 0) saved in SRR1 is 
restored. Refer to Section 6.5.2.2, “Software Table Search Operation,” for code examples that take 
advantage of these registers.

Table 6-9. Implementation-Specific Resources for Table Search Operations

Resource Name Description

Interrupts Instruction TLB miss interrupt
(vector offset 0x1000)

No matching entry found in ITLB

Data TLB miss on load interrupt 
(vector offset 0x1100)

No matching entry found in DTLB for a load data access

Data TLB miss on store 
interrupt—also caused when 
change bit must be updated 
(vector offset 0x1200)

No matching entry found in DTLB for a store data access or matching DLTB entry 
has C = 0 and access is a store

Registers IMISS and DMISS When a TLB miss interrupt occurs, IMISS or DMISS contains the 32-bit effective 
address of the instruction or data access that caused the miss interrupt.

ICMP and DCMP ICMP and DCMP contain the word to be compared with the first word of a PTE 
in the table search software routine to determine if a PTE contains the address 
translation for the instruction or data access. The contents of ICMP and DCMP 
are automatically derived by the core when a TLB miss interrupt occurs.

HASH1 and HASH2 The HASH1 and HASH2 registers contain the primary and secondary PTEG 
addresses that correspond to the address causing a TLB miss. These PTEG 
addresses are automatically derived by the core by performing the primary and 
secondary hashing function on the contents of IMISS or DMISS, for an ITLB or 
DTLB miss interrupt, respectively.

RPA The system software loads a TLB entry by loading the second word of the 
matching PTE entry into the RPA register and then executing the tlbli or tlbld 
instruction (for loading the ITLB or DTLB, respectively). 

Instructions tlbli rB Loads the contents of the ICMP and RPA registers into the ITLB entry selected 
by <ea> and SRR1[WAY]

 tlbld rB Loads the contents of the DCMP and RPA registers into the DTLB entry selected 
by <ea> and SRR1[WAY]
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• Also, the core automatically saves the values of CR[CR0] of the executing context to SRR1[0–3]. 
Thus, the interrupt handler can set CR[CR0] bits and branch accordingly in the interrupt handler 
routine, without having to save the existing CR[CR0] bits. However, the interrupt handler must 
restore these bits to CR[CR0] before executing the rfi instruction or branching to the DSI or ISI 
interrupt handler.

In addition, SRR1[CRF0] must be cleared before branching to the DSI interrupt handler on a data 
access page fault. For an instruction access page fault, SRR1[0, 2–3] must be cleared before 
branching to the ISI handler. See Figure 6-17 for synthesizing a page fault interrupt when no PTE 
is found.

• SRR1[D/I] identifies an instruction or data miss, and SRR1[L/S] identifies a load or store miss. 
SRR1[WAY] identifies the associativity class of the TLB entry selected for replacement by the 
LRU algorithm. The software can change this value, effectively overriding the replacement 
algorithm. The SRR1[KEY] bit is used by the table search software to determine if there is a 
protection violation associated with the access (useful on data write misses for determining if the 
C bit should be updated in the table). Table 6-10 summarizes the SRR1 bits updated whenever one 
of the three TLB miss interrupts occurs. 

The key bit saved in SRR1 is derived as follows:

Select KEY from segment register:

If MSR[PR] = 0, KEY = Ks

If MSR[PR] = 1, KEY = Kp

The rest of this section describes the format of the implementation-specific SPRs used by the TLB miss 
interrupt handlers. These registers can be accessed by supervisor-level instructions only. Because DMISS, 
IMISS, DCMP, ICMP, HASH1, HASH2, and RPA are used to access the translation tables for software 
table search operations, they should only be accessed when address translation is disabled (MSR[IR] = 0 
and MSR[DR] = 0). Note that MSR[IR] and MSR[DR] are cleared whenever an interrupt occurs.

6.5.2.1.1 Data and Instruction TLB Miss Address Registers (DMISS and IMISS)

The DMISS and IMISS registers have the same format as shown in Figure 6-11. They are loaded 
automatically on a data or instruction TLB miss. The DMISS and IMISS contain the effective page address 
of the access which caused the TLB miss interrupt. The contents are used by the processor when 
calculating the values of HASH1 and HASH2, and by the tlbld and tlbli instructions when loading a new 

Table 6-10. Implementation-Specific SRR1 Bits

Bits Name Function

0–3 CRF0 Condition register field 0 bits

12 KEY Key for TLB miss (either Ks or Kp from segment register, depending on 
whether the access is a user or supervisor access).

13 D/I Set if instruction TLB miss

14 WAY Next TLB set to be replaced (set per LRU)

15 S/L Set if data TLB miss was for a load instruction
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TLB entry. Note that the core always loads a big-endian address into the DMISS register. These registers 
are both read- and write- accessible. However, great caution should be used when writing to these registers. 

Figure 6-11. DMISS and IMISS Registers

6.5.2.1.2 Data and Instruction TLB Compare Registers (DCMP and ICMP)

The DCMP and ICMP registers are shown in Figure 6-12. These registers contain the first word in the 
required PTE. The contents are constructed automatically from the contents of the segment registers and 
the effective address (DMISS or IMISS) when a TLB miss interrupt occurs. Each PTE read from the tables 
in memory during the table search process should be compared with this value to determine whether or not 
the PTE is a match. Upon execution of a tlbld or tlbli instruction, the contents of the DCMP or ICMP 
register is loaded into the first word of the selected TLB entry. 

Table 6-11 describes the bit settings for the DCMP and ICMP registers.

6.5.2.1.3 Primary and Secondary Hash Address Registers (HASH1 and HASH2)

HASH1 and HASH2 contain the physical addresses of the primary and secondary PTEGs for the access 
that caused the TLB miss interrupt. Only bits 7–25 differ between them. For convenience, the processor 
automatically constructs the full physical address by routing bits 0–6 of SDR1 into HASH1 and HASH2 
and clearing the lower six bits. These registers are read-only and are constructed from the contents of the 
DMISS or IMISS register. The format for HASH1 and HASH2 is shown in Figure 6-13. 

SPR
SPR

977 (DCMP)
981 (ICMP)

Access: Supervisor read/write

0 1 24 25 26 31

R
V VSID H API

W

Reset All zeros

Figure 6-12. DCMP and ICMP Registers

Table 6-11. DCMP and ICMP Bit Settings

Bits Name Description

0 V Valid bit. Set by the processor on a TLB miss interrupt.

1–24 VSID Virtual segment ID. Copied from VSID field of corresponding segment register.

25 H Hash function identifier. Cleared by the processor on a TLB miss interrupt.

26–31 API Abbreviated page index. Copied from API of effective address.

Effective Address

0 31
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Table 6-12 describes the bit settings of the HASH1 and HASH2 registers.

6.5.2.1.4 Required Physical Address Register (RPA)

The RPA is shown in Figure 6-14. During a page table search operation, the software must load the RPA 
with the second word of the correct PTE. When the tlbld or tlbli instruction is executed, data from IMISS 
and ICMP (or DMISS and DCMP) and the RPA registers is merged and loaded into the selected TLB entry. 
The TLB entry is selected by the effective address of the access (loaded by the table search software from 
the DMISS or IMISS register) and SRR1[WAY].

Table 6-13 describes the bit settings of the RPA register.

SPR
SPR

978 (HASH1)
979 (HASH2)

Access: Supervisor read-only

0 6 7 25 26 31

R HTABORG Hashed Page Address —

W

Reset All zeros

Figure 6-13. HASH1 and HASH2 Registers

Table 6-12. HASH1 and HASH2 Bit Settings

Bits Name Description

0–6 HTABORG[0–6] Copy of the upper 7 bits of the HTABORG field from SDR1

7–25 Hashed page address Address bits 7–25 of the PTEG to be searched

26–31 — Reserved

SPR 982 Access: Supervisor read/write

0 19 20 22 23 24 25 28 29 30 31

R
RPN — R C WIMG — PP

W

Reset All zeros

Figure 6-14. Required Physical Address Register (RPA)

Table 6-13. RPA Bit Settings

Bits Name Description

0–19 RPN Physical page number from PTE

20–22 — Reserved

23 R Reference bit from PTE

24 C Change bit from PTE

25–28 WIMG Memory/cache access attribute bits

29 — Reserved

30–31 PP Page protection bits from PTE
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6.5.2.2 Software Table Search Operation

When a TLB miss occurs, the instruction or data MMU loads IMISS or DMISS, with the effective address 
of the access. The processor completes all instructions ahead of the instruction that caused the interrupt, 
status information is saved in SRR1, and one of the three TLB miss interrupts is taken. In addition, the 
processor loads ICMP or DCMP with the value to be compared with the first word of PTEs in the tables 
in memory.

The software should then access the first PTE at the address pointed to by HASH1. The first word of the 
PTE should be loaded and compared to the contents of DCMP or ICMP. If there is a match, the required 
PTE has been found and the second word of the PTE is loaded from memory into RPA. Then the tlbli or 
tlbld instruction is executed, which loads the contents of ICMP or DCMP and RPA into the selected TLB 
entry. The TLB entry is selected by the effective address of the access and SRR1[WAY]. 

If the comparison does not match, the PTEG address is incremented to point to the next PTE in the table, 
and the above sequence is repeated. If none of the eight PTEs in the primary PTEG matches, the sequence 
is then repeated using the secondary PTEG (at the address contained in HASH2). 

If the PTE is also not found in the eight entries of the secondary page table, a page fault condition exists 
and a page fault interrupt must be synthesized. Thus, the appropriate bits must be set in SRR1 (or DSISR) 
and the TLB miss handler must branch to either the ISI or DSI interrupt handler, which handles the page 
fault condition.

The following section provides a flow diagram outlining some example software that can be used to handle 
the three TLB miss interrupts and sample assembly language that implements that flow.

6.5.2.2.1 Flow for Example Interrupt Handlers

Figure 6-15 shows the flow for the example TLB miss interrupt handlers. The flow shown is common for 
the three interrupt handlers, except that the IMISS and ICMP registers are used for the instruction TLB 
miss interrupt while the DMISS and DCMP registers are used for the two data TLB miss interrupts. Also, 
for the cases of store instructions that cause either a TLB miss or require a table search operation to update 
the C bit, the flow shows that the C bit is set in both the TLB entry and PTE in memory. Finally, in the case 
of a page fault (no PTE found in the table search operation), the setup for the ISI or DSI interrupt is slightly 
different for these two cases.
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Figure 6-15. Flow for Example Software Table Search Operation

(See Figure 6-16)

Set Counter:
cnt ← 8

Load Primary PTEG Pointer:
ptr ← HASH1 – 8
compare_value ← ICMP/DCMP

Read Lower Word of Next 
PTE from Memory:
ptr ← ptr + 8

Read Upper Word of PTE:
temp ← (ptr – 4)

Otherwise

RPA ← temp

<ea> ← IMISS/DMISS

Load TLB Entry
tlbli <ea> (or tlbld <ea>)

Otherwise

cnt ≠ 0

Save Old Counter 
and CR0 Bits

Restore Old Counter 
and CR0 Bits

Otherwise

Load Secondary
PTEG Pointer:

compare_value [H] ← 1

Set Counter:
cnt ← 8

cnt ← cnt – 1

Setup for Page
Fault Interrupt

Secondary Hash 
Complete

Return to Executing Program:
rfi

compare_value [H] = 1

(See Figure 6-17)

TLB Miss Interrupt

Instruction Access and 
temp[G] = 1

Otherwise

Setup for Protection 
Violation Exception

Check R, C Bits 
and Set as Needed

(See Figure 6-18)

temp = compare_value
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The flow for checking the R and C bits and setting them appropriately is shown in Figure 6-16.

Figure 6-16. Check and Set R and C Bit Flow

Store Byte 7 of PTE to Memory:
(ptr – 2)  ← temp [Byte 7]

Set R Bit:
temp ← temp OR 0x100

Handler for Data Store Op

Check R, C Bits 
and Set as Needed

Otherwise

pp =00
01

Check 
Protection pp = 10

11

Setup for 
Protection Violation

pp = 11

pp = 10

Return to TLB Miss 
Interrupt Flow

(See Figure 6-15)

(See Figure 6-18)

(See Figure 6-18)

temp[C] = 0

Otherwise

SRR1[KEY] = 1

Store Bytes 6, 7 of PTE to Memory:
(ptr – 2)  ← temp [Bytes 6, 7]

Return to TLB Miss 
Interrupt Flow

(See Figure 6-15)

Set R, C Bits:
temp ← temp OR 0x180

Otherwise Setup for 
Protection Violation



Memory Management

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 6-37
  

Figure 6-17 shows the flow for synthesizing a page fault interrupt when no PTE is found.

Figure 6-17. Page Fault Setup Flow

Setup for Page
Fault Interrupt

Data TLB Miss Handlers Instruction TLB
Miss Handlers

DSISR[6] ← SRR1[15]

DSISR[1] ← 1

DAR ← dtemp

Restore CR0 Bits

MSR[TGPR] ← 0

Branch to DSI 
Interrupt Handler

Restore CR0 Bits

MSR[TGPR] ← 0

Branch to ISI Interrupt 
Handler

Clear Upper Bits of SRR1
SRR1 ← SRR1 AND 0xFFFF

SRR1[1] ← 1

Clear Upper Bits of SRR1
SRR1 ← SRR1 AND 0xFFFF

SRR1[31] = 1
(Little-Endian Mode)

dtemp ← DMISS

dtemp ← dtemp XOR 0x07

Otherwise
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Figure 6-18 shows the flow for managing the cases of a TLB miss on an instruction access to guarded 
memory, and a TLB miss when C = 0 and a protection violation exists. The setup for these protection 
violation exceptions is very similar to that of page fault conditions (as shown in Figure 6-17) except that 
different bits in SRR1 (and DSISR) are set.

Figure 6-18. Setup for Protection Violation Exceptions

6.5.2.2.2 Code for Example Interrupt Handlers

This section provides assembly language examples that implement the flow diagrams described above. 
Note that although these routines fit into a few cache lines, they are supplied only as functional examples; 
they could be further optimized for faster performance. 
# TLB software load for e300 core
#
# New Instructions:
# tlbld - write the dtlb with the pte in rpa reg 

DSISR[6] ← SRR1[15]

DSISR[4] ← 1

Restore CR0 Bits

MSR[TGPR] ← 0

Branch to DSI Interrupt 
Handler

Restore CR0 Bits

MSR[TGPR] ← 0

Branch to ISI Interrupt 
Handler

Clear Upper Bits of SRR1
SRR1 ← SRR1 AND 0xFFFF

SRR1[4] ← 1

Clear Upper Bits of SRR1
SRR1 ← SRR1 AND 0xFFFF

Data TLB Miss Handlers (Instruction Access to
Guarded Memory)(Data Access 

to Protected 
Memory; C = 0)

Setup for Protection
Violation Interrupts

DAR ← dtemp

SRR1[31] = 1
(Little-Endian Mode)

dtemp ← DMISS

dtemp ← dtemp XOR 0x07

Otherwise

Instruction TLB
Miss Handler



Memory Management

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 6-39
  

# tlbli - write the itlb with the pte in rpa reg
# New SPRs
#     dmiss - address of dstream miss
#     imiss - address of istream miss
# hash1 - address primary hash PTEG address
# hash2 - returns secondary hash PTEG address
# iCmp - returns the primary istream compare value
# dCmp - returns the primary dstream compare value
# rpa - the second word of pte used by tlblx
#
# gpr r0..r3 are shadowed
#
# there are three flows.
# tlbDataMiss - tlb miss on data load 
# tlbCeq0 - tlb miss on data store or store with tlb change bit

== 0
# tlbInstrMiss - tlb miss on instruction fetch
#+
# place labels for rel branches
#-
#.machine e300
.set r0, 0
.set r1, 1
.set r2, 2
.set r3, 3
.set dMiss, 976
.set dCmp,  977
.set hash1, 978
.set hash2, 979
.set iMiss, 980
.set iCmp, 981
.set rpa, 982
.set c0, 0
.set dar, 19
.set dsisr, 18
.set srr0, 26
.set srr1, 27
.
.csect tlbmiss[PR]
vec0:
.globl vec0
.org vec0+0x300
vec300:
.org vec0+0x400
vec400:
#+
# Instruction TB miss flow
# Entry:
# Vec = 1000
# srr0   -> address of instruction that missed
# srr1   -> 0:3=cr0 4=lru way bit 16:31 = saved MSR
# msr<tgpr> -> 1
# iMiss   -> ea that missed
# iCmp   -> the compare value for the va that missed
# hash1   -> pointer to first hash pteg
# hash2   -> pointer to second hash pteg
#
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# Register usage:
# r0 is saved counter
# r1 is junk
# r2 is pointer to pteg
# r3 is current compare value
.org vec0+0x1000
tlbInstrMiss:

mfspr r2, hash1 # get first pointer
addi r1, 0, 8 # load 8 for counter
mfctr r0 # save counter
mfspr r3, iCmp # get first compare value
addi r2, r2, -8 # pre dec the pointer

im0: mtctr r1 # load counter
im1: lwzu r1, 8(r2 ) # get next pte

cmp c0, r1, r3 # see if found pte
bdnzf eq, im1 # dec count br if cmp ne and if count not zero
bne instrSecHash # if not found set up second hash or exit
l r1, +4(r2) # load tlb entry lower-word
andi. r3, r1, 8 # check G bit
bne doISIp # if guarded, take an ISI
mtctr r0 # restore counter
mfspr r0, iMiss # get the miss address for the tlbli
mfspr r3, srr1 # get the saved cr0 bits
mtcrf 0x80, r3 # restore CR0
mtspr rpa, r1 # set the pte
ori r1, r1, 0x100 # set reference bit
srwi r1, r1, 8 # get byte 7 of pte
tlbli r0 # load the itlb
stb r1, +6(r2) # update page table
rfi # return to executing program

#+
# Register usage:
# r0 is saved counter
# r1 is junk
# r2 is pointer to pteg
# r3 is current compare value
#-
instrSecHash:

andi. r1, r3, 0x0040 # see if we have done second hash
bne doISI # if so, go to ISI interrupt
mfspr r2, hash2 # get the second pointer
ori r3, r3, 0x0040 # change the compare value
addi r1, 0, 8 # load 8 for counter
addi r2, r2, -8 # pre dec for update on load
b im0 # try second hash

#+
# entry Not Found: synthesize an ISI interrupt
# guarded memory protection violation: synthesize an ISI interrupt
# Entry:
# r0 is saved counter
# r1 is junk
# r2 is pointer to pteg
# r3 is current compare value
#
doISIp:

mfspr r3, srr1 # get srr1
andi. r2,r3,0xffff # clean upper srr1
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addis r2, r2, 0x0800 # or in srr<4> = 1 to flag prot violation
b isi1:

doISI:
mfspr r3, srr1  # get srr1
andi. r2, r3, 0xffff # clean srr1
addis r2, r2, 0x4000 # or in srr1<1> = 1 to flag pte not found

isi1 mtctr r0 # restore counter
mtspr srr1, r2 # set srr1
mfmsr r0 # get msr
xoris r0, r0, 0x8000 # flip the msr<tgpr> bit
mtcrf 0x80, r3 # restore CR0
mtmsr r0 # flip back to the native gprs
b vec400 # go to instr. access interrupt

#
#+
# Data TLB miss flow
# Entry:
# Vec = 1100
# srr0   -> address of instruction that caused data tlb miss
# srr1   -> 0:3=cr0 4=lru way bit 5=1 if store 16:31 = saved MSR
# msr<tgpr> -> 1
# dMiss   -> ea that missed
# dCmp   -> the compare value for the va that missed
# hash1   -> pointer to first hash pteg
# hash2   -> pointer to second hash pteg
#
# Register usage:
# r0 is saved counter
# r1 is junk
# r2 is pointer to pteg
# r3 is current compare value
#-
.csect tlbmiss[PR]
.org vec0+0x1100
tlbDataMiss:

mfspr r2, hash1 # get first pointer
addi r1, 0, 8 # load 8 for counter
mfctr r0 # save counter
mfspr r3, dCmp # get first compare value
addi r2, r2, -8 # pre dec the pointer

dm0: mtctr r1 # load counter
dm1: lwzu r1, 8(r2) # get next pte

cmp c0, r1, r3 # see if found pte
bdnzf 0, dm1 # dec count br if cmp ne and if count not zero
bne dataSecHash # if not found set up second hash or exit
l r1, +4(r2) # load tlb entry lower-word
mtctr r0 # restore counter
mfspr r0, dMiss # get the miss address for the tlbld
mfspr r3, srr1 # get the saved cr0 bits
mtcrf 0x80, r3 # restore CR0
mtspr rpa, r1 # set the pte
ori r1, r1, 0x100 # set reference bit
srw r1, r1, 8 # get byte 7 of pte
tlbld r0 # load the dtlb
stb r1, +6(r2) # update page table
rfi # return to executing program
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#+
# Register usage:
# r0 is saved counter
# r1 is junk
# r2 is pointer to pteg
# r3 is current compare value
#-
dataSecHash:

andi. r1, r3, 0x0040 # see if we have done second hash
bne doDSI # if so, go to DSI interrupt
mfspr r2, hash2 # get the second pointer
ori r3, r3, 0x0040 # change the compare value
addi r1, 0, 8 # load 8 for counter
addi r2, r2, -8 # pre dec for update on load
b dm0 # try second hash

#
#+
# C=0 in dtlb and dtlb miss on store flow
# Entry:
# Vec = 1200
# srr0   -> address of store that caused the interrupt
# srr1   -> 0:3=cr0 4=lru way bit 5=1 16:31 = saved MSR
# msr<tgpr> -> 1
# dMiss   -> ea that missed
# dCmp   -> the compare value for the va that missed
# hash1   -> pointer to first hash pteg
# hash2   -> pointer to second hash pteg
#
# Register usage:
# r0 is saved counter
# r1 is junk
# r2 is pointer to pteg
# r3 is current compare value
#-
.csect tlbmiss[PR]
.org vec0+0x1200
tlbCeq0:

mfspr r2, hash1 # get first pointer
addi r1, 0, 8 # load 8 for counter
mfctr r0 # save counter
mfspr r3, dCmp # get first compare value
addi r2, r2, -8 # pre dec the pointer

ceq0: mtctr r1 # load counter
ceq1: lwzu r1, 8(r2) # get next pte

cmp c0, r1, r3 # see if found pte
bdnzf 0, ceq1 # dec count br if cmp ne and if count not zero
bne cEq0SecHash # if not found set up second hash or exit 
l r1, +4(r2) # load tlb entry lower-word
andi. r3,r1,0x80 # check the C-bit
beq cEq0ChkProt # if (C==0) go check protection modes

ceq2: mtctr r0 # restore counter
mfspr r0, dMiss # get the miss address for the tlbld
mfspr r3, srr1 # get the saved cr0 bits
mtcrf 0x80, r3 # restore CR0
mtspr rpa, r1 # set the pte
tlbld r0 # load the dtlb
rfi # return to executing program
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#+
# Register usage:
# r0 is saved counter
# r1 is junk
# r2 is pointer to pteg
# r3 is current compare value
#-
cEq0SecHash:

andi. r1, r3, 0x0040 # see if we have done second hash
bne doDSI # if so, go to DSI interrupt
mfspr r2, hash2 # get the second pointer
ori r3, r3, 0x0040 # change the compare value
addi r1, 0, 8 # load 8 for counter
addi r2, r2, -8 # pre dec for update on load
b ceq0 # try second hash

#+
# entry found and PTE(c-bit==0): 
# (check protection before setting PTE(c-bit)
# Register usage:
# r0 is saved counter
# r1 is PTE entry
# r2 is pointer to pteg
# r3 is trashed
#-
cEq0ChkProt:

rlwinm. r3,r1,30,0,1 # test PP
bge- chk0 # if (PP==00 or PP==01) goto chk0:
andi. r3,r1,1 # test PP[0]
beq+ chk2 # return if PP[0]==0
b doDSIp # else DSIp

chk0: mfspr r3,srr1 # get old msr
andis. r3,r3,0x0008 # test the KEY bit (SRR1-bit 12)
beq chk2 # if (KEY==0) goto chk2:
b doDSIp # else DSIp

chk2: ori r1, r1, 0x180 # set reference and change bit
sth r1, 6(r2) # update page table
b ceq2 # and back we go

#
#+
# entry Not Found: synthesize a DSI interrupt
# Entry:
# r0 is saved counter
# r1 is junk
# r2 is pointer to pteg
# r3 is current compare value
#
doDSI:

mfspr r3, srr1 # get srr1
rlwinm r1, r3, 9,6,6 # get srr1<flag> to bit 6 for load/store, zero

rest
addis r1, r1, 0x4000 # or in dsisr<1> = 1 to flag pte not found
b dsi1:

doDSIp:
mfspr r3, srr1 # get srr1
rlwinm r1, r3, 9,6,6 # get srr1<flag> to bit 6 for load/store, zero

rest
addis r1, r1, 0x0800 # or in dsisr<4> = 1 to flag prot violation
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dsi1: mtctr r0 # restore counter
andi. r2, r3, 0xffff # clear upper bits of srr1
mtspr srr1, r2 # set srr1
mtspr dsisr, r1 # load the dsisr
mfspr r1, dMiss # get miss address
rlwinm. r2,r2,0,31,31 # test LE bit
beq dsi2: # if little endian then:
xor r1,r1,0x07 # de-mung the data address

dsi2: mtspr dar, r1 # put in dar 
mfmsr r0 # get msr
xoris r0, r0, 0x2 # flip the msr<tgpr> bit
mtcrf 0x80, r3 # restore CR0
mtmsr r0 # flip back to the native gprs
b vec300 # branch to DSI interrupt

6.5.3 Page Table Updates

TLBs are defined as noncoherent caches of the PTEs. TLB entries must be flushed explicitly with the TLB 
invalidate entry instruction (tlbie) whenever the corresponding PTE is modified. Because the core is 
intended primarily for uniprocessor environments, it does not provide coherency checking for TLBs 
between multiple processors. If the e300 core is used in a multiprocessor environment where TLB 
coherency is required, synchronization must be implemented in software.

Processors may write reference and change bits with unsynchronized, atomic byte store operations. Note 
that each V, R, and C bits reside in a distinct byte of a PTE. Therefore, extreme care must be taken to use 
byte writes when updating only one of these bits.

Explicitly altering certain MSR bits (using the mtmsr instruction), PTEs, or certain system registers, may 
have the side effect of changing the effective or physical addresses from which the current instruction 
stream is being fetched. This kind of side effect is defined as an implicit branch. Implicit branches are not 
supported and an attempt to perform one causes boundedly-undefined results. Therefore, PTEs must not 
be changed in a manner that causes an implicit branch. Chapter 2, “Register Set,” in the Programming 
Environments Manual, lists the possible implicit branch conditions that can occur when system registers 
and MSR bits are changed. 

6.5.4 Segment Register Updates

Synchronization requirements for using the move to segment register instructions (mtsr and mtsrin) are 
described in “Synchronization Requirements for Special Registers and for Lookaside Buffers” in 
Chapter 2, “Register Set,” in the Programming Environments Manual.
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Chapter 7  
Instruction Timing
This chapter describes how the e300 core processor fetches, dispatches, and executes instructions, and how 
it reports the results of instruction execution. It gives detailed descriptions of how the core execution units 
work, and how those units interact with other parts of the processor, such as the instruction fetching 
mechanism, register files, and caches. It gives examples of instruction sequences, showing potential 
bottlenecks and how to minimize their effects. Finally, it includes tables that identify the unit that executes 
each instruction implemented on the core, the latency for each instruction, and other information that is 
useful for the assembly language programmer.

7.1 Terminology and Conventions
This section provides an alphabetical glossary of terms used in this chapter. These definitions are provided 
as a review of commonly used terms and as a way to point out specific ways these terms are used in this 
chapter.

• Branch prediction—The process of guessing whether a branch will be taken. Such predictions can 
be correct or incorrect; the term predicted as it is used here does not imply that the prediction is 
correct (successful). The PowerPC architecture defines a means for static branch prediction as part 
of the instruction encoding.

• Branch resolution—The determination of whether a branch is taken or not taken. A branch is said 
to be resolved when the processor can determine which instruction path to take. If the branch is 
resolved as predicted, the instructions following the predicted branch that may have been 
speculatively executed can complete (see completion). If the branch is not resolved as predicted, 
instructions on the mispredicted path, and any results of speculative execution, are purged from the 
pipeline and fetching continues from the nonpredicted path.

• Completion—Completion occurs when an instruction has finished executing, written back any 
results, and is removed from the completion queue (CQ). When an instruction completes, it is 
guaranteed that this instruction and all previous instructions can cause no interrupts. 

• Fall-through (branch fall-through)—A not-taken branch. On the e300 core, fall-through branch 
instructions are removed from the instruction stream at dispatch. That is, these instructions are 
allowed to fall through the instruction queue through the dispatch mechanism, without either being 
passed to an execution unit and or given a position in the CQ.

• Fetch—The process of bringing instructions from memory (such as a cache or system memory) 
into the instruction queue.

• Finish—Finishing occurs in the last cycle of execution. In this cycle, the CQ entry is updated to 
indicate that the instruction has finished executing.

• Folding (branch folding)—The replacement of a branch instruction with target instructions and any 
instructions along the not-taken path, when a branch is either taken or predicted as taken.

• Latency—The number of clock cycles necessary to execute an instruction and make ready the 
results of that execution for a subsequent instruction.

• Pipeline—In the context of instruction timing, the term pipeline refers to the interconnection of the 
stages. The events necessary to process an instruction are broken into several cycle-length tasks to 
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allow work to be performed on several instructions simultaneously—analogous to an assembly 
line. As an instruction is processed, it passes from one stage to the next. When it does, the stage 
becomes available for the next instruction. 

Although an individual instruction may take many cycles to complete (the number of cycles is 
called instruction latency), pipelining makes it possible to overlap the processing so that the 
throughput (number of instructions completed per cycle) is greater than if pipelining were not 
implemented.

• Program order—The order of instructions in an executing program. More specifically, this term is 
used to refer to the original order in which program instructions are fetched into the instruction 
queue from the cache. 

• Rename register—Temporary buffers used by instructions that have finished execution but have 
not completed. 

• Reservation station—A buffer between the dispatch and execute stages that allows instructions to 
be dispatched even though the results of instructions on which the dispatched instruction may 
depend are not available. 

• Retirement—Removal of the completed instruction from the CQ.

• Stage—The term stage is used in two different senses, depending on whether the pipeline is being 
discussed as a physical entity or a sequence of events. In the latter case, a stage is an element in the 
pipeline during which certain actions are performed, such as decoding the instruction, performing 
an arithmetic operation, or writing back the results. A stage is typically described as taking a 
processor clock cycle to perform its operation; however, some events (such as dispatch and 
write-back) happen instantaneously, and may be thought to occur at the end of the stage. 

An instruction can spend multiple cycles in one stage. An integer multiply, for example, takes 
multiple cycles in the execute stage. When this occurs, subsequent instructions may stall. 

In some cases, an instruction may also occupy more than one stage simultaneously, especially in 
the sense that a stage can be seen as a physical resource—for example, when instructions are 
dispatched they are assigned a place in the CQ at the same time they are passed to the execute stage. 
They can be said to occupy both the complete and execute stages in the same clock cycle.

• Stall—An occurrence when an instruction cannot proceed to the next stage.

• Store queue—Holds store operations that have not been committed to memory, resulting from 
completed or retired instructions.

• Superscalar—A superscalar processor is one that can dispatch multiple instructions concurrently 
from a conventional linear instruction stream. In a superscalar implementation, multiple 
instructions can be in the same stage at the same time. 

• Throughput—A measure of the number of instructions that are processed per cycle. For example, 
a series of double-precision floating-point multiply instructions has a throughput of one instruction 
per clock cycle. 

• Write-back—Write-back (in the context of instruction handling) occurs when a result is written 
from the rename registers into the architectural registers (typically the GPRs and FPRs or the store 
queue). 
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7.2 Instruction Timing Overview
The e300 core design minimizes average instruction execution latency, the number of clock cycles it takes 
to fetch, decode, dispatch, and execute instructions and make the results available for a subsequent 
instruction. Some instructions, such as loads and stores, access memory and require additional clock cycles 
between the execute phase and the write-back phase. These latencies vary depending on whether the access 
is to cacheable or noncacheable memory, whether it hits in the L1 cache, whether the cache access 
generates a write-back to memory, whether the access causes a snoop hit from another device that 
generates additional activity, and other conditions that affect memory accesses.

The core implements many features to improve throughput, such as pipelining, superscalar instruction 
dispatch, branch folding, removal of fall-through branches, two-level speculative branch handling, and 
multiple execution units that operate independently and in parallel.

As an instruction of load/store and floating-point units passes from stage to stage in a pipelined system, 
the following instruction can follow through the stages as the former instruction vacates them, allowing 
several instructions to be processed simultaneously. While it may take several cycles for an instruction to 
pass through all the stages, when the pipeline has been filled, one instruction can complete its work on 
every clock cycle.

Figure 7-1 represents a generic pipelined execution unit. 

Figure 7-1. Pipelined Execution Unit

The entire path that instructions take through the fetch, decode/dispatch, execute, complete, and 
write-back stages is considered the e300 core master pipeline, and two of the core execution units (the FPU 
and LSU) are also multiple-stage pipelines. 

The e300 core contains the following execution units that operate independently and in parallel:

• Branch processing unit (BPU)

• 32-bit integer unit (IU)—executes all integer instructions (dual integer units are supported on the 
e300c2, e300c3, and e300c4)

• 64-bit floating-point unit (FPU) (not supported on the e300c2 core)

• Load/store unit (LSU)

• System register unit (SRU)
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The core can retire two instructions on every clock cycle. In general, the core processes instructions in four 
stages—fetch, decode/dispatch, execute, and complete as shown in Figure 7-2 for the e300c1, Figure 7-3 
for the e300c2 core, and Figure 7-4 for the e300c3 and e300c4. Note that the example of a pipelined 
execution unit in Figure 7-1 is similar to the three-stage FPU pipeline in Figure 7-2.

Figure 7-2. Instruction Flow Diagram for the e300c1
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Figure 7-3. Instruction Flow Diagram for the e300c2
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Figure 7-4 shows a block diagram of the e300c3 and e300c4. Note that the e300c3 and e300c4 support 
floating-point operations and include two integer units.

Figure 7-4. Instruction Flow Diagram for the e300c3 and e300c4
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The instruction pipeline stages are described as follows:

• The instruction fetch stage includes the clock cycles necessary to request instructions from the 
memory system and the time the memory system takes to respond to the request. Instruction fetch 
timing depends on many variables, such as whether the instruction is in the branch target 
instruction cache, or in the on-chip instruction cache. Instruction fetch timing increases when it is 
necessary to fetch instructions from system memory. The variables that affect fetch timing include 
the processor-to-bus clock ratio, the amount of bus traffic, and whether any cache coherency 
operations are required. 

Because there are so many variables, unless otherwise specified, the instruction timing examples 
below assume optimal performance and that the instructions are available in the instruction queue 
in the same clock cycle that they are requested. The fetch stage ends when the instruction is 
dispatched.

• The decode/dispatch stage consists of the time it takes to fully decode the instruction and dispatch 
it from the instruction queue to the appropriate execution unit. Instruction dispatch requires the 
following:

— Instructions can be dispatched only from the two lowest instruction queue entries, IQ0 and IQ1. 

— A maximum of two instructions can be dispatched per clock cycle. 

— Only one instruction can be dispatched to each execution unit per clock cycle.

— There must be a vacancy in the specified execution unit.

— A rename register must be available for each destination operand specified by the instruction.

— For an instruction to dispatch, the appropriate execution unit must be available and there must 
be an open position in the CQ. If no entry is available, the instruction remains in the IQ.

• The execute stage consists of the time between dispatch to the execution unit (or reservation 
station) and the point at which the instruction vacates the execution unit. 

Most integer instructions have a one-cycle latency; results of these instructions can be used in the 
clock cycle after an instruction enters the execution unit. However, integer multiply and divide 
instructions take multiple clock cycles to complete. The IU can process all integer instructions. 

The e300c2, e300c3, and e300c4 integrate two integer units. The latency for multiply instructions 
in both units is now a maximum of 2 cycles to complete execution. Also, it is now possible to 
dispatch and execute two integer instruction types at one time (i.e. two multiply instructions), 
which significantly improves integer instruction throughput.

• The complete (complete/write-back) pipeline stage maintains the correct architectural machine 
state and commits it to the architectural registers at the proper time. If the completion logic detects 
an instruction containing an interrupt status, all following instructions are canceled, their execution 
results in rename registers are discarded, and the correct instruction stream is fetched.

The complete stage ends when the instruction is retired. Two instructions can be retired per cycle. 
Instructions are retired only from the two lowest CQ entries, CQ0 and CQ1.

The notation conventions used in the instruction timing examples are as follows:

 Fetch—The fetch stage includes the time between when an instruction is requested and when 
it is brought into the instruction queue. This latency can vary greatly, depending on whether the instruction 
is in the on-chip cache or system memory (in which case latency can be affected by bus speed and traffic 
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on the system bus, and address translation dispatches). Therefore, in the examples in this chapter, the fetch 
stage is usually idealized; that is, an instruction is usually shown to be in the fetch stage when it is a valid 
instruction in the instruction queue. The instruction queue has six entries, IQ0–IQ5.

 In dispatch entry (IQ0/IQ1)—Instructions can be dispatched from IQ0 and IQ1. Because 
dispatch is instantaneous, it is perhaps more useful to describe it as an event that marks the point in time 
between the last cycle in the fetch stage and the first cycle in the execute stage. 

 Execute—The operations specified by an instruction are being performed by the appropriate 
execution unit. The black stripe is a reminder that the instruction occupies an entry in the CQ, described 
in Figure 7-5.

 Complete—The instruction is in the CQ. In the final stage, the results of the executed 
instruction are written back and the instruction is retired. The CQ has five entries, CQ0–CQ4. 

 In retirement entry—Completed instructions can be retired from CQ0 and CQ1. Like 
dispatch, retirement is an event that in this case occurs at the end of the final cycle of the complete stage.

Figure 7-5 shows the stages of the core execution units. 

Figure 7-5. e300 Core Processor Pipeline Stages
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7.3 Timing Considerations
The e300 core is a superscalar processor; as many as three instructions can be dispatched to the execution 
units (one branch instruction to the branch processing unit, and two instructions dispatched from the 
dispatch queue to the other execution units) during each clock cycle. Only one instruction can be 
dispatched to each execution unit.

Although instructions appear to the programmer to execute in program order, the core improves 
performance by executing multiple instructions at a time, using hardware to manage dependencies. When 
an instruction is dispatched, the register file provides the source data to the execution unit. The register 
files and rename register have sufficient bandwidth to allow dispatch of two instructions per clock under 
most conditions.

The BPU decodes and executes branches immediately after they are fetched. When a conditional branch 
cannot be resolved due to a CR data dependency, the branch direction is predicted and execution continues 
from the predicted path. If the prediction is incorrect, the following steps are taken:

1. The instruction queue is purged and fetching continues from the correct path.

2. Any instructions ahead of the predicted branch in the CQ are allowed to complete.

3. Instructions after the mispredicted branch are purged.

4. Dispatching resumes from the correct path.

After an execution unit executes an instruction, it places resulting data into the appropriate GPR or FPR 
rename register. The results are then stored into the correct GPR or FPR during the write-back stage. If a 
subsequent instruction needs the result as a source operand, it is made available simultaneously to the 
appropriate execution unit, which allows a data-dependent instruction to be decoded and dispatched 
without waiting to read the data from the register file. Branch instructions that update either the LR or CTR 
write back their results in a similar fashion. 

The following section describes this process in greater detail.

7.3.1 General Instruction Flow

As many as two instructions can be fetched into the instruction queue (IQ) in a single clock cycle. 
Instructions enter the IQ and are dispatched to the various execution units from the dispatch queue. The 
IQ is a six-entry queue, which together with the CQ is the backbone of the master pipeline for the 
microprocessor. The core tries to keep the IQ full at all times.

The number of instructions requested in a clock cycle is determined by the number of vacant spaces in the 
IQ during the previous clock cycle. This is shown in the examples in this chapter. Although the IQ can 
accept as many as two new instructions in a single clock cycle and even if there are more than two spaces 
available on the current clock cycle, if only one IQ entry was vacant on the previous cycle, only one 
instruction is fetched. Typically, instructions are fetched from the on-chip instruction cache. If the 
instruction request hits in the on-chip instruction cache, it can usually present the first two instructions of 
the new instruction stream in the next clock cycle, giving enough time for the next pair of instructions to 
be fetched from the cache with no idle cycles. Instructions not in the instruction cache are fetched from 
system memory. 
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Branch instructions that do not update the LR or CTR are removed from the instruction stream either by 
branch folding or removal of fall-through branch instructions, as described in Section 7.4.1.1, “Branch 
Folding.” Branch instructions that update the LR or CTR are treated as if they require dispatch (even 
through they are not dispatched to an execution unit in the process). They are assigned a position in the 
CQ to ensure that the CTR and LR are updated sequentially. 

All other instructions are dispatched from IQ0 and IQ1. The dispatch rate depends on the availability of 
resources such as the execution units, rename registers, and CQ entries, and on the serializing behavior of 
some instructions. Instructions are dispatched in program order; an instruction in IQ1 can be dispatched at 
the same time as one in IQ0, but cannot be dispatched ahead of one in IQ0.

Instruction state and all information required for completion is kept in the five-entry, FIFO completion 
queue. A completion queue entry is allocated for each instruction when it is dispatched to an execute unit; 
if no entry is available, the dispatch unit stalls. A maximum of two instructions per cycle may be completed 
and retired from the completion queue, and the flow of instructions can stall when a longer-latency 
instruction reaches the last position in the completion queue. Store instructions and instructions executed 
by the FPU and SRU (except for of integer add and compare instructions) can only be retired from the last 
position in the completion queue. Subsequent instructions cannot be completed and retired until that 
longer-latency instruction completes and retires. Examples of this are shown in Section 7.3.2.2, “Cache 
Hit,” and Section 7.3.2.3, “Cache Miss.” 

The rate of instruction completion is also affected by the ability to write instruction results from the rename 
registers to the architected registers. The core can perform two write-back operations from the rename 
registers to the GPRs each clock cycle, but can perform only one write-back per cycle to the CR, FPR, LR, 
and CTR. 

7.3.2 Instruction Fetch Timing

Instruction fetch latency depends on the fetch hits of the on-chip instruction cache. If no hit occurs, a 
memory transaction is required, in which case fetch latency is affected by bus traffic, bus clock speed, and 
memory translation. These conditions are discussed in the following sections.

7.3.2.1 Cache Arbitration

When the fetcher requests instructions from the cache, two things may happen. If the instruction cache is 
idle and the requested instructions are present, they are provided on the next clock cycle. The instruction 
fetch cancel extension allows a new instruction fetch to be issued to the cache or to the bus if a cancelled 
instruction fetch is pending or active on the bus. This is also called hit-under-cancel capability. 
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7.3.2.2 Cache Hit

An instruction fetch that hits the instruction cache takes only one clock cycle after the request for as many 
as two instructions to enter the IQ. Note that the cache is not blocked to internal accesses until a cache 
reload completes (hits under misses). The critical-double-word is written simultaneously to the cache and 
forwarded to the requesting unit, minimizing stalls due to load delays. 

Figure 7-6 shows a simple example of instruction fetching that hits in the on-chip cache. This example uses 
a series of integer add, and, and double-precision floating-point add instructions to show how the number 
of instructions to be fetched is determined, how program order is maintained by the IQ and CQ, how 
instructions are dispatched and retired in pairs (maximum), and how the FPU pipeline functions.Note that 
floating-point instructions are not supported on the e300c2. The following instruction sequence is 
examined:

0 add
1 fadd
2 add
3 fadd
4 br 6
5 fsub
6 fadd
7 fadd
8 add
9 add
10 and
11 and
12 fadd
13 add
14 fadd
15 .
16 .
17 .
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Figure 7-6. Instruction Timing—Cache Hit
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The instruction timing for this example is described cycle-by-cycle as follows: 

0. In cycle 0, instructions 0 and 1 are fetched from the instruction cache and are placed in the two 
entries in the instruction queue (IQ0 and IQ1), where they can be dispatched on the next clock 
cycle.

1. In cycle 1, instructions 0 and 1 are dispatched to the IU and FPU, respectively. Notice that for 
instructions to be dispatched, they must be assigned positions in the CQ. In this case, because the 
CQ is empty, instructions 0 and 1 take the two lowest CQ entries (CQ0 and CQ1). Instructions 2 
and 3 are fetched from the instruction cache. 

2. At least two IQ positions were available in the IQ in cycle 1, so in cycle 2, instructions 4 and 5 are 
fetched. Instruction 4 is a branch unconditional instruction that resolves immediately as taken. 
Because the branch is taken and does not update CTR or LR, it can be folded from the IQ. 
Instruction 0 completes, writes back its results, and vacates the CQ by the end of the clock cycle. 
Instruction 1 enters the second FPU execute stage, instruction 2 enters the single-stage IU, and 
instruction 3 is dispatched into the first FPU stage.

3. In cycle 3, target instructions 6 and 7 are fetched, replacing the folded br instruction 4 and 
instruction 5. Instruction 1 enters the last FPU execute stage, instruction 2 has executed but must 
remain in the CQ until instruction 1 completes. Note that it can make its results available to 
subsequent instructions, but cannot be removed from the CQ. Instruction 3 passes into the last FPU 
execute stage. Note that all three FPU stages are full. To allow for the potential need for 
denormalization, the dispatch logic prevents instruction 7 (fadd) from being dispatched in the next 
clock cycle. 

4. In cycle 4, target instructions (8 and 9) are fetched. Instruction 1 completes in cycle 4, allowing 
instruction 2, which had finished executing in the previous clock cycle, to be removed from the 
CQ. Instruction 6 replaces instruction 3 in the first stage of the FPU. Also, as will be shown in cycle 
5, a single-cycle stall occurs when the FPU pipeline is full. 

5. In cycle 5, instruction 3 completes, instruction 6 continues through the FPU pipeline, and although 
the first stage of the FPU pipeline is free, instruction 7 cannot be dispatched because of the 
potential need for one of the previous floating-point instructions to require denormalization. 
Because instruction 7 cannot be dispatched neither can instruction 8. This dispatch stall causes the 
instruction queue to become full when instructions 10 and 11 are fetched. 

6. In cycle 6, instruction 12 is fetched. Instruction 7 is dispatched to the first FPU stage, so instruction 
8 can also be dispatched to the IU. Instructions 9 and 10 move to IQ0 and IQ1, but because 
instructions 9, 10, and 11 are integer instructions, only one instruction is dispatched in each of the 
next two clock cycles. Note that moving instruction 12 (fadd) up further in the program flow would 
improve dispatch throughput. 

7. In cycle 7, instruction 6 completes, instruction 7 is in the second FPU execute stage, and although 
instruction 8 has executed, it must wait for instruction 7 to complete. Instruction 9 dispatches to 
the IU. Instructions 10 and 11 move down in the IQ. Fetching resumes with instructions 13 and 14.

8. In cycle 8, instruction 7 is in the third FPU execute stage. Instructions 8 and 9 have executed and 
they remain in the CQ until instruction 7 completes. Instruction 10 is dispatched to the IU.

9. In cycle 9, instruction 7 completes, allowing instruction 8 to complete. Because the CQ is full, 
instructions 12 and 13 cannot be dispatched. 
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10. In cycle 10, instructions 9 and 10 complete. Instruction 11 has executed but cannot exit the CQ 
from CQ2. Instructions 12 and 13 are dispatched to the FPU and IU, respectively. Instruction 14 
drops into IQ0.

11. In cycle 11, instruction 11 completes and instruction 12 is in the second FPU execute stage. 
Instruction 13 has executed but must remain in the CQ until instruction 12 completes. Instruction 
14 enters the first FPU execute stage.

7.3.2.3 Cache Miss

Figure 7-7 shows an instruction fetch that misses the on-chip cache and shows how that fetch affects the 
instruction dispatch. Note that a processor/bus clock ratio of 1:2 is used. The same instruction sequence is 
used as in Section 7.3.2.2, “Cache Hit.” 

A cache miss extends the latency of the fetch stage, so in this example, the fetch stage represents not only 
the time the instruction spends in the IQ but also the time required for the instruction to be loaded from 
system memory, beginning in clock cycle 3.

During clock cycle 2, the target instruction for the br instruction is not in the instruction cache; therefore, 
a memory access must occur. During clock cycle 5, the address of the block of instructions is sent to the 
system bus. During clock cycle 9, two instructions (64 bits) are returned from memory on the first beat and 
are forwarded both to the cache and instruction fetcher.
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Figure 7-7. Instruction Timing—Cache Miss
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7.3.3 Instruction Dispatch and Completion Considerations

Several factors affect the ability of the core to dispatch instructions at a peak rate of two per cycle—the 
availability of the execution unit, destination rename registers, and completion queue, as well as the 
handling of completion-serialized instructions. Several of these limiting factors are illustrated in the 
previous instruction timing examples.

To reduce dispatch unit stalls due to instruction data dependencies, the core provides a single-entry 
reservation station for the FPU, SRU, and each IU, and a two-entry reservation station for the LSU. If a 
data dependency keeps an instruction from starting execution, that instruction is dispatched to the 
reservation station associated with its execution unit (and the rename registers are assigned), thereby 
freeing the positions in the instruction queue so instructions can be dispatched to other execution units. 
Execution begins during the same clock cycle that the rename buffer is updated with the data the 
instruction is dependent on.

If both instructions in IQ0 and IQ1 require the same execution unit, the instruction in IQ1 cannot be 
dispatched until the first instruction proceeds through the pipeline and provides the subsequent instruction 
with a vacancy in the requested execution unit.

The completion unit maintains program order after instructions are dispatched, guaranteeing in-order 
completion and a precise interrupt model. Completing an instruction committing execution results to the 
architected destination registers. In-order completion ensures the correct architectural state when the core 
must recover from a mispredicted branch or an interrupt.

The core can execute instructions out-of-order, but in-order completion by the completion unit ensures a 
precise interrupt mechanism. Program-related interrupts are signaled when the instruction causing the 
interrupt reaches the last position in the completion queue. Prior instructions are allowed to complete 
before the interrupt is taken. 

7.3.3.1 Rename Register Operation

To avoid contention for a given register file location, the core provides rename registers for holding 
instruction results before the completion commits them to the architected register. There are five GPR 
rename registers, four FPR rename registers, and one each for the CR, LR, and CTR.

When an instruction dispatches to its execution unit, any required rename registers are allocated for the 
results of that instruction. If an instruction is dispatched to the reservation station associated with an 
execution unit due to a data dependency, the dispatcher also provides a tag to the execution unit identifying 
the rename register that forwards the required data at completion. When the source data reaches the rename 
register, execution can begin. 

Instruction results are transferred from rename registers to architected registers when an instruction is 
retired from the CQ after any associated interrupts are handled and any predicted branch conditions 
preceding it in the CQ are resolved. If a branch prediction is incorrect, the instructions following the branch 
are flushed from the CQ and any results of those instructions are flushed from the rename registers.



Instruction Timing

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 7-17
  

7.3.3.2 Instruction Serialization

Although the core can dispatch and complete two instructions per cycle, serializing instructions can be 
used to limit dispatch and completion to one instruction per cycle. Serialization falls into three 
categories—completion, dispatch, and refetch serialization, which are described as follows:

• Completion serialized instructions are held in the execution unit until all prior instructions in the 
completion unit have been retired. Completion serialization is used for instructions that access or 
modify a resource for which no rename register exists. Results from these instructions are not 
available or forwarded for subsequent instructions until the serializing instruction is retired. 
Instructions that are completion serialized are as follows:

— Instructions (with the interrupt of integer add and compare instructions) executed by the system 
register unit (SRU)

— Floating-point instructions that access or modify the FPSCR or CR (mtfsb1, mcrfs, mtfsfi, 
mffs, and mtfsf).

— Instructions that manage caches and TLBs

— Instructions that directly access the GPRs (load and store multiple word and load and store 
string instructions)

— Instructions defined by the architecture to have synchronizing behavior

• Dispatch serialized inhibit the dispatching of subsequent instructions until the serializing 
instruction is retired. Dispatch serialization is used for instructions that access renamed resources 
used by the dispatcher, and for instructions requiring refetch serialization, including the following:

— The load multiple instructions, lmw, lswi, and lswx.

— The mtspr(XER) and mcrxr instructions

— The synchronizing instructions, sync, isync, mtmsr, rfi, rfci and sc.

• Refetch serialized instructions inhibit dispatching of subsequent instructions and force the 
refetching of subsequent instructions after the serializing instructions are retired. The context 
synchronizing instruction, isync, is refetch serializing.

7.3.3.3 Execution Unit Considerations

As previously noted, the e300 core can dispatch and retire two instructions per clock cycle. The peak 
dispatch rate is affected by the availability of execution units on each clock cycle.

For an instruction to be dispatched, the required execution unit must be available. The dispatcher monitors 
the availability of all execution units and suspends instruction dispatch if the required execution unit is 
unavailable. An execution unit may not be available if it can accept and execute only one instruction per 
cycle or if an execution unit’s pipeline becomes full, which may occur if instruction execution takes more 
clock cycles than the number of pipeline stages in the unit and additional instructions are dispatched to that 
unit to fill the remaining pipeline stages.

7.4 Execution Unit Timings
The following sections describe instruction timing considerations for each execution unit.
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7.4.1 Branch Processing Unit Execution Timing

Flow control operations (conditional branches, unconditional branches, and traps) are typically expensive 
to execute in most machines because they disrupt normal flow in the instruction stream. When a change 
in program flow occurs, the IQ must be reloaded with the target instruction stream. During this time the 
execution units will be idle. However, previously dispatched instructions will continue to execute while 
the new instruction stream makes its way into the IQ.

Performance features such as branch folding and static branch prediction help minimize penalties 
associated with flow control operations. The timing for branch instruction execution is determined by 
many factors including the following:

• Whether the branch requires prediction

• Whether the branch is predicted as taken or not taken

• Whether the branch is taken

• Whether the target instruction stream is in the on-chip cache

• Whether the prediction is correct

7.4.1.1 Branch Folding

When a branch instruction is encountered by the fetcher, the BPU immediately tries to pull that instruction 
out of the instruction stream and resolve it. When the BPU removes the branch instruction from the stream, 
the subsequent instruction is shifted down to take the place of the removed branch instruction. This 
technique is called branch folding. Often, it eliminates the penalties of flow control instructions because 
instruction execution proceeds as though the branch were never there.

If the folded branch instruction changes program flow (the branch is said to be taken), the BPU 
immediately requests the instructions at the new target from the on-chip cache. In most cases, the new 
instructions arrive in the IQ before any bubbles are introduced into the execution units. If the folded branch 
does not change program flow (the branch is not taken), the branch instruction is already removed and 
execution continues as if there were never a branch in the original sequence.

When a conditional branch cannot be resolved due to a CR data dependency, the branch is executed by 
means of static branch prediction and instruction fetching proceeds down the predicted path. If the 
prediction is incorrect when the branch is resolved, the IQ and all subsequently executed instructions are 
purged, instructions executed before the predicted branch are allowed to complete, and instruction fetching 
resumes down the correct path. 

There are several situations where instruction sequences create dependencies that prevent a branch 
instruction from being resolved immediately, thereby causing execution of the subsequent instruction 
stream based on the predicted outcome of the branch instruction. The instruction sequences, and the 
resulting action of the branch instruction is described as follows:

• An mtspr(LR) followed by a bclr—Fetching is stopped and the branch waits for the mtspr to 
execute.

• An mtspr(CTR) followed by a bcctr—Fetching is stopped and the branch waits for the mtspr to 
execute.
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• An mtspr(CTR) followed by a bc(CTR)—Fetching is stopped and the branch waits for the mtspr 
to execute. (Note: Branch conditions can be a function of the CTR and CR; if the CTR condition 
is sufficient to resolve the branch, then a CR-dependency is ignored.)

• A bc(CTR) followed by another bc(CTR)—Fetching is stopped, and the second branch waits for 
the first to be completed.

• A bc(CTR) followed by a bcctr—Fetching is stopped, and the bcctr waits for the first branch to 
be completed.

• A branch(LK = 1) followed by a branch(LK = 1)—Fetching is stopped, and the second branch 
waits for the first branch to be completed. (Note: a bl instruction does not have to wait for a 
branch(LK = 1) to complete.)

• A bc(based-on-CR) waiting for resolution due to a CR-dependency followed by a 
bc(based-on-CR)—Fetching is stopped and the second branch waits for the first CR-dependency 
to be resolved. 

7.4.1.2 Static Branch Prediction

Static branch prediction allows software (for example, compilers) to give a hint to the machine hardware 
about the direction the branch is likely to take. When a branch instruction encounters a data dependency, 
the BPU waits for the required condition code to become available. Rather than stalling instruction 
dispatch until the source operand is ready, the core predicts the likely path and instructions are fetched and 
executed along that path. When the branch operand becomes available, the branch is evaluated. If the 
prediction is correct, program flow continues along that path uninterrupted; otherwise, the processor backs 
up and program flow resumes along the correct path.

If the target address of the branch (link or count register) is modified by an instruction that appears before 
the branch instruction, the BPU waits until the target address is available.

The core executes through one level of prediction. The processor may not predict a branch if a prior branch 
instruction is still unresolved.

The number of instructions that can be executed after branch prediction is limited by the fact that 
instructions in the predicted stream cannot update the register files or memory until the branch is resolved. 
That is, instructions may be dispatched and executed, but cannot reach the write-back stage in the 
completion unit, instead, it stalls in the completion queue. When CQ is full, no more instructions can be 
dispatched.

In the case of a misprediction, the core is able to redirect the machine state rather effortlessly because the 
programing model has not been updated. When a branch is found to be mispredicted, all instructions that 
were dispatched subsequent to the predicted branch instruction are simply flushed from the completion 
queue, and their results flushed from the rename registers. No architected register state needs to be restored 
because no architected register state was modified by the instructions following the unresolved predicted 
branch.
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7.4.1.2.1 Predicted Branch Timing Examples

Figure 7-8 shows how both taken and non-taken branches are handled and how the e300 core handles both 
correct and incorrect predictions. The example shows the timing for the following instruction sequence 
(note that the first bc instruction is correctly taken, whereas the second bc is incorrectly predicted):

0 add

1 add

2 bc

3 mulhw

4 bc T0

5 fadd

6 and

T0 add
T1 add
T2 add
T3 add
T4 and
T5 or

0. During clock cycle 0, instructions 0 and 1 are dispatched in the beginning of clock cycle 1.

1. In clock cycle 1, instructions 2 and 3 are fetched in the IQ. Instruction 2 is a branch instruction that 
updates the CTR and instruction 3 is a mulhw instruction on which instruction 4 depends. 
Instruction 0 enters the IU. Instruction 1 has a single-cycle stall. 

2. In clock cycle 2, instructions 4 (a second bc instruction) and 5 are fetched. The second bc 
instruction is predicted as taken. It can be folded, but it cannot be resolved until instruction 3 writes 
back. Instruction 0 completes at the end of this cycle. Instruction 1 is dispatched to the IU. 
Instruction 2 takes entry in the CQ.

3. In clock cycle 3, target instruction T0 and T1 are fetched. Instructions 1 and 2 complete, instruction 
4 has been folded, and instruction 5 has been flushed from the IQ. Instruction 3 is assigned to CQ2.

4. In clock cycle 4, target instructions T2 and T3 are fetched. IU instructions T0 and T1 have multiple 
stalls as one execution possible in a clock cycle. Instruction 3 is assigned to CQ0.

5. In clock cycle 5, instruction 3, on which the second branch instruction depended, writes back and 
the branch prediction is proven incorrect. Even though T0 is in CQ0, where it could be written 
back, it is not because the prediction was incorrect. All target instructions are flushed from their 
positions in the pipeline at the end of this clock cycle, as there are many results in the rename 
registers. 



Instruction Timing

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 7-21
  

Figure 7-8. Branch Instruction Timing

After one clock cycle required to refetch the original instruction stream, instruction 5, the same instruction 
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other.
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e300c4 however, each of the two execution units can execute one multiply for a total of two multiply 
instructions executed in parallel. See Table 7-4 for integer instruction execution timing.

Figure 7-9 shows how the e300c1 core handles integer instructions. Execution of multiply half-word 
unsigned instructions may take 2–6 cycles in the e300c1. The example shows the worst-case timing for the 
following instruction sequence:

0 mulhwu

1 add

2 mulhwu

3 add

Figure 7-9. Instruction Timing—Integer Execution in the e300c1Core
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e300c3, and e300c4, along with the faster multipliers, result in higher throughput of integer instructions 
when compared to the e300c1.

Figure 7-10. Instruction Timing—Integer Execution in the e300c2 and e300c3
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forward their CR results to the BPU for fast branch resolution without waiting for the instruction to be 
retired by the completion unit, and the CR updated. See Table 7-5 for floating-point instruction execution 
timing.

7.4.4 Load/Store Unit Execution Timing

The LSU executes all floating-point and integer loads and stores. It also executes other instructions that 
address memory. The execution of most load and store instructions is pipelined. The LSU has two pipeline 
stages; the first is for effective address calculation and MMU translation, and the second is for accessing 
the physically addressed memory. Load and store instructions have a two-cycle latency and one-cycle 
throughput. Floating-point loads or stores are not supported on the e300c2 core.

If operands are misaligned, additional latency may be required either for an alignment interrupt to be taken 
or for additional bus accesses. Load instructions that miss in the cache prevent subsequent cache accesses 
during the cache line refill. See Table 7-6 for load and store instruction execution timing.

7.4.5 System Register Unit Execution Timing

Most SRU instructions access or modify nonrenamed registers, or directly access renamed registers. They 
generally execute in a serial manner. Results from these instructions are not available or forwarded for use 
by subsequent instructions until the instruction completes and is retired. The SRU can also execute the 
integer instructions addi, addis, add, addo, cmpi, cmp, cmpli, and cmpl without serialization and in 
parallel with another integer instruction. Refer to Section 7.3.3.2, “Instruction Serialization,” for 
additional information on serializing instructions and Table 7-2, Table 7-3, and Table 7-4 for SRU 
instruction execution timing.

7.5 Memory Performance Considerations
Due to the e300 core instruction throughput of three instructions per clock cycle, lack of data bandwidth 
can become a performance bottleneck. For the core to approach its potential performance levels, it must 
be able to read and write data quickly and efficiently. If there are many processors in a system environment, 
one processor may experience long memory latencies while another bus master (for example, a 
direct-memory access controller) is using the external bus.

To alleviate this possible contention, the e300 core provides three memory update modes—copy-back, 
write-through, and cache-inhibit. Each page of memory is specified to be in one of these modes. If a page 
is in copy-back mode, data being stored to that page is written only to the on-chip cache. If a page is in 
write-through mode, writes to that page update the on-chip cache on hits and always update main memory. 
If a page is cache-inhibited, data in that page will never be stored in the on-chip cache. All three of these 
modes of operation have advantages and disadvantages. A decision as to which mode to use depends on 
the system environment as well as the application.

The following sections describe how performance is impacted by each memory update mode. For details 
about the operation of the on-chip cache and the memory update modes, see Chapter 4, “Instruction and 
Data Cache Operation.”
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7.5.1 Copy-Back Mode

When data is stored in a location marked as copy back, store operations for cacheable data do not 
necessarily cause an external bus cycle to update memory. Instead, memory updates only occur on 
modified line replacements, cache flushes, or when another processor attempts to access a specific address 
for which there is a corresponding modified cache entry. For this reason, copy-back mode may be preferred 
when external bus bandwidth is a potential bottleneck—for example, in a multiprocessor environment. 
Copy-back mode is also well suited for data that is closely coupled to a processor, such as local variables. 

If more than one device uses data stored in a page marked as copy back, snooping must be enabled to allow 
copy-back operations and cache invalidations of modified data. The e300 core implements snooping 
hardware to prevent other devices from accessing invalid data. When bus snooping is enabled, depending 
on the device integration, the processor can monitor the transactions of the other devices. For example, if 
another device accesses a memory location and its memory-coherent (M) bit is set and the core on-chip 
cache has a modified value for that address, the processor preempts the bus transaction and updates 
memory with the cache data. If the cache contents associated with the snooped address are unmodified, 
the core invalidates the cache block. The other device can then attempt an access to the updated address. 
See Chapter 4, “Instruction and Data Cache Operation.”

Copy-back mode provides complete cache/memory coherency as well as maximizing available external 
bus bandwidth.

7.5.2 Write-Through Mode

Store operations to memory in write-through mode always update memory as well as the on-chip cache 
(on cache hits). Write-through mode is used when the data in the cache must always agree with external 
memory (for example, video memory), when shared (global) data may be used frequently, or when 
allocation of a cache line on a cache miss is undesirable. Automatic copy back of cached data is not 
performed if that data is from a memory page marked as write-through mode because valid cache data 
always agrees with memory.

Stores to memory that are in write-through mode may cause a decrease in performance. Each time a store 
is performed to memory in write-through mode, the bus is potentially busy for the extra clock cycles 
required to update memory; therefore, load operations that miss the on-chip cache must wait while the 
external store operation completes. 

7.5.3 Cache-Inhibited Accesses

Data for a page marked cache-inhibited cannot be stored in the on-chip cache.

Areas of the memory map can be cache-inhibited by the operating system. If a cache-inhibited access hits 
in the on-chip cache, the corresponding cache line is invalidated. If the line is marked modified, it is copied 
back to memory before being invalidated.

In summary, the copy-back mode allows both load and store operations to use the on-chip cache. The 
write-through mode allows load operations to use the on-chip cache, but store operations cause a memory 
access and a cache update if the data is already in the cache. Lastly, the cache-inhibited mode causes 
memory access for both loads and stores.
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7.6 Instruction Scheduling Guidelines
The performance of the core can be improved by avoiding resource conflicts and promoting parallel 
utilization of execution units through efficient instruction scheduling. Instruction scheduling on the core 
can be improved by observing the following guidelines:

• Implement good static branch prediction (setting of y bit in BO field).

• When branch prediction is uncertain, or an even probability, predict fall through.

• To reduce mispredictions, separate the instruction that sets CR bits from the branch instruction that 
evaluates them; separation by more than nine instructions ensures that the CR bits will be 
immediately available for evaluation.

• When branching conditionally to a location specified by count registers (CTRs) or link registers 
(LRs), or when branching conditionally based on the value in the count register, separate the mtspr 
instruction that initializes the CTR or LR from the branch instruction performing the evaluation. 
Separation of the branch and mtspr instruction by more than nine instructions ensures the register 
values will be immediately available for use by the branch instruction.

• Schedule instructions such that they can dual dispatch.

• Schedule instructions to minimize stalls when an execution unit is busy.

• Avoid using serializing instructions.

• Schedule instructions to avoid dispatch stalls due to renamed resource limitations.

— Only five instructions can be in execute-complete stage at any one time.

— Only five GPR destinations can be in execute-complete-deallocate stage at any one time. Note 
that load with update address instructions use two destination registers.

— Only four FPR destinations can be in execute-complete-deallocate stage at any one time.

7.6.1 Branch, Dispatch, and Completion Unit Resource Requirements

This section describes the specific resources required to avoid stalls during branch resolution, instruction 
dispatching, and instruction completion. 

7.6.1.1 Branch Resolution Resource Requirements

The following is a list of branch instructions and the resources required to avoid stalling the fetch unit in 
the course of branch resolution:

• The bclr instruction requires LR availability.

• The bcctr instruction requires CTR availability.

• Branch and link instructions require shadow LR availability.

• The branch conditional on counter decrement and CR condition requires CTR availability or the 
CR condition must be false, and the core cannot be executing instructions following an unresolved 
predicted branch when the branch is encountered by the BPU.

• The branch conditional on CR condition cannot be executed following an unresolved predicted 
branch instruction.
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7.6.1.2 Dispatch Unit Resource Requirements

The following is a list of resources required to avoid stalls in the dispatch unit. Note that the two dispatch 
buffers, IQ0 and IQ1, are at the bottom of the instruction queue:

• Requirements for dispatching from IQ0 are as follows:

— Needed execution unit available

— Needed GPR rename registers available

— Needed FPR rename registers available 

— Completion queue is not full

— Instruction is dispatch serialized and completion buffer is empty

— A dispatch serialized instruction is not currently being executed

• Requirements for dispatching from IQ1 are as follows:

— Instruction in IQ0 must dispatch

— Instruction dispatched by IQ0 is not dispatch serialized

— Needed execution unit is available (after dispatch from IQ0)

— Needed GPR rename registers are available (after dispatch from IQ0)

— Needed FPR rename register is available (after dispatch from IQ0) 

— Completion queue is not full (after dispatch from IQ0)

— Instruction dispatched from IQ1 is not dispatch serialized

7.6.1.3 Completion Unit Resource Requirements

The following is a list of resources required to avoid stalls in the completion unit; note that the two 
completion buffers are described as CQ0 and CQ1, where CQ0 is the entry at the end of the completion 
queue:

• Requirements for completing an instruction from CQ0 are as follows:

— Instruction in CQ0 must be finished

— Instruction in CQ0 must not follow an unresolved predicted branch

— Instruction in CQ0 must not cause an interrupt

• Requirements for completing an instruction from CQ1 are as follows:

— Instruction in CQ0 must complete in same cycle

— Instruction in CQ1 must be finished

— Instruction in CQ1 must not follow an unresolved predicted branch

— Instruction in CQ1 must not cause an interrupt

— Instruction in CQ1 must be an integer or load instruction

— Number of CR updates from both CQ0 and CQ1 must not exceed one

— Number of GPR updates from both CQ0 and CQ1 must not exceed two

— Number of FPR updates from both CQ0 and CQ1 must not exceed one
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7.7 Instruction Latency Summary
Table 7-1 through Table 7-6 list the latencies associated with each instruction executed by the e300 core. 
Note that the instruction latency tables contain no 64-bit architected instructions. These instructions will 
trap to an illegal instruction interrupt handler when encountered. Recall that the term latency is defined as 
the total time it takes to execute an instruction and make ready the results of that instruction.

Table 7-1 provides the latencies for the branch instructions.

Table 7-2 provides the latencies for the system register instructions.

Table 7-1. Branch Instructions

Mnemonic
Primary 
Opcode

Extended 
Opcode

Unit
Latency

(in Cycles)1

1 These operations may be folded for an effective cycle time of 0.

bc[l][a] 16 — BPU 1

b[l][a] 18 — BPU 1

bclr[l] 19 016 BPU 1

bcctr[l] 19 528 BPU 1

Table 7-2. System Register Instructions

Mnemonic
Primary 
Opcode

Extended 
Opcode

Unit
Latency

(in Cycles)

sc 17 - -1 SRU 3

rfi 19 050 SRU 3

rfci 19 051 SRU 3

isync 19 150 SRU 1&

mfmsr 31 083 SRU 1

mtmsr 31 146 SRU 2

mtsr 31 210 SRU 2

mtsrin 31 242 SRU 2

mfspr (not I/DBATs) 31 339 SRU 1

mfspr (DBATs) 31 339 SRU 3&

mfspr (IBATs) 31 339 SRU 3&

mtspr (not IBATs) 31 467 SRU 2 (XER-&)

mtspr (IBATs) 31 467 SRU 2&

mfsr 31 595 SRU 3&

sync 31 598 SRU 1&

mfsrin 31 659 SRU 3&

eieio 31 854 SRU 1

mftb 31 371 SRU 1
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Table 7-3 provides the latencies for the condition register logical instructions.

Table 7-4 provides the latencies for the integer instructions.

mttb 31 467 SRU 1

Note: Cycle times marked with & require a variable number of cycles due to 
serialization.

Table 7-3. Condition Register Logical Instructions

Mnemonic Primary 
Opcode

Extended 
Opcode

Unit Latency
(in Cycles)

mcrf 19 000 SRU 1

crnor 19 033 SRU 1

crandc 19 129 SRU 1

crxor 19 193 SRU 1

crnand 19 225 SRU 1

crand 19 257 SRU 1

creqv 19 289 SRU 1

crorc 19 417 SRU 1

cror 19 449 SRU 1

mfcr 31 019 SRU 1

mtcrf 31 144 SRU 1

mcrxr 31 512 SRU 1&

Note: Cycle times marked with & require a variable number of cycles due to 
serialization.

Table 7-4. Integer Instructions

Mnemonic
Primary 
Opcode

Extended 
Opcode

Unit
Latency

(in Cycles) in 
e300c1

Latency
(in Cycles) in 

e300c2, 
e3000c3, and 

e300c4

twi 03 — Integer 2 2

mulli 07 — Integer 2,3 2

subfic 08 — Integer 1 1

cmpli 10 — Integer & SRU 1^ 1^

cmpi 11 — Integer & SRU 1^ 1^

addic 12 — Integer 1 1

addic. 13 — Integer 1 1

Table 7-2. System Register Instructions (continued)

Mnemonic
Primary 
Opcode

Extended 
Opcode

Unit
Latency

(in Cycles)
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addi 14 — Integer & SRU 1 1

addis 15 — Integer & SRU 1 1

rlwimi[.] 20 — Integer 1 1

rlwinm[.] 21 — Integer 1 1

rlwnm[.] 23 — Integer 1 1

ori 24 — Integer 1 1

oris 25 — Integer 1 1

xori 26 — Integer 1 1

xoris 27 — Integer 1 1

andi. 28 — Integer 1 1

andis. 29 — Integer 1 1

cmp 31 000 Integer & SRU 1^ 1^

tw 31 004 Integer 2 2

subfc[o][.] 31 008 Integer 1 1

addc[o][.] 31 010 Integer 1 1

mulhwu[.] 31 011 Integer 2,3,4,5,6 2

slw[.] 31 024 Integer 1 1

cntlzw[.] 31 026 Integer 1 1

and[.] 31 028 Integer 1 1

cmpl 31 032 Integer & SRU 1^ 1^

subf[.] 31 040 Integer 1 1

andc[.] 31 060 Integer 1 1

mulhw[.] 31 075 Integer 2,3,4,5 2

neg[o][.] 31 104 Integer 1 1

nor[.] 31 124 Integer 1 1

subfe[o][.] 31 136 Integer 1 1

adde[o][.] 31 138 Integer 1 1

subfze[o][.] 31 200 Integer 1 1

addze[o][.] 31 202 Integer 1 1

subfme[o][.] 31 232 Integer 1 1

addme[o][.] 31 234 Integer 1 1

mull[o][.] 31 235 Integer 2,3,4,5 2

Table 7-4. Integer Instructions (continued)

Mnemonic
Primary 
Opcode

Extended 
Opcode

Unit
Latency

(in Cycles) in 
e300c1

Latency
(in Cycles) in 

e300c2, 
e3000c3, and 

e300c4
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Table 7-5 provides the latencies for the floating-point instructions.

add[o][.] 31 266 Integer & SRU1 1 1

eqv[.] 31 284 Integer 1 1

xor[.] 31 316 Integer 1 1

orc[.] 31 412 Integer 1 1

or[.] 31 444 Integer 1 1

divwu[o][.] 31 459 Integer 20 20

nand[.] 31 476 Integer 1 1

divw[o][.] 31 491 Integer 20 20

srw[.] 31 536 Integer 1 1

sraw[.] 31 792 Integer 1 1

srawi[.] 31 824 Integer 1 1

extsh[.] 31 922 Integer 1 1

extsb[.] 31 954 Integer 1 1

Note: ^ indicates that the cycle time immediately forwards their CR results to the BPU 
for fast branch resolution.

1 The SRU can only execute the add and add[o] instructions.

Table 7-5. Floating-Point Instructions

Mnemonic
Primary 
Opcode

Extended 
Opcode

Unit
Latency

(in Cycles)

fdivs[.] 59 018 FPU 18^

fsubs[.] 59 020 FPU 1-1-1^

fadds[.] 59 021 FPU 1-1-1^

fres[.] 59 024 FPU 18^

fmuls[.] 59 025 FPU 1-1-1^

fmsubs[.] 59 028 FPU 1-1-1^

fmadds[.] 59 029 FPU 1-1-1^

fnmsubs[.] 59 030 FPU 1-1-1^

fnmadds[.] 59 031 FPU 1-1-1^

fcmpu 63 000 FPU 1-1-1^

frsp[.] 63 012 FPU 1-1-1^

fctiw[.] 63 014 FPU 1-1-1^

Table 7-4. Integer Instructions (continued)

Mnemonic
Primary 
Opcode

Extended 
Opcode

Unit
Latency

(in Cycles) in 
e300c1

Latency
(in Cycles) in 

e300c2, 
e3000c3, and 

e300c4
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NOTE
Floating point instructions are not supported on the e300c2.

fctiwz[.] 63 015 FPU 1-1-1^

fdiv[.] 63 018 FPU 33^

fsub[.] 63 020 FPU 1-1-1^

fadd[.] 63 021 FPU 1-1-1^

fsel[.] 63 023 FPU 1-1-1^

fmul[.] 63 025 FPU 2-1-1^

frsqrte[.] 63 026 FPU 1-1-1^

fmsub[.] 63 028 FPU 2-1-1^

fmadd[.] 63 029 FPU 2-1-1^

fnmsub[.] 63 030 FPU 2-1-1^

fnmadd[.] 63 031 FPU 2-1-1^

fcmpo 63 032 FPU 1-1-1^

mtfsb1[.] 63 038 FPU 1-1-1&^

fneg[.] 63 040 FPU 1-1-1^

mcrfs 63 064 FPU 1-1-1&

mtfsb0[.] 63 070 FPU 1-1-1&^

fmr[.] 63 072 FPU 1-1-1^

mtfsfi[.] 63 134 FPU 1-1-1&^

fnabs[.] 63 136 FPU 1-1-1^

fabs[.] 63 264 FPU 1-1-1^

mffs[.] 63 583 FPU 1-1-1&^

mtfsf[.] 63 711 FPU 1-1-1&^

Note: Cycle times marked with & require a variable number of cycles due to completion 
serialization.
Cycle times marked with ^ immediately forward their CR results to the BPU for 
fast branch resolution.
Cycle times marked with a - specify the number of clock cycles in each pipeline 
stage. Instructions with a single entry in the cycles column are not pipelined.

Table 7-5. Floating-Point Instructions (continued)

Mnemonic
Primary 
Opcode

Extended 
Opcode

Unit
Latency

(in Cycles)
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Table 7-6 provides latencies for the load and store instructions.

Table 7-6. Load and Store Instructions

Mnemonic Primary 
Opcode

Extended 
Opcode

Unit Latency
(in Cycles)

lwarx 31 020 LSU 2:1

icbt 31 022 LSU 2

lwzx 31 023 LSU 2:1

dcbst 31 054 LSU 2/5&

lwzux 31 055 LSU 2:1

dcbf 31 086 LSU 2/5&

lbzx 31 087 LSU 2:1

lbzux 31 119 LSU 2:1

stwcx. 31 150 LSU 8

stwx 31 151 LSU 2:1

stwux 31 183 LSU 2:1

stbx 31 215 LSU 2:1

dcbtst 31 246 LSU 2

stbux 31 247 LSU 2:1

dcbt 31 278 LSU 2

lhzx 31 279 LSU 2:1

tlbie 31 306 LSU 3&

lhzux 31 311 LSU 2:1

lhax 31 343 LSU 2:1

lhaux 31 375 LSU 2:1

sthx 31 407 LSU 2:1

sthux 31 439 LSU 2:1

dcbi 31 470 LSU 2&

lswx 31 533 LSU 2 + n&

lwbrx 31 534 LSU 2:1

lfsx 31 535 LSU 2:1

tlbsync 31 566 LSU 2&

lfsux 31 567 LSU 2:1

lswi 31 597 LSU 2 + n&

lfdx 31 599 LSU 2:1

lfdux 31 631 LSU 2:1

stswx 31 661 LSU 1 + n&

stwbrx 31 662 LSU 2:1



Instruction Timing

e300 Power Architecture Core Family Reference Manual, Rev. 4

7-34 Freescale Semiconductor
 

stfsx 31 663 LSU 2:1

stfsux 31 695 LSU 2:1

stswi 31 725 LSU 1 + n&

stfdx 31 727 LSU 2:1

stfdux 31 759 LSU 2:1

lhbrx 31 790 LSU 2:1

sthbrx 31 918 LSU 2:1

tlbld 31 978 LSU 2&

icbi 31 982 LSU 3&

stfiwx 31 983 LSU 2:1

tlbli 31 1010 LSU 3&

dcbz 31 1014 LSU 10&

lwz 32 — LSU 2:1

lwzu 33 — LSU 2:1

lbz 34 — LSU 2:1

lbzu 35 — LSU 2:1

stw 36 — LSU 2:1

stwu 37 — LSU 2:1

stb 38 — LSU 2:1

stbu 39 — LSU 2:1

lhz 40 — LSU 2:1

lhzu 41 — LSU 2:1

lha 42 — LSU 2:1

lhau 43 — LSU 2:1

sth 44 — LSU 2:1

sthu 45 — LSU 2:1

lmw 46 — LSU 2 + n&

stmw 47 — LSU 1 + n&

lfs 48 — LSU 2:1

lfsu 49 — LSU 2:1

lfd 50 — LSU 2:1

lfdu 51 — LSU 2:1

stfs 52 — LSU 2:1

stfsu 53 — LSU 2:1

Table 7-6. Load and Store Instructions (continued)

Mnemonic
Primary 
Opcode

Extended 
Opcode

Unit
Latency

(in Cycles)
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stfd 54 — LSU 2:1

stfdu 55 — LSU 2:1

Note: Cycle times marked with & require a variable number of cycles due to 
serialization.
Cycle times marked with a / specify hit and miss times for cache management 
instructions that require conditional bus activity.
Cycle times marked with a : specify cycles of total latency and throughput.
Load and store multiple and string instruction cycles are shown as a fixed 
number of cycles plus a variable number of cycles where n is the number of 
words accessed by the instruction.

Table 7-6. Load and Store Instructions (continued)

Mnemonic
Primary 
Opcode

Extended 
Opcode

Unit
Latency

(in Cycles)
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Chapter 8  
Core Interface Operation
This chapter provides a general description of the coherent system bus (CSB), which is the interface 
between the core and the integrating device. Because most of the behavior of the CSB is not directly 
programmable, or even visible, to the user, this chapter does not attempt to describe all aspects of the CSB 
or even the most important CSB signals.

Instead, it describes mostly those aspects of the CSB that are configurable or that provide status 
information through the programming interface. It provides a glossary of those signals that are referenced 
in other chapters to offer a clearer understanding of how the core is integrated as part of a larger device. 

NOTE
A bar over a signal name indicates that the signal is active-low—for 
example, hreset (hardware reset) and int (external interrupt). Active-low 
signals are referred to as asserted (active) when they are low and negated 
when they are high. Signals that are not active-low, such as tben (time base 
enable) and ckstp (checkstop interrupt) are referred to as asserted when they 
are high and negated when they are low.

8.1 Signal Groupings
A subset of the selected internal e300 coherent system bus (CSB) core signals is grouped as follows:

• Interrupts/resets—These signals include the external interrupt signal, checkstop signals, 
performance monitor interrupt (on e300c3 and e300c4), and both soft reset and hard reset signals. 
They are used to interrupt and, under various conditions, to reset the core.

• JTAG/debug interface signals—The JTAG (IEEE 1149.1-compliant) interface and debug unit 
provides a serial interface to the system for performing monitoring and boundary tests. 

• Core status and control—These signals include the memory reservation signal, machine quiesce 
control signals, time base/decrementer clock base enable signal, and the tlbisync signal.

• Clock control—These signals provide for system clock input and frequency control.

• Test interface signals—Signals such as address matching, combinational matching, and watchpoint 
are used in the core for production testing.

• Transfer attribute signals—These signals provide information about the type of transfer, such as 
the transfer size and whether the transaction is bursted, write-through, or cache-inhibited.
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8.1.1 Functional Groupings

Figure 8-1 shows the e300 core signals groups in greater detail. Note that the pm_event_in signal is only 
found on the e300c3 and e300c4. 

 

Figure 8-1. Core Interface Signals

8.1.2 Signal Summary

Table 8-1 provides alphabetically-ordered e300 core signals with related cross-references that are relevant 
to the user. It details the signal name, signal grouping, number of signals, and whether the signal is an input 
or an output. 

Table 8-1. Summary of Selected Internal Signals

Signal I/O Comments, or Meaning when Asserted

Bus Signals: Master Address Bus

ci O Cache inhibit. Normally reflected from the I bit of the WIMG bits (regardless of whether the cache 
is enabled).
For burst writes and address-only transactions, ci is always negated.

gbl I/O Global. Normally reflected from the M bit of the WIMG bits; asserted indicates transaction is 
enabled for snooping by other masters.
For burst writes, always negated.
For address-only transactions that bypass translation, always asserted.

wt O Write-through. Assertion indicates that a single-beat transaction is write-through, reflecting the 
value of the W bit of the WIMG bits for the block or page that contains the address of the current 
transaction.
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tea I Transfer error acknowledge. Indicates that a data bus error occurred on the core interface. Causes 
a machine check interrupt (and possibly causes the processor to enter checkstop state if machine 
check enable bit is cleared (MSR[ME] = 0)).

External Interrupts

hreset I Hard reset. Assertion resets the core. 

sreset I Soft reset. When sreset is asserted, the processor attempts to reach a recoverable state by 
allowing the next instruction to either complete or cause an interrupt, blocking the completion of 
subsequent instructions and allowing the completed store queue to drain. Unlike a hard reset, no 
registers or latches are initialized.

int I External interrupt. Initiates an external interrupt to the core.

cint I Critical interrupt. Initiates a critical interrupt to the core. 

mcp I Machine check interrupt. Indicates that the e300 core should initiate a machine check interrupt or 
enter the checkstop state as directed by the MSR.

smi I System management interrupt. If smi is asserted and MSR[EE] is set, the core initiates a system 
management interrupt.

ckstp I/O Checkstop interrupt. Assertion of this signal by the core is used to generate a chip-wide hard stop.

pm_event_in I Performance monitor signal. If a performance monitor counter using the pm_event_in to transition 
overflows, the core initiates a performance monitor interrupt.

Core Status

tben I Asserted by the system logic to enable the time base and the decrementer clock base.

qack I Quiescent acknowledge. Assertion Indicates that all bus activity that requires snooping has 
terminated or paused, and that the core may enter the quiescent (or low-power) state.

qreq O Quiescent request. Indicates that the core is requesting all CSB activity normally required to be 
snooped to terminate or to pause so the core may enter the quiescent (low-power) state. Once the 
core enters a quiescent state, it no longer snoops CSB activity.

tlbisync I TLB instruction synchronize. If asserted, the tlbsync instruction causes instruction execution to 
stop. If negated, instruction execution may continue or resume after the completion of a tlbsync 
instruction.

Clocks

pll_cfg[0:6] I PLL configuration select. Configurations are as shown in Table 8-2.

clk_out O Assertion provides PLL clock output for PLL testing and monitoring. The clk_out signal clocks at 
either the core clock frequency or bus clock frequency, if enabled by the appropriate HID0 bits. 

JTAG and TAP

trst I JTAG test reset. This input causes asynchronous initialization of the internal JTAG test access port 
controller. 

tck I JTAG test clock. Driven by a free-running clock signal. Input signals to the test access port are 
sampled on the rising edge of tck. TAP output signal changes occur on the falling edge of tck. The 
test logic allows TCK to be stopped asynchronously with respect to all other core complex clocks.

Table 8-1. Summary of Selected Internal Signals (continued)

Signal I/O Comments, or Meaning when Asserted
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8.1.2.1 PLL Configuration (pll_cfg[0:6])—Input

The PLL is configured by pll_cfg[0:6]. For a given bus frequency, the PLL configuration signals set the 
internal CPU frequency of operation. Table 8-2 shows the PLL configuration options.

tms I JTAG test mode select. Decoded by the internal JTAG TAP controller to determine the primary 
operation of the test support circuitry.

tdi I JTAG test data input. The value present on the rising edge of tck is loaded into the selected JTAG 
test instruction or data register.

tdo O JTAG test data output. The contents of the selected internal instruction or data register are shifted 
out onto this signal on the falling edge of tck. 

Test Interface

tlmsel O TLM selected. tlmsel provides feedback to the external TAP linking module logic.

tap_en I TAP enable. tap_en is used by the TAP linking module (TLM) logic external to the core complex.

core_disable I On assertion, core output signals are negated or forced to a high-impedance state. The core 
enters a sleep mode, and instruction fetching and dispatching are disabled.

Table 8-2. Core PLL Configuration

PLL_CFG 
(0:1)

PLL_CFG 
(2:5) PLL_CFG (6)

Bus-to-Core 
Multiplier VCO divider

xx 0000 x bypass/off n/a

xx 1111 x off n/a

00 0001 0 1x 2

01 0001 0 1x 4

10 0001 0 1x 8

11 0001 0 1x 8

00 0001 1 1.5x 2

01 0001 1 1.5x 4

10 0001 1 1.5x 8

11 0001 1 1.5x 8

00 0010 0 2x 2

01 0010 0 2x 4

10 0010 0 2x 8

11 0010 0 2x 8

00 0010 1 2.5x 2

01 0010 1 2.5x 4

Table 8-1. Summary of Selected Internal Signals (continued)

Signal I/O Comments, or Meaning when Asserted
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10 0010 1 2.5x 8

11 0010 1 2.5x 8

00 0011 0 3x 2

01 0011 0 3x 4

10 0011 0 3x 8

11 0011 0 3x 8

00 0011 1 3.5x 2

01 0011 1 3.5x 4

10 0011 1 3.5x 8

11 0011 1 3.5x 8

00 0100 0 4x 2

01 0100 0 4x 4

10 0100 0 4x 8

11 0100 0 4x 8

00 0100 1 4.5x 2

01 0100 1 4.5x 4

10 0100 1 4.5x 8

11 0100 1 4.5x 8

00 0101 0 5x 2

01 0101 0 5x 4

10 0101 0 5x 8

11 0101 0 5x 8

00 0101 1 5.5x 2

01 0101 1 5.5x 4

10 0101 1 5.5x 8

11 0101 1 5.5x 8

00 0110 0 6x 2

01 0110 0 6x 4

10 0110 0 6x 8

11 0110 0 6x 8

00 0110 1 6.5x 2

01 0110 1 6.5x 4

Table 8-2. Core PLL Configuration (continued)

PLL_CFG 
(0:1)

PLL_CFG 
(2:5)

PLL_CFG (6)
Bus-to-Core 

Multiplier
VCO divider
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10 0110 1 6.5x 8

11 0110 1 6.5x 8

00 0111 0 7x 2

01 0111 0 7x 4

10 0111 0 7x 8

11 0111 0 7x 8

00 0111 1 7.5x 2

01 0111 1 7.5x 4

10 0111 1 7.5x 8

11 0111 1 7.5x 8

00 1000 0 8x 2

01 1000 0 8x 4

10 1000 0 8x 8

11 1000 0 8x 8

00 1000 1 8.5x 2

01 1000 1 8.5x 4

10 1000 1 8.5x 8

11 1000 1 8.5x 8

00 1001 0 9x 2

01 1001 0 9x 4

10 1001 0 9x 8

11 1001 0 9x 8

00 1001 1 9.5x 2

01 1001 1 9.5x 4

10 1001 1 9.5x 8

11 1001 1 9.5x 8

00 1010 0 10x 2

01 1010 0 10x 4

10 1010 0 10x 8

11 1010 0 10x 8

00 1010 1 10.5x 2

01 1010 1 10.5x 4

Table 8-2. Core PLL Configuration (continued)

PLL_CFG 
(0:1)

PLL_CFG 
(2:5)

PLL_CFG (6)
Bus-to-Core 

Multiplier
VCO divider
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8.2 Overview of Core Interface Accesses
The e300 core contains an internal coherent system bus (CSB) that interfaces the core to the peripheral 
logic. This internal bus is very similar in function to the external 60x bus interface on the MPC603e 
processor. The CSB system logic decodes e300 core-initiated transactions and directs all accesses to the 
appropriate on-chip interface. The core interface prioritizes requests for bus operations from the 
instruction and data caches and performs bus operations following the coherent system bus (CSB) 
protocol.

The core interface includes address register queues, prioritization logic, and the bus control unit. The core 
interface latches snoop addresses for snooping in the data cache and address register queues, and 
reservations controlled by the Load Word and Reserve Indexed (lwarx) and Store Word Conditional 

10 1010 1 10.5x 8

11 1010 1 10.5x 8

00 1011 0 11x 2

01 1011 0 11x 4

10 1011 0 11x 8

11 1011 0 11x 8

00 1011 1 11.5x 2

01 1011 1 11.5x 4

10 1011 1 11.5x 8

11 1011 1 11.5x 8

00 1100 0 12x 2

01 1100 0 12x 4

10 1100 0 12x 8

11 1100 0 12x 8

00 1101 0 16x 2

01 1101 0 16x 4

10 1101 0 16x 8

11 1101 0 16x 8

00 1110 0 20x 2

01 1110 0 20x 4

10 1110 0 20x 8

11 1110 0 20x 8

xx all other modes x off n/a

Table 8-2. Core PLL Configuration (continued)

PLL_CFG 
(0:1)

PLL_CFG 
(2:5)

PLL_CFG (6)
Bus-to-Core 

Multiplier
VCO divider
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Indexed (stwcx.) instructions; it also maintains the touch load address for the data cache. The interface 
allows one level of pipelining; that is, with certain restrictions described in subsequent sections, there can 
be as many as two outstanding transactions at any given time. The e300 core also offers an optional 
pipeline extension to one-and-a-half level pipelining, which means that a new transaction can complete an 
address tenure when the previous transaction has been granted to the data bus; for the G2_LE core, a new 
transaction must wait until the previous data tenure has completed before completing its address tenure. 
Accesses are prioritized with load operations preceding store operations.

Instructions are automatically fetched from the memory system into the instruction unit where they are 
dispatched to the execution units or forwarded to the branch processing unit at a peak rate of three 
instructions per clock. Conversely, load and store instructions explicitly specify the movement of operands 
to and from the general-purpose and floating-point registers (GPRs and FPRs) and the memory 
system.Note that the e300c2 core does not support floating-point registers

When the e300 core encounters an instruction or data access, it calculates the logical address (effective 
address) and uses the low-order address bits to check for a hit in the on-chip instruction or data caches. 
During cache lookup, the instruction and data memory management units (MMUs) use the higher-order 
address bits to calculate the virtual address, allowing them to calculate the physical address (real address). 
The physical address bits are then compared with the corresponding cache tag bits to determine if a cache 
hit occurred. If the access misses in the corresponding cache, the physical address is used to access system 
memory.

In addition to loads, stores, and instruction fetches, the core performs software table search operations 
following TLB misses, cache cast-out operations when pseudo least recently used (PLRU) cache lines are 
written to memory after a cache miss, and cache-line snoop push-out operations when a modified cache 
line experiences a snoop hit from another bus master.

The core uses separate address and data buses and a variety of control and status signals for performing 
reads and writes. The address bus is 32 bits wide and the data bus is 64 bits wide. The bus can run at the 
full processor-clock frequency or at an integer division of the processor-clock speed. The implementation 
of the internal voltage of the e300 core is process-dependent; all I/O signals for the device depend on the 
device implementation. Note that the e300 core has no direct external I/O connection.

8.2.1 Core Complex Bus (CCB)

The core complex bus (CCB) is optionally supported on the e300c4 core and is similar to the CSB but adds 
attributes and capabilities to enhance data flow or parallelism. 

The CCB provides extended address bus capabilities to the CSB. The CCB supports simulataneous
master/snoop address tenures, in which snoop address tenures may overlap master address tenures for
higher snooping throughput. This allows a snoop to be launched to the core at any time, even though the
core may be currently mastering an address tenure. This feature is made possible by completely
independent control and handshake signals for the address-out and address-in buses. 

The CCB implements a data-in and data-out bus for reading and writing data. The data buses are
enhanced over CSB principally by facilitating the self-routing of read and write data and by simplifying
data bus arbitration. 
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The data-in and data-out buses may also be operated independently of each other for enhanced data 
throughput. This allows read data to be received by the core at the same time write data is being 
transmitted. Byte parity is supported on the CCB data buses and is selectable with each data beat to easily 
support a mix of parity and non-parity devices in the system.

8.3 Interrupt, Checkstop, and Reset Signals
This section describes external interrupts, checkstop operations, and hard and soft reset inputs.

8.3.1 External Interrupts

Assertion of the external interrupt input signals (int, smi, pm_event_in (in e300c3 and e300c4) and mcp) 
of the core eventually forces the processor to take an external interrupt, or a system management interrupt 
(smi) if MSR[EE] is set, or performance monitor interrupt when a performance monitor counter using the 
pm_event_in to transition overflows, or the machine check interrupt if MSR[ME] and HID0[EMCP] are 
set.

8.3.2 Checkstops

The e300 core has two checkstop input signals—ckstp_in (non-maskable) and mcp (enabled when 
MSR[ME] is cleared and HID0[EMCP] is set)—and a checkstop output (ckstp_out). If ckstp_in or mcp is 
asserted, the core halts operations by gating off all internal clocks. The core asserts ckstp_out if ckstp_in 
is asserted.

If ckstp_out is asserted by the core, it has entered the checkstop state and processing has halted internally. 
The ckstp_out signal can be asserted for various reasons including receiving a tea signal and detection of 
external parity errors. For more information about the checkstop state, see Section 5.5.2.2, “Checkstop 
State (MSR[ME] = 0).”

8.3.3 Reset Inputs
The e300 core has two reset inputs, described as follows:

• hreset (hard reset)—hreset is used for power-on reset sequences, or for situations in which the core 
must go through the entire cold-start sequence of internal hardware initializations.

• sreset (soft reset)—The soft reset input provides warm reset capability. This input can be used to 
avoid forcing the core to complete the cold start sequence.

When either reset input is negated, the processor attempts to fetch code from the system reset interrupt 
vector. The vector is located at offset 0x100 from the interrupt prefix (all zeros or ones, depending on the 
setting of the interrupt prefix bit, MSR[IP]. The IP bit is set on assertion of hreset.

8.3.4 Core Quiesce Control Signals

The core quiesce control signals (qreq and qack allow the processor to enter a low-power state and bring 
bus activity to a quiescent state in an orderly fashion. 
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The system quiesce state is entered by configuring the processor to assert the qreq output. This signal 
allows the system to terminate or pause any bus activities that are normally snooped. When the system is 
ready to enter the system quiesce state, it asserts qack. At this time, the core may enter a quiescent 
(low-power) state during which it stops snooping bus activity.

8.4 IEEE 1149.1-Compliant Interface
The e300 core boundary-scan interface is a fully-compliant implementation of the IEEE 1149.1 standard. 
This section describes the core IEEE 1149.1 (JTAG) interface.

8.4.1 IEEE 1149.1 Interface Description

The e300 core has five dedicated JTAG signals (described in Table 8-1). The tdi and tdo scan ports are 
used to scan instructions, as well as data, into the various scan registers for JTAG operations. The scan 
operation is controlled by the test access port controller, which is controlled by the tms input sequence. 
The scan data is latched in at the rising edge of tck.

Test reset (trst) is a JTAG optional signal used to reset the TAP controller asynchronously. The trst signal 
assures that the JTAG logic does not interfere with the normal operation of the device; this signal can be 
asserted concurrently with the assertion of hreset.

The e300 core implements the JTAG/debug in the same manner as does the G2 core with the exception of 
the  33-bit Run_N counter register in which the most-significant 32 bits form a 32-bit counter. The function 
of the least-significant bit remains unchanged. The Run_N counter is used by the debug functions to 
control the number of processor cycles that the processor runs before halting.
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Chapter 9  
Power Management
The e300 core is specifically designed for low-power operation. It provides both automatic and 
program-controllable power reduction modes for progressive reduction of power consumption. This 
chapter describes the hardware support provided by the e300 core for power management.

9.1 Overview
The e300 core has explicit power management features that are described in this chapter. Note that the 
design of the core is fully static, allowing the internal processor core state to be preserved when no internal 
clock is present.

The device drivers must be modified for power management, because operating systems service I/O 
requests by system calls to the device drivers. When a device driver is called to reduce the power of a 
device, it needs to be able to check the power state of the device, save the device configuration parameters, 
and put the device into a power-saving mode. Furthermore, every time the device driver is called, it needs 
to check the power status of the device and restore the device to the full-on state, if the device is in a 
power-saving mode.

9.2 Dynamic Power Management
Dynamic power management (DPM) automatically powers up and down the individual execution units of 
the core, based on the contents of the instruction stream. For example, if no floating-point instructions are 
being executed, the floating-point unit is automatically powered down.Note that floating-point instructions 
are not supported in the e300c2. Power is not actually removed from the execution unit; instead, each 
execution unit has an independent clock input, which is automatically controlled on a clock-by-clock basis. 
Because CMOS circuits consume negligible power when they are not switching, stopping the clock to an 
execution unit effectively eliminates its power consumption. The operation of DPM is completely 
transparent to software or any external hardware. Dynamic power management is enabled by setting 
HID0[DPM] on power-up following a hard reset sequence (hreset).

9.3 Programmable Power Modes
Hardware can enable a power management state through external asynchronous interrupts. The hardware 
interrupt causes the transfer of program flow to interrupt handler code. The appropriate mode is then set 
by the software. The core provides a separate interrupt and interrupt vector for power management: the 
system management interrupt (smi). The e300 core also contains a decrementer timer that allows it to enter 
the nap or doze mode for a predetermined period and then return to full power operation through the 
decrementer interrupt.
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The core provides four power modes selectable by setting the appropriate control bits in the MSR and 
HID0. The four power modes are described briefly as follows:

• Full-power—This is the default power state of the core. The core is fully powered and the internal 
functional units are operating at the full processor clock speed. If the dynamic power management 
mode is enabled, functional units that are idle will automatically enter a low-power state without 
affecting performance, software execution, or external hardware.

• Doze—All the functional units of the core are disabled except for the time base/decrementer 
registers and the bus snooping logic. When the processor is in doze mode; an external 
asynchronous interrupt, system management interrupt, decrementer interrupt, hard or soft reset, or 
machine check input (mcp) brings the core into the full-power state. The core in doze mode 
maintains the phase-locked loop (PLL) in a full-power state and locked to the system external clock 
input (sysclk), so a transition to the full-power state takes only a few processor clock cycles.

• Nap—The nap mode further reduces power consumption by disabling bus snooping, leaving only 
the time base register and the PLL in a powered state. The core returns to the full-power state upon 
receipt of an external asynchronous interrupt, system management interrupt, decrementer interrupt, 
hard or soft reset, or machine check input (mcp) signal. A return to full-power state from a nap state 
takes only a few processor clock cycles.

• Sleep—Sleep mode reduces power consumption to a minimum by disabling all internal functional 
units; then external system logic may disable the PLL and sysclk. Returning the core to the 
full-power state requires the enabling of the PLL and sysclk, followed by the assertion of an 
external asynchronous interrupt, system management interrupt, hard or soft reset, or mcp signal 
after the time required to relock the PLL.

Note that the core cannot switch from one power management mode to another without first returning to 
full-on mode. The nap and sleep modes disable bus snooping; therefore, a hardware handshake using qreq 
and qack is provided to ensure coherency before the core enters these power management modes. 
Table 9-1 summarizes the four power states for the core.

Table 9-1. e300 Core Programmable Power Modes

PM Mode Functioning Units Activation Method Full-Power Wake-Up Method

Full power All units active — —

Full power
(with DPM)

Requested logic by demand By instruction dispatch —

Doze • Bus snooping
• Data cache as needed
• Decrementer timer

Controlled by SW External asynchronous interrupts
Decrementer interrupt
Reset

Nap Decrementer timer Controlled by hardware and 
software 

External asynchronous interrupts
Decrementer interrupt
Reset

Sleep None Controlled by hardware and 
software

External asynchronous interrupts
Reset
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9.3.1 Power Management Modes

The following sections describe the characteristics of the e300 core power management modes, the 
requirements for entering and exiting the various modes, and the system capabilities provided by the core 
while the power management modes are active.

9.3.1.1 Full-Power Mode with DPM Disabled

Full-power mode with DPM disabled is selected when the DPM enable bit in HID0[DPM] is cleared. The 
following characteristics apply:

• Default state following power-up and hreset

• All functional units are operating at full processor speed at all times.

9.3.1.2 Full-Power Mode with DPM Enabled

Full-power mode with DPM enabled (HID0[DPM] = 1) provides on-chip power management without 
affecting the functionality or performance of the core as follows:

• Required functional units are operating at full processor speed

• Functional units are clocked only when needed

• No software or hardware intervention required after mode is set

• Software/hardware and performance transparent

9.3.1.3 Doze Mode

Doze mode disables most functional units but maintains cache coherency by enabling the bus interface unit 
and snooping. A snoop hit causes the core to enable the data cache, copy the data back to memory, disable 
the cache, and fully return to the doze mode.

Doze mode is characterized by the following features:

• Most functional units disabled

• Bus snooping and time base/decrementer still enabled

• PLL running and locked to internal sysclk 

To enter the doze mode, the following conditions must occur:

• Set doze bit (HID0[8] = 1), MSR[POW] is set

• e300core enters doze mode after several processor clocks.

To return to full-power mode, the following conditions must occur:

• Assert internal int, smi, or mcp signals or decrementer interrupts 

• Hard reset or soft reset

• Transition to full-power state occurs only after a few processor cycles.
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9.3.1.4 Nap Mode

The nap mode disables the core except for the processor PLL and time base/decrementer. The time base 
can be used to restore the core to a full-on state after a specified period. 

Because bus snooping is disabled for nap and sleep mode, a hardware handshake using the quiesce request 
(qreq) and quiesce acknowledge (qack) signals are required to maintain data coherency. The core asserts 
the qreq signal to indicate that it is ready to disable bus snooping, including all bus activity. Once the 
processor has entered a quiescent state, it no longer snoops bus activity.

When the system logic has ensured that snooping is no longer necessary, it allows the processor to enter 
the nap (or sleep) mode and causes the assertion of the core qack input signal for the duration of the nap 
mode period.

Nap mode is characterized by the following features:

• Time base/decrementer still enabled

• Most functional units disabled (including bus snooping)

• PLL running and locked to internal sysclk

To enter the nap mode, the following conditions must occur:

• Set nap bit (HID0[9] = 1), MSR[POW] bit is set

• e300 core asserts qreq 

• System asserts qack

• The processor core enters nap mode after several processor clocks

To return to full-power mode, one of the following conditions must occur:

• Assert int, smi, or mcp internal signals 

• Decrementer interrupt

• Hard reset or soft reset

Transition to full-power takes only a few processor cycles. qack can remain asserted; however, qreq 
negates before any bus transaction begins.

9.3.1.5 Sleep Mode

Sleep mode consumes the least amount of power of the four modes, since all functional units are disabled. 
To conserve the maximum amount of power, the PLL and internal sysclk signals can be disabled. Due to 
the fully static design of the e300 core, the internal processor state is preserved when no internal clock is 
present. Because the time base and decrementer are disabled while the core is in sleep mode, the time base 
contents must be updated from an external time base following sleep mode if accurate time-of-day 
maintenance is required. 

Before entering sleep mode, the core asserts qreq to indicate that it is ready to disable bus snooping. When 
the system has ensured that snooping is no longer necessary, the system logic allows the core to enter sleep 
mode by asserting qack for the duration of the sleep mode period.

Sleep mode is characterized by the following features:
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• All functional units disabled (including bus snooping and time base)

• All nonessential input receivers disabled

• Internal clock regenerators disabled

• PLL and sysclk can be disabled

To enter sleep mode, the following conditions must occur:

• Set sleep bit (HID0[10] = 1), MSR[POW] is set

• e300 core asserts qreq

• System logic asserts qack

• e300 core enters sleep mode after several processor clocks

To return to full-power mode when sysclk and PLL are not disabled, the following conditions must occur:

• Assert int, smi, or mcp internal signals 

• Hard reset or soft reset

To return to full-power mode after PLL and sysclk are disabled in sleep mode, the following conditions 
must occur:

• Enable sysclk

• Reconfigure PLL into desired processor clock mode

• System logic waits for PLL startup and relock time (100 µsec)

• System logic asserts one of the sleep recovery signals (for example, int or smi)

9.3.2 Power Management Software Considerations

Because the e300 core is a dual-issue processor core with out-of-order execution capability, care must be 
taken in how the power management modes are entered. Furthermore, nap and sleep modes require all 
outstanding bus operations to be completed before the power management mode is entered. 

Normally, during system configuration time, one of the power management modes is selected by setting 
the appropriate HID0 mode bit. Later, the power management mode is invoked by setting MSR[POW]. To 
ensure a clean transition into and out of the power management mode, set MSR[EE] (external interrupt 
enable) and execute the following code sequence:

sync
mtmsr[POW = 1]
isync

loop: b loop
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Chapter 10  
Debug Features
This chapter describes the debug features of the PowerPC architecture with respect to the e300 core. The 
e300 includes the trace facility debug features.   The enhanced debug features are described as follows:

• Addition of breakpoint status bits to IBCR and DBCR

10.1 Breakpoint Resources
The e300 core provides enhanced debug facilities—instruction address breakpoint, data address 
breakpoint, and program single stepping to enable software debug events. The original IABR and 
single-step functions are supplemented by the new debug features. The debug facilities consist of a set of 
debug control registers (DBCR, IBCR), a set of instruction address breakpoint registers (IABR, IABR2), 
and a set of data address breakpoint registers (DABR, DABR2). These registers used together enable 
various breakpoint functions. Additional hardware debug facilities exist through the JTAG/debug 
interface. 

These registers are accessible only to supervisor-level programs by the mfspr and mtspr instructions. The 
SPR addresses for the registers can be found in Table 3-32 of Chapter 3, “Instruction Set Model.” 

When an instruction or data address breakpoint register is enabled and the conditions are met, an 
instruction address breakpoint interrupt (0x01300) or DSI interrupt (0x00300) occurs. The conditions for 
these exceptions are described in Section 10.1.6, “Interrupt Vectors for Debugging.”

10.1.1 Instruction Address Breakpoint Registers (IABR, IABR2)

IABR and IABR2 can be used to cause a breakpoint interrupt if a specified instruction address is 
encountered. IABR and IABR2 control the instruction address breakpoint interrupt. IABR[CEA] and 
IABR2[CEA] hold the effective address to which each instruction’s address is compared. The interrupt for 
each breakpoint is enabled by setting IABR[BE] or IABR2[BE], respectively. The interrupt is taken when 
there is an instruction address breakpoint match on the next instruction to complete. The instruction tagged 
with the match cannot complete before the instruction address breakpoint interrupt (0x01300) is taken. The 
address of the instruction that matches the breakpoint condition is stored in SRR0. The tagged instruction 
retires after returning from the interrupt (rfi or rfci). The results are then committed to the destination 
registers and address.

If the IABR or IABR2 values are set to any interrupt vector range, an unrecoverable state occurs. The 
IABR or IABR2 values should never be set to match within the instruction address breakpoint interrupt 
handler. Allowing a breakpoint within any handler may result in an indeterminate or unrecoverable 
processor state. See Section 2.2.14, “Instruction Address Breakpoint Registers (IABR and IABR2),” for 
bit descriptions.
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10.1.2 Instructional Address Control Register (IBCR)

IBCR is a supervisor-level SPR. It controls the compare and match type conditions for IABR and IABR2. 
Note that IABR and IABR2 must be enabled before the effects of IBCR are realized. The e300 includes 
additional bits in IBCR[6–7] that contain the status of whether an instruction address breakpoint has 
matched. See Section 2.2.15, “Instruction Address Breakpoint Control Register (IBCR),” for bit 
descriptions.

10.1.3 Data Address Breakpoint Registers (DABR, DABR2)

The DABR and DABR2 registers are used to cause a breakpoint interrupt if the specified address is 
encountered for a data access. DABR[CEA] and DABR2[CEA] hold an effective address to which each 
address of a data access is compared. The breakpoint translation bit of DABR is also compared with 
MSR[DR] to check for a complete match. A match occurs when MSR[DR] = DABR[BT]. The data 
address write and data address read interrupts are enabled by setting DABR[WBE,RBE] and 
DABR2[WBE,RBE]. The data access tagged with the match does not complete before the breakpoint 
interrupt is taken. 

The DSI interrupt (0x00300) occurs when there is a data address breakpoint match. The DSI interrupt is 
taken before the load or store instruction is executed. When the interrupt is taken, DAR is set to the data 
address that causes the breakpoint and DSISR[9] is set to indicate a data address breakpoint. The address 
of the instruction associated with the breakpoint condition is stored in SRR0. The instruction retires after 
returning from the DSI interrupt, and all registers and memory accesses are committed to memory.

An unrecoverable state occurs whenever DABR or DABR2 values are set to an interrupt vector. These 
values must not be set to match within the DSI interrupt handler or the core may enter an indeterminate or 
unrecoverable processor core state.

10.1.4 Data Address Control Register (DBCR)

DBCR is a supervisor-level SPR on the e300 core that controls the compare type and match type conditions 
for DABR and DABR2. Note that DABR or DABR2 (or both) must be enabled before the effects of DBCR 
are realized. The e300 core includes additional bits in DBCR[6–7] that contain the status of whether a data 
address breakpoint has matched. See Section 2.2.17, “Data Address Breakpoint Control Register 
(DBCR),” for bit descriptions.

10.1.5 Other Debug Resources

In addition to the four breakpoint registers and the two breakpoint control registers, other internal register 
values control and monitor the effects of breakpoint conditions. Table 10-1 shows these registers and their 
bits.
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10.1.6 Interrupt Vectors for Debugging

Table 10-2 lists the interrupt vectors that are associated with debug and breakpoint events. Breakpoint 
events do not change other interrupt vectors and conditions.

10.2 Using Breakpoint Facilities
Breakpoints, single-stepping, branch tracing, address and combinational matching are debugging facilities 
provided by the breakpoint registers (DABR, DABR2, IABR, and IABR2) and the MSR.

10.2.1 Single-Stepping

Single-stepping can be a very useful tool in software debugging. This debug feature executes one 
instruction before it takes a trace interrupt. In the trace interrupt handler, the results of executing that 
instruction can be examined.

Table 10-1. Other Debug and Support Register Bits

Register Bits Name Description

MSR 17 PR Privilege level. Breakpoint registers can only be accessed when this bit is cleared (PR = 0 
corresponds to supervisor mode). 

21 SE Single-step trace enable.
0 The processor executes instructions normally.
1 The processor generates a trace interrupt upon the successful completion of the next instruction.

22 BE Branch trace enable
0 The processor executes branch instructions normally.
1 The processor generates a trace interrupt upon the successful completion of a branch instruction.

HID0 0–31 — See Table 2-8 for details.

DAR 0–31 — Data address register. DAR is loaded with the effective address of a data breakpoint condition that 
matches.

DSISR 9 DABR Set if a DABR interrupt occurs.

Table 10-2. Debug Interrupts and Conditions

Interrupt Type Vector Offset Exception Condition

Data access (DSI) 00300 A data access breakpoint interrupt occurs when a match condition exists for the effective 
address of the data access in either DABR or DABR2 for the next read or write data 
access, and the corresponding WBE or RBE, DABR enable bits are set for a read or write 
access, respectively. When a data breakpoint event occurs, DSISR[9] is set, identifying 
the DSI as having been caused by a data breakpoint event. In this case, the DAR contains 
the address of the data access that matched.

Trace 00D00 A trace interrupt is taken when MSR[SE] = 1 or when the currently completing instruction 
is a branch instruction and MSR[BE] = 1.

Instruction address 
breakpoint

01300 An instruction address breakpoint interrupt occurs when a match condition exists for the 
effective address of the instruction access in either IABR or IABR2 for the next instruction 
to complete in the completion unit, and the corresponding IABR[BE] enable bit is set.
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When MSR[SE] (single-step trace enable) is set, the processor generates a trace interrupt (0x00D00) upon 
the successful completion of the next instruction. A trace interrupt is not taken for an isync, sync, rfi, rfci, 
or mtmsr instructions.

MSR[SE] can be set by using mtmsr or by setting the SRR0 bit corresponding to MSR[SE] before 
returning from an interrupt. If MSR[SE] is set by restoring SRR0 to the MSR on the return from an 
interrupt, single-stepping is enabled and one instruction is executed, followed by a trace interrupt.

A typical software debugging procedure is to set an instruction address breakpoint at the instruction 
address to be single stepped. When the IABR interrupt is taken, the interrupt routine disables the 
instruction address breakpoint and sets SRR0 to set the MSR[SE] on the rfi. The trace interrupt is then 
taken upon the completion of the first instruction after return from the IABR interrupt. For any interrupt, 
the value of MSR is saved in SRR0. The value of MSR[SE] is automatically cleared within the interrupt 
handler, disabling single-stepping while the trace interrupt handler is executed. In this typical case, the 
trace interrupt handler can then examine the results of the execution of the instruction in question. The 
trace interrupt handler can then clear the appropriate bit in SRR0 to disable single-stepping (the bit in 
SRR0 that will cause MSR[SE] = 0) on the rfi if no more single-stepping is needed.

Single-stepping skips isync, sync, rfi, rfci, and branch instructions because these instructions do not enter 
the instruction pipeline. The branch trace feature, described in Section 10.2.2, “Branch Tracing,” may be 
used to single-step through rfi, rfci, and branch instructions.

Note that single-stepping on an mtmsr may give unwanted results. The new value moved into MSR upon 
execution of the mtmsr might cause single-stepping to be disabled (if the new value of MSR[SE] is 
cleared). Thus, it is recommended that the value of MSR[SE] be changed (to enable or disable 
single-stepping) indirectly, by changing the value of SRR0 within an interrupt handler and relying on rfi 
to set or clear MSR[SE].

10.2.2 Branch Tracing

When MSR[BE] (branch trace enable) is set, the processor generates a trace interrupt (0x00D00) upon the 
successful completion of a branch instruction.

10.2.3 Breakpoint Address Matching Options

When an instruction address breakpoint is set, and a condition is matched, an instruction address 
breakpoint interrupt (0x01300) occurs along with execution of the matched instruction. The instruction 
retires after the return from the interrupt handler. When a data address and data translation condition match 
occurs, a DSI interrupt (0x00300) occurs along with execution of the matched instruction. The instruction 
retires after the return from the interrupt handler occurs and the instruction has updated memory or 
registers, as appropriate.

On the e300, a match occurs when an address equals the effective address in a corresponding breakpoint 
register. The e300 can also match addresses on a greater than or equal to, or less than basis, as an additional 
matching condition for IBCR and DBCR.

An address match can be signaled after an OR function of the two compared addresses match or the AND 
of the two addresses match, depending on the setting of IBCR and DBCR. This feature along with 
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matching on greater than and less than allows a breakpoint to be set inside or outside a range of two 
addresses. The instruction address breakpoints and data address breakpoints always operate independently 
of each other. For more details, see Section 2.2.15, “Instruction Address Breakpoint Control Register 
(IBCR),” and Section 2.2.17, “Data Address Breakpoint Control Register (DBCR).”

The address matching for the instruction address breakpoint register has the following four possible 
conditions for the specific register:

1. Instruction’s effective address = IABR[CEA].
Table 10-3 describes the instruction address breakpoint register for a single address matching 
condition. In this case, only one IABR is used.

With single address matching settings, a match occurs when the instruction’s effective address = 
IABR[CEA].

2. Instruction’s effective address = IABR[CEA] OR IABR2[CEA].
Table 10-4 describes the instruction address breakpoint register settings when an address can 
match one or the other possible addresses (an OR condition). This requires both IABR registers to 
be programmed.

With two address OR matching, a match occurs when the instruction’s effective address = 
IABR[CEA] OR the instruction’s effective address = IABR2[CEA].

3. IABR[CEA] < instruction’s effective address < IABR2[CEA].
Table 10-5 describes the instruction address breakpoint register settings for an address matching 
inside an address range condition.

Table 10-3. Single-Address Matching Bit Settings

Register Field Name Condition Register Field Name Condition

IABR[CEA] — IABR2[CEA] —

IABR[BE] 1 IABR2[BE] 0

IBCR[CNT] 0 — —

IBCR[SIG_TYPE] OR — —

IBCR[CMP1] = IBCR[CMP2] —

Table 10-4. Two-Address OR Matching

Register Field Name Condition Register Field Name Condition

IABR[CEA] — IABR2[CEA] —

IABR[BE] 1 IABR2[BE] 1

IBCR[CNT] 0 — —

IBCR[SIG_TYPE] OR — —

IBCR[CMP1] = IBCR[CMP2] =
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With address matching for an inside address range, a match occurs when IABR[CEA] ≤ 
instruction’s effective address < IABR2[CEA].

4. Instruction’s effective address < IABR[CEA] OR instruction’s effective address > IABR2[CEA].
Table 10-6 describes the instruction address breakpoint register settings for an address matching 
outside an address range condition.

With address matching for an outside address range, a match occurs when the instruction’s 
effective address < IABR[CEA] OR the instruction’s effective address ≤ IABR2[CEA].

 For more details, see Section 2.2.15, “Instruction Address Breakpoint Control Register (IBCR),” and 
Section 2.2.17, “Data Address Breakpoint Control Register (DBCR).”

10.3 Synchronization Requirements and Other Precautions
An isync instruction must follow the execution of the mtspr to the breakpoint related registers, HID0, 
IABR, IABR2, DABR, DABR2, IBCR, and DBCR (or mtmsr for MSR) to ensure that the breakpoint 
condition is set. IBCR and DBCR should be set before a corresponding breakpoint is enabled. The 
breakpoint enable bits should be cleared before changing bits in the IBCR and DCBR. For more details, 
see Section 5.5.17, “Instruction Address Breakpoint Interrupt (0x01300).”

An unrecoverable state occurs at any time if one of the register values of IABR, IABR2, DABR, and 
DABR2 are set to point to an interrupt vector. The IABR or IABR2 values must not be set to match within 
the instruction address breakpoint interrupt handler, and the DABR or DABR2 values must not be set to 
match within the DSI interrupt handler. Setting a breakpoint within the instruction address breakpoint 
interrupt or DSI handler may result in an unrecoverable and indeterminate processor core state.

Table 10-5. Address Matching for Inside Address Range

Register Field Name Condition Register Field Name Condition

IABR[CEA] — IABR2[CEA] —

IABR[BE] 1 IABR2[BE] 1

IBCR[CNT] 0 — —

IBCR[SIG_TYPE] AND — —

IBCR[CMP1] > IBCR[CMP2] <

Table 10-6. Address Matching for Outside Address Range

Signal Condition Signal Condition

IABR[CEA] — IABR2[CEA] —

IABR[BE] 1 IABR2[BE] 1

IBCR[CNT] 0 — —

IBCR[SIG_TYPE] OR — —

IBCR[CMP1] < IBCR[CMP2] >
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If an IABR match and DABR match occur on the same instruction, the instruction address breakpoint 
interrupt is taken before the DSI interrupt.

If an IABR match occurs on a branch instruction, the instruction address breakpoint interrupt is set to the 
effective address of the branch instruction.
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Chapter 11  
Performance Monitor
This chapter describes the performance monitor as implemented in the e300c3 and e300c4. The 
programming model is similar to that defined by the EIS; some features are defined by the e300c3 and 
e300c4, in particular, the events that can be counted.

11.1 Overview
The performance monitor provides the ability to count predefined events and processor clocks associated 
with particular operations, for example cache misses, mispredicted branches, or the number of cycles an 
execution unit stalls. The count of such events can be used to trigger the performance monitor interrupt.

The performance monitor can be used to do the following:

• Improve system performance by monitoring software execution and then recoding algorithms for 
more efficiency. For example, memory hierarchy behavior can be monitored and analyzed to 
optimize task scheduling or data distribution algorithms. 

• Characterize processors in environments not easily characterized by benchmarking.

• Help system developers bring up and debug their systems.

The performance monitor uses the following resources: 

• The performance monitor mark bit in the MSR (MSR[PMM]). This bit controls which programs 
are monitored.

• The move to/from performance monitor registers (PMR) instructions, mtpmr and mfpmr.

• The external input pm_event_in.

• PMRs:

— The performance monitor counter registers (PMC0–PMC3) are 32-bit counters used to count 
software-selectable events. Each counter counts up to 128 events. UPMC0–UPMC3 provide 
user-level read access to these registers. Reference events are those that should be applicable 
to most microprocessor microarchitectures and be of general value. They are identified in 
Table 11-9.

— The performance monitor global control register (PMGC0) controls the counting of 
performance monitor events. It takes priority over all other performance monitor control 
registers. UPMGC0 provides user-level read access to PMGC0.

— The performance monitor local control registers (PMLCa0–PMLCa3) control each individual 
performance monitor counter. Each counter has a corresponding PMLCa register. 
UPMLCa0–UPMLCa3 provide user-level read access to PMLCa0–PMLCa3).

• The performance monitor interrupt is assigned to interrupt vector 0x0F00. Its priority is less than 
the fixed-interval interrupt and greater than the decrementer interrupt. 
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Software communication with the performance monitor is achieved through PMRs rather than SPRs. The 
PMRs are used for enabling conditions that can trigger the performance monitor interrupt. 

11.2 Performance Monitor Registers
The performance monitor provides a set of PMRs for defining, enabling, and counting conditions that 
trigger the performance interrupt. It also the performance monitor interrupt vector. 

The supervisor-level performance monitor registers in Table 11-1 are accessed with mtpmr and mfpmr. 
Attempting to read or write supervisor-level registers in user-mode causes a privilege exception.

The user-level performance monitor registers in Table 11-2 are read-only and are accessed with the mfpmr 
instruction. Attempting to write these user-level registers in either supervisor or user mode causes an 
illegal instruction exception.

Table 11-1. Performance Monitor Registers–Supervisor Level

Number PMR[0–4] PMR[5–9] Name Abbreviation

16 00000 10000 Performance monitor counter 0 PMC0

17 00000 10001 Performance monitor counter 1 PMC1

18 00000 10010 Performance monitor counter 2 PMC2

19 00000 10011 Performance monitor counter 3 PMC3

144 00100 10000 Performance monitor local control a0 PMLCa0

145 00100 10001 Performance monitor local control a1 PMLCa1

146 00100 10010 Performance monitor local control a2 PMLCa2

147 00100 10011 Performance monitor local control a3 PMLCa3

400 01100 10000 Performance monitor global control 0 PMGC0

Table 11-2. Performance Monitor Registers–User Level (Read-Only)

Number PMR[0–4] PMR[5–9] Name Abbreviation

0 00000 00000 Performance monitor counter 0 UPMC0

1 00000 00001 Performance monitor counter 1 UPMC1

2 00000 00010 Performance monitor counter 2 UPMC2

3 00000 00011 Performance monitor counter 3 UPMC3

128 00100 00000 Performance monitor local control a0 UPMLCa0

129 00100 00001 Performance monitor local control a1 UPMLCa1

130 00100 00010 Performance monitor local control a2 UPMLCa2

131 00100 00011 Performance monitor local control a3 UPMLCa3

384 01100 00000 Performance monitor global control 0 UPMGC0
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11.2.1 Global Control Register 0 (PMGC0)

The performance monitor global control register (PMGC0), shown in Figure 11-1, controls all 
performance monitor counters.

PMGC0 is cleared by a hard reset. Reading this register does not change its contents. Table 11-3 describes 
PMGC0 fields.

PMGC0 (PMR400)
UPMGC0 (PMR384)

Access: PMGC0: Supervisor-only
UPMGC0: Supervisor/user read-only

0 1 2 3 18 19 20 21 22 23 24 31

R FA
C

PMIE FCECE —
W

R FA
C

PMIE FCECE — TBSEL — TBEE —
W

Reset All zeros

Figure 11-1. Performance Monitor Global Control Register 0 (PMGC0)/
User Performance Monitor Global Control Register 0 (UPMGC0)

Table 11-3. PMGC0 Field Descriptions

Bits Name Description

0 FAC Freeze all counters. When FAC is set by hardware or software, PMLCx[FC] maintains its current value until 
it is changed by software.
0 The PMCs are incremented (if permitted by other PM control bits).
1 The PMCs are not incremented. 

1 PMIE Performance monitor interrupt enable
0 Performance monitor interrupts are disabled.
1 Performance monitor interrupts are enabled and occur when an enabled condition or event occurs, at 

which time PMGC0[PMIE] is cleared
Software can clear PMIE to prevent performance monitor interrupts. Performance monitor interrupts are 
caused by time base events or PMCx overflow.

2 FCECE Freeze counters on enabled condition or event 
0 The PMCs can be incremented (if permitted by other PM control bits).
1 The PMCs can be incremented (if permitted by other PM control bits) only until an enabled condition or 

event occurs. When an enabled condition or event occurs, PMGC0[FAC] is set. It is up to software to clear 
FAC.

An enabled condition or event is defined as one of the following:
 • When the msb = 1 in PMCx and PMLCax[CE] = 1.
 • When the time-base bit specified by TBSEL=1 and TBEE=1.

3–17 — Reserved, should be cleared.
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11.2.2 User Global Control Register 0 (UPMGC0)

The contents of PMGC0 are reflected to UPMGC0, which can be read by user-level software. UPMGC0 
can be read with the mfpmr instruction using PMR384.

11.2.3 Local Control A Registers (PMLCa0–PMLCa3)

The local control A registers (PMLCa0–PMLCa3) function as event selectors and give local control for 
the corresponding performance monitor counters. PMLCa works with the corresponding PMLCb register. 
PMLCa registers are shown in Figure 11-2.

19-20 TBSEL Time base selector. Selects the time base bit that can cause a time base transition event (the event occurs 
when the selected bit changes from 0 to 1).
00 TB[63] (TBL[31])
01 TB[55] (TBL[23])
10 TB[51] (TBL[19])
11 TB[47] (TBL[15])
Time base transition events can be used to periodically collect information about processor activity. In 
multiprocessor systems in which TB registers are synchronized across processors, these events can be used 
to correlate performance monitor data obtained by the several processors. For this use, software must specify 
the same TBSEL value for all processors in the system. Time-base frequency is implementation-dependent, 
so software should invoke a system service program to obtain the frequency before choosing a TBSEL value. 

20–21 — Reserved, should be cleared.

23 TBEE Time base transition event exception enable 
0 Exceptions from time base transition events are disabled.
1 Exceptions from time base transition events are enabled. A time base transition is signalled to the 

performance monitor if the TB bit specified in PMGC0[TBSEL] changes from 0 to 1. Time base transition 
events can be used to freeze counters (PMGC0[FCECE]) or signal an exception (PMGC0[PMIE]).
Changing PMGC0[TBSEL] while PMGC0[TBEE] is enabled may cause a false 0 to 1 transition that signals 
the specified action (freeze, exception) to occur immediately. Although the interrupt signal condition may 
occur with MSR[EE] = 0, the interrupt cannot be taken until MSR[EE] = 1. 

12-31 — Reserved, should be cleared.

PMLCa0 (PMR144)
PMLCa1 (PMR145)
PMLCa2 (PMR146)
PMLCa3 (PMR147)

UPMLCa0 (PMR128)
UPMLCa1 (PMR129)
UPMLCa2 (PMR130)
UPMLCa3 (PMR131)

Access: PMLCa0–PMLCa3: Supervisor-only
UPMLCa0–UPMLCa3: Supervisor/user read-only

0 1 2 3 4 5 6 8 9 15 16 31

R
FC FCS FCU FCM1 FCM0 CE — EVENT —

W

Reset All zeros

Figure 11-2. Local Control A Registers (PMLCa0–PMLCa3)/
User Local Control A Registers (UPMLCa0–UPMLCa3) 

Table 11-3. PMGC0 Field Descriptions (continued)

Bits Name Description
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PMLCa registers are cleared by a hard reset. Table 11-4 describes PMLCa fields.

11.2.4 User Local Control A Registers (UPMLCa0–UPMLCa3)

The PMLCa contents are reflected to UPMLCa0–UPMLCa3, which can be read by user-level software 
with mfpmr using PMR numbers in Table 11-2.

11.2.5 Performance Monitor Counter Registers (PMC0–PMC3)

The performance monitor counter registers (PMC0–PMC3), shown in Figure 11-3, are 32-bit counters that 
can be programmed to generate interrupt signals when they overflow. Each counter is enabled to count up 
to 128 events.

Table 11-4. PMLCa0–PMLCa3 Field Descriptions

Bits Name Description

0 FC Freeze counter. 
0 The PMC can be incremented (if enabled by other performance monitor control fields).
1 The PMC cannot be incremented.

1 FCS Freeze counter in supervisor state. 
0 The PMC can be incremented (if enabled by other performance monitor control fields).
1 The PMC cannot be incremented if MSR[PR] is cleared.

2 FCU Freeze counter in user state. 
0 The PMC can be incremented (if enabled by other performance monitor control fields).
1 The PMC cannot be incremented if MSR[PR] is set.

3 FCM1 Freeze counter while mark is set. 
0 The PMC can be incremented (if enabled by other performance monitor control fields).
1 The PMC cannot be incremented if MSR[PMM] is set.

4 FCM0 Freeze counter while mark is cleared. 
0 The PMC can be incremented (if enabled by other performance monitor control fields).
1 The PMC cannot be incremented if MSR[PMM] is cleared.

537 CE Condition enable.
0 Overflow conditions for PMCn cannot occur (PMCn cannot cause interrupts or freeze counters)
1 Overflow conditions occur when the most-significant-bit of PMCn is equal to 1.
It is recommended that CE be cleared when counter PMCn is selected for chaining.

6-8 — Reserved, should be cleared.

9–15 EVENT Event selector. Up to 128 events selectable. See Section 11.5.2, “Event Selection”

16–31 — Reserved, should be cleared.
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PMCs are cleared by a hard reset. Table 11-5 describes PMC register fields.

The minimum counter value is 0x0000_0000; 4,294,967,295 (0xFFFF_FFFF) is the maximum. A counter 
can increment by 0, 1, or 2 up to the maximum value and then wraps to the minimum value. 

A counter enters overflow state when the high-order bit is set by entering the overflow state at the halfway 
point between the minimum and maximum values. A performance monitor interrupt handler can easily 
identify overflowed counters, even if the interrupt is masked for many cycles (during which the counters 
may continue incrementing). A high-order bit is set normally only when the counter increments from a 
value below 2,147,483,648 (0x8000_0000) to a value greater than or equal to 2,147,483,648 
(0x8000_0000). 

NOTE
Initializing PMCs to overflowed values is strongly discouraged. If an 
overflowed value is loaded into a PMCn that held a non-overflowed value 
(and PMGC0[PMIE], PMLCan[CE], and MSR[EE] are set), an interrupt is 
generated before any events are counted.

The response to an overflow depends on the configuration, as follows:

• If PMLCan[CE] is clear, no special actions occur on overflow: the counter continues incrementing, 
and no exception is signaled.

• If PMLCan[CE] and PMGC0[FCECE] are set, all counters are frozen when PMCn overflows.

• If PMLCan[CE] and PMGC0[PMIE] are set, an exception is signaled when PMCn reaches 
overflow. Interrupts are masked by clearing MSR[EE]. An exception may be signaled while 
MSR[EE] is cleared, but the interrupt is not taken until it is set and only if the overflow condition 
is still present and the configuration has not been changed in the meantime to disable the exception. 

PMC0 (PMR16)
PMC1 (PMR17)
PMC2 (PMR18)
PMC3 (PMR19)

UPMC0 (PMR0)
UPMC1 (PMR1)
UPMC2 (PMR2)
UPMC3 (PMR3)

Access: PMC0–PMC3: Supervisor-only
UPMC0–UPMC3: Supervisor/user read-only

0 1 31

R
OV Counter value

W

Reset All zeros

Figure 11-3. Performance Monitor Counter Registers (PMC0–PMC3)/
User Performance Monitor Counter Registers (UPMC0–UPMC3)

Table 11-5. PMC0–PMC3 Field Descriptions

Bits Name Description

0 OV Overflow. 
0 Counter has not reached an overflow state.
1 Counter has reached an overflow state. 

1–31 Counter Value Indicates the number of occurrences of the specified event. 
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However, if MSR[EE] remains clear until after the counter leaves the overflow state (msb 
becomes 0), or if MSR[EE] remains clear until after PMLCan[CE] or PMGC0[PMIE] 
cleared, the exception is not signaled.

The following sequence is recommended for setting counter values and configurations:

1. Set PMGC0[FAC] to freeze the counters. 

2. Using mtpmr instructions, initialize counters and configure control registers.

3. Release the counters by clearing PMGC0[FAC] with a final mtpmr.

11.2.6 User Performance Monitor Counter Registers (UPMC0–UPMC3)

The contents of PMC0–PMC3 are reflected to UPMC0–UPMC3, which can be read by user-level software 
with the mfpmr instruction using PMR numbers in Table 11-2.

11.2.7 Performance Monitor Instructions

The APU defines instructions for reading and writing the PMRs as shown in Table 11-6.

Table 11-6. Performance Monitor APU Instructions

Name Mnemonic Syntax

Move from Performance Monitor Register mfpmr rD,PMRN

Move to Performance Monitor Register mtpmr PMRN,rS
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The following instruction has been added to support performance monitor operations:

.

PMRN denotes a performance monitor register as listed in Table 11-1 and Table 11-2.

The contents of the designated performance monitor register are placed into GPR[rD].

When MSR[PR] = 1, specifying a performance monitor register that is not implemented and is not 
privileged (PMRN[5] = 0) results in an illegal instruction exception-type program interrupt. When 
MSR[PR]=1, specifying a performance monitor register that is privileged (PMRN[5] = 1) results in a 
privileged instruction execution-type program interrupt. When MSR[PR] = 0, specifying an 
unimplemented performance monitor register is boundedly undefined.

Other registers altered:

• None

mfpmr mfpmr 
Integer Unit

0 5 6 10 11 15 16 20 21 31

GPR (rD) <-- PMREG(PMRN)

PMRN5-9 PMRN0-4 0  1  0  1  0  0  1  1  1  0  0

Move from Performance Monitor Register
mfpmr rD, PMRN

rD0  1  1  1  1  1
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.

PMRN denotes a performance monitor register, as listed in Table 11-1 and Table 11-2.

The contents of GPR[rS] are placed into the designated performance monitor register. 

When MSR[PR] = 1, specifying a performance monitor register that is not implemented and is not 
privileged (PMRN[5] = 0) results in an illegal instruction exception-type program interrupt. When 
MSR[PR]=1, specifying a performance monitor register that is privileged (PMRN[5] = 1) results in a 
privileged instruction execution-type program interrupt. When MSR[PR] = 0, specifying an 
unimplemented performance monitor register is boundedly undefined.

Other registers altered:

• None

11.3 Performance Monitor Interrupt
The performance monitor interrupt is triggered by an enabled condition or event. The only performance 
monitor enabled condition or event defined for the e300c3 and e300c4 is the following:

• A PMCn overflow condition occurs when both of the following are true:

— The counter’s overflow condition is enabled; PMLCan[CE] is set.

— The counter indicates an overflow; PMCn[OV] is set.

If PMGC0[PMIE] is set, an enabled condition or event triggers the signaling of a performance monitor 
exception.

If PMGC0[FCECE] is set, an enabled condition or event also triggers all performance monitor counters to 
freeze.

Although the performance monitor exception condition could occur with MSR[EE] cleared, the interrupt 
cannot be taken until MSR[EE] is set. If PMCn overflows and would signal an exception (PMLCan[CE] 
and PMGC0[PMIE] are set) while interrupts are disabled (MSR[EE] is clear), and freezing of the counters 
is not enabled (PMGC0[FCECE] is clear), PMCn can wrap around to all zeros again without the 
performance monitor interrupt being taken.

mtpmr mtpmr 
Integer Unit

0 5 6 10 11 15 16 20 21 31

 PMREG(PMRN) <-- GPR (rS)

PMRN5-9 PMRN0-4 0  1  1  1  0  0  1  1  1  0  0

Move to Performance Monitor Register
mtpmr PMRN, rS

rS0  1  1  1  1  1
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11.4 Event Counting
This section describes configurability and specific unconditional counting modes. 

11.4.1 Processor Context Configurability

Counting can be enabled if conditions in the processor state match a software-specified condition. Because 
a software task scheduler may switch a processor’s execution among multiple processes and because 
statistics on only a particular process may be of interest, a facility is provided to mark a process. The 
performance monitor mark bit, MSR[PMM], is used for this purpose. System software may set this bit 
when a marked process is running. This enables statistics to be gathered only during the execution of the 
marked process. The states of MSR[PR,PMM] together define a state that the processor (supervisor or 
user) and the process (marked or unmarked) may be in at any time. If this state matches an individual state 
specified by the PMLCan[FCS,FCU,FCM1,FCM0] fields, the state for which monitoring is enabled, 
counting is enabled for PMCn.

The processor states and the settings of the FCS, FCU, FCM1, and FCM0 fields in PMLCan necessary to 
enable monitoring of each processor state are shown in Table 11-7.

Two unconditional counting modes may be specified:

• Counting is unconditionally enabled regardless of the states of MSR[PMM] and MSR[PR]. This 
can be accomplished by clearing PMLCan[FCS], PMLCan[FCU], PMLCan[FCM1], and 
PMLCan[FCM0] for each counter control.

• Counting is unconditionally disabled regardless of the states of MSR[PMM] and MSR[PR]. This 
can be accomplished by setting PMGC0[FAC] or by setting PMLCan[FC] for each counter control. 
Alternatively, this can be accomplished by setting PMLCan[FCM1] and PMLCan[FCM0] for each 
counter control or by setting PMLCan[FCS] and PMLCan[FCU] for each counter control.

Table 11-7. Processor States and PMLCa0–PMLCa3 Bit Settings

Processor State FCS FCU FCM1 FCM0

Marked 0 0 0 1

Not marked 0 0 1 0

Supervisor 0 1 0 0

User 1 0 0 0

Marked and supervisor 0 1 0 1

Marked and user 1 0 0 1

Not marked and supervisor 0 1 1 0

Not mark and user 1 0 1 0

All 0 0 0 0

None X X 1 1

None 1 1 X X
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11.5 Performance Monitor Application Examples
The following sections provide examples of how to use the performance monitor facility:

11.5.1 Chaining Counters

The counter chaining feature can be used to decrease the processing pollution caused by performance 
monitor interrupts (things like cache contamination and pipeline effects) by allowing a higher event count 
than is possible with a single counter. Chaining two counters together effectively adds 32 bits to a counter 
register where the first counter’s overflow event acts like a carry out feeding the second counter. By 
defining the event of interest to be another PMC’s overflow generation, the chained counter increments 
each time the first counter rolls over to zero. Multiple counters may be chained together. 

Because the entire chained value cannot be read in a single instruction, an overflow may occur between 
counter reads, producing an inaccurate value. A sequence like the following is necessary to read the 
complete chained value when it spans multiple counters and the counters are not frozen. The example 
shown is for a two-counter case.

loop: mfpmr  Rx,pmctr1 #load from upper counter
mfpmr Ry,pmctr0 #load from lower counter
mfpmr Rz,pmctr1 #load from upper counter
cmp cr0,0,Rz,Rx #see if ‘old’ = ‘new’
bc 4,2,loop #loop if carry occurred between reads

The comparison and loop are necessary to ensure that a consistent set of values has been obtained. The 
above sequence is not necessary if the counters are frozen.

11.5.2 Event Selection

Event selection is specified through the PMLCan registers described in Section 11.2.3, “Local Control A 
Registers (PMLCa0–PMLCa3).” The event-select fields in PMLCan[EVENT] are described in 
Table 11-9, which lists encodings for the selectable events to be monitored. Table 11-9 establishes a 
correlation between each counter, events to be traced, and the pattern required for the desired selection. 

The Spec/Nonspec column indicates whether the event count includes any occurrences due to processing 
that was not architecturally required by the PowerPC sequential execution model (speculative processing). 

• Speculative counts include speculative instructions that were later flushed.

• Nonspeculative counts do not include speculative operations, which are flushed.

Table 11-8 describes how event types are indicated in Table 11-9.

Table 11-8. Event Types

Event Type Label Description

Reference Ref:# Shared across counters PMC0—PMC3. Applicable to most microprocessors. 

Common Com:# Shared across counters PMC0–PMC3. 

Counter-specific C[0–3]:# Counted only on one or more specific counters. The notation indicates the counter to which 
an event is assigned. For example, an event assigned to counter PMC2 is shown as C2:#.



Performance Monitor

e300 Power Architecture Core Family Reference Manual, Rev. 4

11-12 Freescale Semiconductor
 

Table 11-9 describes performance monitor events. Pipeline events in Table 11-9 are defined in instruction 
timing.

Table 11-9. Performance Monitor Event Selection

Number Event
Spec/

Nonspec
Count Description

General Events

Ref:0 Nothing Nonspec Register counter holds current value

Ref:1 Processor cycles Nonspec Every processor cycle

Ref:2 Instructions completed Nonspec Completed instructions. 0, 1, or 2 per cycle.

Com:4 Instructions fetched Spec Fetched instructions. 0, 1, 2, 3, or 4 per cycle. (instructions written to 
the IQ.)

Com:6 PM_EVENT transitions Spec 0 to 1 transitions on the pm_event input.

Com:7 PM_EVENT cycles Spec Processor bus cycles that occur when the pm_event input is 
asserted.

Instruction Types Completed

Com:8 Branch instructions completed Nonspec Completed branch instructions.

Com:9 Load completed Nonspec Completed load (l*, load-update (1 load)), load-multiple (1–32), 
dcbt(L1, CT = 0), and dcbtst(L1, CT = 0)

Com:10 Store completed Nonspec Completed store (st*, store-update (1 store)), store-multiple (1–32), 
icbi, dcbf, dcbst, dcbt(CT = 1), dcbtst(CT = 1), dcbz, icbt(CT = 1)

Branch Prediction and Execution Events

Com:12 Branches finished Spec Includes all branch instructions (includes folded branches)

Com:13 Taken branches finished Spec Includes all taken branch instructions (includes folded branches)

Com:15 Branches mispredicted (for any 
reason)

Spec Counts branch instructions mispredicted due to direction, target (for 
example if the CTR contents change), or IAB prediction. Does not 
count instructions that the branch predictor incorrectly predicted to 
be branches. 

Pipeline Stalls

Com:18 Cycles decode stalled Spec Cycles the IQ is not empty but 0 instructions decoded

Com:19 Cycles issue stalled Spec Cycles the issue buffer is not empty but 0 instructions issued

Com:31 Cache-inhibited accesses 
translated

Spec Cache inhibited accesses translated

Com:61 Number of instruction fetches that 
hit

Spec Counts fetches that write at least one instruction to the IQ. (With 
instruction fetched (com:4), can used to compute 
instructions-per-fetch)

Instruction MMU and Data MMU Events

Com:62 MMU inside miss Spec Counts instruction TLB miss exceptions

BIU Interface Usage

Com:67 BIU master requests Spec Master transaction starts (assertions of ts)

Com:68 BIU master instruction-side 
requests

Spec Master instruction-side assertions of ts

Com:69 BIU master data-side requests Spec Master data-side assertions of ts
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Com:71 BIU master retries Spec Transactions initiated by this processor that were retried on the BIU 
interface. (The core is master and another device retries the core 
transaction.)

Snoop

Com:74 Snoop pushes N/A Snoop pushes from all data-side resources. (Counts snoop ARTRYs 
and WOPs.)

Chaining Events1

Com:82 PMC0 overflow N/A PMC0[32] transitions from 1 to 0.

Com:83 PMC1 overflow N/A PMC1[32] transitions from 1 to 0.

Com:84 PMC2 overflow N/A PMC2[32] transitions from 1 to 0.

Com:85 PMC3 overflow N/A PMC3[32] transitioned from 1 to 0.

Interrupt Events

Com:86 Interrupts taken Nonspec —

Com:87 External input interrupts taken Nonspec —

Com:88 Critical input interrupts taken Nonspec —

Com:89 System call and trap interrupts Nonspec —

Ref:90 Transitions of TBL bit selected by 
PMGC0[TBSEL]. 

Nonspec Counts transitions of the TBL bit selected by PMGC0[TBSEL]. 

 e300 Performance Monitor Events

Com:96 i-cache hits Spec Number of fetches that hit in i-cache 

Com:97 Instructions folded Spec Number of instructions folded (used to determine true number of 
instructions completed) 

Com:100 Stalls due to completion buffer Spec Cycles issue stalled due to full completion buffer

Com:101 Reserved — Reserved.

Com:104 Stalled completion Spec Cycles that completion is stalled 

Com:105 Stalles due to load Spec Cycles that completion is stalled due to load 

Com:106 Stalles due to floating-point Spec Cycles that completion is stalled due to floating point instruction

Com:108 Load and stores to cacheable 
space

Spec Number of loads and stores to cacheable space in the data cache.

Com:109 Loads and stores that hit in cache Spec Number of loads and stores that hit in the data cache.

1 For chaining events, if a counter is configured to count its own overflow bit, that counter does not increment. For example, if 
PMC2 is selected to count PMC2 overflow events, PMC2 does not increment.

Table 11-9. Performance Monitor Event Selection (continued)

Number Event
Spec/

Nonspec
Count Description
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Appendix A 
Instruction Set Listings
This appendix lists the e300 core microprocessor’s instruction set as well as the additional PowerPC 
instructions not implemented in the e300 core. Instructions are sorted by mnemonic, opcode, function, and 
form. Also included is a quick reference table that contains general information, such as the architecture 
level, privilege level, and form, and indicates if the instruction is 64-bit and optional.

Note that split fields representing the concatenation of sequences from left to right, are shown in 
lowercase. For more information refer to Chapter 8, “Instruction Set,” in the Programming Environments 
Manual.

The following key applies to the tables in this appendix.

A.1 Instructions Sorted by Mnemonic
Table A-1 lists the instructions implemented in the PowerPC architecture in alphabetical order by 
mnemonic.

Key: Reserved Bits Instruction not implemented in the e300 core

Table A-1. Complete Instruction List Sorted by Mnemonic

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addx 31 D A B OE 266 Rc

addcx 31 D A B OE 10 Rc

addex 31 D A B OE 138 Rc

addi 14 D A SIMM

addic 12 D A SIMM

addic. 13 D A SIMM

addis 15 D A SIMM

addmex 31 D A 0 0 0 0 0 OE 234 Rc

addzex 31 D A 0 0 0 0 0 OE 202 Rc

andx 31 S A B 28 Rc

andcx 31 S A B 60 Rc

andi. 28 S A UIMM

andis. 29 S A UIMM

bx 18 LI AA LK

bcx 16 BO BI BD AA LK

bcctrx 19 BO BI 0 0 0 0 0 528 LK
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bclrx 19 BO BI 0 0 0 0 0 16 LK

cmp 31 crfD 0 L A B 0 0

cmpi 11 crfD 0 L A SIMM

cmpl 31 crfD 0 L A B 32 0

cmpli 10 crfD 0 L A UIMM

cntlzdx1 31 S A 0 0 0 0 0 58 Rc

cntlzwx 31 S A 0 0 0 0 0 26 Rc

crand 19 crbD crbA crbB 257 0

crandc 19 crbD crbA crbB 129 0

creqv 19 crbD crbA crbB 289 0

crnand 19 crbD crbA crbB 225 0

crnor 19 crbD crbA crbB 33 0

cror 19 crbD crbA crbB 449 0

crorc 19 crbD crbA crbB 417 0

crxor 19 crbD crbA crbB 193 0

dcbf 31 0 0 0 0 0 A B 86 0

dcbi2 31 0 0 0 0 0 A B 470 0

dcbst 31 0 0 0 0 0 A B 54 0

dcbt 31 0 0 0 0 0 A B 278 0

dcbtst 31 0 0 0 0 0 A B 246 0

dcbz 31 0 0 0 0 0 A B 1014 0

divdx 1 31 D A B OE 489 Rc

divdux 1 31 D A B OE 457 Rc

divwx 31 D A B OE 491 Rc

divwux 31 D A B OE 459 Rc

eciwx 3 31 D A B 310 0

ecowx 3 31 S A B 438 0

eieio 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

eqvx 31 S A B 284 Rc

extsbx 31 S A 0 0 0 0 0 954 Rc

extshx 31 S A 0 0 0 0 0 922 Rc

extswx 1 31 S A 0 0 0 0 0 986 Rc

fabsx 63 D 0 0 0 0 0 B 264 Rc

faddx 63 D A B 0 0 0 0 0 21 Rc

faddsx 59 D A B 0 0 0 0 0 21 Rc

fcfidx 1 63 D 0 0 0 0 0 B 846 Rc

Table A-1. Complete Instruction List Sorted by Mnemonic (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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fcmpo 63 crfD 0 0 A B 32 0

fcmpu 63 crfD 0 0 A B 0 0

fctidx 1 63 D 0 0 0 0 0 B 814 Rc

fctidzx 1 63 D 0 0 0 0 0 B 815 Rc

fctiwx 63 D 0 0 0 0 0 B 14 Rc

fctiwzx 63 D 0 0 0 0 0 B 15 Rc

fdivx 63 D A B 0 0 0 0 0 18 Rc

fdivsx 59 D A B 0 0 0 0 0 18 Rc

fmaddx 63 D A B C 29 Rc

fmaddsx 59 D A B C 29 Rc

fmrx 63 D 0 0 0 0 0 B 72 Rc

fmsubx 63 D A B C 28 Rc

fmsubsx 59 D A B C 28 Rc

fmulx 63 D A 0 0 0 0 0 C 25 Rc

fmulsx 59 D A 0 0 0 0 0 C 25 Rc

fnabsx 63 D 0 0 0 0 0 B 136 Rc

fnegx 63 D 0 0 0 0 0 B 40 Rc

fnmaddx 63 D A B C 31 Rc

fnmaddsx 59 D A B C 31 Rc

fnmsubx 63 D A B C 30 Rc

fnmsubsx 59 D A B C 30 Rc

fresx3 59 D 0 0 0 0 0 B 0 0 0 0 0 24 Rc

frspx 63 D 0 0 0 0 0 B 12 Rc

frsqrtex3 63 D 0 0 0 0 0 B 0 0 0 0 0 26 Rc

fselx3 63 D A B C 23 Rc

fsqrtx 63 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsqrtsx3 59 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsubx 63 D A B 0 0 0 0 0 20 Rc

fsubsx 59 D A B 0 0 0 0 0 20 Rc

icbi 31 0 0 0 0 0 A B 982 0

icbt6 31 0 0 0 0 0 A B 22 0

isync 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0

lbz 34 D A d

lbzu 35 D A d

lbzux 31 D A B 119 0

lbzx 31 D A B 87 0

Table A-1. Complete Instruction List Sorted by Mnemonic (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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ld 1 58 D A ds 0

ldarx 1 31 D A B 84 0

ldu 1 58 D A ds 1

ldux 1 31 D A B 53 0

ldx 1 31 D A B 21 0

lfd 50 D A d

lfdu 51 D A d

lfdux 31 D A B 631 0

lfdx 31 D A B 599 0

lfs 48 D A d

lfsu 49 D A d

lfsux 31 D A B 567 0

lfsx 31 D A B 535 0

lha 42 D A d

lhau 43 D A d

lhaux 31 D A B 375 0

lhax 31 D A B 343 0

lhbrx 31 D A B 790 0

lhz 40 D A d

lhzu 41 D A d

lhzux 31 D A B 311 0

lhzx 31 D A B 279 0

lmw4 46 D A d

lswi 4 31 D A NB 597 0

lswx 4 31 D A B 533 0

lwa 1 58 D A ds 2

lwarx 31 D A B 20 0

lwaux 1 31 D A B 373 0

lwax 1 31 D A B 341 0

lwbrx 31 D A B 534 0

lwz 32 D A d

lwzu 33 D A d

lwzux 31 D A B 55 0

lwzx 31 D A B 23 0

mcrf 19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0

mcrfs 63 crfD 0 0 crfS 0 0 0 0 0 0 0 64 0

Table A-1. Complete Instruction List Sorted by Mnemonic (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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 mcrxr 31 crfD 0 0 0 0 0 0 0 0 0 0 0 0 512 0

mfcr 31 D 0 0 0 0 0 0 0 0 0 0 19 0

mffsx 63 D 0 0 0 0 0 0 0 0 0 0 583 Rc

mfmsr 2 31 D 0 0 0 0 0 0 0 0 0 0 83 0

mfspr5 31 D spr 339 0

mfsr 2 31 D 0 SR 0 0 0 0 0 595 0

mfsrin 2 31 D 0 0 0 0 0 B 659 0

mftb 31 D tbr 371 0

mtcrf 31 S 0 CRM 0 144 0

mtfsb0x 63 crbD 0 0 0 0 0 0 0 0 0 0 70 Rc

mtfsb1x 63 crbD 0 0 0 0 0 0 0 0 0 0 38 Rc

mtfsfx 63 0 FM 0 B 711 Rc

mtfsfix 63 crfD 0 0 0 0 0 0 0 IMM 0 134 Rc

mtmsr 2 31 S 0 0 0 0 0 0 0 0 0 0 146 0

mtspr 5 31 S spr 467 0

mtsr 2 31 S 0 SR 0 0 0 0 0 210 0

mtsrin 2 31 S 0 0 0 0 0 B 242 0

mulhdx 1 31 D A B 0 73 Rc

mulhdux 1 31 D A B 0 9 Rc

mulhwx 31 D A B 0 75 Rc

mulhwux 31 D A B 0 11 Rc

mulldx 1 31 D A B OE 233 Rc

mulli 7 D A SIMM

mullwx 31 D A B OE 235 Rc

nandx 31 S A B 476 Rc

negx 31 D A 0 0 0 0 0 OE 104 Rc

norx 31 S A B 124 Rc

orx 31 S A B 444 Rc

orcx 31 S A B 412 Rc

ori 24 S A UIMM

oris 25 S A UIMM

rfi 2 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0

rldclx 1 30 S A B mb 8 Rc

rldcrx 1 30 S A B me 9 Rc

rldicx 1 30 S A sh mb 2 sh Rc

rldiclx 1 30 S A sh mb 0 sh Rc

Table A-1. Complete Instruction List Sorted by Mnemonic (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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rldicrx 1 30 S A sh me 1 sh Rc

rldimix 1 30 S A sh mb 3 sh Rc

rlwimix 20 S A SH MB ME Rc

rlwinmx 21 S A SH MB ME Rc

rlwnmx 23 S A B MB ME Rc

sc 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

slbia 1, 2, 3 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 498 0

slbie 1, 2, 3 31 0 0 0 0 0 0 0 0 0 0 B 434 0

sldx 1 31 S A B 27 Rc

slwx 31 S A B 24 Rc

sradx 1 31 S A B 794 Rc

sradix 1 31 S A sh 413 sh Rc

srawx 31 S A B 792 Rc

srawix 31 S A SH 824 Rc

srdx 1 31 S A B 539 Rc

srwx 31 S A B 536 Rc

stb 38 S A d

stbu 39 S A d

stbux 31 S A B 247 0

stbx 31 S A B 215 0

std 1 62 S A ds 0

stdcx. 1 31 S A B 214 1

stdu 1 62 S A ds 1

stdux 1 31 S A B 181 0

stdx 1 31 S A B 149 0

stfd 54 S A d

stfdu 55 S A d

stfdux 31 S A B 759 0

stfdx 31 S A B 727 0

stfiwx 3 31 S A B 983 0

 stfs 52 S A d

stfsu 53 S A d

stfsux 31 S A B 695 0

stfsx 31 S A B 663 0

sth 44 S A d

sthbrx 31 S A B 918 0

Table A-1. Complete Instruction List Sorted by Mnemonic (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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sthu 45 S A d

sthux 31 S A B 439 0

sthx 31 S A B 407 0

stmw 4 47 S A d

stswi 4 31 S A NB 725 0

stswx 4 31 S A B 661 0

stw 36 S A d

stwbrx 31 S A B 662 0

stwcx. 31 S A B 150 1

stwu 37 S A d

stwux 31 S A B 183 0

stwx 31 S A B 151 0

subfx 31 D A B OE 40 Rc

subfcx 31 D A B OE 8 Rc

subfex 31 D A B OE 136 Rc

subfic 08 D A SIMM

subfmex 31 D A 0 0 0 0 0 OE 232 Rc

subfzex 31 D A 0 0 0 0 0 OE 200 Rc

sync 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 598 0

td 1 31 TO A B 68 0

tdi 1 02 TO A SIMM

tlbia 2, 3 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0

tlbie 2, 3 31 0 0 0 0 0 0 0 0 0 0 B 306 0

tlbld 2, 6 31 0 0 0 0 0 0 0 0 0 0 B 978 0

tlbli 2, 6 31 0 0 0 0 0 0 0 0 0 0 B 1010 0

tlbsync 2, 3 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

tw 31 TO A B 4 0

twi 03 TO A SIMM

xorx 31 S A B 316 Rc

xori 26 S A UIMM

xoris 27 S A UIMM

1 64-bit instruction
2 Supervisor-level instruction
3 Optional in the PowerPC architecture
4 Load and store string or multiple instruction
5 Supervisor- and user-level instruction
6  Implementation-specific instruction

Table A-1. Complete Instruction List Sorted by Mnemonic (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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A.2 Instructions Sorted by Opcode
Table A-2 lists the instructions defined in the PowerPC architecture in numeric order by opcode.

Table A-2. Complete Instruction List Sorted by Opcode

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

tdi 1 0 0 0 0 1 0 TO A SIMM

twi 0 0 0 0 1 1 TO A SIMM

mulli 0 0 0 1 1 1 D A SIMM

subfic 0 0 1 0 0 0 D A SIMM

cmpli 0 0 1 0 1 0 crfD 0 L A UIMM

cmpi 0 0 1 0 1 1 crfD 0 L A SIMM

addic 0 0 1 1 0 0 D A SIMM

addic. 0 0 1 1 0 1 D A SIMM

addi 0 0 1 1 1 0 D A SIMM

addis 0 0 1 1 1 1 D A SIMM

bcx 0 1 0 0 0 0 BO BI BD AA LK

sc 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

bx 0 1 0 0 1 0 LI AA LK

mcrf 0 1 0 0 1 1 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

bclrx 0 1 0 0 1 1 BO BI 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 LK

crnor 0 1 0 0 1 1 crbD crbA crbB 0 0 0 0 1 0 0 0 0 1 0

rfi 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0

crandc 0 1 0 0 1 1 crbD crbA crbB 0 0 1 0 0 0 0 0 0 1 0

isync 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0

crxor 0 1 0 0 1 1 crbD crbA crbB 0 0 1 1 0 0 0 0 0 1 0

crnand 0 1 0 0 1 1 crbD crbA crbB 0 0 1 1 1 0 0 0 0 1 0

crand 0 1 0 0 1 1 crbD crbA crbB 0 1 0 0 0 0 0 0 0 1 0

creqv 0 1 0 0 1 1 crbD crbA crbB 0 1 0 0 1 0 0 0 0 1 0

crorc 0 1 0 0 1 1 crbD crbA crbB 0 1 1 0 1 0 0 0 0 1 0

cror 0 1 0 0 1 1 crbD crbA crbB 0 1 1 1 0 0 0 0 0 1 0

bcctrx 0 1 0 0 1 1 BO BI 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 LK

rlwimix 0 1 0 1 0 0 S A SH MB ME Rc

rlwinmx 0 1 0 1 0 1 S A SH MB ME Rc

rlwnmx 0 1 0 1 1 1 S A B MB ME Rc

ori 0 1 1 0 0 0 S A UIMM

oris 0 1 1 0 0 1 S A UIMM

xori 0 1 1 0 1 0 S A UIMM

xoris 0 1 1 0 1 1 S A UIMM
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andi. 0 1 1 1 0 0 S A UIMM

andis. 0 1 1 1 0 1 S A UIMM

rldiclx 1 0 1 1 1 1 0 S A sh mb 0 0 0 sh Rc

rldicrx 1 0 1 1 1 1 0 S A sh me 0 0 1 sh Rc

rldicx 1 0 1 1 1 1 0 S A sh mb 0 1 0 sh Rc

rldimix 1 0 1 1 1 1 0 S A sh mb 0 1 1 sh Rc

rldclx 1 0 1 1 1 1 0 S A B mb 0 1 0 0 0 Rc

rldcrx 1 0 1 1 1 1 0 S A B me 0 1 0 0 1 Rc

cmp 0 1 1 1 1 1 crfD 0 L A B 0 0 0 0 0 0 0 0 0 0 0

tw 0 1 1 1 1 1 TO A B 0 0 0 0 0 0 0 1 0 0 0

subfcx 0 1 1 1 1 1 D A B OE 0 0 0 0 0 0 1 0 0 0 Rc

mulhdux 1 0 1 1 1 1 1 D A B 0 0 0 0 0 0 0 1 0 0 1 Rc

addcx 0 1 1 1 1 1 D A B OE 0 0 0 0 0 0 1 0 1 0 Rc

mulhwux 0 1 1 1 1 1 D A B 0 0 0 0 0 0 0 1 0 1 1 Rc

mfcr 0 1 1 1 1 1 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0

lwarx 0 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 0 0

ldx 1 0 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 1 0

lwzx 0 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 1 1 0

slwx 0 1 1 1 1 1 S A B 0 0 0 0 0 1 1 0 0 0 Rc

cntlzwx 0 1 1 1 1 1 S A 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 Rc

sldx 1 0 1 1 1 1 1 S A B 0 0 0 0 0 1 1 0 1 1 Rc

andx 0 1 1 1 1 1 S A B 0 0 0 0 0 1 1 1 0 0 Rc

cmpl 0 1 1 1 1 1 crfD 0 L A B 0 0 0 0 1 0 0 0 0 0 0

subfx 0 1 1 1 1 1 D A B OE 0 0 0 0 1 0 1 0 0 0 Rc

ldux 1 0 1 1 1 1 1 D A B 0 0 0 0 1 1 0 1 0 1 0

dcbst 0 1 1 1 1 1 0 0 0 0 0 A B 0 0 0 0 1 1 0 1 1 0 0

lwzux 0 1 1 1 1 1 D A B 0 0 0 0 1 1 0 1 1 1 0

cntlzdx 1 0 1 1 1 1 1 S A 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 Rc

andcx 0 1 1 1 1 1 S A B 0 0 0 0 1 1 1 1 0 0 Rc

td 1 0 1 1 1 1 1 TO A B 0 0 0 1 0 0 0 1 0 0 0

mulhdx 1 0 1 1 1 1 1 D A B 0 0 0 0 1 0 0 1 0 0 1 Rc

mulhwx 0 1 1 1 1 1 D A B 0 0 0 0 1 0 0 1 0 1 1 Rc

mfmsr 0 1 1 1 1 1 D 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0

ldarx 1 0 1 1 1 1 1 D A B 0 0 0 1 0 1 0 1 0 0 0

dcbf 0 1 1 1 1 1 0 0 0 0 0 A B 0 0 0 1 0 1 0 1 1 0 0

lbzx 0 1 1 1 1 1 D A B 0 0 0 1 0 1 0 1 1 1 0

Table A-2. Complete Instruction List Sorted by Opcode (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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negx 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 0 1 1 0 1 0 0 0 Rc

lbzux 0 1 1 1 1 1 D A B 0 0 0 1 1 1 0 1 1 1 0

norx 0 1 1 1 1 1 S A B 0 0 0 1 1 1 1 1 0 0 Rc

subfex 0 1 1 1 1 1 D A B OE 0 0 1 0 0 0 1 0 0 0 Rc

addex 0 1 1 1 1 1 D A B OE 0 0 1 0 0 0 1 0 1 0 Rc

mtcrf 0 1 1 1 1 1 S 0 CRM 0 0 0 1 0 0 1 0 0 0 0 0

mtmsr 0 1 1 1 1 1 S 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0

stdx 1 0 1 1 1 1 1 S A B 0 0 1 0 0 1 0 1 0 1 0

stwcx. 0 1 1 1 1 1 S A B 0 0 1 0 0 1 0 1 1 0 1

stwx 0 1 1 1 1 1 S A B 0 0 1 0 0 1 0 1 1 1 0

stdux 1 0 1 1 1 1 1 S A B 0 0 1 0 1 1 0 1 0 1 0

stwux 0 1 1 1 1 1 S A B 0 0 1 0 1 1 0 1 1 1 0

subfzex 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 1 1 0 0 1 0 0 0 Rc

addzex 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 1 1 0 0 1 0 1 0 Rc

mtsr 0 1 1 1 1 1 S 0 SR 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0

stdcx. 1 0 1 1 1 1 1 S A B 0 0 1 1 0 1 0 1 1 0 1

stbx 0 1 1 1 1 1 S A B 0 0 1 1 0 1 0 1 1 1 0

subfmex 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 1 1 1 0 1 0 0 0 Rc

mulld 1 0 1 1 1 1 1 D A B OE 0 0 1 1 1 0 1 0 0 1 Rc

addmex 0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 1 1 1 0 1 0 1 0 Rc

mullwx 0 1 1 1 1 1 D A B OE 0 0 1 1 1 0 1 0 1 1 Rc

mtsrin 0 1 1 1 1 1 S 0 0 0 0 0 B 0 0 1 1 1 1 0 0 1 0 0

dcbtst 0 1 1 1 1 1 0 0 0 0 0 A B 0 0 1 1 1 1 0 1 1 0 0

stbux 0 1 1 1 1 1 S A B 0 0 1 1 1 1 0 1 1 1 0

addx 0 1 1 1 1 1 D A B OE 0 1 0 0 0 0 1 0 1 0 Rc

dcbt 0 1 1 1 1 1 0 0 0 0 0 A B 0 1 0 0 0 1 0 1 1 0 0

lhzx 0 1 1 1 1 1 D A B 0 1 0 0 0 1 0 1 1 1 0

eqvx 0 1 1 1 1 1 S A B 0 1 0 0 0 1 1 1 0 0 Rc

tlbie 2, 3 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 B 0 1 0 0 1 1 0 0 1 0 0

eciwx 3 0 1 1 1 1 1 D A B 0 1 0 0 1 1 0 1 1 0 0

lhzux 0 1 1 1 1 1 D A B 0 1 0 0 1 1 0 1 1 1 0

xorx 0 1 1 1 1 1 S A B 0 1 0 0 1 1 1 1 0 0 Rc

mfspr4 0 1 1 1 1 1 D spr 0 1 0 1 0 1 0 0 1 1 0

lwax 1 0 1 1 1 1 1 D A B 0 1 0 1 0 1 0 1 0 1 0

lhax 0 1 1 1 1 1 D A B 0 1 0 1 0 1 0 1 1 1 0

tlbia 2, 3 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 0

Table A-2. Complete Instruction List Sorted by Opcode (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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mftb 0 1 1 1 1 1 D tbr 0 1 0 1 1 1 0 0 1 1 0

lwaux 1 0 1 1 1 1 1 D A B 0 1 0 1 1 1 0 1 0 1 0

lhaux 0 1 1 1 1 1 D A B 0 1 0 1 1 1 0 1 1 1 0

sthx 0 1 1 1 1 1 S A B 0 1 1 0 0 1 0 1 1 1 0

orcx 0 1 1 1 1 1 S A B 0 1 1 0 0 1 1 1 0 0 Rc

sradix 1 0 1 1 1 1 1 S A sh 1 1 0 0 1 1 1 0 1 1 sh Rc

slbie 1, 2, 3 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 B 0 1 1 0 1 1 0 0 1 0 0

ecowx 0 1 1 1 1 1 S A B 0 1 1 0 1 1 0 1 1 0 0

sthux 0 1 1 1 1 1 S A B 0 1 1 0 1 1 0 1 1 1 0

orx 0 1 1 1 1 1 S A B 0 1 1 0 1 1 1 1 0 0 Rc

divdux 1 0 1 1 1 1 1 D A B OE 0 1 1 1 0 0 1 0 0 1 Rc

divwux 0 1 1 1 1 1 D A B OE 0 1 1 1 0 0 1 0 1 1 Rc

mtspr 4 0 1 1 1 1 1 S spr 0 1 1 1 0 1 0 0 1 1 0

dcbi 0 1 1 1 1 1 0 0 0 0 0 A B 0 1 1 1 0 1 0 1 1 0 0

nandx 0 1 1 1 1 1 S A B 0 1 1 1 0 1 1 1 0 0 Rc

divdx 1 0 1 1 1 1 1 D A B OE 0 1 1 1 1 0 1 0 0 1 Rc

divwx 0 1 1 1 1 1 D A B OE 0 1 1 1 1 0 1 0 1 1 Rc

slbia 1, 2, 3 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0

 mcrxr 0 1 1 1 1 1 crfD 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

lswx5 0 1 1 1 1 1 D A B 1 0 0 0 0 1 0 1 0 1 0

lwbrx 0 1 1 1 1 1 D A B 1 0 0 0 0 1 0 1 1 0 0

lfsx 0 1 1 1 1 1 D A B 1 0 0 0 0 1 0 1 1 1 0

srwx 0 1 1 1 1 1 S A B 1 0 0 0 0 1 1 0 0 0 Rc

srdx 1 0 1 1 1 1 1 S A B 1 0 0 0 0 1 1 0 1 1 Rc

tlbsync 2, 3 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0

lfsux 0 1 1 1 1 1 D A B 1 0 0 0 1 1 0 1 1 1 0

mfsr 0 1 1 1 1 1 D 0 SR 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0

lswi 5 0 1 1 1 1 1 D A NB 1 0 0 1 0 1 0 1 0 1 0

sync 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0

lfdx 0 1 1 1 1 1 D A B 1 0 0 1 0 1 0 1 1 1 0

lfdux 0 1 1 1 1 1 D A B 1 0 0 1 1 1 0 1 1 1 0

mfsrin 2 0 1 1 1 1 1 D 0 0 0 0 0 B 1 0 1 0 0 1 0 0 1 1 0

stswx 5 0 1 1 1 1 1 S A B 1 0 1 0 0 1 0 1 0 1 0

stwbrx 0 1 1 1 1 1 S A B 1 0 1 0 0 1 0 1 1 0 0

stfsx 0 1 1 1 1 1 S A B 1 0 1 0 0 1 0 1 1 1 0

stfsux 0 1 1 1 1 1 S A B 1 0 1 0 1 1 0 1 1 1 0

Table A-2. Complete Instruction List Sorted by Opcode (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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stswi 5 0 1 1 1 1 1 S A NB 1 0 1 1 0 1 0 1 0 1 0

stfdx 0 1 1 1 1 1 S A B 1 0 1 1 0 1 0 1 1 1 0

stfdux 0 1 1 1 1 1 S A B 1 0 1 1 1 1 0 1 1 1 0

lhbrx 0 1 1 1 1 1 D A B 1 1 0 0 0 1 0 1 1 0 0

srawx 0 1 1 1 1 1 S A B 1 1 0 0 0 1 1 0 0 0 Rc

sradx 1 0 1 1 1 1 1 S A B 1 1 0 0 0 1 1 0 1 0 Rc

srawix 0 1 1 1 1 1 S A SH 1 1 0 0 1 1 1 0 0 0 Rc

eieio 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 0

sthbrx 0 1 1 1 1 1 S A B 1 1 1 0 0 1 0 1 1 0 0

extshx 0 1 1 1 1 1 S A 0 0 0 0 0 1 1 1 0 0 1 1 0 1 0 Rc

extsbx 0 1 1 1 1 1 S A 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 Rc

tlbld 2,6 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 B 1 1 1 1 0 1 0 0 1 0 0

icbi 0 1 1 1 1 1 0 0 0 0 0 A B 1 1 1 1 0 1 0 1 1 0 0

stfiwx 3 0 1 1 1 1 1 S A B 1 1 1 1 0 1 0 1 1 1 0

extsw 1 0 1 1 1 1 1 S A 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 Rc

tlbli 2, 6 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 B 1 1 1 1 1 1 0 0 1 0 0

dcbz 0 1 1 1 1 1 0 0 0 0 0 A B 1 1 1 1 1 1 0 1 1 0 0

lwz 1 0 0 0 0 0 D A d

lwzu 1 0 0 0 0 1 D A d

lbz 1 0 0 0 1 0 D A d

lbzu 1 0 0 0 1 1 D A d

stw 1 0 0 1 0 0 S A d

stwu 1 0 0 1 0 1 S A d

stb 1 0 0 1 1 0 S A d

stbu 1 0 0 1 1 1 S A d

lhz 1 0 1 0 0 0 D A d

lhzu 1 0 1 0 0 1 D A d

lha 1 0 1 0 1 0 D A d

lhau 1 0 1 0 1 1 D A d

sth 1 0 1 1 0 0 S A d

sthu 1 0 1 1 0 1 S A d

lmw 5 1 0 1 1 1 0 D A d

stmw 5 1 0 1 1 1 1 S A d

lfs 1 1 0 0 0 0 D A d

lfsu 1 1 0 0 0 1 D A d

lfd 1 1 0 0 1 0 D A d

Table A-2. Complete Instruction List Sorted by Opcode (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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lfdu 1 1 0 0 1 1 D A d

 stfs 1 1 0 1 0 0 S A d

stfsu 1 1 0 1 0 1 S A d

stfd 1 1 0 1 1 0 S A d

stfdu 1 1 0 1 1 1 S A d

ld 1 1 1 1 0 1 0 D A ds 0 0

ldu 1 1 1 1 0 1 0 D A ds 0 1

lwa 1 1 1 1 0 1 0 D A ds 1 0

fdivsx 1 1 1 0 1 1 D A B 0 0 0 0 0 1 0 0 1 0 Rc

fsubsx 1 1 1 0 1 1 D A B 0 0 0 0 0 1 0 1 0 0 Rc

faddsx 1 1 1 0 1 1 D A B 0 0 0 0 0 1 0 1 0 1 Rc

fsqrtsx 3 1 1 1 0 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 0 1 1 0 Rc

fresx 3 1 1 1 0 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 1 0 0 0 Rc

fmulsx 1 1 1 0 1 1 D A 0 0 0 0 0 C 1 1 0 0 1 Rc

fmsubsx 1 1 1 0 1 1 D A B C 1 1 1 0 0 Rc

fmaddsx 1 1 1 0 1 1 D A B C 1 1 1 0 1 Rc

fnmsubsx 1 1 1 0 1 1 D A B C 1 1 1 1 0 Rc

fnmaddsx 1 1 1 0 1 1 D A B C 1 1 1 1 1 Rc

std 1 1 1 1 1 1 0 S A ds 0 0

stdu 1 1 1 1 1 1 0 S A ds 0 1

fcmpu 1 1 1 1 1 1 crfD 0 0 A B 0 0 0 0 0 0 0 0 0 0 0

frspx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 0 1 1 0 0 Rc

fctiwx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 0 1 1 1 0

fctiwzx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 0 1 1 1 1 Rc

fdivx 1 1 1 1 1 1 D A B 0 0 0 0 0 1 0 0 1 0 Rc

fsubx 1 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 0 Rc

faddx 1 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 1 Rc

icbt 6 1 1 1 1 1 1 0 0 0 0 0 A B 0 0 0 0 0 1 0 1 1 0 0

fsqrtx 3 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 0 1 1 0 Rc

fselx 3 1 1 1 1 1 1 D A B C 1 0 1 1 1 Rc

fmulx 1 1 1 1 1 1 D A 0 0 0 0 0 C 1 1 0 0 1 Rc

frsqrtex 3 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 0 1 1 0 1 0 Rc

fmsubx 1 1 1 1 1 1 D A B C 1 1 1 0 0 Rc

fmaddx 1 1 1 1 1 1 D A B C 1 1 1 0 1 Rc

fnmsubx 1 1 1 1 1 1 D A B C 1 1 1 1 0 Rc

fnmaddx 1 1 1 1 1 1 D A B C 1 1 1 1 1 Rc

Table A-2. Complete Instruction List Sorted by Opcode (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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fcmpo 1 1 1 1 1 1 crfD 0 0 A B 0 0 0 0 1 0 0 0 0 0 0

mtfsb1x 1 1 1 1 1 1 crbD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 Rc

fnegx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 0 1 0 1 0 0 0 Rc

mcrfs 1 1 1 1 1 1 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

mtfsb0x 1 1 1 1 1 1 crbD 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 Rc

fmrx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 0 1 0 0 1 0 0 0 Rc

mtfsfix 1 1 1 1 1 1 crfD 0 0 0 0 0 0 0 IMM 0 0 0 1 0 0 0 0 1 1 0 Rc

fnabsxv 1 1 1 1 1 1 D 0 0 0 0 0 B 0 0 1 0 0 0 1 0 0 0 Rc

fabsx 1 1 1 1 1 1 D 0 0 0 0 0 B 0 1 0 0 0 0 1 0 0 0 Rc

mffsx 1 1 1 1 1 1 D 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 Rc

mtfsfx 1 1 1 1 1 1 0 FM 0 B 1 0 1 1 0 0 0 1 1 1 Rc

fctidx 1 1 1 1 1 1 1 D 0 0 0 0 0 B 1 1 0 0 1 0 1 1 1 0 Rc

fctidzx 1 1 1 1 1 1 1 D 0 0 0 0 0 B 1 1 0 0 1 0 1 1 1 1 Rc

fcfidx 1 1 1 1 1 1 1 D 0 0 0 0 0 B 1 1 0 1 0 0 1 1 1 0 Rc

1 64-bit instruction
2 Supervisor-level instruction
3 Optional in the PowerPC architecture
4 Supervisor- and user-level instruction
5 Load and store string or multiple instruction
6 e300 core-implementation-specific instruction

Table A-2. Complete Instruction List Sorted by Opcode (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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A.3 Instructions Grouped by Functional Categories
Table A-3 through Table A-29 list the PowerPC instructions grouped by function.

Table A-3. Integer Arithmetic Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addx 31 D A B OE 266 Rc

addcx 31 D A B OE 10 Rc

addex 31 D A B OE 138 Rc

addi 14 D A SIMM

addic 12 D A SIMM

addic. 13 D A SIMM

addis 15 D A SIMM

addmex 31 D A 0 0 0 0 0 OE 234 Rc

addzex 31 D A 0 0 0 0 0 OE 202 Rc

divdx 1

1 64-bit instruction

31 D A B OE 489 Rc

divdux 1 31 D A B OE 457 Rc

divwx 31 D A B OE 491 Rc

divwux 31 D A B OE 459 Rc

mulhdx 1 31 D A B 0 73 Rc

mulhdux 1 31 D A B 0 9 Rc

mulhwx 31 D A B 0 75 Rc

mulhwux 31 D A B 0 11 Rc

mulld 1 31 D A B OE 233 Rc

mulli 07 D A SIMM

mullwx 31 D A B OE 235 Rc

negx 31 D A 0 0 0 0 0 OE 104 Rc

subfx 31 D A B OE 40 Rc

subfcx 31 D A B OE 8 Rc

subficx 08 D A SIMM

subfex 31 D A B OE 136 Rc

subfmex 31 D A 0 0 0 0 0 OE 232 Rc

subfzex 31 D A 0 0 0 0 0 OE 200 Rc
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Table A-4. Integer Compare Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

cmp 31 crfD 0 L A B 0 0 0 0 0 0 0 0 0 0 0

cmpi 11 crfD 0 L A SIMM

cmpl 31 crfD 0 L A B 32 0

cmpli 10 crfD 0 L A UIMM

Table A-5. Integer Logical Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

andx 31 S A B 28 Rc

andcx 31 S A B 60 Rc

andi. 28 S A UIMM

andis. 29 S A UIMM

cntlzdx 1

1 64-bit instruction

31 S A 0 0 0 0 0 58 Rc

cntlzwx 31 S A 0 0 0 0 0 26 Rc

eqvx 31 S A B 284 Rc

extsbx 31 S A 0 0 0 0 0 954 Rc

extshx 31 S A 0 0 0 0 0 922 Rc

extswx 1 31 S A 0 0 0 0 0 986 Rc

nandx 31 S A B 476 Rc

norx 31 S A B 124 Rc

orx 31 S A B 444 Rc

orcx 31 S A B 412 Rc

ori 24 S A UIMM

oris 25 S A UIMM

xorx 31 S A B 316 Rc

xori 26 S A UIMM

xoris 27 S A UIMM

Table A-6. Integer Rotate Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rldclx1 30 S A B mb 8 Rc

rldcrx 1 30 S A B me 9 Rc

rldicx 1 30 S A sh mb 2 sh Rc

rldiclx 1 30 S A sh mb 0 sh Rc

rldicrx 1 30 S A sh me 1 sh Rc
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rldimix 1 30 S A sh mb 3 sh Rc

rlwimix 22 S A SH MB ME Rc

rlwinmx 20 S A SH MB ME Rc

rlwnmx 21 S A SH MB ME Rc

1 64-bit instruction

Table A-7. Integer Shift Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

sldx 1

1 64-bit instruction

31 S A B 27 Rc

slwx 31 S A B 24 Rc

sradx 1 31 S A B 794 Rc

sradix 1 31 S A sh 413 sh Rc

srawx 31 S A B 792 Rc

srawix 31 S A SH 824 Rc

srdx 1 31 S A B 539 Rc

srwx 31 S A B 536 Rc

Table A-8. Floating-Point Arithmetic Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

faddx 63 D A B 0 0 0 0 0 21 Rc

faddsx 59 D A B 0 0 0 0 0 21 Rc

fdivx 63 D A B 0 0 0 0 0 18 Rc

fdivsx 59 D A B 0 0 0 0 0 18 Rc

fmulx 63 D A 0 0 0 0 0 C 25 Rc

fmulsx 59 D A 0 0 0 0 0 C 25 Rc

fresx1

1 Optional in the PowerPC architecture

59 D 0 0 0 0 0 B 0 0 0 0 0 24 Rc

frsqrtex 1 63 D 0 0 0 0 0 B 0 0 0 0 0 26 Rc

fsubx 63 D A B 0 0 0 0 0 20 Rc

fsubsx 59 D A B 0 0 0 0 0 20 Rc

fselx 1 63 D A B C 23 Rc

fsqrtx 1 63 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsqrtsx 1 59 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

Table A-6. Integer Rotate Instructions (continued)
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Table A-9. Floating-Point Multiply-Add Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fmaddx 63 D A B C 29 Rc

fmaddsx 59 D A B C 29 Rc

fmsubx 63 D A B C 28 Rc

fmsubsx 59 D A B C 28 Rc

fnmaddx 63 D A B C 31 Rc

fnmaddsx 59 D A B C 31 Rc

fnmsubx 63 D A B C 30 Rc

fnmsubsx 59 D A B C 30 Rc

Table A-10. Floating-Point Rounding and Conversion Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fcfidx 1

1 64-bit instruction

63 D 0 0 0 0 0 B 846 Rc

fctidx 1 63 D 0 0 0 0 0 B 814 Rc

fctidzx 1 63 D 0 0 0 0 0 B 815 Rc

fctiwx 63 D 0 0 0 0 0 B 14 Rc

fctiwzx 63 D 0 0 0 0 0 B 15 Rc

frspx 63 D 0 0 0 0 0 B 12 Rc

Table A-11. Floating-Point Compare Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fcmpo 63 crfD 0 0 A B 32 0

fcmpu 63 crfD 0 0 A B 0 0

Table A-12. Floating-Point Status and Control Register Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mcrfs 63 crfD 0 0 crfS 0 0 0 0 0 0 0 64 0

mffsx 63 D 0 0 0 0 0 0 0 0 0 0 583 Rc

mtfsb0x 63 crbD 0 0 0 0 0 0 0 0 0 0 70 Rc

mtfsb1x 63 crbD 0 0 0 0 0 0 0 0 0 0 38 Rc

mtfsfx 31 0 FM 0 B 711 Rc

mtfsfix 63 crfD 0 0 0 0 0 0 0 IMM 0 134 Rc
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Table A-13. Integer Load Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lbz 34 D A d

lbzu 35 D A d

lbzux 31 D A B 119 0

lbzx 31 D A B 87 0

ld 1

1 64-bit instruction

58 D A ds 0

ldu 1 58 D A ds 1

ldux 1 31 D A B 53 0

ldx 1 31 D A B 21 0

lha 42 D A d

lhau 43 D A d

lhaux 31 D A B 375 0

lhax 31 D A B 343 0

lhz 40 D A d

lhzu 41 D A d

lhzux 31 D A B 311 0

lhzx 31 D A B 279 0

lwa 1 58 D A ds 2

lwaux 1 31 D A B 373 0

lwax 1 31 D A B 341 0

lwz 32 D A d

lwzu 33 D A d

lwzux 31 D A B 55 0

lwzx 31 D A B 23 0

Table A-14. Integer Store Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

stb 38 S A d

stbu 39 S A d

stbux 31 S A B 247 0

stbx 31 S A B 215 0

std 1 62 S A ds 0

stdu 1 62 S A ds 1

stdux 1 31 S A B 181 0

stdx 1 31 S A B 149 0
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sth 44 S A d

sthu 45 S A d

sthux 31 S A B 439 0

sthx 31 S A B 407 0

stw 36 S A d

stwu 37 S A d

stwux 31 S A B 183 0

stwx 31 S A B 151 0

1 64-bit instruction

Table A-15. Integer Load and Store with Byte-Reverse Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lhbrx 31 D A B 790 0

lwbrx 31 D A B 534 0

sthbrx 31 S A B 918 0

stwbrx 31 S A B 662 0

Table A-16. Integer Load and Store Multiple Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lmw 1

1 Load and store string or multiple instruction

46 D A d

stmw 1 47 S A d

Table A-17. Integer Load and Store String Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lswi 1

1 Load and store string or multiple instruction

31 D A NB 597 0

lswx 1 31 D A B 533 0

stswi 1 31 S A NB 725 0

stswx 1 31 S A B 661 0

Table A-14. Integer Store Instructions (continued)
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Table A-18. Memory Synchronization Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

eieio 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

isync 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0

ldarx 1

1 64-bit instruction

31 D A B 84 0

lwarx 31 D A B 20 0

stdcx 1 31 S A B 214 1

stwcx. 31 S A B 150 1

sync 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 598 0

Table A-19. Floating-Point Load Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lfd 50 D A d

lfdu 51 D A d

lfdux 31 D A B 631 0

lfdx 31 D A B 599 0

lfs 48 D A d

lfsu 49 D A d

lfsux 31 D A B 567 0

lfsx 31 D A B 535 0

Table A-20. Floating-Point Store Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

stfd 54 S A d

stfdu 55 S A d

stfdux 31 S A B 759 0

stfdx 31 S A B 727 0

stfiwx 1

1 Optional in the PowerPC architecture

31 S A B 983 0

 stfs 52 S A d

stfsu 53 S A d

stfsux 31 S A B 695 0

stfsx 31 S A B 663 0
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Table A-21. Floating-Point Move Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fabsx 63 D 0 0 0 0 0 B 264 Rc

fmrx 63 D 0 0 0 0 0 B 72 Rc

fnabsx 63 D 0 0 0 0 0 B 136 Rc

fnegx 63 D 0 0 0 0 0 B 40 Rc

Table A-22. Branch Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bx 18 LI AA LK

bcx 16 BO BI BD AA LK

bcctrx 19 BO BI 0 0 0 0 0 528 LK

bclrx 19 BO BI 0 0 0 0 0 16 LK

Table A-23. Condition Register Logical Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

crand 19 crbD crbA crbB 257 0

crandc 19 crbD crbA crbB 129 0

creqv 19 crbD crbA crbB 289 0

crnand 19 crbD crbA crbB 225 0

crnor 19 crbD crbA crbB 33 0

cror 19 crbD crbA crbB 449 0

crorc 19 crbD crbA crbB 417 0

crxor 19 crbD crbA crbB 193 0

mcrf 19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table A-24. System Linkage Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rfi 1

1 Supervisor-level instruction

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0

sc 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
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Table A-25. Trap Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

td 1

1 64-bit instruction

31 TO A B 68 0

tdi 1 03 TO A SIMM

tw 31 TO A B 4 0

twi 03 TO A SIMM

Table A-26. Processor Control Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 mcrxr 31 crfS 0 0 0 0 0 0 0 0 0 0 0 0 512 0

mfcr 31 D 0 0 0 0 0 0 0 0 0 0 19 0

mfmsr 1

1 Supervisor-level instruction

31 D 0 0 0 0 0 0 0 0 0 0 83 0

mfspr 2

2 Supervisor- and user-level instruction

31 D spr 339 0

mftb 31 D tpr 371 0

mtcrf 31 S 0 CRM 0 144 0

mtmsr 1 31 S 0 0 0 0 0 0 0 0 0 0 146 0

mtspr 2 31 D spr 467 0

Table A-27. Cache Management Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

dcbf 31 0 0 0 0 0 A B 86 0

dcbi 1

1 Supervisor-level instruction

31 0 0 0 0 0 A B 470 0

dcbst 31 0 0 0 0 0 A B 54 0

dcbt 31 0 0 0 0 0 A B 278 0

dcbtst 31 0 0 0 0 0 A B 246 0

dcbz 31 0 0 0 0 0 A B 1014 0

icbi 31 0 0 0 0 0 A B 982 0

icbt2

2 e300 core-implementation-specific instruction

31 0 0 0 0 0 A B 22 0
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A.4 Instructions Sorted by Form
 Table A-30 through Table A-44 list the PowerPC instructions grouped by form.

Table A-28. Segment Register Manipulation Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mfsr 1 31 D 0 SR 0 0 0 0 0 595 0

mfsrin 1 31 D 0 0 0 0 0 B 659 0

mtsr 1 31 S 0 SR 0 0 0 0 0 210 0

mtsrin 1 31 S 0 0 0 0 0 B 242 0

1 Supervisor-level instruction

Table A-29. Lookaside Buffer Management Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

slbia 1, 2, 3

1 Supervisor-level instruction
2 64-bit instruction
3 Optional in the PowerPC architecture

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 498 0

slbie 1, 2, 3 31 0 0 0 0 0 0 0 0 0 0 B 434 0

tlbia 1, 3 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0

tlbie 1, 3 31 0 0 0 0 0 0 0 0 0 0 B 306 0

tlbld 1,4

4 e300 core-implementation specific instruction

31 0 0 0 0 0 0 0 0 0 0 B 978 0

tlbli 1, 4 31 0 0 0 0 0 0 0 0 0 0 B 1010 0

tlbsync 1, 3 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

Table A-30. I-Form

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

OPCD LI AA LK

Specific Instruction

bx 18 LI AA LK

Table A-31. B-Form

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

OPCD BO BI BD AA LK

Specific Instruction

bcx 16 BO BI BD AA LK
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Table A-32. SC-Form

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

OPCD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Specific Instruction

sc 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Table A-33. D-Form

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

OPCD D A d

OPCD D A SIMM

OPCD S A d

OPCD S A UIMM

OPCD crfD 0 L A SIMM

OPCD crfD 0 L A UIMM

OPCD TO A SIMM

Specific Instruction

addi 14 D A SIMM

addic 12 D A SIMM

addic. 13 D A SIMM

addis 15 D A SIMM

andi. 28 S A UIMM

andis. 29 S A UIMM

cmpi 11 crfD 0 L A SIMM

cmpli 10 crfD 0 L A UIMM

lbz 34 D A d

lbzu 35 D A d

lfd 50 D A d

lfdu 51 D A d

lfs 48 D A d

lfsu 49 D A d

lha 42 D A d

lhau 43 D A d

lhz 40 D A d

lhzu 41 D A d

lmw 1 46 D A d

lwz 32 D A d
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lwzu 33 D A d

mulli 7 D A SIMM

ori 24 S A UIMM

oris 25 S A UIMM

stb 38 S A d

stbu 39 S A d

stfd 54 S A d

stfdu 55 S A d

 stfs 52 S A d

stfsu 53 S A d

sth 44 S A d

sthu 45 S A d

stmw 1 47 S A d

stw 36 S A d

stwu 37 S A d

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

subfic 08 D A SIMM

tdi 2 02 TO A SIMM

twi 03 TO A SIMM

xori 26 S A UIMM

xoris 27 S A UIMM

1 Load and store string or multiple instruction
2 64-bit instruction

Table A-34. DS-Form

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

OPCD D A ds XO

OPCD S A ds XO

Specific Instructions

ld 1

1 64-bit instruction

58 D A ds 0

ldu 1 58 D A ds 1

lwa 1 58 D A ds 2

std 1 62 S A ds 0

stdu 1 62 S A ds 1

Table A-33. D-Form (continued)
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Table A-35. X-Form

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

OPCD D A B XO 0

OPCD D A NB XO 0

OPCD D 0 0 0 0 0 B XO 0

OPCD D 0 0 0 0 0 0 0 0 0 0 XO 0

OPCD D 0 SR 0 0 0 0 0 XO 0

OPCD S A B XO Rc

OPCD S A B XO 1

OPCD S A B XO 0

OPCD S A NB XO 0

OPCD S A 0 0 0 0 0 XO Rc

OPCD S 0 0 0 0 0 B XO 0

OPCD S 0 0 0 0 0 0 0 0 0 0 XO 0

OPCD S 0 SR 0 0 0 0 0 XO 0

OPCD S A SH XO Rc

OPCD crfD 0 L A B XO 0

OPCD crfD 0 0 A B XO 0

OPCD crfD 0 0 crfS 0 0 0 0 0 0 0 XO 0

OPCD crfD 0 0 0 0 0 0 0 0 0 0 0 0 XO 0

OPCD crfD 0 0 0 0 0 0 0 IMM 0 XO Rc

OPCD TO A B XO 0

OPCD D 0 0 0 0 0 B XO Rc

OPCD D 0 0 0 0 0 0 0 0 0 0 XO Rc

OPCD crbD 0 0 0 0 0 0 0 0 0 0 XO Rc

OPCD 0 0 0 0 0 A B XO 0

OPCD 0 0 0 0 0 0 0 0 0 0 B XO 0

OPCD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 XO 0

Specific Instructions

andx 31 S A B 28 Rc

andcx 31 S A B 60 Rc

cmp 31 crfD 0 L A B 0 0

cmpl 31 crfD 0 L A B 32 0

cntlzdx 1 31 S A 0 0 0 0 0 58 Rc

cntlzwx 31 S A 0 0 0 0 0 26 Rc

dcbf 31 0 0 0 0 0 A B 86 0
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dcbi 2 31 0 0 0 0 0 A B 470 0

dcbst 31 0 0 0 0 0 A B 54 0

dcbt 31 0 0 0 0 0 A B 278 0

dcbtst 31 0 0 0 0 0 A B 246 0

dcbz 31 0 0 0 0 0 A B 1014 0

eciwx 3 31 D A B 310 0

ecowx 3 31 S A B 438 0

eieio 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

eqvx 31 S A B 284 Rc

extsbx 31 S A 0 0 0 0 0 954 Rc

extshx 31 S A 0 0 0 0 0 922 Rc

extswx 1 31 S A 0 0 0 0 0 986 Rc

fabsx 63 D 0 0 0 0 0 B 264 Rc

fcfidx 1 63 D 0 0 0 0 0 B 846 Rc

fcmpo 63 crfD 0 0 A B 32 0

fcmpu 63 crfD 0 0 A B 0 0

fctidx 1 63 D 0 0 0 0 0 B 814 Rc

fctidzx 1 63 D 0 0 0 0 0 B 815 Rc

fctiwx 63 D 0 0 0 0 0 B 14 Rc

fctiwzx 63 D 0 0 0 0 0 B 15 Rc

fmrx 63 D 0 0 0 0 0 B 72 Rc

fnabsx 63 D 0 0 0 0 0 B 136 Rc

fnegx 63 D 0 0 0 0 0 B 40 Rc

frspx 63 D 0 0 0 0 0 B 12 Rc

icbi 31 0 0 0 0 0 A B 982 0

icbt 5 31 0 0 0 0 0 A B 22 0

lbzux 31 D A B 119 0

lbzx 31 D A B 87 0

ldarx 1 31 D A B 84 0

ldux 1 31 D A B 53 0

ldx 1 31 D A B 21 0

lfdux 31 D A B 631 0

lfdx 31 D A B 599 0

lfsux 31 D A B 567 0

lfsx 31 D A B 535 0

Table A-35. X-Form (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31



Instruction Set Listings

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor A-29
 

lhaux 31 D A B 375 0

lhax 31 D A B 343 0

lhbrx 31 D A B 790 0

lhzux 31 D A B 311 0

lhzx 31 D A B 279 0

lswi 3 31 D A NB 597 0

lswx 3 31 D A B 533 0

lwarx 31 D A B 20 0

lwaux 1 31 D A B 373 0

lwax 1 31 D A B 341 0

lwbrx 31 D A B 534 0

lwzux 31 D A B 55 0

lwzx 31 D A B 23 0

mcrfs 63 crfD 0 0 crfS 0 0 0 0 0 0 0 64 0

 mcrxr 31 crfD 0 0 0 0 0 0 0 0 0 0 0 0 512 0

mfcr 31 D 0 0 0 0 0 0 0 0 0 0 19 0

mffsx 63 D 0 0 0 0 0 0 0 0 0 0 583 Rc

mfmsr 2 31 D 0 0 0 0 0 0 0 0 0 0 83 0

mfsr 2 31 D 0 SR 0 0 0 0 0 595 0

mfsrin 2 31 D 0 0 0 0 0 B 659 0

mtfsb0x 63 crbD 0 0 0 0 0 0 0 0 0 0 70 Rc

mtfsb1x 63 crfD 0 0 0 0 0 0 0 0 0 0 38 Rc

mtfsfix 63 crbD 0 0 0 0 0 0 0 IMM 0 134 Rc

mtmsr 2 31 S 0 0 0 0 0 0 0 0 0 0 146 0

mtsr 2 31 S 0 SR 0 0 0 0 0 210 0

mtsrin 2 31 S 0 0 0 0 0 B 242 0

nandx 31 S A B 476 Rc

norx 31 S A B 124 Rc

orx 31 S A B 444 Rc

orcx 31 S A B 412 Rc

slbia 1, 2, 4 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 498 0

slbie 1, 2, 4 31 0 0 0 0 0 0 0 0 0 0 B 434 0

sldx 1 31 S A B 27 Rc

slwx 31 S A B 24 Rc

sradx 1 31 S A B 794 Rc

Table A-35. X-Form (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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srawx 31 S A B 792 Rc

srawix 31 S A SH 824 Rc

srdx 1 31 S A B 539 Rc

srwx 31 S A B 536 Rc

stbux 31 S A B 247 0

stbx 31 S A B 215 0

stdcx. 1 31 S A B 214 1

stdux 1 31 S A B 181 0

stdx 1 31 S A B 149 0

stfdux 31 S A B 759 0

stfdx 31 S A B 727 0

stfiwx 4 31 S A B 983 0

stfsux 31 S A B 695 0

stfsx 31 S A B 663 0

sthbrx 31 S A B 918 0

sthux 31 S A B 439 0

sthx 31 S A B 407 0

stswi 3 31 S A NB 725 0

stswx 3 31 S A B 661 0

stwbrx 31 S A B 662 0

stwcx. 31 S A B 150 1

stwux 31 S A B 183 0

stwx 31 S A B 151 0

sync 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 598 0

td 1 31 TO A B 68 0

tlbia 2, 4 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0

tlbie 2, 4 31 0 0 0 0 0 0 0 0 0 0 B 306 0

tlbld 2, 5 31 0 0 0 0 0 0 0 0 0 0 B 978 0

tlbli 2, 5 31 0 0 0 0 0 0 0 0 0 0 B 1010 0

tlbsync 2, 4 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

tw 31 TO A B 4 0

xorx 31 S A B 316 Rc

1 64-bit instruction
2 Supervisor- and user-level instruction
3 Load and store string or multiple instruction
4 Optional in the PowerPC architecture

Table A-35. X-Form (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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5 e300 core-implementation specific instruction

Table A-36. XL-Form

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

OPCD BO BI 0 0 0 0 0 XO LK

OPCD crbD crbA crbB XO 0

OPCD crfD 0 0 crfS 0 0 0 0 0 0 0 XO 0

OPCD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 XO 0

Specific Instructions

bcctrx 19 BO BI 0 0 0 0 0 528 LK

bclrx 19 BO BI 0 0 0 0 0 16 LK

crand 19 crbD crbA crbB 257 0

crandc 19 crbD crbA crbB 129 0

creqv 19 crbD crbA crbB 289 0

crnand 19 crbD crbA crbB 225 0

crnor 19 crbD crbA crbB 33 0

cror 19 crbD crbA crbB 449 0

crorc 19 crbD crbA crbB 417 0

crxor 19 crbD crbA crbB 193 0

isync 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0

mcrf 19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0

rfi 1

1 Supervisor-level instruction

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0

Table A-37. XFX-Form

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

OPCD D spr XO 0

OPCD D 0 CRM 0 XO 0

OPCD S spr XO 0

OPCD D tbr XO 0

Specific Instructions

mfspr 1

1 Supervisor- and user-level instruction

31 D spr 339 0

mftb 31 D tbr 371 0

mtcrf 31 S 0 CRM 0 144 0

mtspr 1 31 D spr 467 0
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Table A-38. XFL-Form

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

OPCD 0 FM 0 B XO Rc

Specific Instructions

mtfsfx 63 0 FM 0 B 711 Rc

Table A-39. XS-Form

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

OPCD S A sh XO sh Rc

Specific Instructions

sradix 1

1 64-bit instruction

31 S A sh 413 sh Rc

Table A-40. XO-Form

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

OPCD D A B OE XO Rc

OPCD D A B 0 XO Rc

OPCD D A 0 0 0 0 0 OE XO Rc

Specific Instructions

addx 31 D A B OE 266 Rc

addcx 31 D A B OE 10 Rc

addex 31 D A B OE 138 Rc

addmex 31 D A 0 0 0 0 0 OE 234 Rc

addzex 31 D A 0 0 0 0 0 OE 202 Rc

divdx 1 31 D A B OE 489 Rc

divdux 1 31 D A B OE 457 Rc

divwx 31 D A B OE 491 Rc

divwux 31 D A B OE 459 Rc

mulhdx 1 31 D A B 0 73 Rc

mulhdux 1 31 D A B 0 9 Rc

mulhwx 31 D A B 0 75 Rc

mulhwux 31 D A B 0 11 Rc

mulldx 1 31 D A B OE 233 Rc

mullwx 31 D A B OE 235 Rc

negx 31 D A 0 0 0 0 0 OE 104 Rc

subfx 31 D A B OE 40 Rc
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subfcx 31 D A B OE 8 Rc

subfex 31 D A B OE 136 Rc

subfmex 31 D A 0 0 0 0 0 OE 232 Rc

subfzex 31 D A 0 0 0 0 0 OE 200 Rc

1 64-bit instruction

Table A-41. A-Form

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

OPCD D A B 0 0 0 0 0 XO Rc

OPCD D A B C XO Rc

OPCD D A 0 0 0 0 0 C XO Rc

OPCD D 0 0 0 0 0 B 0 0 0 0 0 XO Rc

Specific Instructions

faddx 63 D A B 0 0 0 0 0 21 Rc

faddsx 59 D A B 0 0 0 0 0 21 Rc

fdivx 63 D A B 0 0 0 0 0 18 Rc

fdivsx 59 D A B 0 0 0 0 0 18 Rc

fmaddx 63 D A B C 29 Rc

fmaddsx 59 D A B C 29 Rc

fmsubx 63 D A B C 28 Rc

fmsubsx 59 D A B C 28 Rc

fmulx 63 D A 0 0 0 0 0 C 25 Rc

fmulsx 59 D A 0 0 0 0 0 C 25 Rc

fnmaddx 63 D A B C 31 Rc

fnmaddsx 59 D A B C 31 Rc

fnmsubx 63 D A B C 30 Rc

fnmsubsx 59 D A B C 30 Rc

fresx 1 59 D 0 0 0 0 0 B 0 0 0 0 0 24 Rc

frsqrtex 1 63 D 0 0 0 0 0 B 0 0 0 0 0 26 Rc

fselx 1 63 D A B C 23 Rc

fsqrtx 1 63 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsqrtsx 1 59 D 0 0 0 0 0 B 0 0 0 0 0 22 Rc

fsubx 63 D A B 0 0 0 0 0 20 Rc

fsubsx 59 D A B 0 0 0 0 0 20 Rc

Table A-40. XO-Form (continued)

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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1 Optional in the PowerPC architecture

Table A-42. M-Form

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

OPCD S A SH MB ME Rc

OPCD S A B MB ME Rc

Specific Instructions

rlwimix 20 S A SH MB ME Rc

rlwinmx 21 S A SH MB ME Rc

rlwnmx 23 S A B MB ME Rc

Table A-43. MD-Form

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

OPCD S A sh mb XO sh Rc

OPCD S A sh me XO sh Rc

Specific Instructions

ridicx 1

1 64-bit instruction

30 S A sh mb 2 sh Rc

rldiclx 1 30 S A sh mb 0 sh Rc

rldicrx 1 30 S A sh me 1 sh Rc

rldimix 1 30 S A sh mb 3 sh Rc

Table A-44. MDS-Form

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

OPCD S A B mb XO Rc

OPCD S A B me XO Rc

Specific Instructions

rldclx 1

1 64-bit instruction

30 S A B mb 8 Rc

rldcrx 1 30 S A B me 9 Rc
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A.5 Instruction Set Legend
Table A-45 provides general information on the PowerPC instruction set (such as the architectural level, 
privilege level, and form).

 

Table A-45. PowerPC Instruction Set Legend

UISA VEA OEA Supervisor Level Optional 64-Bit Form

addx √ — — — — — XO

addcx √ — — — — — XO

addex √ — — — — — XO

addi √ — — — — — D

addic √ — — — — — D

addic. √ — — — — — D

addis √ — — — — — D

addmex √ — — — — — XO

addzex √ — — — — — XO

andx √ — — — — — X

andcx √ — — — — — X

andi. √ — — — — — D

andis. √ — — — — — D

bx √ — — — — — I

bcx √ — — — — — B

bcctrx √ — — — — — XL

bclrx √ — — — — — XL

cmp √ — — — — — X

cmpi √ — — — — — D

cmpl √ — — — — — X

cmpli √ — — — — — D

cntlzdx 1 √ — — — √ — X

cntlzwx √ — — — — — X

crand √ — — — — — XL

crandc √ — — — — — XL

creqv √ — — — — — XL

crnand √ — — — — — XL

crnor √ — — — — — XL

cror √ — — — — — XL

crorc √ — — — — — XL

crxor √ — — — — — XL
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dcbf — √ — — — — X

dcbi2 — √ √ — — X

dcbst — √ — — — — X

dcbt — √ — — — — X

dcbtst — √ — — — — X

dcbz — √ — — — — X

divdx 1 √ — — — √ — XO

divdux 1 √ — — — √ — XO

divwx √ — — — — — XO

divwux √ — — — — — XO

eciwx 3 — √ — — — √ X

ecowx 3 — √ — — — √ X

eieio — √ — — — — X

eqvx √ — — — — — X

extsbx √ — — — — — X

extshx √ — — — — — X

extswx 1 √ — — — √ — X

fabsx √ — — — — — X

faddx √ — — — — — A

faddsx √ — — — — — A

fcfidx 1 √ — — — √ — X

fcmpo √ — — — — — X

fcmpu √ — — — — — X

fctidx 1 √ — — — √ — X

fctidzx 1 √ — — — √ — X

fctiwx √ — — — — — X

fctiwzx √ — — — — — X

fdivx √ — — — — — A

fdivsx √ — — — — — A

fmaddx √ — — — — — A

fmaddsx √ — — — — — A

fmrx √ — — — — — X

fmsubx √ — — — — — A

fmsubsx √ — — — — — A

fmulx √ — — — — — A

Table A-45. PowerPC Instruction Set Legend (continued)

UISA VEA OEA Supervisor Level Optional 64-Bit Form
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fmulsx √ — — — — — A

fnabsx √ — — — — — X

fnegx √ — — — — — X

fnmaddx √ — — — — — A

fnmaddsx √ — — — — — A

fnmsubx √ — — — — — A

fnmsubsx √ — — — — — A

fresx 3 √ — — — — √ A

frspx √ — — — — — X

frsqrtex 3 √ — — — — √ A

fselx 3 √ — — — — √ A

fsqrtx 3 √ — — — — √ A

fsqrtsx 3 √ — — — — √ A

fsubx √ — — — — — A

fsubsx √ — — — — — A

icbi — √ — — — — X

icbt 6 — — √ — — — X

isync — √ — — — — XL

lbz √ — — — — — D

lbzu √ — — — — — D

lbzux √ — — — — — X

lbzx √ — — — — — X

ld 1 √ — — — √ — DS

ldarx 1 √ — — — √ — X

ldu 1 √ — — — √ — DS

ldux 1 √ — — — √ — X

ldx 1 √ — — — √ — X

lfd √ — — — — — D

lfdu √ — — — — — D

lfdux √ — — — — — X

lfdx √ — — — — — X

lfs √ — — — — — D

lfsu √ — — — — — D

lfsux √ — — — — — X

lfsx √ — — — — — X

Table A-45. PowerPC Instruction Set Legend (continued)

UISA VEA OEA Supervisor Level Optional 64-Bit Form
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lha √ — — — — — D

lhau √ — — — — — D

lhaux √ — — — — — X

lhax √ — — — — — X

lhbrx √ — — — — — X

lhz √ — — — — — D

lhzu √ — — — — — D

lhzux √ — — — — — X

lhzx √ — — — — — X

lmw4 √ — — — — — D

lswi 4 √ — — — — — X

lswx 4 √ — — — — — X

lwa 1 √ — — — √ — DS

lwarx √ — — — — — X

lwaux 1 √ — — — √ — X

lwax 1 √ — — — √ — X

lwbrx √ — — — — — X

lwz √ — — — — — D

lwzu √ — — — — — D

lwzux √ — — — — — X

lwzx √ — — — — — X

mcrf √ — — — — — XL

mcrfs √ — — — — — X

 mcrxr √ — — — — — X

mfcr √ — — — — — X

mffsx √ — — — — — X

mfmsr 2 — — √ √ — — X

mfspr 5 √ — √ √ — — XFX

mfsr 2 — — √ √ — — X

mfsrin 2 — — √ √ — — X

mftb — √ — — — — XFX

mtcrf √ — — — — — XFX

mtfsb0x √ — — — — — X

mtfsb1x √ — — — — — X

mtfsfx √ — — — — — XFL

Table A-45. PowerPC Instruction Set Legend (continued)
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mtfsfix √ — — — — — X

mtmsr 2 — — √ √ — — X

mtspr 5 √ — √ √ — — XFX

mtsr 2 — — √ √ — — X

mtsrin 2 — — √ √ — — X

mulhdx 1 √ — — — √ — XO

mulhdux 1 √ — — — √ — XO

mulhwx √ — — — — — XO

mulhwux √ — — — — — XO

mulldx 1 √ — — — √ — XO

mulli √ — — — — — D

mullwx √ — — — — — XO

nandx √ — — — — — X

negx √ — — — — — XO

norx √ — — — — — X

orx √ — — — — — X

orcx √ — — — — — X

ori √ — — — — — D

oris √ — — — — — D

rfi 2 — — √ √ — — XL

rldclx 1 √ — — — √ — MDS

rldcrx 1 √ — — — √ — MDS

rldicx 1 √ — — — √ — MD

rldiclx 1 √ — — — √ — MD

rldicrx 1 √ — — — √ — MD

rldimix 1 √ — — — √ — MD

rlwimix √ — — — — — M

rlwinmx √ — — — — — M

rlwnmx √ — — — — — M

sc √ — √ — — — SC

slbia 1, 2, 3 — √ √ √ √ X

slbie 1, 2, 3 — √ √ √ √ X

sldx 1 √ — — — √ — X

slwx √ — — — — — X

sradx 1 √ — — — √ — X

Table A-45. PowerPC Instruction Set Legend (continued)
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sradix 1 √ — — — √ — XS

srawx √ — — — — — X

srawix √ — — — — — X

srdx 1 √ — — — √ — X

srwx √ — — — — — X

stb √ — — — — — D

stbu √ — — — — — D

stbux √ — — — — — X

stbx √ — — — — — X

std 1 √ — — — √ — DS

stdcx. 1 √ — — — √ — X

stdu 1 √ — — — √ — DS

stdux 1 √ — — — √ — X

stdx 1 √ — — — √ — X

stfd √ — — — — — D

stfdu √ — — — — — D

stfdux √ — — — — — X

stfdx √ — — — — — X

stfiwx 3 √ — — — — √ X

 stfs √ — — — — — D

stfsu √ — — — — — D

stfsux √ — — — — — X

stfsx √ — — — — — X

sth √ — — — — — D

sthbrx √ — — — — — X

sthu √ — — — — — D

sthux √ — — — — — X

sthx √ — — — — — X

stmw 4 √ — — — — — D

stswi 4 √ — — — — — X

stswx 4 √ — — — — — X

stw √ — — — — — D

stwbrx √ — — — — — X

stwcx. √ — — — — — X

stwu √ — — — — — D

Table A-45. PowerPC Instruction Set Legend (continued)
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stwux √ — — — — — X

stwx √ — — — — — X

subfx √ — — — — — XO

subfcx √ — — — — — XO

subfex √ — — — — — XO

subfic √ — — — — — D

subfmex √ — — — — — XO

subfzex √ — — — — — XO

sync √ — — — — — X

td 1 √ — — — √ — X

tdi 1 √ — — — √ — D

tlbia 2, 3 — — √ √ — √ X

tlbie 2, 3 — — √ √ — √ X

tlbld 2, 6 — — — √ — — X

tlbli 2, 6 — — — √ — — X

tlbsync 2, 3 — — √ √ — — X

tw √ — — — — — X

twi √ — — — — — D

xorx √ — — — — — X

xori √ — — — — — D

xoris √ — — — — — D

1 64-bit instruction
2 Supervisor-level instruction
3 Optional in the PowerPC architecture
4 Load and store string or multiple instruction
5 Supervisor- and user-level instruction
6 e300 core-implementation specific instruction

Table A-45. PowerPC Instruction Set Legend (continued)
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Appendix B
Instructions Not Implemented
This appendix provides a list of the 32- and 64-bit instructions that are not implemented in the e300 core. 
It also provides a list of the 64-bit SPR encodings not implemented by the e300. Note that any attempt to 
execute unimplemented instructions generates an illegal instruction exception.

Table B-1 lists the 32-bit instructions that are optional to the PowerPC architecture and not implemented 
by the e300 core.

Table B-2 provides a list of 64-bit instructions that are not implemented by 32-bit implementation such as 
the e300 core.

Table B-1. 32-Bit Instructions Not Implemented by the e300 core 

Mnemonic Instruction

eciwx External Control In Word Indexed

ecowx External Control Out Word Indexed

fsqrt Floating Square Root (Double-Precision)

fsqrts Floating Square Root Single

tlbia TLB Invalidate All

Table B-2. 64-Bit Instructions Not Implemented by the e300 core

Mnemonic Instruction

cntlzd Count Leading Zeros Double Word

divd Divide Double Word

divdu Divide Double Word Unsigned

extsw Extend Sign Word

fcfid Floating Convert From Integer Double Word

fctid Floating Convert to Integer Double Word

fctidz Floating Convert to Integer Double Word with Round toward Zero

ld Load Double Word

ldarx Load Double Word and Reserve Indexed

ldu Load Double Word with Update

ldux Load Double Word with Update Indexed

ldx Load Double Word Indexed

lwa Load Word Algebraic
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Table B-3 provides the 64-bit SPR encoding that is not implemented by the e300 core.

lwaux Load Word Algebraic with Update Indexed

lwax Load Word Algebraic Indexed

mulld Multiply Low Double Word

mulhd Multiply High Double Word

mulhdu Multiply High Double Word Unsigned

rldcl Rotate Left Double Word then Clear Left

rldcr Rotate Left Double Word then Clear Right

rldic Rotate Left Double Word Immediate then Clear

rldicl Rotate Left Double Word Immediate then Clear Left

rldicr Rotate Left Double Word Immediate then Clear Right

rldimi Rotate Left Double Word Immediate then Mask Insert

slbia SLB Invalidate All

slbie SLB Invalidate Entry

sld Shift Left Double Word

srad Shift Right Algebraic Double Word

sradi Shift Right Algebraic Double Word Immediate

srd Shift Right Double Word

std Store Double Word

stdcx. Store Double Word Conditional Indexed

stdu Store Double Word with Update

stdux Store Double Word Indexed with Update

stdx Store Double Word Indexed

td Trap Double Word

tdi Trap Double Word Immediate

Table B-3. 64-Bit SPR Encoding Not Implemented by the e300 core

   SPR
Register

Name
Access

Decimal spr[5–9] spr[0–4]

280 01000 11000 ASR Supervisor

Table B-2. 64-Bit Instructions Not Implemented by the e300 core (continued)

Mnemonic Instruction
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Appendix C
Revision History
This appendix provides a list of the major differences between the e300 PowerPC™ Core Reference 
Manual, Revision 0, and the e300 Power Architecture™ Core Family Reference Manual, Revision 4.

C.1 Changes from Revision 3 to Revision 4
Major changes in the e300 Power Architecture™ Core Family Reference Manual, from Revision 3 to 
Revision 4, are as follows:

Section, Page Changes
1.1.1/1-7 Clarify the description of pm_event_in in the features list.

1.1.7.2/1-15 Change “time base enable signal” to “time base/decrementer clock base enable 
signal” to better describe the function of the tben signal.

1.1.7.5/1-16 Change “the external input” to “the external core input” in the performance 
monitor description.

1.3.6.2/1-40 Add “via the PM counters” to the description of the pm_event_in signal.

1.3.6.2/1-41 Change “time base enable signal” to “time base/decrementer clock base enable 
signal” to better describe the function of the tben signal.

2.2.8/2-21 Update footnote 1 in Table 12-13, “Lower BAT Register” regarding the W and G 
bits of the IBAT registers to say, “Neither the W or G bits of the IBAT registers 
should be set. Attempting to write to these bits causes boundedly-undefined 
results.”

5.1/5-3 Expand description of cause for performance monitor interrupt to “Performance 
monitor counters using the pm_event_in to transition overflows” in Table 5-2, 
“Interrupts and Exception Conditions.”

5.1/5-3 Change the bit that determines whether a decrementer interrupt occurs from DEC 
[31] to DEC[0] in Table 5-2, “Interrupts and Exception Conditions.”

5.1/5-6 Expand the description of the cause for the performance monitor interrupt to say 
“Performance monitor counters using the pm_event_in to transition overflows” in 
Table 5-3, “Interrupt Priorities.”

5.1.1/5-6 Update description of performance monitor interrupt in Table 5-3, “Interrupt 
Priorities.”

8.1/8-1 Change “time base enable signal” to “time base/decrementer clock base enable 
signal” to better describe the function of the tben signal.

8.1.2/8-2 Modify description of action taken when the pm_event_in signal is asserted in 
Table 8-1, “Summary of Selected Internal Signals.”
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8.3.1/8-9 Modify condition under which the assertion of pm_event_in causes an interrupt.

9.4/9-8 Remove Section 9.4, “Example Code Sequence For Entering Sleep Mode.”

C.2 Changes from Revision 2 to Revision 3
Major changes from the e300 PowerPC™ Core Reference Manual, Revision 2, to the e300 Power 
Architecture™ Core Family Reference Manual, Revision 3, are as follows:

Section, Page Changes
Throughout Provide information pertaining to the e300c3 configuration.

Chapter 11 Add Chapter 11, “Performance Monitor.”

C.3 Changes from Revision 1 to Revision 2
Major changes from the e300 PowerPC™ Core Reference Manual, Revision 1, to the e300 Power 
Architecture™ Core Family Reference Manual, Revision 2, are as follows:

Section, Page Changes
Book Add caveats that the e300c2 does not support floating-point operations.

Remove references to a moded 32- or 64-bit data bus because that is a feature that 
will be phased out of e300 cores. The default now is a 64-bit data bus.

Chapter 1 Add Section 1.5, “Differences Between e300 Cores.”

Add notes that the e300c2 improves integer instruction throughput and 
significantly improves multiply instructions.

1.0/1-1 Change wording to explain references to e300, e300c1 and e300c2.

1.1/1-1 Add sentence stating that the e300c2 significantly improves multiply instructions.

1.1/1-1 Add sentence stating that the e300c2 eliminates the FPU.

1.1/1-3 Add Figure 1-2, “e300c2 Core Block Diagram.”

1.3.3.2/1-22 Add paragraph for e300c2 implementation and replace Figure 1-3, “Data Cache 
Organization,” with two figures: “e300c1 Data Cache Organization,” and “e300c2 
Data Cache Organization.”

1.3.4.2/1-26 In Table 1-2, add the following sentence to the description of exception conditions 
for “Floating-point unavailable”: “In the e300c2 core, any attempt to execute a 
floating-point instruction results in a floating-point unavailable exception.”

1.4.7/1-55 Remove paragraph describing bus arbitration scheme.

2.1/2-4 Add PVR value of the e300c2 core in the bullet describing the PVR.

2.1/2-5 In Figure 2-2, “e300c1 Processor Version Register,” add PVR value of the e300c2 
core in the PVR register diagram.

2.1/2-5 In Figure 2-3, “Machine State Register,” change reset value from “All zeros” to 
“0000_0040 or 0000_0000 or 0001_0041 or 0001_0001,” to reflect the values 
during different reset states.
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2.1/2-6/2-7 In Table 2-3, “MSR Bit Settings,” add statements that bits FP, FE0, and FE1 are 
read-only in e300c2.

2.2.1/2-11 In Table 2-4, “e300 HID0 Field Descriptions,” add description to bit 25 to show 
the decrementer auto reload (DECAREN) bit found in e300c2 only.

In Table 2-4, “e300 HID0 Field Descriptions,” add phrase in HID0[ICE] and 
HID0[ILOCK] descriptions to note that burst transactions can be generated even 
if the instruction cache is off or locked.

In Table 2-4, “e300 HID0 Field Descriptions,” before the bit settings, add the 
following: “The qreq signal is asserted to indicate that the processor is ready to 
enter nap mode. If the system logic determines that the processor may enter nap 
mode, the quiesce acknowledge signal, qack, is asserted to notify the processor.”

2.2.3/2-15 Add description to bit 11 in Table 2-7, “e300 HID2 Field Descriptions,” to show 
the enable weighted LRU (ELRW) bit found in e300c2 only.

Add description to bit 12 in Table 2-7, “e300 HID2 Field Descriptions,” to show 
the no kill for snoop (NOKS) bit found in e300c2.

Add differences between e300c1 and e300c2 in the instruction cache way-locking 
feature to HID2[16-18] in Table 2-7, “e300 HID2 Field Descriptions.”

Add differences between e300c1 and e300c2 in the data cache way-locking 
feature to HID2[24-26] in Table 2-7, “e300 HID2 Field Descriptions.”

3.2.4.3.1/3-17 In the last sentence of the section, add the caveat that when HID0[IFEM] is set, 
the core broadcasts the M bit.

4.1.1/4-1 Change second and third bullets to include e300c2 implementation (16-Kbyte, 
four-way).

4.2/4-3 Add paragraph for e300c2 implementation and replace Figure 4-1, “Data Cache 
Organization,” with two figures: “e300c1 Data Cache Organization,” and “e300c2 
Data Cache Organization.”

4.3/4-4 Add paragraph for e300c2 implementation and replace Figure 4-2, “Instruction 
Cache Organization,” with two figures: “e300c1 Instruction Cache Organization,” 
and “e300c2 Instruction Cache Organization.”

4.5.2.8/4/20 Remove statement that icbi broadcasts to the bus, because icbi does not broadcast 
to the bus in the e300 core. Modify the parenthetical description of icbi to say, 
“invalidate the old instruction cache entry in this processor.”

4.6.7/4-23 Add paragraph and Table 4-5, “e300c2 PLRU Replacement Way Selection,” to 
show e300c2 PLRU implementation.

4.6.7/4-24 Revise Figure 4-5, “PLRU Replacement Algorithm,” with note that B0 = 0 leg is 
always taken on e300c2.

4.10.1/4-33 Add row for e300c2 cache organization in Table 4-9, “Cache Organization.”

4.10.3.1.4/4-36 Add comment in example code that the number of blocks for e300c2 is 0x200. 
Added comment that the example uses e300c1 value of 0x400.
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4.10.3.1.7/4-38 Separate Table 4-15, “e300 Core DWLCK[0–2] Encodings,” into two tables: 
“e300c1 Core DWLCK[0–2] Encodings” and “e300c2 Core DWLCK[0–2] 
Encodings.”

4.10.3.2.6/4-43 Separate Table 4-18, “e300 Core IWLCK[0–2] Encodings,” into two tables: 
“e300c1 Core IWLCK[0–2] Encodings” and “e300c2 Core IWLCK[0–2] 
Encodings.”

5.1/5-4 In Table 5-2, “Interrupts and Exception Conditions,” change the decrementer 
interrupt description to say that it is triggered when DEC[0] changes from 0 to 1, 
not when DEC[31] changes from 0 to 1.

5.2.1.4/5-12 In Figure 5-6, “Machine State Register (MSR),” change reset value from “All 
zeros” to “0000_0040 or 0000_0000 or 0001_0041 or 0001_0001,” to reflect the 
values during different reset states.

5.2.1.4/5-13 In Table 5-8, “MSR Bit Settings,” add statements that bits FP, FE0, and FE1 are 
read-only in e300c2.

7.3.2.1/7-9 Because the e300 core supports the hit-under-cancel capability, replace the last 
sentence of the section with the following two sentences: “The instruction fetch 
cancel extension allows a new instruction fetch to be issued to the cache or to the 
bus if a cancelled instruction fetch is pending or active on the bus. This is also 
called hit-under-cancel capability.”

7.4.2/7-21 Before the last sentence in the first paragraph of the section, add the following 
sentence: “In the e300c2, however, each of the two execution units can execute 
one multiply for a total of two multiply instructions executed in parallel.”

Add two figures, “Instruction Timing—Integer Execution in the e300c1Core,” 
and “Instruction Timing—Integer Execution in the e300c2” to show difference in 
integer instruction throughput between e300c1 and e300c2.

7.7/7-25 Modify Table 7-4, “Integer Instructions,” to include latency information for the 
e300c2 core.

8.2/8-7 Replace statement that the data bus can be selected to be 32 or 64 bits wide with 
the following: “The address bus is 32 bits wide and the data bus is 64 bits wide.”

8.1.1/8/2 In Figure 8-1, “Core Interface Signals,” add tlbisync signal to the diagram.

8.1.2/8-2 In Table 8-1, “Summary of Selected Internal Signals,” add tlbisync signal 
description to the I/O description table.

C.4 Changes From Revision 0 to Revision 1
Major changes to the e300 PowerPC™ Core Reference Manual, from Revision 0 to Revision 1, are as 
follows:

Section, Page Changes
Book Add preface.

Remove references to softstop.

Add indexing.
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Add “Appendix C: Revision History.”

Change references of e300v1 to e300c1 to denote ‘e300 configuration 1’.

Change references of e300 to e300c1 where an implementation-specific feature 
was explained.

Change term ‘exception’ to ‘interrupt’, where applicable.

Remove caveats that dcbi should not be used on e300.

Change references to JTAG/COP to JTAG/debug.

Add references to Instruction Cache Block Touch (icbt) instruction.

1.0/1-1 Change wording to describe references to e300, and e300c1.

Chapter 1 Change LRU to PLRU when describing cache replacement policy.

Chapter 4 Change LRU to PLRU when describing cache replacement policy.

1.3.1.7.2/1-17 Remove bullet describing the EAR register and the eciwx, ecowx instructions (no 
longer supported).

1.3.1.7.2/1-17 Include other address breakpoint registers as SPRs in the e300.

1.3.4.2, 1-24/1-25 Change Table 1-2 to show that ISI exceptions are not caused when an instruction 
fetch cannot be performed when the fetch accesses a direct-store segment, because 
direct-stores are no longer supported.

Change Table 1-2 to show that lmw and stmw do not cause an alignment 
exception when in true little-endian mode.

Change Table 1-2 to show that alignment exceptions are not caused when crossing 
into a direct-store segment because direct-stores are no longer supported.

1.3.7.2/1-30 Change signals description to reflect a simpler introduction to signals.

2.1.2.12/2-20 Change Table 2-10 description of manufacturer ID to Freescale from Motorola.

Chapter 2 Add statements that reserved bits should be cleared for future compatibility.

2.1.1/2-5 Before the description of the machine state register, add table entitled, “Assigned 
PVR Values,” to show PVR values of different processors.

2.1.1/2-6 Add footnote to Table 2-2, “MSR Bit Settings,” to show that reserved bits must be 
set to zero.

2.1.1/2-8 Remove bullet describing the EAR register and the eciwx, ecowx instructions (no 
longer supported).

2.1.2.3/2-14 Change the name of bit 7 in Table 2-6 from MESI to MESISTATE.

2.1.2.12/2-20 Change SVR value in Figure 2-17, “System Version Register (SVR),” to show 
that it is determined by the SoC.

3.2.4.3.6/3-20 Remove third bullet on page noting that lmw and stmw cause an alignment 
exception when in true little-endian mode.

3.2.5.3/3-28 Remove statement that cache control instructions that deal with direct-store 
segments are treated as no-ops since direct-stores are no longer supported.
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3.2.5.3/3-28 Remove statements noting that incoherency may occur if a write-through store is 
followed by a dcbz instruction. 

3.2.5.3/3-28 Remove statements noting that broadcasting a sequence of dcbz instructions may 
cause snoop accesses to be retired indefinitely. 

3.2.6.3.1/3-32 Remove statement that dcbi causes a direct storage interrupt and added that dcbi 
is used to invalidate cache blocks.

Chapter 4 Revise some section titles for clarity.

4.2/4-3 Change first paragraph to specify e300c1 implementation.

4.3/4-4 Change first paragraph to specify e300c1 implementation.

4.6.7/4-23 Change second paragraph and Table 4-7 title to specify e300c1 PLRU 
implementation.

4.10.3.1.7/4-38 In Table 4-17, relabel “Ways Locked” column as “e300c1 Ways Locked.”

4.10.3.2.6/4-41 In Table 4-20, relabel “Ways Locked” column as “e300c1 Ways Locked.”

Chapter 5 Remove references to direct-stores (no longer supported).

5.1/5-4 Remove lmw and stmw from list of instructions mentioned in Table 5-2 that cause 
an alignment exception when in little-endian mode.

5.1.1/5-6 Remove mention of power-on-reset as a cause for system reset in Table 5-3. hreset 
is very similar to power-on-reset and is the only listed cause of system reset now. 

5.1.1/5-7 Remove lmw and stmw from list of instructions mentioned in Table 5-3 that cause 
an alignment exception when in little-endian mode.

5.2.1.1/5-10 Following Table 5-4, add table entitled, “Bit Settings for Program Interrupts,” to 
show SRR1 bit settings on a program interrupt.

5.2.1.2/5-11 Change statement that mentioned CSRR1 loading only bits 16–31 from MSR to 
loading all bits [0–31] from MSR for the e300 core.

5.5.2/5-21 Add statement that the tea signal is still monitored even when HID0[EMCP] is 
cleared.

5.5.3/5-24 Change statement describing a DSI interrupt caused by a translation error or 
protection violation. Instead of stating that the DAR points to the byte address of 
the offending page, now states that entire instruction should be re-executed. This 
is due to a previously documented errata.

5.5.3/5-25 Remove load multiple instructions as instructions that can be partially executed on 
a DSI interrupt.

5.5.4/5-25 Remove statement that an ISI interrupt occurs when an attempt is made to fetch 
an instruction from guarded memory when MSR[IR]=1 because no ISI occurs 
with guarded bit on.

5.5.6/5-26 Remove lmw and stmw from list of instructions mentioned that cause an 
alignment exception when in little-endian mode.

5.0/5-1 Add reference to CSRR0, CSRR1 as save/restore registers for critical interrupts.

5.1/5-4 Remove references to direct-store segments from Table 5-2.
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5.2.1.1/5-10 Change Table 5-4 on SRR1 bit settings on an MCE to match the settings on 
Table 5-14.

5.5.3/5-23 Remove mention of direct stores in description of bit 0 of DSISR in Table 5-14.

Chapter 6 Change terminology to Reference and Change bits (from Referenced and 
Changed bits)

10.1/10-1 Add mention of address breakpoint interrupt and DSI interrupt when breakpoint 
conditions are met.

10.1.6/10-3 Remove Software Debug section as it was beyond the scope of this document.

10.4/10-5 Change IABR_ADDR variable to IABR[CEA], and IABR2_ADDR variable to 
IABR2[CEA], to eliminate redundant information.

10.2.1/10-4 Remove Breakpoint Enabled section as it was redundant with other information in 
this chapter.
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Glossary
The glossary contains an alphabetical list of terms, phrases, and abbreviations used in this book. Some of 
the terms and definitions included in the glossary are reprinted from IEEE Standard 754-1985, IEEE 
Standard for Binary Floating-Point Arithmetic, copyright ©1985 by the Institute of Electrical and 
Electronics Engineers, Inc. with the permission of the IEEE.

A Architecture. A detailed specification of requirements for a processor or computer 
system. It does not specify details of how the processor or computer system must 
be implemented; instead it provides a template for a family of compatible 
implementations.

Asynchronous interrupt. interrupts that are caused by events external to the processor’s 
execution. In this document, the term asynchronous interrupt is used 
interchangeably with the word interrupt.

Atomic access. A bus access that attempts to be part of a read-write operation to the same 
address uninterrupted by any other access to that address (the term refers to the 
fact that the transactions are indivisible). The PowerPC architecture implements 
atomic accesses through the lwarx/stwcx. instruction pair.

B BAT (block address translation) mechanism. A software-controlled array that stores the 
available block address translations on-chip.

Beat. A single state on the e300 bus interface that may extend across multiple bus cycles. 
A e300 transaction can be composed of multiple address or data beats.

Biased exponent. An exponent whose range of values is shifted by a constant (bias). 
Typically a bias is provided to allow a range of positive values to express a range 
that includes both positive and negative values.

Big-endian. A byte-ordering method in memory where the address n of a word 
corresponds to the most-significant byte. In an addressed memory word, the bytes 
are ordered (left to right) 0, 1, 2, 3, with 0 being the most-significant byte. See 
Little-endian.

Block. An area of memory that ranges from 128 Kbytes to 256 Mbytes whose size, 
translation, and protection attributes are controlled by the BAT mechanism.

Boundedly undefined. A characteristic of certain operation results that are not rigidly 
prescribed by the PowerPC architecture. Boundedly- undefined results for a given 
operation may vary among implementations and between execution attempts in 
the same implementation. 
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Although the architecture does not prescribe the exact behavior for when results 
are allowed to be boundedly undefined, the results of executing instructions in 
contexts where results are allowed to be boundedly undefined are constrained to 
ones that could have been achieved by executing an arbitrary sequence of defined 
instructions, in valid form, starting in the state the machine was in before 
attempting to execute the given instruction.

Branch folding. The replacement with target instructions of a branch instruction and any 
instructions along the not-taken path when a branch is either taken or predicted as 
taken. 

Branch prediction. The process of guessing whether a branch will be taken. Such 
predictions can be correct or incorrect; the term ‘predicted’ as it is used here does 
not imply that the prediction is correct (successful). The PowerPC architecture 
defines a means for static branch prediction as part of the instruction encoding.

Branch resolution. The determination of whether a branch is taken or not taken. A branch 
is said to be resolved when the processor can determine which instruction path to 
take. If the branch is resolved as predicted, the instructions following the predicted 
branch that may have been speculatively executed can complete (see Completion). 
If the branch is not resolved as predicted, instructions on the mispredicted path, 
and any results of speculative execution, are purged from the pipeline and fetching 
continues from the nonpredicted path. 

Burst. A multiple-beat data transfer whose total size is typically equal to a cache block.

Bus clock. Clock that causes the bus state transitions.

Bus master. The owner of the address or data bus; the device that initiates or requests the 
transaction.

C Cache. High-speed memory containing recently accessed data or instructions (subset of 
main memory).

Cache block. A small region of contiguous memory that is copied from memory into a 
cache. The size of a cache block may vary among processors; the maximum block 
size is one page. In PowerPC processors, cache coherency is maintained on a 
cache-block basis. Note that the term cache block is often used interchangeably 
with ‘cache line.’

Cache coherency. An attribute wherein an accurate and common view of memory is 
provided to all devices that share the same memory system. Caches are coherent 
if a processor performing a read from its cache is supplied with data corresponding 
to the most recent value written to memory or to another processor’s cache.
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Cache flush. An operation that removes from a cache any data from a specified address 
range. This operation ensures that any modified data within the specified address 
range is written back to main memory. This operation is generated typically by a 
Data Cache Block Flush (dcbf) instruction.

Caching-inhibited. A memory update policy in which the cache is bypassed and the load 
or store is performed to or from main memory. 

Cast out. A cache block that must be written to memory when a cache miss causes a cache 
block to be replaced.

Changed bit. One of two page history bits found in each page table entry (PTE). The 
processor sets the changed bit if any store is performed into the page. See also 
Page access history bits and Referenced bit. 

Clean. An operation that causes a cache block to be written to memory, if modified, and 
then left in a valid, unmodified state in the cache.

Clear. To cause a bit or bit field to register a value of zero. See also Set.

Completion. Completion occurs when an instruction has finished executing, written back 
any results, and is removed from the completion queue (CQ). When an instruction 
completes, it is guaranteed that this instruction and all previous instructions can 
cause no interrupts. 

Context synchronization. An operation that ensures that all instructions in execution 
complete past the point where they can produce an interrupt, that all instructions 
in execution complete in the context in which they began execution, and that all 
subsequent instructions are fetched and executed in the new context. Context 
synchronization may result from executing specific instructions (such as isync or 
rfi) or when certain events occur (such as an interrupt). 

Copy-back operation. A cache operation in which a cache line is copied back to memory 
to enforce cache coherency. Copy-back operations consist of snoop push-out 
operations and cache cast-out operations.

D Denormalized number. A nonzero floating-point number whose exponent has a reserved 
value, usually the format's minimum, and whose explicit or implicit leading 
significand bit is zero. 

Direct-mapped cache. A cache in which each main memory address can appear in only 
one location within the cache, operates more quickly when the memory request is 
a cache hit.

E Effective address (EA). The 32-bit address specified for a load, store, or an instruction 
fetch. This address is then submitted to the MMU for translation to either a 
physical memory address or an I/O address.
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Exception. A condition that, if enabled, generates an interrupt.

Exclusive state. MEI state (E) in which only one caching device contains data that is also 
in system memory.

Execution synchronization. A mechanism by which all instructions in execution are 
architecturally complete before beginning execution (appearing to begin 
execution) of the next instruction. Similar to context synchronization but doesn't 
force the contents of the instruction buffers to be deleted and refetched.

Exponent. In the binary representation of a floating-point number, the exponent is the 
component that normally signifies the integer power to which the value two is 
raised in determining the value of the represented number. See also Biased 
exponent.

F Fall-through (branch fall-through). A not-taken branch. On the e300 core, fall-through 
branch instructions are removed from the instruction stream at dispatch. That is, 
these instructions are allowed to fall through the instruction queue through the 
dispatch mechanism, without either being passed to an execution unit and or given 
a position in the CQ. 

Feed-forwarding. A e300 feature that reduces the number of clock cycles that an 
execution unit must wait to use a register. When the source register of the current 
instruction is the same as the destination register of the previous instruction, the 
result of the previous instruction is routed to the current instruction at the same 
time that it is written to the register file. With feed-forwarding, the destination bus 
is gated to the waiting execution unit over the appropriate source bus, saving the 
cycles which would be used for the write and read. 

Fetch. Retrieving instructions from either the cache or main memory and placing them 
into the instruction queue.

Finish. Finishing occurs in the last cycle of execution. In this cycle, the CQ entry is 
updated to indicate that the instruction has finished executing. 

Floating-point register (FPR). Any of the 32 registers in the floating-point register file. 
These registers provide the source operands and destination results for 
floating-point instructions. Load instructions move data from memory to FPRs 
and store instructions move data from FPRs to memory. The FPRs are 64 bits wide 
and store floating-point values in double-precision format.

Floating-point unit. The functional unit in the e300c1e300 processor responsible for 
executing all floating-point instructions.

Flush. An operation that causes a cache block to be invalidated and the data, if modified, 
to be written to memory.

Folding. See Branch folding.
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Fraction. In the binary representation of a floating-point number, the field of the 
significand that lies to the right of its implied binary point.

G General-purpose register (GPR). Any of the 32 registers in the general-purpose register 
file. These registers provide the source operands and destination results for all 
integer data manipulation instructions. Integer load instructions move data from 
memory to GPRs and store instructions move data from GPRs to memory.

Guarded. The guarded attribute pertains to out-of-order execution. When a page is 
designated as guarded, instructions and data cannot be accessed out-of-order.

H Harvard architecture. An architectural model featuring separate caches and other 
memory management resources for instructions and data.

Hashing. An algorithm used in the page table search process.

I IEEE 754. A standard written by the Institute of Electrical and Electronics Engineers that 
defines operations and representations of binary floating-point numbers.

Illegal instructions. A class of instructions that are not implemented for a particular 
PowerPC processor. These include instructions not defined by the PowerPC 
architecture. In addition, for 32-bit implementations, instructions that are defined 
only for 64-bit implementations are considered to be illegal instructions. For 
64-bit implementations instructions that are defined only for 32-bit 
implementations are considered to be illegal instructions.

Implementation. A particular processor that conforms to the PowerPC architecture, but 
may differ from other architecture-compliant implementations for example in 
design, feature set, and implementation of optional features. The PowerPC 
architecture has many different implementations. 

Imprecise interrupt. A type of synchronous interrupt that is allowed not to adhere to the 
precise interrupt model (see Precise interrupt). The PowerPC architecture allows 
only floating-point exceptions to be handled imprecisely.

Instruction queue. A holding place for instructions fetched from the current instruction 
stream.

Integer unit. The functional unit in the e300 responsible for executing all integer 
instructions.

In-order. An aspect of an operation that adheres to a sequential model. An operation is 
said to be performed in-order if, at the time that it is performed, it is known to be 
required by the sequential execution model. See Out-of-order.

Instruction latency. The total number of clock cycles necessary to execute an instruction 
and make ready the results of that instruction.
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Interrupt. A condition encountered by the processor that requires special, 
supervisor-level processing.

Interrupt handler. A software routine that executes when an interrupt is taken. Normally, 
the interrupt handler corrects the condition that caused the interrupt, or performs 
some other meaningful task (that may include aborting the program that caused 
the interrupt). The address for each interrupt handler is identified by an interrupt 
vector offset defined by the architecture and a prefix selected via the MSR.

K Key bits. A set of key bits referred to as Ks and Kp in each segment register and each BAT 
register. The key bits determine whether supervisor or user programs can access a 
page within that segment or block.

Kill. An operation that causes a cache block to be invalidated without writing any modified 
data to memory.

L Latency. The number of clock cycles necessary to execute an instruction and make ready 
the results of that execution for a subsequent instruction.

L2 cache. See Secondary cache.

Least-significant bit (lsb). The bit of least value in an address, register, field, data 
element, or instruction encoding. 

Least-significant byte (LSB). The byte of least value in an address, register, data element, 
or instruction encoding.

Little-endian. A byte-ordering method in memory where the address n of a word 
corresponds to the least-significant byte. In an addressed memory word, the bytes 
are ordered (left to right) 3, 2, 1, 0, with 3 being the most-significant byte. See 
Big-endian.

M Mantissa. The decimal part of logarithm.

MEI (modified/exclusive/invalid). Cache coherency protocol used to manage caches on 
different devices that share a memory system. Note that the PowerPC architecture 
does not specify the implementation of a MEI protocol to ensure cache coherency. 

Memory access ordering. The specific order in which the processor performs load and 
store memory accesses and the order in which those accesses complete.

Memory-mapped accesses. Accesses whose addresses use the page or block address 
translation mechanisms provided by the MMU and that occur externally with the 
bus protocol defined for memory.

Memory coherency. An aspect of caching in which it is ensured that an accurate view of 
memory is provided to all devices that share system memory.
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Memory consistency. Refers to agreement of levels of memory with respect to a single 
processor and system memory (for example, on-chip cache, secondary cache, and 
system memory).

Memory management unit (MMU). The functional unit that is capable of translating an 
effective (logical) address to a physical address, providing protection 
mechanisms, and defining caching methods.

Modified state. MEI state (M) in which one, and only one, caching device has the valid 
data for that address. The data at this address in external memory is not valid.

Most-significant bit (msb). The highest-order bit in an address, registers, data element, or 
instruction encoding. 

Most-significant byte (MSB). The highest-order byte in an address, registers, data 
element, or instruction encoding.

N NaN. An abbreviation for not a number; a symbolic entity encoded in floating-point 
format. There are two types of NaNs—signaling NaNs and quiet NaNs.

No-op. No-operation. A single-cycle operation that does not affect registers or generate 
bus activity. 

Normalization. A process by which a floating-point value is manipulated such that it can 
be represented in the format for the appropriate precision (single- or 
double-precision). For a floating-point value to be representable in the single- or 
double-precision format, the leading implied bit must be a 1.

O OEA (operating environment architecture). The level of the architecture that describes 
PowerPC memory management model, supervisor-level registers, 
synchronization requirements, and the interrupt model. It also defines the 
time-base feature from a supervisor-level perspective. Implementations that 
conform to the PowerPC OEA also conform to the PowerPC UISA and VEA.

Optional. A feature, such as an instruction, a register, or an interrupt, that is defined by the 
PowerPC architecture but not required to be implemented. 

Out-of-order. An aspect of an operation that allows it to be performed ahead of one that 
may have preceded it in the sequential model, for example, speculative operations. 
An operation is said to be performed out-of-order if, at the time that it is 
performed, it is not known to be required by the sequential execution model. See 
In-order.

Out-of-order execution. A technique that allows instructions to be issued and completed 
in an order that differs from their sequence in the instruction stream.
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Overflow. An condition that occurs during arithmetic operations when the result cannot be 
stored accurately in the destination register(s). For example, if two 32-bit numbers 
are multiplied, the result may not be representable in 32 bits. Since the 32-bit 
registers of the e300 cannot represent this sum, an overflow condition occurs.

P Page. A region in memory. The OEA defines a page as a 4-Kbyte area of memory, aligned 
on a 4-Kbyte boundary. 

Page access history bits. The changed and referenced bits in the PTE keep track of the 
access history within the page. The referenced bit is set by the MMU whenever 
the page is accessed for a read or write operation. The changed bit is set when the 
page is stored into. See Changed bit and Referenced bit. 

Page fault. A page fault is a condition that occurs when the processor attempts to access 
a memory location that does not reside within a page not currently resident in 
physical memory. On PowerPC processors, a page fault interrupt condition occurs 
when a matching, valid page table entry (PTE[V] = 1) cannot be located.

Page table. A table in memory is comprised of page table entries, or PTEs. It is further 
organized into eight PTEs per PTEG (page table entry group). The number of 
PTEGs in the page table depends on the size of the page table (as specified in the 
SDR1 register). 

Page table entry (PTE). Data structures containing information used to translate effective 
address to physical address on a 4-Kbyte page basis. A PTE consists of 8 bytes of 
information in a 32-bit processor and 16 bytes of information in a 64-bit processor. 

Park. The act of allowing a bus master to maintain bus mastership without having to 
arbitrate.

Physical memory. The actual memory that can be accessed through the system’s memory 
bus.

Pipelining. A technique that breaks operations, such as instruction processing or bus 
transactions, into smaller distinct stages or tenures (respectively) so that a 
subsequent operation can begin before the previous one has completed. 

Precise interrupts. A category of interrupt for which the pipeline can be stopped so 
instructions that preceded the faulting instruction can complete and subsequent 
instructions can be flushed and redispatched after interrupt handling has 
completed. See Imprecise interrupts.

Primary opcode. The most-significant 6 bits (bits 0–5) of the instruction encoding that 
identifies the type of instruction.

Program order. The order of instructions in an executing program. More specifically, this 
term is used to refer to the original order in which program instructions are fetched 
into the instruction queue from the cache.
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Protection boundary. A boundary between protection domains.

Protection domain. A protection domain is a segment, a virtual page, a BAT area, or a 
range of unmapped effective addresses. It is defined only when the appropriate 
relocate bit in the MSR (IR or DR) is 1.

Q Quiesce. To come to rest. The processor is said to quiesce when an interrupt is taken or a 
sync instruction is executed. The instruction stream is stopped at the decode stage 
and executing instructions are allowed to complete to create a controlled context 
for instructions that may be affected by out-of-order, parallel execution. See 
Context synchronization.

Quiet NaN. A type of NaN that can propagate through most arithmetic operations without 
signaling interrupts. A quiet NaN is used to represent the results of certain invalid 
operations, such as invalid arithmetic operations on infinities or on NaNs, when 
invalid. See Signaling NaN.

R rA. The rA instruction field is used to specify a GPR to be used as a source or destination.

rB. The rB instruction field is used to specify a GPR to be used as a source.

rD. The rD instruction field is used to specify a GPR to be used as a destination.

rS. The rS instruction field is used to specify a GPR to be used as a source.

Real address mode. An MMU mode when no address translation is performed and the 
effective address specified is the same as the physical address. The processor’s 
MMU is operating in real address mode if its ability to perform address translation 
has been disabled through the MSR registers IR and/or DR bits. 

Record bit. Bit 31 (or the Rc bit) in the instruction encoding. When it is set, updates the 
condition register (CR) to reflect the result of the operation.

Referenced bit. One of two page history bits found in each page table entry. The 
processor sets the referenced bit whenever the page is accessed for a read or write. 
See also Page access history bits.

Register indirect addressing. A form of addressing that specifies one GPR that contains 
the address for the load or store.

Register indirect with immediate index addressing. A form of addressing that specifies 
an immediate value to be added to the contents of a specified GPR to form the 
target address for the load or store.

Register indirect with index addressing. A form of addressing that specifies that the 
contents of two GPRs be added together to yield the target address for the load or 
store.
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Rename register. Temporary buffers used by instructions that have finished execution but 
have not completed.

Reservation. The processor establishes a reservation on a cache block of memory space 
when it executes an lwarx instruction to read a memory semaphore into a GPR.

Reservation station. A buffer between the dispatch and execute stages that allows 
instructions to be dispatched even though the results of instructions on which the 
dispatched instruction may depend are not available. 

Retirement. Removal of the completed instruction from the CQ.

RISC (reduced instruction set computing). An architecture characterized by 
fixed-length instructions with nonoverlapping functionality and by a separate set 
of load and store instructions that perform memory accesses. 

S Scan interface. The e300 test interface.

Secondary cache. A cache memory that is typically larger and has a longer access time 
than the primary cache. A secondary cache may be shared by multiple devices. 
Also referred to as L2, or level-2, cache. 

Set (v). To write a nonzero value to a bit or bit field; the opposite of clear. The term ‘set’ 
may also be used to generally describe the updating of a bit or bit field. 

Set (n). A subdivision of a cache. Cacheable data can be stored in a given location in one 
of the sets, typically corresponding to its lower-order address bits. Because several 
memory locations can map to the same location, cached data is typically placed in 
the set whose cache block corresponding to that address was used least recently. 
See Set-associative. 

Set-associative. Aspect of cache organization in which the cache space is divided into 
sections, called sets. The cache controller associates a particular main memory 
address with the contents of a particular set, or region, within the cache.

Shadowing. Shadowing allows a register to be updated by instructions that are executed 
out of order without destroying machine state information. 

Signaling NaN. A type of NaN that generates an invalid operation program interrupt when 
it is specified as arithmetic operands. See Quiet NaN. 

Significand. The component of a binary floating-point number that consists of an explicit 
or implicit leading bit to the left of its implied binary point and a fraction field to 
the right.

Simplified mnemonics. Assembler mnemonics that represent a more complex form of a 
common operation.
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Slave. The device addressed by a master device. The slave is identified in the address 
tenure and is responsible for supplying or latching the requested data for the 
master during the data tenure.

Snooping. Monitoring addresses driven by a bus master to detect the need for coherency 
actions.

Snoop push. Response to a snooped transaction that hits a modified cache block. The 
cache block is written to memory and made available to the snooping device.

Split-transaction. A transaction with independent request and response tenures.

Split-transaction bus. A bus that allows address and data transactions from different 
processors to occur independently.

Stage. The term stage is used in two different senses, depending on whether the pipeline 
is being discussed as a physical entity or a sequence of events. In the latter case, a 
stage is an element in the pipeline during which certain actions are performed, 
such as decoding the instruction, performing an arithmetic operation, or writing 
back the results. Typically, the latency of a stage is one processor clock cycle. 
Some events, such as dispatch, write-back, and completion, happen 
instantaneously and may be thought to occur at the end of a stage. An instruction 
can spend multiple cycles in one stage. An integer multiply, for example, takes 
multiple cycles in the execute stage. When this occurs, subsequent instructions 
may stall. An instruction may also occupy more than one stage simultaneously, 
especially in the sense that a stage can be seen as a physical resource—for 
example, when instructions are dispatched they are assigned a place in the CQ at 
the same time they are passed to the execute stage. They can be said to occupy 
both the complete and execute stages in the same clock cycle.

Stall. An occurrence when an instruction cannot proceed to the next stage.

Static branch prediction. Mechanism by which software (for example, compilers) can 
hint to the machine hardware about the direction a branch is likely to take. 

Store Queue. Holds store operations that have not been committed to memory, resulting 
from completed or retired instructions.

Superscalar. A superscalar processor is one that can dispatch multiple instructions 
concurrently from a conventional linear instruction stream. In a superscalar 
implementation, multiple instructions can be in the same stage at the same time. 

Supervisor mode. The privileged operation state of a processor. In supervisor mode, 
software, typically the operating system, can access all control registers and can 
access the supervisor memory space, among other privileged operations. 

Synchronization. A process to ensure that operations occur strictly in order. See Context 
synchronization and Execution synchronization. 
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Synchronous interrupt. An interrupt that is generated by the execution of a particular 
instruction or instruction sequence. There are two types of synchronous interrupts, 
precise and imprecise.

System memory. The physical memory available to a processor. 

T Tenure. The period of bus mastership. For the e300, there can be separate address bus 
tenures and data bus tenures. A tenure consists of three phases: arbitration, 
transfer, and termination. 

TLB (translation lookaside buffer). A cache that holds recently-used page table entries.

Throughput. The measure of the number of instructions that are processed per clock 
cycle.

Transaction. A complete exchange between two bus devices. A transaction is typically 
comprised of an address tenure and one or more data tenures, which may overlap 
or occur separately from the address tenure. A transaction may be minimally 
comprised of an address tenure only. 

Transfer termination. Signal that refers to both signals that acknowledge the transfer of 
individual beats (of both single-beat transfer and individual beats of a burst 
transfer) and to signals that mark the end of the tenure.

U UISA (user instruction set architecture). The level of the architecture to which 
user-level software should conform. The UISA defines the base user-level 
instruction set, user-level registers, data types, floating-point memory conventions 
and interrupt model as seen by user programs, and the memory and programming 
models.

Underflow. A condition that occurs during arithmetic operations when the result cannot 
be represented accurately in the destination register. For example, underflow can 
happen if two floating-point fractions are multiplied and the result requires a 
smaller exponent and/or mantissa than the single-precision format can provide. In 
other words, the result is too small to be represented accurately.

User mode. The operating state of a processor used typically by application software. In 
user mode, software can access only certain control registers and can access only 
user memory space. No privileged operations can be performed. Also referred to 
as problem state.

V VEA (virtual environment architecture). The level of the architecture that describes the 
memory model for an environment in which multiple devices can access memory, 
defines aspects of the cache model, defines cache control instructions, and defines 
the time-base facility from a user-level perspective. Implementations that conform 
to the PowerPC VEA also adhere to the UISA, but may not necessarily adhere to 
the OEA.
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Virtual address. An intermediate address used in the translation of an effective address to 
a physical address.

Virtual memory. The address space created using the memory management facilities of 
the processor. Program access to virtual memory is possible only when it coincides 
with physical memory.

W Way. A location in the cache that holds a cache block, its tags and status bits.

Word. A 32-bit data element.

Write-back. A cache memory update policy in which processor write cycles are directly 
written only to the cache. External memory is updated only indirectly, for 
example, when a modified cache block is cast out to make room for newer data. 

Write-through. A cache memory update policy in which all processor write cycles are 
written to both the cache and memory.
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load-ahead-of-store capability, 4-26
pipeline collision detection, 4-26
reservation address snooping for lwarx/stwcx., 4-26

cache control
and CSB operations, 4-29, 8-7
broadcasting operations, 4-17
cache control instructions, 4-17–4-21
enabling/disabling caches

data cache, 4-14
instruction cache, 4-16



e300 Power Architecture Core Family Reference Manual, Rev. 4

Index-2 Freescale Semiconductor

invalidating caches
data cache, 4-15
instruction cache, 4-16

parameters in HIDn, 4-14–4-17
parity error reporting, 4-14
WIMG bits, see Memory/cache access attributes (WIMG 

bits), 4-14
cache locking

applications information, 4-32
data cache locking

guidelines, 4-35–4-38
overview, 4-15

entire cache locking, 4-32
instruction cache locking

guidelines, 4-40–4-44
overview, 4-16
way protection, 4-17

MSR bits and cache locking, 4-34
register summary, 4-33
terminology, 4-32
way locking, 1-33, 4-33

cache management instructions, 3-32, A-23
cache miss effects, 7-14
coherency, 4-5–4-14, 9-4

3-state (MEI) coherency model, 4-8–4-10
4-state (MESI) coherency model, 4-8–4-11
in single-processor systems, 4-12
load and store operations, 4-12

CSB (coherent system bus), 4-26, 4-27
instruction cache arbitration, 7-10
instruction cache hit timing, 7-11
loads and stores

caching-inhibited loads/stores, 4-13
operations, 1-13, 4-21–4-25
organization, 4-3, 4-4, 4-33
overview and features, 4-1–4-3
parity checking, 4-25
performance

cache-inhibited pages, 7-25
memory considerations, 7-24

performed loads and stores, definition, 4-13
PLRU replacement algorithm, 4-4
snooping, 4-29–4-32
way-locking, 1-33

Change (C) bit, 6-10, 6-20
checking, 6-36
maintenance recording, 6-10, 6-20–6-22

Checkstop signal, 8-9
Checkstop state, 5-22
Clock multiplier, 1-15
Clock signals, pll_cfgn, 8-4
Coherent system bus (CSB), 4-26, 4-27

overview, 8-1
parity checking, 8-9
signals described, 8-1–8-4

Compare instructions, A-16
Completion queue (CQ), 7-1, Glossary-3
Completion unit, overview, 1-12
Condition register (CR), 1-20
Context synchronization, 3-8
Conventions, xxvi, xxxii
Copy-back mode, 7-25
Core interface

accesses, overview, 8-7
checkstops, 8-9
core quiesce control signals, 8-9
external interrupts, 8-9
IEEE 1149.1-compliant interface, 8-10
reset inputs, 8-9
signal groupings, 8-1, 8-2
signal summary, 8-2

CR (condition register)
logical instructions, 3-23
overview, 1-20

Critical input (cint) interrupt, 1-36, 5-4
enabling with MSR[CE], 5-13, 5-30

CSRRn (critical interrupt save/restore regs. 0–1), 2-10, 2-22, 
5-8, 5-10, 5-15, 5-16, 5-17

CTR (count register), 2-5

D
DABR/DABR2 (data address breakpoint regs.), 2-11, 2-26, 

10-2
DAR (data address register), 2-9, 5-23, 10-2, 10-3
Data access errors, see DSI (data storage interrupt)
Data cache enable, 1-24
Data cache flash invalidate, 1-25
Data cache lock, 1-24
Data cache way lock, 1-28
Data cache, see Caches
Data errors, see Machine check interrupt
Data TLB miss on load interrupt, 1-36, 5-5, 5-33
Data TLB miss on store interrupt, 1-36, 5-5, 5-34
DBAT, see Block address translation (BAT)
DBATnU/L (data block address translation regs. 0–7, 

upper/lower), 2-9, 2-10, 2-20, 2-21
DBCR (data address breakpoint control reg.), 2-11, 2-27, 

10-2
dcbf, 4-19
dcbi, 4-19
dcbst, 4-19
dcbt, 4-18
dcbtst, 4-18
dcbz, 4-18
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DCMP (data TLB compare register), 2-19, 6-32, 6-34
Debug facilities, 1-41

debugging software, 10-3
interrupt vectors for debugging, 10-3
other debug resources, 10-2
performance monitor uses, 1-16, 11-1
registers, 10-1–10-3
see also Breakpoints
single-stepping, 10-1, 10-3
tracing on branch instructions, 5-13, 5-32, 10-3, 10-4
using breakpoints, 10-3

DEC (decrementer register), 2-10
Decrementer, 1-36

exception, 9-2
interrupt, 5-4, 5-30, 9-1
timer, 9-1

Direct address translation (translation disabled)
data accesses, 6-11, 6-19
instruction accesses, 6-11, 6-19
see also Memory management unit (MMU), 6-19

DMISS (data TLB miss address reg.), 2-18, 6-31, 6-34
Doze mode, 9-2, 9-3
DSI (data storage interrupt), 1-35, 5-3, 5-23, 10-3, 10-4
DSISR (DSI status register), 2-10, 5-1, 10-2, 10-3
DTLB, 1-6
Dynamic power management, 9-1
Dynamic power management enable, 1-24
Dynamic power management, modes, 9-2

E
e300 core, differences between cores, 1-42
e300-specific instructions, 3-35
e300-specific registers, 2-10–2-27
Effective address (EA)

calculation, 3-8
translation, see Memory management unit (MMU)

eieio, 4-14
Endian modes, 3-1

byte ordering
interrupt LE mode (MSR[ILE] bit), 5-12

Endian modes and byte ordering
little-endian mode (MSR[LE] bit), 5-14

Event counting, see Performance monitor APU
Exceptions

enabling and disabling interrupts and exceptions, 5-14
overview, 1-33
see also Interrupt handling
types (more granular than interrupts)

floating-point enabled exceptions (program interrupt), 
5-4, 5-28

illegal instr. exception (program interrupt), 5-4, 5-28
privileged instr. exception (program interrupt), 5-4, 5-28

trap instr. exceptions (program interrupt), 5-4, 5-28
Execution synchronization, 3-9
Execution timing

cache-related latency
cache-inhibited pages, 7-25
i-cache arbitration, 7-10
i-cache hit, 7-11

definitions
branch folding, 7-1
branch prediction, 7-1
branch resolution, 7-1
completion, 7-1
finish, 7-1
latency, 7-1
retirement, 7-2
stall, 7-2
throughput, 7-2

examples
cache hit case, 7-12
cache miss case, 7-15, 7-22, 7-23, C-4

execution units, 7-3
branch processing unit (BPU), 7-18, 7-21

branch folding, 7-1, 7-18
branch prediction, 7-1, 7-19
branch resolution, 7-1, 7-26

floating-point unit (FPU), 7-23, 7-31
integer unit (IU), 7-3, 7-21, 7-29
load/store unit (LSU), 7-24, 7-33
system register unit (SRU), 7-24, 7-28, 7-29

instruction flow, 7-9
instruction latency summary, 7-28
instruction pipeline stages, 7-1, 7-2, 7-4, 7-5, 7-8

completion, 7-1, 7-2
completion considerations, 7-16
resource requirements, 7-27

dispatch
dispatch considerations, 7-16
resource requirements, 7-27

finish, 7-1
write-back, 7-2

instruction queue (IQ), 7-9
instruction scheduling guidelines, 7-26
memory performance considerations, 7-24

memory coherency required (M bit), 7-25
rename registers, 7-2, 7-16
reservation stations, 7-2

External input (int) interrupt, 5-4, 5-25
enabling with MSR[EE], 5-12

External system logic, 9-2

F
Finish cycle
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definition, 7-1
see also Execution timing

Floating-point model
enabling (FP available, MSR[FP]), 5-13
exceptions

floating-point unavailable interrupt, 5-4, 5-29
FP interrupt mode 0, 5-13, 5-14
FP interrupt mode 1, 5-13
IEEE exceptions, program interrupt, 5-29

execution model, 3-3
floating-point execution unit (FPU), 7-3

execution timing, 7-23
latency, FP instructions, 7-31

FP arithmetic instructions, A-17
FP compare instructions, A-18
FP load instructions, A-21
FP move instructions, A-22
FP multiply-add instructions, A-18
FP registers (FPRn), 1-20
FP rounding/conversion instructions, A-18
FP status and control reg. (FPSCR), 5-1
FP store instructions, A-21
FPRn (floating-point registers 0–31), 1-20
FPSCR instructions, A-18
instructions, 3-13–3-16

arithmetic, 3-14
compare, 3-15
load, 3-21
move, 3-16
multiply-add, 3-14
rounding and conversion, 3-15
status and control, 3-15
store, 3-22

load/store address generation, 3-21
Force branch indirect on bus, 1-25
FPRn (floating-point registers 0–31), 1-20, 2-3
FPSCR (floating-point status and control reg.), 1-20, 2-3, 5-1
FPSCR (floating-point status and control register)

bit settings, 2-3
FPSCR instructions, A-18
Full-power mode, 9-2

with DPM disabled, 9-3
with DPM enabled, 9-3

Fully static, 9-1

G
G2

overview, 1-17
Global accesses, signaling and snooping, 4-29–4-32
GPRn (general-purpose registers 0–31), 1-20, 2-3

H
Hashing functions

primary PTEG, 6-28
secondary PTEG, 6-29
see also Memory management unit (MMU)

HASHn (hash address regs., primary/secondary), 2-19, 6-32
HIDn (hardware implementation registers 0–2), 2-11, 2-15, 

2-16
cache control parameters, 4-14–4-17
HID0 register

doze bit, 9-3
DPM enable bit, 9-1, 9-3

HID0 register, nap bit, 9-4
HID1, PLL configuration, 8-4
PLL configuration, 1-26

High BAT enable, 1-27

I
I/O accesses, 8-8
IABR/IABR2 (instruction address breakpoint regs.), 2-11, 

2-24–2-25, 10-1
IBATnU/L (instruction block address translation regs. 0–7, 

upper/lower), 1-6, 2-9, 2-10, 2-20, 2-21
IBCR (instruction address breakpoint control reg.), 2-11, 

2-25, 10-2
icbi, 4-20
icbt, 4-20
ICMP (instruction TLB compare register), 2-19, 6-32, 6-34
Illegal instructions, 5-29
IMISS (instruction TLB miss address reg.), 2-18, 6-31, 6-34
Instruction access errors, see ISI (instruction storage 

interrupt)
Instruction address breakpoint interrupt, 5-5, 5-34, 10-1, 

10-3, 10-4
Instruction cache enable, 1-24
Instruction cache flash invalidate, 1-25
Instruction cache lock., 1-24
Instruction cache way lock, 1-27
Instruction cache, see Caches
Instruction latencies, 7-28

see also Execution timing
Instruction set model

overview, 3-10
summary, 3-4

Instruction timing
overview, 1-38–1-39
see also Execution timing

Instruction TLB miss interrupt, 5-5, 5-33
Instructions

branch instructions, A-22
cache control instructions, 4-17–4-21
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CSB operations for cache instructions, 4-29
cache management instructions, A-23
classes

defined, 3-5
illegal, 3-5
reserved, 3-5

condition register logical, A-22
e300, instructions not implemented, B-1
floating-point, A-17–A-22
illegal, program interrupt, 5-29
implementation-specific, 3-35
integer, 3-1–3-22, A-15–A-20
load and store, 3-16

byte-reverse instructions, A-20
integer multiple instructions, A-20
string instructions, A-20

memory control, A-23
memory synchronization, A-21
operating environment architecture (OEA), 3-29–3-32
performance monitor, 11-7
PowerPC instructions

complete lists
form (format), A-24
function, A-15
legend, A-35
mnemonic, A-1
opcode, A-8

processor control, A-23
rfci, 5-16
rfi, 5-16
sc, 5-4, 5-31
segment register manipulation, A-24
system linkage, A-22
TLB management instructions, A-24
trap instructions, A-23
user instruction set architecture (UISA), 3-10–3-24
virtual environment architecture (VEA), 3-27

int signal, 5-4, 5-12, 5-25
Integer unit (IU), 7-3

execution timing, 7-21
latency, integer instructions, 7-29

Interrupt handling, 5-2
classes of interrupts, 5-2

synchronous exceptions
imprecise, 5-2
precise, 5-2, 5-5

core interface operations, 8-1–8-4, 8-9–8-10
enabling and disabling interrupts and exceptions, 5-14

enabling critical interrupts (MSR[CE] bit), 5-13
enabling external interrupts (MSR[EE] bit), 5-12, 9-5

instruction-related interrupts, 3-9
interrupt modes

FP interrupt mode 0, 5-13, 5-14
FP interrupt mode 1, 5-13

interrupt types, 5-17–5-36
alignment, 5-4, 5-26
critical input interrupt (cint), 5-4, 5-13, 5-30
data TLB miss on load, 5-5, 5-33
data TLB miss on store, 5-5, 5-34
decrementer interrupt, 5-4, 5-30
DSI (data storage interrupt), 5-3, 5-23, 10-3, 10-4
external input interrupt (int), 5-4, 5-12, 5-25
floating-point unavailable, 5-4, 5-29
instruction address breakpoint, 5-5, 5-34, 10-1, 10-3, 

10-4
instruction TLB miss, 5-5, 5-33
ISI (instruction storage interrupt), 5-4, 5-24
machine check, 5-3, 5-13, 5-21, 5-22
performance monitor interrupt, 1-15, 5-32, 11-1, 11-9
program interrupt, 5-4, 5-28
system call, 5-4, 5-31
system management interrupt (smi), 5-5, 5-12, 5-36
system reset, 5-3, 5-18
trace interrupt, 5-5, 5-31, 10-3, 10-4

latencies
hard reset and machine check, 5-17
soft reset, 5-17, 5-18, 5-19, 5-20

prefix for interrupt vector offsets, 5-13, 5-15
priorities, 5-5–5-7
process switching guidelines, 5-16
processing of interrupts, 5-8–5-16

front-end actions and state, 5-7
recoverable interrupt indication (MSR[RI]), 5-14, 5-15, 

5-16
registers, 5-8–5-14

critical save/restore 0–1 (CSRR0–1), 5-8, 5-10, 5-15, 
5-16, 5-17

data address register (DAR), 5-23, 10-2, 10-3
DSI status register (DSISR), 5-1, 10-2, 10-3
floating-point status and control (FPSCR), 5-1, 5-29
FPSCR, 5-1, 5-29
MSR, 5-17
save/restore 0–1 (SRR0–1), 5-8, 5-9, 5-10, 5-14, 5-15, 

5-16, 5-17
returning from an interrupt handler, 5-16
returning from critical interrupt, 5-16

Interrupt little-endian mode, 5-12
IQ (instruction queue), 7-9
ISI (instruction storage interrupt), 1-35, 5-4, 5-24

J
JTAG test and debug interface, 1-15, 1-41

JTAG signals, 8-1, 8-3, 8-10
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L
Little-endian mode, 5-14
Load/store unit (LSU), 1-1, 7-3

caching-allowed loads/stores, 4-13
execution timing, 7-24
latencies of load and store instructions, 7-33
load/store ordering, 4-14
overview, 1-11
performed loads and stores, definition, 4-13

Logical addresses, translation into physical addresses, 6-1
LR (link register), 2-5
lwarx/stwcx., atomic memory references, 4-14, 8-7

M
Machine check interrupt, 5-3, 5-21, 5-22

checkstop state, 5-22
enabling with MSR[ME], 5-13
SRR1 bit settings, 5-9

MBAR (system memory base address reg.), 2-11, 2-24
Memory accesses, 1-40
Memory management unit (MMU)

address translation flow, 6-11
address translation mechanisms, 6-8, 6-11
block address translation (BAT), 6-8, 6-11, 6-19
block diagram, 6-5–6-7
cache locking, 4-34, 4-35, 4-37, 4-40, 4-41, 4-45
data accesses (DMMU), 6-1
direct address translation, 6-11, 6-19
enabling/disabling translation

data address translation, MSR[DR], 5-13
instruction address translation, MSR[IR], 5-13

features summary, 6-2
hashing functions

primary/secondary PTEG, 6-28, 6-29
instruction accesses (IMMU), 6-1
instructions, 6-16
interrupts, 6-14
memory protection, 6-9
overview, 1-6, 1-12, 1-37
page address translation, 6-8, 6-11, 6-25
page history status, 6-10, 6-20–6-23
page table search operation, 6-25

software table searches, 6-29, 6-34, 6-35
physical address generation, 6-1
registers, 6-16, 6-29–6-33

data TLB compare register (DCMP), 2-19, 6-32, 6-34
data TLB miss address reg. (DMISS), 2-18, 6-31, 6-34
instruction TLB compare register (ICMP), 2-19, 6-32, 

6-34
instruction TLB miss address reg. (IMISS), 2-18, 6-31, 

6-34

primary/secondary hash addr. (HASH1/HASH2), 6-32
temporary GPRs, enabling with MSR[TGPR], 5-12

segmented memory model, 6-19
TLBs (translation lookaside buffers), 5-5, 5-33, 5-34

description, 6-23
TLB management instructions, 3-33, A-24

TLB invalidate (tlbie instruction), 6-25, 6-44, A-24
TLB miss interrupts

data TLB miss on load, 5-5, 5-33
data TLB miss on store, 5-5, 5-34
instruction TLB miss, 5-5, 5-33

Memory model
access ordering, 4-14
addressing, 3-7
data organization, 3-1
segmented memory, 6-19

see also Memory management unit (MMU)
sequential consistency of accesses, 4-13

Memory/cache access attributes (WIMG bits), 4-5–4-8
caching-inhibited accesses (I bit), 4-7, 6-16

ci internal signal, 8-2
performance, 7-25

guarded bit (G bit), 4-7
memory coherency required (M bit), 4-7

gbl internal signal, 8-2
timing considerations, 7-25

performance considerations, 7-24
W, I, and M bit combinations, 4-8
write-through mode (W bit), 6-16

timing considerations, 7-25
write-through stores, 4-6
wt internal signal, 8-2

Mnemonics, simplified (recommended), 3-33
MSR (machine state register), 1-21, 2-7, 2-11, 5-12

cache locking, 4-34, 4-36, 4-41
FP interrupt modes 0–1, 5-14
MSR[CE] (critical interrupt enable bit), 5-13
MSR[EE], 9-5
MSR[POW] (power management enable bit), 9-5
settings due to interrupts, 5-17

N
Nap mode, 9-2, 9-4
No-op the data cache touch instructions, 1-25

O
OEA, instructions, see Instructions, operating environment 

architecture (OEA)
Operands

conventions, 3-1
operand placement and performance, 3-4
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Optional instructions, A-35

P
Page address translation

page address translation flow, 6-25
page size, 6-19
see also Memory management unit (MMU)
selection of page address translation, 6-8, 6-12
table search operation, 6-25
TLB organization, 6-24

Page history status, R and C bit recording, 6-10, 6-20–6-23
Page tables

resources for table search operations, 6-29
software table search operation, 6-29, 6-34
table search for PTE, 6-25

Parity checking, 8-9
Parity error reporting, 4-14
Performance

characterizing through performance monitor event 
counting, 1-16, 11-1

performance considerations, memory, 7-24
performance transparent functionality, 9-3
see also Execution timing

Performance monitor, 1-15
Performance monitor APU

event counting, 11-10
chaining counters, 11-11
event types, 11-11–11-13
processor context marking, 11-10
unconditional counting, 11-10

examples of uses, 11-11
instructions, 11-7
interrupt triggered by events, 1-15, 5-32, 11-1, 11-9
registers (PMRs), ??–11-7

PLL (phase-locked loop), 9-2
PLL configuration, HIDn, 2-15, 8-4

PMC0–3 (performance monitor counter registers), 11-5
PMGC0 (global control register 0), 11-3
PMLCa0–PMLCa3 (performance monitor local control 

registers A, 0–3), 11-4
Power management

default power state, 9-2
doze mode, 9-2, 9-3
enabling with MSR[POW] bit, 5-12, 9-5
full-power mode, 9-2

with DPM disabled, 9-3
with DPM enabled, 9-3

modes, 1-14, 9-3
overview, 9-1
software considerations, 9-5

PowerPC architecture
instruction list, A-1, A-8, A-15

levels of implementation, 1-16
operating environment architecture (OEA), xxiii
overview, 1-16
user instruction set architecture (UISA), xxiii, 2-1
virtual environment architecture (VEA), xxiii

Privilege level
privileged state, see Supervisor mode
problem state, see User mode

Privilege level (supervisor or user), 5-12
Program interrupt, 1-36, 5-4, 5-28
Program order, definition, 7-2
Protection of memory areas

no-execute protection (N bit), 6-12
options available, 6-9
protection violations, 6-14

PTEGs (PTE groups), 6-25
PTEs (page table entries), 6-25
PVR (processor version register), 2-6

Q
Quiescent state, 9-4

quiesce acknowledge signal (qack), 9-4
quiesce request signal (qreq), 9-4

R
Real addresses (RA), see Memory management unit (MMU)
Reference (R) bit, 6-10, 6-21

checking, 6-36
maintenance recording, 6-10, 6-20–6-22, 6-29

Registers
block address translation registers (BATs)

and cache locking, 4-35, 4-40
branch registers

count register (CTR), 2-5
link register (LR), 2-5

breakpoint registers, 2-11, 2-24–2-27
data address breakpoint (DABR/DABR2), 2-11, 2-26
data address breakpoint control (DBCR), 2-11, 2-27
instruction address breakpoint control (IBCR), 2-11, 

2-25
instruction address breakpoint regs. (IABR/IABR2), 

2-11, 2-24, 2-25
cache-locking registers

HIDn, 4-33
configuration registers, 2-6–2-9, 2-11–2-16

hardware implementation registers (HIDn)
PLL configuration, 1-26

hardware implementation regs. (HIDn), 2-11, 2-15, 2-16
PLL configuration, 2-15

machine state register (MSR), 2-7, 2-11
processor version register (PVR), 2-6



e300 Power Architecture Core Family Reference Manual, Rev. 4

Index-8 Freescale Semiconductor

system memory base address (MBAR), 2-11, 2-24
system version register (SVR), 2-11, 2-23

debug
data address breakpoint registers (DABR, DABR2), 10-2
data address control register (DBCR), 10-2
instruction address breakpoint registers (IABR, IABR2), 

10-1
instruction address control register (IBCR), 10-2

decrementer register (DEC), 2-10
e300-specific registers, 2-10–2-27
floating-point registers

floating-point regs. 0–31(FPRn), 2-3
floating-point status and control reg. (FPSCR), 2-3

general-purpose registers (GPRn), 2-3
interrupt handling registers, 5-8–5-14

critical interrupt save/restore regs. (CSRRn), 2-10, 2-22, 
5-8, 5-10, 5-15, 5-16, 5-17

data address register (DAR), 2-9, 5-23, 10-2, 10-3
DSI status register (DSISR), 2-10, 5-1, 10-2, 10-3
floating-point status and control (FPSCR), 5-1
save/restore registers (SRRn), 2-10, 5-8, 5-9, 5-10, 5-14, 

5-15, 5-16, 5-17
SPRGn, 2-9, 2-11, 2-23, 5-11

machine state register (MSR), 4-34
MMU registers, 2-9, 2-18–2-21, 6-29–6-33

data block address translation regs. (DBATnU/L), 2-9, 
2-10, 2-20, 2-21

data TLB compare register (DCMP), 2-19, 6-32, 6-34
data TLB miss address reg. (DMISS), 2-18, 6-31, 6-34
hash address regs., primary/secondary (HASHn), 2-19
instruction block address translation regs. (IBATnU/L), 

2-9, 2-10, 2-20, 2-21
instruction TLB compare register (ICMP), 2-19, 6-32, 

6-34
instruction TLB miss address reg. (IMISS), 2-18, 6-31, 

6-34
primary/secondary hash addr. (HASH1/HASH2), 6-32
required physical address register (RPA), 2-20
SDR1, 2-9
segment registers (SRn), 2-9

performance monitor, ??–11-7
counter registers (PMC0–3), 11-5
global control 0 (PMGC0), 11-3
local control A (PMLCa0–PMLCa3), 11-4
user counter registers (UPMC0–3), 11-7
user global control 0 (UPMGC0), 11-4
user local control A (UPMLCa0–UPMLCa3), 11-5

summary, 2-1
supervisor-level reg. summary, 2-5
time base facility (TBL/TBU)

for reading, 1-21, 2-5
for writing, 2-10

user-level reg. summary, 2-3
XER (32-bit), 2-5

Rename registers
definition, 7-2
operation, 7-16

Reservation station, definition, 7-2
Reservations (memory) with lwarx and stwcx., 8-7
Reset

hard reset sequence, 9-1
reset exception, 5-7
settings caused by hard reset, 5-19
soft reset, 5-18, 5-19, 5-20
system reset, 5-3, 5-18

Return from critical interrupt (rfci), 5-16
rfci, 5-16
rfi, 5-16
Rotate and shift instructions, 3-12, A-16
RPA (required physical address register), 2-20, 6-33

S
SDR1, 2-9
see also Memory management unit (MMU)
Segment registers (SRn), 1-21

SR manipulation instructions, A-24
Segmented memory model, see Memory management unit 

(MMU)
Self-modifying code, 3-17
Sequential consistency of memory accesses, 4-13
Serializing instructions, 7-17
Signals

checkstop, 8-9
cint, 5-4, 5-13, 5-30
clock signals, 8-3
coherency system bus (CSB) internal signals, 8-2
external interrupt signals, 8-3
int, 5-4, 5-12, 5-25
overview, 1-40
pll_cfgn, 8-4
qack, 8-3
qreq, 8-3
smi, 5-5, 5-12, 5-36
test interface signals, 8-4

Single-stepping, 10-1, 10-3
trace enable (MSR[SE]), 5-13, 5-32, 10-3, 10-4

Sleep mode, 9-2, 9-4
Snooping, 4-29–4-32

core bus interface unit (BIU), 4-2
global signaling and M bit, 7-25
retry, core-initiated, 4-32
see also Caches

coherency
snoop response to CSB transactions, 4-30, 4-31
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Soft reset, see also Reset, 5-18, 5-19, 5-20
Software debug facilities, see Debug facilities
SPR encodings not implemented in e300, B-2
SPRG0–SPRG7, 1-6, 2-9, 2-11, 2-23, 5-11

conventional uses, 5-11
SPRs (special purpose registers), 1-20–1-23
SRn (segment registers 0–15), 1-21, 2-9
SRR0–1 (save/restore regs. 0–1), 2-10, 5-8, 5-10, 5-14, 5-15, 

5-16, 5-17
bit settings for machine check interrupt, 5-9
bit settings for table search operations, 5-10

stwcx., 8-8
Superscalar, definition, 7-2
Supervisor mode, 5-12
Supervisor-level SPRs, 1-21
SVR (system version register), 2-11, 2-23
Synchronization

context synchronization, 3-8
execution of rfci, 5-16
execution of rfi, 5-16
execution synchronization, 3-9
memory instructions

UISA, 3-25
VEA, 3-27

memory synchronization instructions, A-21
requirements for setting breakpoints, 10-6
requirements for special registers and TLBs, 3-32

System call (sc), 1-36
system call interrupt, 5-4, 5-31

System linkage instructions, 3-28, A-22
System management interrupt (smi), 1-37, 5-5, 5-12, 5-36, 

9-1
System register unit (SRU), 7-3

execution timing, 7-24
latency

CR logical instructions, 7-29
system register instructions, 7-28

T
Table search operations

algorithm, 6-25
software routines, 6-29, 6-34–6-44
software table search operations

SRR1 bit settings, 5-10
table search flow (primary and secondary), 6-27

TBL/TBU (time base facility)
for reading, 1-21, 2-5
for writing, 2-10
time base register, 9-2
time base/decrementer, 1-15
time-of-day maintenance, 9-4

TGPRn (temporary general purpose regs. 0–3), 6-30

Trace interrupt, 5-5, 5-31, 10-3, 10-4
tracing facilities, 10-1

Translation lookaside buffers (TLBs), see Memory 
management unit (MMU)

Trap instructions, 3-24
program interrupt, 5-4, 5-28

True little-endian, 1-26

U
UISA, instructions, see Instructions, user instruction set 

architecture (UISA)
UPMC0–3 (user performance monitor counter registers), 

11-7
UPMGC0 (user global control register 0), 11-4
UPMLCa0–UPMLCa3 (user performance monitor local 

control registers A, 0–3), 11-5
User mode, 5-1, 5-12
User-level SPRs, 1-20

V
VEA, instructions, see Instructions, virtual environment 

architecture (VEA)
Virtual page number, 6-27

X
XER (32-bit), 2-5
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