h -

L |

e300 Power Architecture™ Core
Family Reference Manual

Supports
e300cT
e300c2
e300c3
e300c4

e300CORERM
Rev. 4
12/2007

freescale”

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road

Tempe, Arizona 85284
+1-800-521-6274 or

+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 169 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064

Japan

0120 191014 or

+81 35437 9125

support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center

2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong

+800 2666 8080

support.asia @freescale.com

For Literature Requests Only:

Freescale Semiconductor
Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217

+1-800 441-2447 or

+1-303-675-2140

Fax: +1-303-675-2150

LDCForFreescaleSemiconductor
@hibbertgroup.com

Document Number: e300CORERM
Rev. 4, 12/2007

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
The Power Architecture and Power.org word marks and the Power and Power.org logos
and related marks are trademarks and service marks licensed by Power.org. The
PowerPC name is a trademark of IBM Corp. and is used under license. IEEE 1149.1
and 754 are registered trademarks of the Institute of Electrical and Electronics
Engineers, Inc. (IEEE). This product is not endorsed or approved by the IEEE. All other
product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2007. Printed in the United States of
America. All rights reserved.

~ BUILTON |

freescale

semiconductor

Contents

Paragraph
Number Title
About This Book
AUAIENCE ...ttt se et e e ene s
OFQaNIZBLION.......c.eeviie sttt ettt et ne e sr e s en e
Suggested REAING........coueieiieeie et e
General INFOrMBELION.........ooviieieie e e e
Related DOCUMENEBLION.ccvereiieieirie ettt
CONVENTIONS ...ttt et r et et e e e e en e
Acronyms and ABDreviations............occvreiiinee e
Chapter 1
Overview
11 OVEIVIBIW ..ottt e e se et eb et s e et sn et en e e eneas
111 FEALUIES. ... e
112 INSEFUCTTION UNIT ... s
1121 Instruction Queue and Dispatch Unitccooviiiiieiencnc e
1122 Branch Processing Unit (BPU) ..o
113 Independent EXECULiON UNITS..........cooiiiiiiieicineeee e
1131 INteger UNit (TU) ..o.oeeiieceeeeee e s
1132 Floating-Point Unit (FPU) ...
1133 L0ad/StOre Unit (LSU) ..ccoeeieieeiieeee e e
1134 System Register Unit (SRU).....ccuoviiiiirieenieee e
114 COmMPIELTON UNIT ... e e e
115 Memory SUDSYSIEM SUPPOIT.......c.oiiriereirieeeireiee e
1151 Memory Management UnitS (MMUS) ...
1152 CaCnE UNITS. ...ttt s
116 Bus Interface Unit (BIU)ccoooiieiieeie s
1.1.7 System SUPPOrt FUNCLIONS ..o e
1171 Power Managementcoooveiiriee e
1172 Time Base/DECIEMENTEccoiiiiieeieeee et s
1173 JTAG Test and Debug Interface.........coooveveenene s
1174 ClOCK MUITIPHEN ... e
1175 Core Performance MONITONooereeeriine e
12 PowerPC Architecture Implementationccooeveriienieeienecie e
1.3 Implementation-Specific INFOrmMation.............cooeeereeirniiesce e
131 ReGIStEr MOGEL ... s
1311 UISA REJISIEIS ...ttt e e s
13111 General-Purpose RegiSters (GPRS)cccooveieriereciinecie e

e300 Power Architecture Core Family Reference Manual, Rev. 4

Page
Number

Freescale Semiconductor

Paragraph Page
Number Title Number
13112 Floating-Point REQISIErS (FPRS) ..o e 1-20
13113 Condition REGISIEN (CR) ...c.voiviieiiieeeiie et e e 1-20
13114 Floating-Point Status and Control Register (FPSCR)ccccoeviievineniineeee. 1-20
13115 USEr-LEVE] SPRS.....c.eoitiie ittt e et 1-20
1312 VEA REJISIEIS ...ttt ettt sttt e se et sr e sr et es e nnas 1-21
1313 OFEA REJISIENS......eeeeeieseiie sttt et sttt e se e ebe e ene e 1-21
13131 Machine State RegiSter (MSR)c.ooiiiiiiireee e e 1-21
13132 SegMeENt REJISIEIS (SRS)vcuvieiieieiie ettt 1-21
1.3.133 SUPENVISOr-LEVEl SPRS........cciiie e 1-21
1314 Instruction Set and Addressing MOUES...........ooereiiririene e 1-28
1.3.15 PowerPC Instruction Set and Addressing MOdES...........ccovvveienenenene s 1-28
13.16 Implementation-Specific INSIrUCtION St ... 1-30
13.2 Cache IMPlEMENTALTIONcc.ie e e e 1-30
1321 PowerPC Cache CharaCteriSliCScovvreeieiireeiie ettt 1-30
1322 Implementation-Specific Cache OrganiZation.............coceeereeerieeeereene e 1-30
1323 Instruction and Data Cache Way-LOCKING.........cceierieirnieieneee e 1-33
133 INEEITUPE IMOTE] ...t st 1-33
1331 PowerPC Interrupt MOE ..o e 1-33
1332 Implementation-Specific Interrupt Model ... 1-34
134 MemMOry ManagEMENL..........oceiiieiriee et s sr e e e e 1-37
1341 PowerPC Memory Management...........coooeereeieeie e 1-37
1342 Implementation-Specific Memory Management............ccoeeveerereneeniesenieeee e 1-37
135 INSEFUCTTION THMING ..ttt sr e e sn e en e e 1-38
1.3.6 COrE INLEITACE ...ttt sb et n e 1-39
1361 MEMOTY ACCESSES......ceeeiiiecieeee et sr e sn e enne e e e s sreeenne s 1-40
1.3.6.2 SIGNAIS. .. ettt h et e er e ere e e 1-40
1.3.7 DEDUG FEBLUIES ...ttt et st 1-41
1371 Breakpoint SIGNalING ..o e 1-41
14 DiIfferenCeS BEIWEEN COIES.........coieuiieeiereeie sttt sttt se e sr e sne e ne e e 1-42
15 Differences Between €300 COrES..........ciirerieuiriereeiie e sres e e sre e enes 1-43
Chapter 2
Register Model

21 POWEIPC REGISIEN SEL.......eoieiie ittt 2-1
22 Implementation-SPeCifiC REGISIEN'S.c.oiiiieieee s 2-10
221 Hardware Implementation Register 0 (HIDO)ccooiririeeiencieneee e 2-11
222 Hardware Implementation Register 1 (HIDL)cccooiiiriiieeiince e 2-15
223 Hardware Implementation Register 2 (HID2)ccoviiiiieeieneeseee e 2-16
224 Data and Instruction TLB Miss Address Registers

(DMISS @Nd IMISS) ...ttt e e 2-18

e300 Power Architecture Core Family Reference Manual, Rev. 4

iv Freescale Semiconductor

Paragraph
Number

225
226

227

228

229

2210
2211
2212
2213
2214
2215
2.2.16
2217
2218

31

311
312
313
314
3.15

3.2

321
3211
3212
3213
3214
322
3221
3222
3223
3224
32241
32242
32243
323

Page
Title Number
Data and Instruction TLB Compare Registers

(DCMP @NA ICMP) ...ttt e e et 2-19

Primary and Secondary Hash Address Registers
(HASHL @nd HASH2) ... e 2-19
Required Physical Address Register (RPA)oiiiiririeieiece s 2-20
BAT ReQIStErS (BATA—BATT7) ..ottt e s s 2-20
Critical Interrupt Save/Restore Register 0 (CSRRO)covvieiineeieniene e 2-22
Critical Interrupt Save/Restore Register 1 (CSRRL)cc.covveeeirieceieee e 2-22
SPRGO—SPRGT ...ttt et et e et e n e e en s 2-23
System Version REGISLEN (SVR)....veuiiiirieieriieee et e s 2-23
System Memory Base Address (MBAR)......ccoveieiiieiine e 2-24
Instruction Address Breakpoint Registers (IABR and IABR2).........cccccveviienecienns 2-24
Instruction Address Breakpoint Control Register (IBCR)........cccooeveneiencciniecieees 2-25
Data Address Breakpoint Register (DABR and DABR2)cccoiiiiinieciicieen 2-26
Data Address Breakpoint Control Register (DBCR)coeierirerinieeiesece e 2-27
Performance Monitor REQISIENS........c.oi i 2-28

Chapter 3

Instruction Set Model
OPErand CONVENLIONScceeieeieeieesieeieeseeieeseeeeseesreeseeesees e enseesaeaseessesneesseenseassessenssenns 31
Data Organization in Memory and Memory Operands............ccoeverereneeenieeesneennnn. 3-1
Endian Modes and Byte Orderingc.ooeueereeieneere e 31
Alignment and MiSaligNed ACCESSES.........oouirieirrieie ettt s sn e enes 3-2
Floating-Point EXeCUtioNn MOEL...........c.ooiiiiiiieeeee e 3-3
Effect of Operand Placement on Performancecooeoevereninieenneee e 34
INSEIUCLION SEE SUMIMEIY ...ttt eb e 34
ClasSES Of INSLIUCLIONScoiuieieeeie sttt et e se e e eseenaeenen 3-5
Definition of Boundedly Undefined...........cooeeiiniiiniciee e 3-5
Defined INSIFUCHION ClaSSooueeieee ettt e 3-6
[HTegal INSIrUCLION CIBSS.........oiiiieiieeeie e e s 3-6
Reserved INStrUCtION ClaSSccvcieiierie ettt 3-7
AAAreSSING MOGES ...ttt 3-7
MEMOTY AQUIESSING ...ttt se ettt se e sttt et se et ss et b en e e e 3-7
MEMOTY OPEIANASc.eeeiieieiie ettt sr ettt sr et er et sb e ene e e 3-7
Effective Address CalCUlaionooeueiiiiieseie e 3-8
SYNCATONIZALTON ...t ettt e e sr et en e e 3-8
Context SYNCHIrONIZAEIONccceiiieieieeeee et 3-8
EXecution SyNCroNiZation..............ooeeeereere e 3-9
Instruction-Related INTEITUPLS.ccoi i e 3-9
[NSIFUCETON SEE OVEIVIEW ..ottt ettt et se e se e enes 3-10

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor %

Paragraph Page
Number Title Number
324 POWEIPC UISA TNSIIUCLIONS......ccuvieiieieiie ittt sr e s 3-10
3241 INtEJEr INSEIUCTIONS........ceeciieiciie ettt e 3-10
32411 Integer Arithmetic INSIIUCLIONS..........covriiiiireceeee s 3-10
32412 Integer ComMpPare INSIUCLIONScuoivirieie s 311
32413 Integer LogiCal INSITUCIONS.........coviieiiriiieeiie et e 3-12
32414 Integer Rotate and Shift INSIrUCHIONS..........ooiieiiiiciee s 3-12
3242 Floating-Point INSIIUCLIONScc.oiieiiieeieiee e e e 3-13
32421 Floating-Point Arithmetic INSIrUCLIONS..........ccoviiiieiee e 3-14
32422 Floating-Point Multiply-Add INSITUCLIONS..........ooiiiiiiieieece e 3-14
32423 Floating-Point Rounding and Conversion INStruCtions............cocveevereeeenneeee. 3-15
32424 Floating-Point Compare INStrUCHIONS...........coeiireeireee e 3-15
32425 Floating-Point Status and Control Register INStructions............cccccvevveeneennen. 3-15
32426 Floating-Point MOVE INSITUCIONS..........couiiiieieie e 3-16
3243 Load and StOre INSIIUCLIONS.......cc.ereeieieeieeie et e 3-16
32431 SElf-MOdIfyiNg COUR.........oiiiiieie et e 3-17
32432 Integer Load and Store Address GENEration...........ccveeeeeereerereeneseeneseseeeeneas 3-17
32433 Register Indirect Integer Load INSIrUCtiONS.........covieeiiieieiecerece e 3-17
32434 INteger StOre INSIIUCLIONS..........coueivirie it 3-18
32435 Integer Load and Store with Byte-Reverse Instructions............c.ccccvceeenneeienees 3-19
32436 Integer Load and Store Multiple INSIrUCtiONS..........coovveieieience e 3-19
32437 Integer Load and Store String INStrUCiONS...........ooveveieeieneere e 3-20
32438 Floating-Point Load and Store Address Generation............ccceeceveevveneeneeneee 3-21
32439 Floating-Point Load INSIrUCHIONS..........ccviiiieiie e 321
3.24.3.10 Floating-Point StOre INSLIUCLIONS...........oviiiiereee e e 3-22
3244 Branch and Flow Control INSErUCLIONS..........coooeiireeiieee e 3-22
32441 Branch Instruction Address CalCulation..............ccevreeirneiencne e 3-23
32442 Branch INSIIUCLIONS..........coueiiiieiee e e 3-23
32443 Condition Register Logical INSIrUCHIONS..........coeiiriiireeiereee e 3-23
3245 TraD INSITUCTIONS ...ttt e e e s 3-24
3246 Processor Control INSEIUCLIONS..........cuoierieie et 3-24
3246.1 Move to/from Condition Register INStrucCtions............ccooeerenenene e 3-24
3.24.7 Memory Synchronization INStructions—UISA ... 325
325 POWEIPC VEA INSIIUCLIONS.......ccutiiiieieiie ittt sne e e 3-26
3251 Processor Control INSEIUCLIONS.........ccueierieiereeie et 3-26
3252 Memory Synchronization INStructionS—VEA ... 3-27
3253 Memory Control INStruCtioNS—VEA ..o 3-27
3.2.6 POWEIPC OEA INSIIUCLIONS.......ccuvieiieieiie sttt sr e sre e nnas 3-28
3.26.1 System Linkage INStIUCHIONS...........coueivireee et 3-28
3.2.6.2 Processor Control INStrucCtionS—OEAooiiiie e 3-28
32621 Move to/from Machine State Register INSIrUCtioNS.........cc.oveevereneineeiineeee, 3-29
3.2.6.2.2 Move to/from Special-Purpose Register INStructions...........c.ccoeeveveevrneeienene 3-29
e300 Power Architecture Core Family Reference Manual, Rev. 4
vi Freescale Semiconductor

Paragraph
Number

3.2.6.2.3
3.2.6.3
32631
3.2.6.3.2
3.2.6.3.3
3.2.7
3.2.8

41
41.1
4.1.2
4.2

4.3

4.4
44.1
4411
44.1.2
44.1.3
4414
4415
4.4.2
4421
44211
4.4.2.2
44221
4.4.2.3
4424
4.4.3
4431
4.4.3.2
4.4.3.3
4434
45
451
4511
45.1.2
45.1.3
4514

Page
Title Number
Move to/from Performance Monitor Register Instructions............ccceeeeveneennen. 3-32
Memory Control INStructionS—OEA ... 3-32
Supervisor-Level Cache Management INSIrUCtioncccooevevenevencceineenenn. 3-32
Segment Register Manipulation INSIrUCtiONScccvvieierinenee e, 3-32
Translation Lookaside Buffer Management INStructions...........ccoceeeeeveieenenes 3-33
Recommended Simplified MNEMONICS.........cccooiiiriiirieie e 3-33
Implementation-SPeCifiC INSITUCLIONS...........coiiiiie e 3-35
Chapter 4

Instruction and Data Cache Operation
INEFOTUCTION...c. ettt et re e e et eb e nn s 4-1
Instruction and Data Cache FEAUIES............coiiiiiie i 4-1
OVEBIVIBW ...t ettt sttt eae ettt et eh et e h e e et eee e ee e b ettt en e e e enne e 4-2
Data Cache Organi ZaEIONcoeeeieeieie ettt e er e e enes 4-3
Instruction Cache Organi ZaHiONeieeerieeeeireee e e 4-4
Memory and Cache CONEIENCY.........coi i e e e 4-5
Memory/Cache Access Attributes (WIMG BitS).......ccoovereeirneeiereee e 4-5
Write-Through AttDULE (W) ...t 4-6
Caching-Inhibited AtDULE (1)ooveeieee e 4-7
Memory Coherency AIDULE (M).......oovoieiiie e 4-7
Guarded ArDULE (G).....coue i 4-7
W, |, and M Bit COMDINGLIONS........ccciiuiieiieiiee et ee e se e e erae e s 4-8
CONEIENCY SUPPOIT ...ttt et st se e sr et er et en e e nnas 4-8
MEI CONErency ProtOCOLooiiieirieeieiiereeie et s 4-9
MEI State TranSITiONS.......c.coieiiiieeiese e e 4-9
MESI CONErency ProtOCOLcooieieiieieiese ettt 4-10
MESI State TranSItiONS.c.coiveiereiieetirese ettt s s 4-11
Load and Store CONerenCy SUMMEYcccooeieririeneneeieeeeie e 4-12
Coherency in SINgle-Processor SYSIEMScceierieirieeie s 4-12
Core-Initiated Load/Store OPerations...........coerereeeereeerieeie e sresie s seenes 4-13
Performed Loads and SLOrES..........occcuiieeieieiecie et 4-13
Sequential Consistency Of MEmMOrY ACCESSES.........ccerereererieeeeseee s s srenaeas 4-13
Enforcing Load/Store Orderingccooeoueiereerie st 4-14
AtOMIC MEMOry REFEIENCES........ccueiiiie i 4-14
CACNE CONLIO ...ttt et bt et se e nn e en e 4-14
Cache Control Parametersin HIDO and HID2cccooiiieiiicece e 4-14
Cache Parity Error Reporting—HIDO[ECPE]ccccooeiiieieneeseese e 4-14
Data Cache Enable—HIDO[DCE]cccooiiiiiieieie st 4-14
Data Cache LOCK—HIDO[DLOCK]ccouiiieeiereiie et s 4-15
Data Cache Way-l0Ck—HID2[DWLCK]c.coiiiiieiiene e 4-15

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor vii

Paragraph Page

Number Title Number
4515 Data Cache Flash Invalidate—HIDO[DCFI]cccooiiiiieniesee e 4-15
45.1.6 Instruction Cache Enable—HIDO[ICE]........cccoiiiiiieiineeereee e 4-16
45.1.7 Instruction Cache LoCK—HIDO[ILOCK]coiiiiiieeiirieie e 4-16
45.1.8 Instruction Cache Way-LoCK—HID2[IWLCK]ccciiiiiiiieereee e 4-16
45.1.9 Instruction Cache Flash Invalidate—HIDO[ICFI]ccooiiiiniieiieceeeeeee 4-16
45.1.10 Instruction Cache Way Protect—HID2[ICWP].........ccooeiiiiiiieeeeeeeeee e 4-17
45111 Cache Operation Broadcasting—HIDO[ABE]ccccooeiiieienie e 4-17
45.2 Cache Control INSITUCLIONSc.ciieiiieeie et et 4-17
4521 Data Cache Block Touch (dcbt) INSErUCtion...........ccooeiiiiieiierce e 4-18
45.2.2 Data Cache Block Touch for Store (dcbtst) Instruction...........ccccceveviiiniciinneee 4-18
45.2.3 Data Cache Block Clear to Zero (dchz) INStruction...........occceveeereneneencccieene 4-18
4524 Data Cache Block Store (dcbst) INStruCtion..........ccoerieinieeierece e 4-19
4525 Data Cache Block Flush (dchf) INStruction............occoeviienine s 4-19
45.2.6 Data Cache Block Invalidate (dchi) INStruction............ccoveeneie s 4-19
45.2.7 Instruction Cache Block Touch (ichbt) INnstruction ... 4-20
45.2.8 Instruction Cache Block Invalidate (ichi) Instructionccoeeevineiniccienene 4-20
4.6 CaCNE OPEIGLIONS.cueeueeeeuie sttt ettt re ettt se et et sb et es et e b e sn et e e b ene e enen 4-21
4.6.1 Data Cache Fill Operations............oocerireiirie e 4-21
4.6.2 Instruction Cache Fill OPerations...........ccooiiiierere e 4-21
4.6.3 Instruction Fetch Cancel EXTENSION..........c.ooiiiieieire e 4-21
4.6.4 Data Cache Cast-Out OPEIatioNS..........cccouerirreriereese et eneeaeas 4-22
4.6.5 Cache BIOCK PUSN OPEIatioNciiiiireeiieereeie et e e e 4-22
4.6.6 Data Cache Queue Sharing EXTENSION...........coiieiireiireeie e 4-22
4.6.7 Cache Block Replacement SElECHioNcccveriiiiini e 4-22
4.7 L1 CBCNE PAITLY ...ttt sttt sttt e e e et er e ene s 4-25
4.8 BUS INEEITACE ... e sb et e 4-26
4.9 Caches and CSB TranNSACHIONScceeerieeiereeieie et sr et sr e sr e e s 4-27
49.1 SINGle-Beat TranSACHIONSccueveieeie ettt et st 4-27
4.9.2 BUISE TraNSACHIONSceeiiiieeeeeei ettt sn e 4-27
4.9.3 Instruction Fetch Burst Enable for Caching-Inhibited Space...........ccccooviiiiicines 4-28
494 CSB Operations Caused by Cache Control INStructionscoccoevereienceenneennn. 4-29
4.9.5 1 00T o 14 o RSO PRUSTPRPSTOTPP 4-29
4.10 Applications Information—Cache LOCKING.........cooerirerirecieeee e 4-32
4.10.1 Cache Locking TermiNOIOgYcccoueeeieriereie et 4-32
4.10.2 Cache Locking REQISIEr SUMMEIYcueiiriiieieiie st 4-33
4.10.3 Performing Cache LOCKING........ccuiiiiiiiie i 4-34
41031 Data Cache LOCKING—ProCEAUIES..........ccuiiiiiieieee et 4-35
410311 Enabling the Data Cacheociieiieee e 4-35
4.10.3.1.2 Address Trandation for Data Cache LOCKINGccocveeieeiencnenene e 4-35
4.10.3.1.3 Disabling Interrupts for Data Cache LOCKING.......ccccoieiereeneniine e 4-36
410314 Invalidating the Data Cache ..o 4-36

e300 Power Architecture Core Family Reference Manual, Rev. 4

viii Freescale Semiconductor

Paragraph
Number

4.10.3.1.5
4.10.3.1.6
4.10.3.1.7
4.10.3.1.8
4.10.3.2

410321
4.10.3.2.2
4.10.3.2.3
410324
4.10.3.2.5
4.10.3.2.6
4.10.3.2.7
4.10.3.2.8

5.1
511
512
5.2
521
5211
5212
5213
5214
522
523
524
525
5.2.6
5.3

5.4

5.5
551
5511
5512
5513
55.2
5521
5522

Page
Title Number
Loading the Data CaCheooeieiiieeree et 4-37
Locking the Entire Data CaChe............c.cviieieriie s 4-38
Way-Locking the Data Cache............ccooiiiiiniiciiceee e 4-38
Invalidating the Data Cache (Even if Locked)ccoceiiiiiiiine v 4-39
Instruction Cache Locking—RProCedUres............ccooiiieinieieneee e 4-39
Enabling the INStruction Cache............c.coeiiiii e 4-40
Address Trandation for Instruction Cache LOCKING.........ccccrerererierienenieeienens 4-40
Disabling Interrupts for Instruction Cache LOCKING........ccooeveneieieinenienenen 4-41
Preloading Instructionsinto the Instruction Cache............ccccoevevieneeceeneeiee 4-41
Locking the Entire Instruction Cache...........ccooeieiineiinneeeece e 4-43
Way-Locking the Instruction Cache...........ccooeiiini i 4-43
Invalidating the Instruction Cache (Even if Locked)ccoooveiiiiniiiiniccinns 4-44
Instruction Cache Way ProteCtioncoeoeiiriiinieieseee e 4-45
Chapter 5

Interrupts and Exceptions
INEEITUDE ClASSES ...ttt sttt s e et e et eb e en s 5-2
INEEITUPDE PrIOMTTIES. ... ettt ettt 5-6
Summary of Front-End Interrupt Handlingcccooeiiiiniiecse e 5-7
INEEITUDPE PrOCESSING ...t cvieeeie ettt ettt et bt et ne e e sr e enes 5-8
INterrupt ProcesSiNg REGISIEN'Sccuuiuiiieieeee ettt 5-8
SRRO aNd SRRL Bit SEHINGS......cceeuereeierieieeie et 5-8
CSRRO and CSRRL Bit SEtINGScoeeueririeeiieeeie e s 5-10
SPRGO-SPRGT ...ttt sttt et e st e b e s ene e 5-11
IMSR Bt SEELINGS ... eeveeeeiere ettt e s sn e 5-12
Enabling and Disabling Exceptions and INtErTUPLS...........ccooveerenenene e 5-14
StEPS FOr INTEMTUPL PrOCESSING. ... e cveeieeiiere ettt sttt 5-15
SEING MSRIRI] ..ottt s e e s 5-15
Returning from an INterrupt With ... 5-16
Returning from an Interrupt With rfCi........coooiie i 5-16
PrOCESS SWITCNING ...ttt ettt e sr e eb et e s e nes 5-16
INEEITUDE LBEENCIES ...ttt ettt se e sn et b enn e 5-17
INEEITUPE DEFINITIONS ...ttt sr e 5-17
Reset Interrupts (0X00100)c.ceeereeierrerie e seese et se e e sr e sne e e e 5-18
Hard Reset and POWEr-ONn RESELooiiiiieie e 5-18
SOFt RESEL.....e ettt e e e et r e 5-19
Byte Ordering CONSIAEIatioNSccueieueieiecie et 5-20
Machine Check Interrupt (OX00200)..........couereeriereereeiereeriereeie e 5-21
Machine Check Interrupt Enabled (MSRIME] = 1)cooiiiiiiinirecieeeeeeees 5-22
Checkstop State (MSRIME] = 0) ..cveveiiiriiieriie e 5-22

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor ix

Paragraph Page
Number Title Number
553 DSl Interrupt (0X00300)ceuveeeueereeierreriesuersesiessesesseseesse e eseessessessessesses e eseeneenseseas 5-23
554 IS Interrupt (OX00400)eouerueeeereeiie et sr e se e sr e sne e see e neas 5-24
555 External Interrupt (0X00500)ooveruerrerieriireenieeeese e sre e sees e neas 5-25
5.5.6 Alignment Interrupt (OX00600)........cc.uereeiereireeie e eeere e 5-26
556.1 Integer AlignMment EXCEPLIONSooviiiireie e 5-27
55.6.2 Load/Store Multiple Alignment EXCEPLIONS..........coovveiieenieeieneee e 5-28
5.5.7 Program Interrupt (OX00700)ooeeruerrerieriireinie s e sre e 5-28
5571 |EEE Floating-Point Exception Program INterrupts..........cccoveveveneeinieeieiecieens 5-29
55.7.2 Illegal, Reserved, and Unimplemented Instructions Program Interrupts............... 5-29
558 Floating-Point Unavailable Interrupt (0X00800)ccevrieeeereerieneerie e 5-29
559 Decrementer Interrupt (0X00900)eovereeruerrerieeeire e seese s 5-30
5.5.10 Critical Interrupt (OXO0ADD)oveuiereeieeeerieie ettt se s 5-30
5511 System Call Interrupt (OXO0CO0)........c.uereeueereereeieseenie e e sr e e e 5-31
5512 Trace Interrupt (OXOODO00)eeeeueereeieseeie st sreie st ere st se e sr e sr e se e ese e 5-31
55121 Single-Step INStruction TraCe MOE.........cccovveiiiiirecieee e 5-32
55122 Branch TraCe M OO ..o e 5-32
5.5.13 Performance Monitor Interrupt (OXOOF00)cc.erererieireeie e 5-32
5.5.14 Instruction TLB Miss Interrupt (0X01000)c.orvereriererireeie e 5-33
5.5.15 Data TLB Misson Load Interrupt (OX01100)ooveuereererrerieseereeieeneeie e 5-33
5.5.16 Data TLB Miss on Store Interrupt (0X01200)oovereremrieeieneeie e 5-34
5.5.17 Instruction Address Breakpoint Interrupt (0X01300)..........coeuerrererreresiereeierieeieeas 5-34
5.5.18 System Management Interrupt (OX01400)coererererieeieieeie e 5-36
Chapter 6
Memory Management
6.1 MIMU FEBLUIES........c.eeiieieeeee ettt r e sn e ene e e e e nneeerne s 6-2
6.1.1 MEMOTY AQUIESSING ...c.eeeeieeieie ettt ettt sr et eb et se et sn et se e es e e enee s 6-3
6.1.2 MMU OFQaNIZBLION.ceuieeinie sttt e se e ss e ee et se e s e ere st ese e e ennens 6-3
6.1.3 Address Trand ation MEChaNISIMS........cccuiiiirieieseee i 6-8
6.1.4 Memory Protection FaCilitiES...........oiiiiiiiieieee e 6-9
6.1.5 Page History INfOrMELioN.........cccooiiiie e 6-10
6.1.6 General Flow of MMU Address Translation...........cceeereeerieeieneene s 6-11
6.1.6.1 Rea Addressing Mode and Block Address Translation Selection........................ 6-11
6.1.6.2 Page Address Translation SEIECHIONccooieiiieiere e 6-12
6.1.7 MMU INENTUPES SUMMIBIY ...t e s 6-14
6.1.8 MMU Instructions and RegiSter SUMMAIYcccooerereeirieeeeneeie e e 6-16
6.2 Real AdAressing MOE..........ooiiiieeeee ettt 6-19
6.3 Block AdAress TranS @tion...........cocereeiirieie et e e 6-19
6.4 Memory SEgMENt MOTE!ooiiieeee e e e 6-19
6.4.1 Page HiStory RECOITINGcouiiieieeeie ettt e 6-20
e300 Power Architecture Core Family Reference Manual, Rev. 4
X Freescale Semiconductor

Paragraph
Number

6.4.1.1
6.4.1.2
6.4.1.3
6.4.2
6.4.3
6.4.3.1
6.4.3.2
6.4.4

6.5

6.5.1
6.5.2
6.5.2.1
6.521.1
6.5.2.1.2
6.5.2.1.3
6.5.2.14
6.5.2.2
6.5.2.2.1
6.5.2.2.2
6.5.3
6.5.4

7.1

7.2

7.3
731
7.3.2
7321
7322
7.3.2.3
7.3.3
7331
7.3.3.2
7.3.3.3
14
74.1
7411
7412

Page
Title Number
RS L= (= 410 =1 = 1 A 6-21
(@ 7= 010 T SRR 6-21
Scenarios for Reference and Change Bit ReCOrdingcoceveeeeeneeieseesesnennnns 6-22
Page MemOry ProteCHIONcovieieeeeee ettt eree e 6-23
LI = 3 = o] o1 o o SRS 6-23
TLB OrganiZation........ccceeeereeiiereeeetieseeesaesteesees e eseeseeeseessessees e eseeseesseessesneesnens 6-23
TLB ENtry INValidation.cooeieeeie e 6-25
Page Address Translation SUMMEAIYcccceveeeeveereenieee e seee e e e s e e 6-25
Page Table Search OPEratioN...........cooeeeriee e s e 6-25
Page Table Search Operation—Conceptual FIOWcccooieerieiiniieeeee e 6-25
Implementation-Specific Table Search Operation...........ccccceeeevievenrenceere e 6-29
Resources for Table Search Operations...........ccoceieeieeieseeneesreese e 6-29
Data and Instruction TLB Miss Address Registers (DMISS and IMISS)......... 6-31
Data and Instruction TLB Compare Registers (DCMP and ICMP).................. 6-32
Primary and Secondary Hash Address Registers (HASH1 and HASH?2) 6-32
Required Physical Address Register (RPA)ooveveeeveeieereee e 6-33
Software Table Search OPerationcccoeeveeeeieee e 6-34
Flow for Example Interrupt Handlers..........coooeeeiienieseneee e 6-34
Code for Example Interrupt HandIersooooveeieeceeieee e 6-38
Page Table UPEALES.........ccue ettt enee e 6-44
Segment ReQISIEr UPUALES........ccooveieeie ettt see e e e s 6-44
Chapter 7

Instruction Timing
Terminology and CONVENTIONS.........ccuiiiiei ettt e sr e e e 7-1
INSErUCtiON TIMING OVEIVIEW ..ottt st 7-3
TIMING CONSIAEIALIONS.c.eeitiie ettt ettt er et se e e e b e e esne e 7-9
General INSFUCHION FIOW ..ot 7-9
INStruction FELCh TIMING.......c.ooiiiiee e e 7-10
(@20 TSI AN g o111 = (o o 1SR 7-10
(@2 0! TS o | 7-11
(020! 0TS 1 1Y, 115 7-14
Instruction Dispatch and Completion CoNSIdErations...........cccooeeereresenesinneeeenens 7-16
Rename RegiSter OPEralioN..........coeeerieeieieeeie et 7-16
INSErUCION SEITAlIZALION........oviie i ee e e saaeee s 7-17
Execution Unit CONSIAEIAtiONS........cceieiuuiieeiieie et e s e s srae e e save e e eraees 7-17
EXECULION UNIT TIMINGS......c ittt e et st sr e e sne s 7-17
Branch Processing Unit EXECUtION TIMING........coiiiririmineeieneee e 7-18
Branch FOIAINGooveiiiieieie et e e s 7-18
5 ez ol =] = T T (=1 [1o o 7-19

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor Xi

Paragraph Page

Number Title Number
74121 Predicted Branch Timing EXamplesS.........cccoiiriinicieneee e 7-20
742 Integer Unit EXECULION THMINGoiiiieieiesicie et 7-21
7.4.3 Floating-Point Unit EXECUtION TIMINGcooiiiiiiecieeie s 7-23
744 Load/Store Unit EXECULION TIMING......cc.erteririreeeire e 7-24
7.4.5 System Register Unit EXECULiON TIMINGooveiveierieieneine e 7-24
7.5 Memory Performance CONSIAEIaLiONScceuurereeierieie e e s 7-24
751 COPY-BaCK MOUE..........eeieeiie e e s 7-25
752 WIItE-THrougN MOUE.........cee it 7-25
7.5.3 Cache-1NNIDITEA ACCESSES........ccuiieciie et 7-25
7.6 Instruction Scheduling GUIAEIINES...........ocociiiiee s 7-26
7.6.1 Branch, Dispatch, and Completion Unit Resource Requirements...........c.ccccveeenenes 7-26
7.6.11 Branch Resolution Resource REQUITEMENTSccoierieirieeieneee e 7-26
7.6.1.2 Dispatch Unit Resource REQUITEMENTS.........oooueiireiireeiereee e 7-27
7.6.1.3 Completion Unit Resource REQUIFEMENES ..o viririereeieeee e 7-27
7.7 INSErUCtion LaENCY SUMIMEIYoouiruieiireeiieieee et se e seeie e er st se e e e sr e ene e 7-28
Chapter 8
Core Interface Operation
8.1 SIGNAl GIOUPINGS ...ttt ettt et et se et se e e e et es e e e e s et sr e e ere e e ense e 8-1
811 FUNCLIONEl GIOUPINGSceeeeeuteetiie ettt st s sn e b s e 8-2
8.12 SIGNAl SUMMIBIY ...ttt e sttt se e sr et sr e eb e e enne e 8-2
8121 PLL Configuration (pll_cfg[0:6])—INPUL.........ccoiiiririiirieee e 8-4
8.2 Overview Of COre INErfate ACCESSES........ooiie ittt ettt sae e sre e ese e e 8-7
821 Core ComMpPIEX BUS (CCB)ocuiiieieeiireete ettt sne s 8-8
8.3 Interrupt, Checkstop, and ReSet SIgNalS........ooeeeiiiiieiie e 8-9
831 EXTErNal INTEITUPLS ...t 8-9
8.3.2 CRECKSIOPS.ttt ettt e e e bttt se et e bt en e e e 8-9
8.3.3 RESEL INPULS. ... e sr e e e e s nr e nnne s 8-9
834 Core QUIESCE CONLIOl SIGNAIS.c.eiiriereeiiriere e e e ere e 8-9
8.4 |EEE 1149.1-Compliant INTErfaCE........cceiieiieee et 8-10
84.1 |EEE 1149.1 Interface DESCIIPLIONccveveieieeie st 8-10
Chapter 9
Power Management
9.1 OVEBIVIBIW ...ttt ettt et st h e et ee bbb et es e ns e e en et eb et ebe e e ennennas 9-1
9.2 DynamicC POWEr MaNagEIMENT.ccuiririeieireeeiriire et e e sr e enene 9-1
9.3 Programmable POWEr MOUES..........ccooiiiiiieeietie et e e s 9-1
931 Power Management MOOEScoiiiiiiiiieieeee et e 9-3
9311 Full-Power Mode with DPM Disabled...........coooiiiiiiiicce e 9-3

e300 Power Architecture Core Family Reference Manual, Rev. 4

Xii Freescale Semiconductor

Paragraph

Number Title

9312 Full-Power Mode with DPM Enabled ..o
9313 DOZE MOGE........oi et
9314 NBP MOAE ...t s eneas
9.3.15 SIEED IMOUE ... e s
9.3.2 Power Management Software ConSiderations.............cccceverereereseenenenns

Chapter 10
Debug Features
10.1 Breakpoint RESOUICEScc.oiiiiiiieie e e e
10.11 Instruction Address Breakpoint Registers (IABR, IABR2)......................
10.1.2 Instructional Address Control Register (IBCR).......cccovceeirneiiericne e
10.1.3 Data Address Breakpoint Registers (DABR, DABR2)ccccocevineeen.
10.1.4 Data Address Control Register (DBCR).......ccccoeieneriireeiireeie e
10.1.5 Other DebUQ RESOUITES.........oiviieieiie ettt
10.1.6 Interrupt Vectorsfor DEDUGQING.......ccvevveririirire e
10.2 Using Breakpoint FaCilitiesccceviiiiiie e
10.2.1 SINGIE-SEEPPING. .. ceeieeteeeie sttt s sr e sr e eneas
10.2.2 Branch TraCing........cooeoeeiieeere et e
10.2.3 Breakpoint Address Matching OptionsS...........ccoevereeiriecienece e
10.3 Synchronization Requirements and Other Precautionsccccceeceeeeeeen.
Chapter 11
Performance Monitor

111 OVEIVIBIW ..ottt ettt sttt eb et e b e se et ne e e en s
11.2 Performance Monitor REQISIENS.........coiiiriiiiirie e
1121 Global Control Register 0 (PMGCO)cc.eiueiereinierieneeieeeeee e
11.2.2 User Global Control Register 0 (UPMGCO).......ccccoveierenenineeieneeie e
11.2.3 Local Control A Registers (PMLCa0-PMLCa3)ccccevereeirieeiereeine
11.2.4 User Local Control A Registers (UPMLCa0-UPMLCa3).........ccccceuenee.
11.2.5 Performance Monitor Counter Registers (PMCO-PMC3)........cccoeverennene
11.2.6 User Performance Monitor Counter Registers (UPM CO-UPMC3)
11.2.7 Performance Monitor INSIrUCHIONS...........cocceirireiinee e
11.3 Performance Monitor INTEMTUPL..........coooiiireeineee e
11.4 EVENE COUNLING ...ttt s
1141 Processor Context Configurability...........ooeoeeiiienine s
115 Performance Monitor Application EXamples.........ccccoceiieieninenineneenee
1151 ChaiNiNG COUNLEN'Sooviiiieie ettt s sr e eneas
115.2 EVENt SEIECHTION ..o

e300 Power Architecture Core Family Reference Manual, Rev. 4

Page
Number

Freescale Semiconductor

Xiii

Paragraph Page
Number Title Number
Appendix A
Instruction Set Listings
Al Instructions Sorted DY MNEMONIC............coiiiiiieiice e e e A-1
A2 Instructions Sorted DY OPCOE..........coui it e A-8
A3 Instructions Grouped by Functional Categories...........ccverererinieciiiece e A-15
A4 INStructions SOrted DY FOIM ..o s A-24
A5 INSEIUCLION St LEJENGottt s A-35
Appendix B
Instructions Not Implemented
Appendix C
Revision History
C1 Changes from ReviSIoN 310 REVISION 4 ..ot C-1
C2 Changes from ReviSIoN 2 10 REVISION 3 ..ot C-2
C3 Changes from ReviSION L 1O REVISION 2 ..ot C-2
C4 Changes From ReviSION 0 t0 REVISION 1ooiiiiiiiiiie et C-4
Glossary
Index
e300 Power Architecture Core Family Reference Manual, Rev. 4
Xiv Freescale Semiconductor

Figure

Number Title

1-1 €300C1L COre BIOCK Diagram........ccoieeuereerierienie et sre s
1-2 €300C2 COre BIOCK Diagram.......cccooeeueriereiiinie st sre s
1-3 €300C3 COre BIOCK DIagram........c.cooeeuerierienienie st sre e s
1-4 €300C4 Core BIOCK DIiagram.......cccoiueuereereirenie st sre s
1-5 €300 Programming Model—REQISENS..........ooiiiriieiirecie e
1-6 €300c1 and €300c4 Data Cache Organizationcccoeeeverenieniesenneeie e
1-7 €300c2 and e300c3 Data Cache Organizationcooeeevereneniesenneeie e
1-8 COrE INEEITACE. ... e s eneas
2-1 €300 Programming Model—REQISLENS.........cooiiiriieiireee e
2-2 Floating-Point Status and Control Register (FPSCR)cccooeeevenenine s
2-3 €300 Processor VErsion REJISIESccuoviierrereriire et eeeas
2-4 Maching State REGISLENccueiiiiceieeee e
2-5 HIDO REQISLEN ...ttt
2-6 HIDL REQISIEN ...ttt sttt e
2-7 HID2 REGISLEN ...ttt et
2-8 DMISS and IMISS REQISIENScueiiiieeiireciie et e
29 DCMP and ICMP REQISLENS........coueiiereeiieieeie ettt s
2-10 HASHL and HASH2Z REJISIEISccveieeiieieeie et
2-11 Required Physical Address Register (RPA)c.oviiiievineneeeeeeee e
2-12 UPPEr BAT REGISIEN ...ttt
2-13 LOWEr BAT REJISIEN ...ttt sr e
2-14 Critical Interrupt Save/Restore Register 0 (CSRRO)ooeveveerenienenineeeeee
2-15 Critical Interrupt Save/Restore Register 1 (CSRR1)oovveveeienienccineeiee
2-16 Critical Interrupt Save/Restore Register 0 (CSRRO)ooeveveenerienenineeieee
2-17 SPRGN REGISLEN ...ttt sttt sr et sn e eneas
2-18 SVR REGISIEN ... ettt sr e sn e eneas
2-19 IABR and IABR2 REQISIENS.cciiieiieeiiie et e e
2-20 IBCR REGISIEN ...ttt sttt st sn e
2-21 DABR and DABR2 REQISIENS.......cciiieiiieeie ettt
2-22 DBCR REGISIEN ...ttt e e e s e e
4-1 €300c1 and €300c4 Data Cache Organizationc.cccoeoeverenienesenneeieseennes
4-2 €300c2 and e300c3 Data Cache Organizationccooeeerereneniesesneeie e
4-3 €300c1 and e300c4 Instruction Cache Organi Zation.............ccoueveereereereseeneennns
4-4 €300c2 and €300c3 Instruction Cache OrganiZation.............ccoereerereereseeneennns
4-5 MEI Cache Coherency Protocol—State Diagram (WIM = 001)cccceevenee.
4-6 MESI Cache Coherency Protocol—State Diagram (WIM = 001).........cccceeueee.
4-7 PLRU Replacement AIQOrithmccooiiiiiiriie e
4-8 Bus Interface Address BUFEN'Sooiiiiiieee e
4-9 Double-Word Address Ordering—Critical-Double-Word-Firstcccccoe......

e300 Power Architecture Core Family Reference Manual, Rev. 4

Page
Number

Freescale Semiconductor

XV

Figures

Figure Page
Number Title Number
5-1 Machine Status Save/Restore Register O (SRRO)c.uovviieiireiireeie e 5-8
5-2 Machine Status Save/Restore Register 1 (SRRL)cvevirieiireiireeee e 5-8
5-3 Critical Interrupt Save/Restore Register 0 (CSRRO)ooveveeierieciereee e 5-10
5-4 Critical Interrupt Save/Restore Register 1 (CSRRL)c..oceveeireeieniee e 5-11
5-5 SPRGN REGISEN ...ttt ettt se e ee ettt s e e e e ee et et neebe e e enee e 5-11
5-6 Machine State REGISLEr (IMSR)cc.iiieiiieie e e 5-12
6-1 MMU Conceptual Block Diagram—32-Bit Implementations.............ccoceevrieeeeniienene s 6-5
6-2 €300 Core IMMU BIOCK DIGQIaIMc.cooueieriiieseie et sr e see e e e 6-6
6-3 €300 Core DMMU BIOCK DIBGIAM.......ccueuiieiiereiie ettt se e neas 6-7
6-4 AdAress Trang ation TYPES.oeeuereeie ettt re e se e sr et e e et sr b b e e s e enne s 6-9
6-5 General Flow of Address Trandation (Real Addressing Mode and BlockK)cc......... 6-11
6-6 Genera Flow of Page and Direct-Store Interface Address Tranglation.........c.cccecveveveeeneene. 6-13
6-7 Segment Register and TLB OrganiZationcccooeriieiine e 6-24
6-8 Page Address Translation Flow for 32-Bit Implementations—TLB Hit..........c.cccoviiieee 6-26
6-9 Primary Page Table Search—Conceptual FIOWccoooiiiiiiiinieceee e 6-28
6-10 Secondary Page Table Search Flow—Conceptual FIOW...........cccoviiiiiiieniiceece 6-29
6-11 DMISS and IMISS REGISIENS ...ttt e e s 6-32
6-12 DCMP and ICMP REQISIENS. ..ot sr e s s ne s 6-32
6-13 HASHL and HASHZ REJISIEIS ...ttt s s st 6-33
6-14 Required Physical Address RegiSter (RPA)cc.uoiieiieiie st 6-33
6-15 Flow for Example Software Table Search Operation ..o 6-35
6-16 Check and Set R and C Bit FIOWcccooiiiiiiiieeee e 6-36
6-17 Page Fault SEtUP FIOW ... 6-37
6-18 Setup for Protection Violation EXCEPLIONS.........c..ooiieirrieieieiie st 6-38
7-1 Pipelined EXECULTON UNIToiie ettt 7-3
7-2 Instruction Flow Diagram for the @300CL..........coceeiiireeiieee e e 7-4
7-3 Instruction Flow Diagram for the @300C2..........coceeirireeieeee e e 7-5
7-4 Instruction Flow Diagram for the €300c3 and €300CA-..........ccovererereeirieeie e 7-6
7-5 €300 Core Processor PIPeliNg STAgES.ccuoreieriere ettt 7-8
7-6 Instruction TiIMING—CaChe Hit...........oo i 7-12
7-7 Instruction TIMING—CaChe MISS........cccuiiiie e 7-15
7-8 Branch INStruCtion TIMINGoc.eoeeireeeeieie e e e sb e e 7-21
7-9 Instruction Timing—Integer Execution in the €300CL1COre...........coeiuererieriene e 7-22
7-10 Instruction Timing—Integer Execution in the €300c2 and €300C3cccoererererieenenens 7-23
8-1 COre INErfaCE SIGNAIS. ..o et se e eb e e 8-2
11-1 Performance Monitor Global Control Register 0 (PMGCO)/

User Performance Monitor Global Control Register 0 (UPMGCO)ccoceveveeierneennen. 11-3
11-2 Local Control A Registers (PMLCa0-PMLCa3)/

User Local Control A Registers (UPMLCa0—UPMLCa3)cccooeienineniineniineeeeeene, 11-4
11-3 Performance Monitor Counter Registers (PMCO-PMC3)/

User Performance Monitor Counter Registers (UPMCO-UPMCS3)........cccoovvinenineennn. 11-6

e300 Power Architecture Core Family Reference Manual, Rev. 4

XVi Freescale Semiconductor

Table
Number

1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
3-1
3-2
3-3
3-4
35
3-6
3-7
3-8
39
3-10
3-11
3-13
3-14
3-15
3-16
3-17
3-18

Page

Title Number

€300 HIDO Bit DESCIPLIONS. ...ttt st se et sr e e e se e sn e ene e ene e 1-23
Using HIDO[ECLK] and HIDO[SBCLK] to Configure clk_outccccoiriiininiecieeenen. 1-26
HIDL Bit DESCITPIIONS ...ttt st se e e sn e sb e ene e 1-26
€300HID2 Bit DESCIPLIONS.cueeeerieiieieeuie ettt er e sr e es e se e e sr e es e eae e s e 1-26
INtErTUPE ClasSITICAIONSccoiiiietiie ettt eb e 1-34
EXCEPLIONS QN INLEITUPLS. ...ttt e e s 1-35
Differences Between €300 and G2_LE COreS........coveveeririeeneee e 1-42
Differences Between €300 COIES.........ccueiiieriereeririere et e e e s sr e 1-43
FPSCR Bit SEINGS. ... e cveeeeiiese ettt se e se e se ettt se e sn et sn e eae e en e e enne s 2-3
Architectural PVR Field DESCIIPLIONScc.eiiiieieiieie ettt e 2-6
ASSIGNE PVR VAIUBS ...ttt e e s 2-6
IMISR BT SEELINGS ...ttt ettt ettt se e et s et e st se e st eb e e e enee e 2-7
€300 HIDO FIeld DESCIPLIONSveueetieeeiie sttt se ettt e sn e ene e e 2-12
HIDO[SBCLK] and HIDO[ECLK] clk_out Configuration.............cccccueeereereneneseneeeeneenns 2-15
HID L BIt SBEINGS. .. v ettt sttt ettt se e e e sr e eb et es e e e e sr e 2-15
€300 HID2 FIeld DESCIPLIONScveueeteeeeite sttt sttt e e sn e e 2-16
DCMP and ICMP Bit SEINGS.ccverueeeereeiieneeie et ne e 2-19
HASHL and HASH2 Bit SEINGSueeveieeiieieeie st st 2-20
RPA Bt SEIEINGS ... vttt e e et se e sr e en e 2-20
System Version Register (SVR) Bit SEINGS........coovierereieire e 2-24
Instruction Address Breakpoint Register (IABR and IABR2) Bit Settings..........ccccveeevenee. 2-25
Instruction Address Breakpoint Control Registers (IBCR)cccoveiininenine e 2-25
Data Address Breakpoint Registers (DABR and DABR?2) Bit Settings.........c.ccoovveeevrneennen. 2-26
Data Address Breakpoint Control Registers (DBCR).........cccovireriniecieneee e 2-27
ENdian MOde INICELION........c..oiiiieieie ettt ettt e sr e sr e e 3-2
MEMOTY OPEIANAS........eeutieieie sttt re et se e ee ettt es e e s e e se e b sr e e ebe et ene e e enne s 3-2
Integer Arithmetic INSIMUCTIONScuoiiiiiie e e e 3-10
INnteger COMPAre INSITUCKIONS.ccuiiieeieieeie sttt sr e e ene e neas 311
INteger LOgiCal INSITUCTIONSc..oiuiiiiiiciie ettt 3-12
INteger ROLALE INSIIUCTIONS........couiiieiiieeie ettt sn et e 3-13
INteger Shift INSITUCHTIONS........couoiiie e 3-13
Floating-Point ArithmetiC INSIIUCLIONSooveiiiiieie e 3-14
Floating-Point Multiply-Add INSIIUCLIONSoiiiiieee e 3-14
Floating-Point Rounding and Conversion INSIIUCLIONS..........c.coerereeineeieeee e 3-15
Floating-Point Compare INStIUCHIONS............ooiieiereie et 3-15
Floating-Point MOVE INSITUCHIONScc.eiuiiiieeie e e e e 3-16
INteger LOB0 INSLIUCTIONS........c.eiuiieieiereeie ettt sr e st ebe e e e 3-17
INteger SEOre INSIMUCTIONS.......coueiuiieieie ettt e e e sn e 3-18
Integer Load and Store with Byte-Reverse INStructions..........c.ccooevereienene s 3-19
Integer Load and Store Multiple INSITUCHIONScccoieiieieiie e 3-20
Integer Load and Store String INStrUCHIONScoeeueriireeiieeeie et 3-20

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor Xvii

Table Page
Number Title Number
3-19 Floating-Point Load INSITUCHIONScceiieiieie e e 321
3-20 Floating-Point SLOre INSIIUCLIONSco.eiieiieee et 3-22
321 BranCh INSIIUCTIONScc.viiiie it e sr e bt 3-23
3-22 Condition Register Logical INSIIUCHIONSc.eiiiiierieieeie et 3-24
3-23 TrAD INSITUCTIONS ...ttt sttt se e e et st e b e e e 3-24
3-24 Move fo/from Condition Register INSIIUCLIONS.........cc.ooireiirieireee e 3-24
3-25 Memory Synchronization INStructionS—UISAccooiiiiiee s 3-26
3-26 Move from Time Base INSIIUCTIONeiieuiieeiereeeie e e s 3-26
3-27 Memory Synchronization INStruCtioNS—VEA ..o e 3-27
3-28 User-Level Cache INSITUCIONS.couiiiiieieeee et 3-27
3-29 System LinKage INSIIUCKIONS..........ooiiiieie ittt 3-28
3-30 Move to/from Machine State Register INSIIUCLIONS...........ooeiiririeieece e 3-29
3-31 Move to/from Special-Purpose Register INSrUCHIONS...........cooireeirnecenece e 3-29
3-32 Implementation-Specific SPR ENCOdingS (MFSPI) ..oveveieineiiieeie e 3-29
3-33 Performance Monitor APU INSITUCHIONSeiieiriireeieee st 3-32
3-34 Segment Register Manipulation INSITUCHIONS..........oooiiieiire e 3-32
3-35 Translation Lookaside Buffer Management INSIruCtioNS...........ccovveeneie s s 3-33
4-1 Combinations Of W, |, a0 M BILSccoiiiuiiii ettt ee s sae e e s eaaeee e 4-8
4-2 MEI/MES] State DEfINITIONS.couiiieiiiieieee ettt 4-9
4-3 Memory Coherency Actions on Load OPErationSc.ceeereeerneeiereeneseesie e seenes 4-12
4-4 Memory Coherency Actions 0N StOre OPEraliONS..........coereereeerreeiereee e seenes 4-12
4-5 €300cl PLRU Replacement Way SEIECHION..........ccooiiiriiireceeeee e 4-23
4-6 €300c2 PLRU Replacement Way SEIECION..........ccooiiiiiiireciieee e 4-23
4-7 PLRU Bit UPAate RUIES........c.eoiiieieiie ettt 4-25
4-8 €300 Bus Operations Caused by Cache Control INStruCtionS...........cccoveeereneninesieneeeeens 4-29
4-9 Snoop ResPONSE t0 CSB TranNSACIONS........cc.eiueriirie ettt 4-30
4-10 CaCNE OFQANIZBLION ...ttt sttt et e e sr et eb et s e et ese e e e et ese e e ennens 4-33
4-11 HIDO Bits Used to Perform Cache LOCKINGcociiiiricieieee e 4-33
4-12 HID2 Bits Used to Perform Cache Way-10CKINGcccrieiiieieieeeieeeee e 4-34
4-13 MSR Bits Used to Perform Cache LOCKINGooviieieriieieie st 4-34
4-14 Example BAT Settings for Cache LOCKINGc.oiveieieriie s 4-35
4-15 MSR Bitsfor Disabling INEEITUPES.ccveiieiieeie et e s 4-36
4-16 €300c1 and €300c4 Core DWL CK[0-2] ENCOUINGS.......cceuerririereinieniereeieeseeie e e v 4-38
4-17 €300c2 and €300c3 Core DWL CK[0-2] ENCOUINGS.......cceuerreierieriesiereeieeneeie e 4-39
4-18 Example BAT Settings for Cache LOCKINGc.oiveieieriieseise et e 4-40
4-19 MSR Bitsfor Disabling INEEITUPES.ccueiuieiieeiere e e s 4-41
4-20 €300c1 and €300c4 Core IWLCK[0-2] ENCOAINGScocvevrreeiereeniesiereeieeeeie e s 4-43
4-21 €300c2 Core IWL CK[0-2] ENCOUINGS.....c..crttruerririeeieriesie et eieeseeie e e s e e 4-44
5-1 INtErTUPE ClasSiTiCaiONS.cieeeeieee ettt bbb 5-3
5-2 Interrupts and EXCEPtion CONAITIONS............ooieiiieeieie et 5-3
5-3 INEEITUPDE PrIOMTTIES ...ttt ettt et ettt s e ss et sr e en e 5-6
e300 Power Architecture Core Family Reference Manual, Rev. 4
xviii Freescale Semiconductor

Tables

Table Page
Number Title Number
5-4 SRR1 Bit Settings for Machine CheCk INTEITUPES.ccceiireiere e 5-9
5-5 SRR1 Bit Settings for Program INTEMTUPLSc..ooiieiireeieiecie et e 5-9
5-6 SRR1 Bit Settings for Software Table Search Operations............cccoeveerieeiencie s 5-10
5-7 Conventional Uses 0f SPRGO-SPRGT ..ot 5-11
5-8 IMISR BT SEELINGS ...ttt ettt ettt s e se ettt ne e en e e ea et s e 5-12
59 |EEE Floating-Point EXCeption Mode BitS..........coiiiriiiiece e 5-14
5-10 MSR Setting DU tO INEEITUPDEeeveeeeie et s 5-17
5-11 Hard Reset MSR Value and INterrupt VECIONc.ooueriiieieire e 5-18
5-12 Settings Caused DY Hard RESEL ..ot e e 5-19
5-13 Soft Reset Interrupt—REgiSIEr SEHINGS.coiier i 5-20
5-14 Machine Check Interrupt—RegiSter SEINGScoveverrirereire e 5-22
5-15 DSl INterrupt—REGISLEr SEINGS......oeevereeie ettt 5-23
5-16 External Interrupt—RegiSter SEINGS.ccoveieiiereree e 5-25
5-17 Alignment Interrupt—REgISIEr SELINGSeoiviieriiiee e 5-26
5-18 AACCESS TYPES.... ettt ettt ettt et n e e e et e et e e en e et e e e e en e en e enne e e nes 5-27
5-19 Critical Interrupt—RegiStEr SEIINGSccvireeiereee e e e 5-31
5-20 Trace INterruPt—REQISIEr SELLINGScoeiieieie et 5-32
5-21 Instruction and Data TLB Miss Interrupts—Register Settings.........cooeeevererenesene e 5-34
5-22 Instruction Address Breakpoint Interrupt—Register SEttings.........ccoovverevereveniecieieeeens 5-35
5-23 Breakpoint Action for Multiple Modes Enabled for the Same Address...........ccccoceeereneee. 5-35
5-24 System Management Interrupt—RegiSter SELtNGS.........ccevrieeerreeie e 5-36
6-1 MM U FELUIES SUMIMEIYcviieiieiie ettt ssee et ss e sre e sr e e sneesr e se e e e e nneenne s 6-2
6-2 Access Protection OptioNSTOr PAgES........c.ooiiirieieieee et e 6-9
6-3 Translation EXCeption CONDITIONS.........ccuiiiiiieeiereire et s 6-14
6-4 Other MM U EXCeption CONAITIONS.........ccviriiiereie ettt 6-15
6-5 Instruction SUMMAarY—MMU CONIO.........cccoiiiiiiiirece e s 6-17
6-6 IMMU REJISIEIS....c.ecteeeeie ettt ettt e st eb et eh et ee et et bt bt eb e e e es e e nn s 6-17
6-7 Table Search Operations to Update History Bits—TLB Hit Case.........ccccocvivinecinneciens 6-20
6-8 Model for Guaranteed R and C Bit SEIiNGSccvrerieririeeiereeie e 6-22
6-9 Implementation-Specific Resources for Table Search Operations............ccccovvvievencierene 6-30
6-10 Implementation-Specific SRRL BILS........ooiiiiiieieie e e 6-31
6-11 DCMP and ICMP Bit SEHNGS.cc.ereeiereeieieeie st s sr e s 6-32
6-12 HASHL and HASH2 Bit SEIINGSeeeveiieiieieeie st s 6-33
6-13 RPA Bt SEIEINGS ... vttt s e s r et e ne et e en e e 6-33
7-1 BranCh INSIIUCLIONScviiiiiie et e e b sr e 7-28
7-2 System RegiSter INSIMUCLIONS.......cc.ciieiiieiie ettt s 7-28
7-3 Condition Register LOgical INSIUCHIONSc.uoiiiieiieeie et 7-29
7-4 INEEJEN INSIIUCTIONS ...ttt ettt et eb et eb e se et snen e 7-29
7-5 Floating-POoiNt INSIIUCLIONS.........couoiiiiieeeie et s 7-31
7-6 Load and StOre INSIIUCLIONSccueeuiiieieeeie et e 7-33
8-1 Summary of Selected Internal SIgNaIS........coooiiiiiie e 8-2
e300 Power Architecture Core Family Reference Manual, Rev. 4
Freescale Semiconductor XiX

Table Page
Number Title Number
8-2 COre PLL CONFIQUIBLTON ...ttt ettt sttt se e e en e enee e 8-4
9-1 €300 Core Programmable POWEr MOUESccoiiiiiiirieiieecie e 9-2
10-1 Other Debug and SUpPPOrt REGISIEr BitS.........cceiirereriie s 10-3
10-2 Debug Interrupts and CONTITIONS.........ccuiieiiieie et 10-3
10-3 Single-Address MatChing Bit SEINGS.coveovererererie s 10-5
10-4 TWO-AdAress OR MEIChINGooviiiiii e e e e 10-5
10-5 Address Matching for InSide AdAreSS RANGEcoveveiiiieniine e 10-6
10-6 Address Matching for Outside AddresS RaNGE.........ccuoveierireriirieieeee s 10-6
11-1 Performance Monitor Registers—SUpervisor LEVE! ... 11-2
11-2 Performance Monitor Registers—User Level (Read-Only) ..., 11-2
11-3 PMGCO Field DESCIIPLIONS.....ceevereiieeieeeeiie st sr et se e se e sn e see e esse e s 11-3
11-4 PMLCa0-PMLCa3 Field DESCIIPLIONS.........oieeieieiieiesee et 11-5
11-5 PMCO—PMC3 Feld DESCIIPLIONSc.eeiveieeiieeeiie st sttt s sn e ne s 11-6
11-6 Performance Monitor APU INSITUCHIONSc..oouiiiriieiie e e 11-7
11-7 Processor States and PML Ca0—-PMLCa3 Bit SEtiNgS.........coovevrieeienicieseese e 11-10
11-8 EVENE TYPDES. ettt e et et bt h e et en e er e 11-11
11-9 Performance Monitor EVent SEIECHION..........coooiiiiire s 11-12
A-1 Complete Instruction List Sorted by MNEMONIC.........coiieiiieiereee e e A-1
A-2 Complete Instruction List Sorted by OPCOUE..........cooi i e A-8
A-3 Integer Arithmetic INSIMUCTIONSccuoiiii i e e A-15
A-4 Integer COMPAre INSIIUCLIONS.coueriiiereiie ettt se e e se e sr e sr e A-16
A-5 INteger LOgiCal INSITUCHIONScc.uiiiieieiie ettt s A-16
A-6 INteger ROLAEE INSLIUCHIONS........couieiie ittt st sn e s A-16
A-7 INteger Shift INSITUCHIONS.........ooieiiie e e e A-17
A-8 Floating-Point ArithmetiC INSIIUCLIONSocooiiieiieie e A-17
A-9 Floating-Point Multiply-Add INSIIUCLIONSooiiiiieeeeree e e A-18
A-10 Floating-Point Rounding and Conversion INSLIUCLIONS............coeiereeereeieneee e A-18
A-11 Floating-Point Compare INStrUCHIONS............ooiieierieie ettt A-18
A-12 Floating-Point Status and Control Register INSrUCtIONS...........cocoiererinieeieece e A-18
A-13 INteger LOBO INSLIUCLIONSocueieieiie ettt et s s sn e s A-19
A-14 INteger SEOre INSIMUCTIONS........ooiiie ettt e e sr e A-19
A-15 Integer Load and Store with Byte-Reverse INStructions............ccoceeeeeeieneenesene e A-20
A-16 Integer Load and Store Multiple INSITUCHIONSc.cviiiciiiece e A-20
A-17 Integer Load and Store String INSIUCTIONSooviveiereeie e A-20
A-18 Memory Synchronization INSIIUCHIONS.ceuireieiee et e A-21
A-19 Floating-Point Load INSITUCHIONSccoiiiiicie e s s A-21
A-20 Floating-Point SLOre INSIIUCLIONScc.oiiiiiecie et A-21
A-21 Floating-Point MOVE INSITUCHTONSco.oiuiiiiiicie et e e A-22
A-22 BranCh INSIIUCHIONS ...ttt s se e A-22
A-23 Condition Register Logical INSIIUCHIONScciieiiireeiiereee et A-22
A-24 System LinKage INSIIUCHIONS........c..oiirieieiie ettt A-22
e300 Power Architecture Core Family Reference Manual, Rev. 4
XX Freescale Semiconductor

Table
Number

A-25
A-26
A-27
A-29
A-30
A-31
A-28
A-32
A-33
A-34
A-35
A-36
A-37
A-38
A-39
A-40
A-41
A-42
A-43
A-44
A-45
B-1

B-2

B-3

Page

Title Number

TTAD INSITUCTIONS ...ttt e e ettt et sn e en s A-23
Processor Control INSEIUCLIONS.c.eiiiieiee ettt sr e s A-23
Cache Management INSITUCHTIONS..........coiiirieieiee et s sr e A-23
Lookaside Buffer Management INSIIUCHIONS..........cocoirirerineeie e A-24
0 10 TS UR TSP PUPTPRSPRI A-24
= 0 1 0 PP UP TP PPRPTO A-24
Segment Register Manipulation INSIIUCHIONS..........coiiiiieiere e A-24
R O o 0 RSP A-25
[0] 1 o PP R UPPRTO A-25
1S 01 0 TSRO TURPTRRRP A-26
D 0 1 TP RPTRUPPPY A-27
D o 0 PSP PRR PR A-31
D) 0] 1 TSP PRR PRSI A-31
D I 01 1 PR UPP PR A-32
D 0 1 0 RSP PR A-32
DO 0 1 o [T A-32
N 0] 1 o OO PP PR A-33
Y 0 3 TSRO PR PRRP A-34
Y 0 1 RSP PRSTPRR A-34
IMID SOOI ...ttt ettt e e e et et e st e eseeease e e e e e eee e eheeembe e nneeneeeeneeenneann A-34
POWErPC INStruction SEt LEJENdccoiiiiieie et e e A-35
32-Bit Instructions Not Implemented by the €300 COre..........ccoieiiriieneneiee e B-1
64-Bit Instructions Not Implemented by the €300 COre..........ccoieiiiiiincnc i B-1
64-Bit SPR Encoding Not Implemented by the €300 COre..........coirereririecierece e B-2

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor XXi

N

Tables

Table Page
Number Title Number

e300 Power Architecture Core Family Reference Manual, Rev. 4

XXii Freescale Semiconductor

About This Book

The primary objective of this reference manual is to describe the functionality of the microprocessorsin
the €300 core family, which are PowerPC™ microprocessors built on Power Architecture™ technology.
The e300 designs are based on the M PC603e microprocessor. Thisreference manual describesthee300c1,
€300c2, e300c3, and €300c4 configurations. Unless otherwise noted, the information presented here
appliesto al the e300 cores. The €300cl has similar functionality to the G2_L E core and any differences
in functionality are summarized in Table 1-7. The e300c2, €300c3, and €300c4 have similar functionality
to the e300c1 core and any differences regarding functionality are summarized in Section 1.5,
“Differences Between e300 Cores.” This book isintended as a companion to the Programming
Environments Manual for 32-Bit Implementations of the PowerPC™ Architecture (referred to as the
Programming Environments Manual), which describes the features common to PowerPC processors and
cores and indicates those features that are optional or that may be implemented differently in the design of
each processor and core.

NOTE
About the Companion Programming Environments Manual

The PowerPC architecture definition is flexible to support abroad range of
processors. Note that the Programming Environments Manual describes
only architecture features for 32-bit implementations.

Contact your salesrepresentative, or visit the website on the inside cover of
this manual for a copy of the Programming Environments Manual.

This reference manual and the Programming Environments Manual distinguish between the three levels,
or programming environments as follows:

» User instruction set architecture (UISA)—The UISA defines the architecture level to which
user-level software should conform. The UISA defines the base user-level instruction set,
user-level registers, data types, memory conventions, and the memory and programming models
seen by application programmers.

» Virtual environment architecture (VEA)—The VEA, which is the smallest component of the
PowerPC architecture, defines additional user-level functionality that falls outside typical
user-level software requirements. The VEA describes the memory model for an environment in
which multiple processors or other devices can access externa memory, and defines aspects of the
cache model and cache control instructions from auser-level perspective. The resources defined
by the VEA are particularly useful for optimizing memory accesses and for managing resourcesin
an environment in which other processors and devices can access external memory.

* Operating environment architecture (OEA)—The OEA defines supervisor-level resources
typically required by an operating system. The OEA defines the memory management model,
supervisor-level registers, and interrupt model.

Implementations that conform to the OEA aso conform to the UISA and VEA.

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor xxiii

Note that some resources are defined more generally at onelevel in the architecture and more specifically
at another. For example, conditionsthat cause afloating-point interrupt are defined by the UISA, while the
interrupt mechanism itself is defined by the OEA.

For easeinreference, topicsin thisbook are presented in the same order asthe Programming Environments
Manual. Topics build on one another, beginning with adescription and compl ete summary of the e300 core
register model and followed by the instruction set model and progressing to more specific,
architecture-based topics regarding the cache, interrupt, and memory management models. As such,
chapters may include information from multiple levels of the architecture. (For example, the discussion of
the cache model uses information from both the VEA and the OEA.)

The Power PC Architecture: A Specification for a New Family of RISC Processor s defines the architecture
from the perspective of the three programming environments and remains the defining document for the
PowerPC architecture. For information about ordering Freescal e documentation, see “ Suggested Reading”
0N page XXv.

Theinformation inthisbook is subject to change without notice, asdescribed in the disclaimerson thetitle
page of thisbook. Aswith any technical documentation, it isthe readers’ responsibility to be surethey are
using the most recent version of the documentation. For more information, contact your sales
representative.

To locate any published errata or updates for this reference manual, refer to the world-wide web at
http://www.freescale.com.

A list of major differences between the G2 core, the G2_LE core, and the e300 core configurations are
provided in Section 1.4, “ Differences Between Cores.” Furthermore, the minor differences between cores
are documented by footnotes throughout this book.

Audience

This manual isintended to be used as a reference for many semiconductor products targeting a range of
markets including automotive, communication, consumer, networking, and computer peripheras. Itis
intended for system software and hardware devel opersand applications programmerswho want to devel op
products using the cores. It is assumed that the reader understands operating systems, core system design,
and details of the PowerPC architecture.

Organization

Following is a summary and a brief description of the major sections of this manual:

» Chapter 1, “Overview,” isuseful for readers who want a general understanding of €300 features
and functions and the differences between the e300 and G2 cores. It generally describesthe register
set, instruction set and addressing modes, cache model, interrupt model, memory management
model, instruction timing, system support interface, and debug features for the e300 core. This
chapter indicates which features are defined by the PowerPC architecture and which ones are
€300-gpecific.

» Chapter 2, “Register Model,” provides a brief synopsis of the registers implemented in the €300
core, including architecture-defined and implementati on-specific registers.

e300 Power Architecture Core Family Reference Manual, Rev. 4

XXiv Freescale Semiconductor

» Chapter 3, “Instruction Set Model,” provides a brief description of the operand conventions, an
overview of addressing modes, and alist of the instructions implemented by the e300 core. Note
that instructions are organized by functions.

» Chapter 4, “Instruction and Data Cache Operation,” provides a discussion of the cache and
memory model as implemented on the e300 core.

» Chapter 5, “Interrupts and Exceptions,” describes the interrupt model defined in the PowerPC
OEA, and the specific interrupt model implemented on the e300 core.

» Chapter 6, “Memory Management,” describes the e300 core’'s implementation of the memory
management unit specifications provided by the OEA.

» Chapter 7, “Instruction Timing,” provides information about latencies, interlocks, special
situations, and various conditions to help make programming more efficient. This chapter is of
special interest to software engineers and system designers.

» Chapter 8, “Corelnterface Operation,” providesan overview of individual signalsof the e300 core.
It also provides a description of the coherent system bus (CSB) bus.

» Chapter 9, “Power Management,” providesinformation about the power saving modesfor the e300
core.

» Chapter 10, “Debug Features,” provides information about the debug features of the €300 core.
This chapter also describes trace facility debug features for e300 core.

* Appendix A, “Instruction Set Listings,” lists all the PowerPC instructions while indicating those
instructions that are not implemented by the e300 core; it aso includes the instructions that are
specific to the €300 core. Instructions are grouped according to mnemonic, opcode, function, and
form. Also included is a quick reference table that contains general information, such as the
architecture level, privilege level, and form, and indicates if the instruction is 64-bit and optional.

* Appendix B, “Instructions Not Implemented,” providesalist of the 32- and 64-bit instructionsthat
are not implemented in the €300 core.

» Appendix C, “Revision History,” lists the major differences between revisions of this reference
manual .

* Thisreference manual also includes a glossary and an index.

Suggested Reading

Thissection lists additional reading that provides background for theinformation in thisreference manual,
aswell as general information about the PowerPC architecture.

General Information

The following documentation, available through Morgan-Kaufmann Publishers, 340 Pine Street, Sixth
Floor, San Francisco, CA, provides useful information about the PowerPC architecture and computer
architecture in general:

» ThePowerPC Architecture: A Specification for a New Family of RISC Processor s, Second Edition,
by International Business Machines, Inc.

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor XXV

For updates to the specification, see

http://www-1.ibm.com/support/docview.wss?ui d=publsal4208300
Power PC Microprocessor Common Hardware Reference Platform: A System Architecture, by
Apple Computer, Inc., International Business Machines, Inc., and Motorola, Inc.
Computer Architecture: A Quantitative Approach, Second Edition, John L. Hennessy and
David A. Patterson.
Computer Organization and Design: The Hardware/Software Interface, Second Edition,
David A. Patterson and John L. Hennessy.
Inside Macintosh: PowerPC System Software, Addison-Wesley Publishing Company, One Jacob
Way, Reading, MA, 01867; Tel. (800) 282-2732 (U.S.A.), (800) 637-0029 (Canada),
(716) 871-6555 (International).

Related Documentation

Freesca e documentation is available from the sources listed on the back cover of this manual; the
document order numbers are included in parentheses for ease in ordering:

Programming Environments Manual for 32-Bit I|mplementations of the PowerPC Architecture
(MPCFPE32B)—Describes resources defined by the PowerPC architecture.

User’sand reference manual s—T hese books provide detail s about individual implementationsand
areintended for use with the Programming Environments Manual.

Addenda/erratato user’sor reference manual s—Because some processors have follow-on devices,
an addendum is provided that describes the additional features and functionality changes. These
addenda are intended for use with the corresponding book.

Implementation Variances Relative to Rev. 1 of the Programming Environments Manual is
available at http://www.freescale.com.

Technical summaries—Each device has atechnical summary that provides an overview of its
features. This document is roughly the equivalent to the overview (Chapter 1) of an
implementation’s user’s or reference manual.

Application notes—These short documents contain useful information about specific designissues
useful to programmers and engineers working with Freescale processors.

Additional literatureis published as new processors become available. For acurrent list of documentation,
refer to: http://www.freescale.com.

Conventions

This document uses the following notational conventions:

mnemonics Instruction mnemonics are shown in lowercase bold

italics Italics indicate variable command parameters, for example, beetrx
Book titlesin text are set in italics

0x0 Prefix to denote hexadecimal number

Ob0 Prefix to denote binary number

e300 Power Architecture Core Family Reference Manual, Rev. 4

XXVi

Freescale Semiconductor

rA,rB

rAl0

rb

frA, frB, frC
frD
REG[FIELD]

l -5 X

Ro

0000

Instruction syntax used to identify a source GPR
Contents of a specified GPR or the value O
Instruction syntax used to identify a destination GPR
Instruction syntax used to identify a source FPR
Instruction syntax used to identify a destination FPR

Abbreviations or acronymsfor registersare shown in uppercasetext. Specific bits,
fields, or ranges appear in brackets. For example, MSR[LE] refersto the
little-endian mode enable bit in the machine state register.

In certain contexts, such asasigna encoding, thisindicates adon’'t care
Used to express an undefined numerical value

NOT logical operator

AND logical operator

OR logical operator

Indicatesreserved bitsor bit fieldsin aregister. Although these bitsmay bewritten
to as either ones or zeros, they are ways read as zeros.

Acronyms and Abbreviations

Tablei contains acronyms and abbreviations that are used in this reference manual.

Table i. Acronyms and Abbreviated Terms

Term Meaning
ABE Address bus enable
ALU Arithmetic logic unit
BAT Block address translation
BATL Block address translation lower
BATU Block address translation upper
BE Branch trace enable
BIST Built-in self test
BIU Bus interface unit
BL Block size mask
BPU Branch processing unit
BUID Bus unit ID
CE Critical interrupt enable
CIA Current instruction address
CMOS Complementary metal-oxide semiconductor
CMP IABR compare type

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor

XXvii

Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning
CMP2 IABR2 compare type
COP Common on-chip processor
caQ Completion queue
CR Condition register
CSRRO Critical interrupt save/restore register 0
CSRR1 Critical interrupt save/restore register 1
CTR Count register
DABR Data address breakpoint register
DABR2 Data address breakpoint register 2
DAR Data address register
DBAT Data BAT
DBCR Data address control register
DCE Data cache enable
DCFI Data cache flash invalidate
DCMP Data TLB compare
DEC Decrementer register
DLOCK Data cache lock
DMISS Data TLB miss address
DMMU Data memory management unit
DPM Dynamic power management enable
DR Data address translation enable
DSISR Register used for determining the source of a DSI interrupt
DTLB Data translation lookaside buffer
DWLCK Data cache way-lock
EA Effective address
EAR External access register
ECC Error checking and correction
EE External interrupt enable
FEO Floating-point exception model 0
FE1 Floating-point exception model 1
FIFO First-in-first-out
FP Floating-point available
FPR Floating-point register

e300 Power Architecture Core Family Reference Manual, Rev. 4

XXViii

Freescale Semiconductor

Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning
FPSCR Floating-point status and control register
FPU Floating-point unit
GPR General-purpose register
HBE High BAT enable
HIDO Hardware implementation register 0
HID1 Hardware implementation register 1
HID2 Hardware implementation register 2
| Cache-inhibited
IABR Instruction address breakpoint register 1
IABR2 Instruction address breakpoint register 2
IBAT Instruction BAT
IBCR Instruction breakpoint control register
ICE Instruction cache enable
ICFI Instruction cache flash invalidate
ICMP Instruction TLB compare
IEE External interrupt enable
IEEE Institute of Electrical and Electronics Engineers
IFEM Instruction fetch enable M (bit)

ILE Interrupt little-endian mode

ILOCK Instruction cache lock

IMISS Instruction TLB miss address

IMMU Instruction memory management unit
IP interrupt prefix

1Q Instruction queue

IR Instruction address translation enable
ITLB Instruction translation lookaside buffer
U Integer unit

IWLCK Instruction cache way lock

L2 Secondary cache

LE Little-endian mode enable

LET True little-endian mode bit

LIFO Last-in-first-out

LR Link register

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor XXiX

Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning
LRU Least recently used
Isb Least-significant bit
LSB Least-significant byte
LSU Load/store unit
M Memory-coherent
MBAR System memory base address
ME Machine check enable
MEI Modified/exclusive/invalid
MESI Modified/exclusive/shared/invalid—cache coherency protocol
MFG Manufacturing revision tag
MJREV Major processor design revision indicator
MMU Memory management unit
MNREV Minor processor design revision indicator
MQ MQ register
msb Most-significant bit
MSB Most-significant byte
MSR Machine state register
NaN Not a number
NI Non-IEEE mode bit
No-op No operation
NOOPTI No-op the data cache touch instructions
OEA Operating environment architecture
PID Processor identification tag
PIR Processor identification register
PLL Phase-locked loop
POR Power-on reset
POW Power management enable
POWER Performance optimized with enhanced RISC architecture
PR Privilege level
PROC Processor revision tag
PT Processor ID type tag
PTE Page table entry
PTEG Page table entry group

e300 Power Architecture Core Family Reference Manual, Rev. 4

XXX

Freescale Semiconductor

Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning
PVR Processor version register
RAW Read-after-write
RI Recoverable interrupt
RID Resource ID
RISC Reduced instruction set computing
RTL Register transfer language
RWITM Read with intent to modify
SDR1 Register that specifies the page table base address for virtual-to-physical address translation
SE Single-step trace enable
SIG_TYPE Combinational signal type
SMI System management interrupt
SOC System-on-a-chip
SPR Special-purpose register
SR Segment register
SRRO Machine status save/restore register 0
SRR1 Machine status save/restore register 1
SRU System register unit
SVR System version register
T Translation control bit
TAP Test access port
B Time base facility
TBL Time base lower register
TBU Time base upper register
TGPR Temporary GPR remapping
TLB Translation lookaside buffer
TTL Transistor-to-transistor logic
UMM Unsigned immediate value
UISA User instruction set architecture
UTLB Unified translation lookaside buffer
uuT Unit under test
VEA Virtual environment architecture
VPN Virtual page number
w Write-through

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor

XXXi

Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning
WAR Write-after-read
WAW Write-after-write
WIMG Write-through/caching-inhibited/memory-coherency enforced/guarded bits
XATC Extended address transfer code
XER Register used for indicating conditions such as carries and overflows for integer operations

Terminology Conventions

Tableii describes terminology conventions used in this manual.

Table ii. Terminology Conventions

The Architecture Specification

This Manual

Data storage interrupt (DSI)

DSl interrupt

Extended mnemonics

Simplified mnemonics

Fixed-point unit (FXU)

Integer unit (1U)

Instruction storage interrupt (ISI)

ISl interrupt

Interrupt

Interrupt

Privileged mode (or privileged state)

Supervisor-level privilege

Problem mode (or problem state)

User-level privilege

Real address

Physical address

Relocation Translation
Storage (locations) Memory
Storage (the act of) Access
Store in Write back

Store through

Write through

Tableiii describes instruction field notation used in this manual.
Table iii. Instruction Field Conventions

The Architecture Specification Equivalent to:
BA, BB, BT crbA, crbB, crbD (respectively)
BF, BFA crfD, crfS (respectively)

D d

DS ds

FLM FM

e300 Power Architecture Core Family Reference Manual, Rev. 4

XXXii

Freescale Semiconductor

Table iii. Instruction Field Conventions (continued)

The Architecture Specification Equivalent to:

FRA, FRB, FRC, FRT, FRS frA, frB, frC, frD, frS (respectively)
FXM CRM

RA, RB, RT, RS rA, rB, rD, rS (respectively)

SI SIMM

u IMM

ul UIMM

1,000 0...0 (shaded)

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor XXXiii

e300 Power Architecture Core Family Reference Manual, Rev. 4

XXXiV Freescale Semiconductor

Chapter 1
Overview

This chapter provides an overview of featuresfor the embedded microprocessorsin the e300 core family,
which are PowerPC microprocessors built on Power Architecturetechnology. Throughout this chapter, the
terms ‘€300 core’, ‘core’, and ‘ processor’ are used interchangeably. The terms ‘e300c1’, ‘€300c2’,
'e300c3’, and ‘e300c4’ are used when describing an implementation-specific feature or when adifference
exists between different configurations. Theterm ‘€300 is used when describing afeature that pertainsto
the family of €300 processors.

1.1 Overview

This section describes the details of the e300 core, provides a block diagram showing the major functional
units (see Section 3.1.2, “Endian Modes and Byte Ordering”), and briefly describes how these units
interact. All differences between the €300 and previous PowerPC implementations derived from the
MPC603e processor are noted. See Section 1.5, “ Differences Between e300 Coresfor a differences
description of the e300 core configurations.

The €300 core is alow-power implementation of this microprocessor family of reduced instruction set
computing (RISC) microprocessors. The core implements the 32-bit portion of the PowerPC architecture,
which defines 32-bit effective addresses, integer data types of 8, 16, and 32 bits, and floating-point data
types of 32 and 64 bhits.

The coreisasuperscalar processor that can issue and retire as many as three instructions per clock cycle.
Instructions can execute out of program order for increased performance; however, the core makes
completion appear sequential.

The €300 core integrates independent execution units including: an integer unit (1U) afloating-point unit
(FPU), abranch processing unit (BPU), aload/store unit (LSU), and a system register unit (SRU). The
€300c2, e300c3, and €300c4 integrate an additional integer unit for atotal of two IUs. Note that the e300c2
does not include an FPU. The ability to execute instructions in parallel and the use of simpleinstructions
with rapid execution timesyield high efficiency and throughput for e300-core-based systems. Most integer
instructions execute in one clock cycle. The additional 1Us along with enhanced multipliersin the e300c2,
€300c3, and e300c4 improve multiply instructions to a maximum two-cycle latency, a significant
improvement from previous processors. In the e300c1, €300c3, and e300c4 cores, the FPU is pipelined so
a single-precision multiply-add instruction can be issued and completed every clock cycle. The e300c1,
€300c3, and e300c4 cores provide hardware support for all single- and double-precision floating-point
operations for most value representations and all rounding modes.

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 1-1

wr
PRt

Overview

Figure 1-1 shows a block diagram of the e300c1 core.

64-Bit (Two Instructions)

Y

Y

_| Sequential 64-Bit Branch
o Fetcher » Processing
64-Bit Unit
] CTR
CR
Instruction LR
Queue
-
System ‘ ‘
Register 64-Bit (Two Instructions)
Unit — Dispatch Unit |<—
Instruction Unit
\ 64-Bit
L Y s2Bit v 64-Bit y L
Integer GPR File | Load/Store |<_s| FPRFile Floating-
nit o : A Point Unit
/U GP Rename Unit FP Rename
+ Registers Registers
XER L FPSCR
|) |
32-Bit
Completion
Unit y Y
P D MMU I MMU
R -Bi R
SRS | | pear 64-Bit SRS | | igar
Array Array
DTLB ITLB
Power Time Base
Dissipation Counter/
Control Decrementer
Tags 32-Kbyte < Tags 32-Kbyte | |
JTAG/Debug Clock D Cache I Cache
Interface Multiplier \ \ \

Touch Load Buffer

Copy-Back Buffer

Core Interface

32-Bit Address Bus

64-Bit Data Bus

\J

<

Figure 1-1. e300c1 Core Block Diagram

\J

e300 Power Architecture Core Family Reference Manual, Rev. 4

1-2

Freescale Semiconductor

Overview

Figure 1-2 isablock diagram of the e300c2 core. Note that it does not support floating-point operations.

64-Bit (Two Instructions)

Y

[

Touch Load Buffer

Copy-Back Buffer

Core Interface

32-Bit Address Bus

\

_| Sequential 64-Bit Branch
o Fetcher »| Processing
64-Bit Unit
Y CTR
CR
Instruction LR
Queue
-
System ‘
Register 64-Bit
Unit Dispatch Unit |<—
Instruction Unit
\ 64-Bit (Two Instructions)
32-Bit ¢ 64°Bit T
Yy YV Y ¢ f Yy
Integer Integer GPR File Load/Store FPR File
Unit2 Unit1 Uni
GP Rename nit FP Rename
Registers Registers
XER XER
| | | 4
32-Bit
Completion
Unit Y y
P D MMU I MMU
Completes up to SRs 4-Bit SRs
two instructions DBAT 64-Bi IBAT
er clock Arra Arra
P DTLB y ITLB y
Power Time Base
Dissipation Counter/ Tags 16-Kbyte < Tags 16-Kbyte
Control Decrementer D Cache | Cache
Debug/COP | PLL & Clock L \ \
JTAG Interface Multiplier

\

A

64-Bit Data Bus

A

Figure 1-2. e300c2 Core Block Diagram

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor

1-3

Overview

Figure 1-3 shows a block diagram of the e300c3 core. Note that the e€300c3 supports floating-point

operations and includes two integer units.
64-Bit (Two Instructions)

Y
| Sequential 64-Bit Branch
o Fetcher > Processing
64-Bit Unit
) CTR
CR
Instruction LR
Queue
-
System ‘
Register 64-Bit
Unit Dispatch Unit |<—
Instruction Unit
A 64-Bit (Two Instructions)
¢ f 32-Bit ¢ ¢ 64-Bit T ¢
Yy v Y Y Y
Integer Integer GPR File Load/Store FPR File Floating-
Unit2 Unit1 Uni Point Unit
GP Rename nit FP Rename
Registers Registers
XER FPSCR
| | | 1 |
32-Bit
Completion '
Unit \ Y
» D MMU I MMU
Completes up to SRs 4-Bit SRs
two instructions DBAT 64-Bi IBAT
er clock Arra Arra
P DTLB Y ITLB y
Performance Monitor
Power Time Base
Dissipation Counter/ Tags 16-Kbyte < Tags 16-Kbyte | |
Control Decrementer D Cache | Cache
Debug/COP | PLL & Clock I})\ 1
JTAG Interface Multiplier
Y
Touch Load Buffer
Copy-Back Buffer Core Interface
A A
B 32-Bit Address Bus | .
_ 64-Bit Data Bus Y o

Figure 1-3. e300c3 Core Block Diagram

e300 Power Architecture Core Family Reference Manual, Rev. 4

1-4 Freescale Semiconductor

Overview

Figure 1-4 shows a block diagram of the €300c4 core. Note that the e€300c4 supports floating-point

operations and includes two integer units.
64-Bit (Two Instructions)

Y
| Sequential 64-Bit Branch
o Fetcher > Processing
64-Bit Unit
v CTR
CR
Instruction LR
Queue
-
System ‘
Register 64-Bit
Unit Dispatch Unit |<—
Instruction Unit
A 64-Bit (Two Instructions)
¢ f 32-Bit ¢ ¢ 64-Bit T ¢
Yy v Y Y Y
Integer Integer GPR File Load/Store FPR File Floating-
Unit2 Unit1 Uni Point Unit
GP Rename nit FP Rename
Registers Registers
XER FPSCR
| | | 1 |
32-Bit
Completion '
Unit \ Y
» D MMU I MMU
Completes up to SRs 4-Bit SRs
two instructions DBAT 64-Bi IBAT
er clock Arra Arra
P DTLB y ITLB y
Performance Monitor
Power Time Base
Dissipation Counter/ Tags 32-Kbyte - Tags 32-Kbyte | |
Control Decrementer D Cache | Cache
Debug/COP | PLL & Clock I})\ 1
JTAG Interface Multiplier
\/
Touch Load Buffer
Copy-Back Buffer Core Interface
A A
B 32-Bit Address Bus | .
_ 64-Bit Data Bus Y o

Figure 1-4. e300c4 Core Block Diagram

e300 Power Architecture Core Family Reference Manual, Rev. 4

1-5

Freescale Semiconductor

Overview

The €300c1 and €300c4 provide independent, on-chip, 32-Kbyte, eight-way, set-associative,
physically-addressed caches for instructions and data, and on-chip instruction and data memory
management units (MM Us).The e300c2 and €300c3 include 16-Kbyte, four way set-associative
instruction and data caches. The MM Us contain 64-entry, two-way, set-associative, data and instruction
translation lookaside buffers (DTLB and I TLB) that provide support for demand-paged, virtual-memory,
address trand ation, and variable-sized block trandation. The TLBs use aleast recently used (LRU)
replacement algorithm and the caches use a pseudo least recently used algorithm (PLRU).

The core also supports block address trandation through the use of two independent instruction and data
block addresstranslation (IBAT and DBAT) arrays, each containing eight pairs of BATS, an increase from
four pairs of each type of BATs in the G2 core. This increase provides more flexibility in protecting
accesses and providing translation on a segment, block, or page basis for memory accesses and 1/0
accesses. Effective addresses are compared simultaneously with all eight entriesin the BAT array during
block tranglation. In accordance with the PowerPC architecture, if an effective address hitsin boththe TLB
and BAT array, the BAT trandation takes priority.

As part of the coherent system bus (CSB), the e300 core has a 64-bit data bus and a 32-bit address bus.
During normal operation, the e300 core providesathree-state (modified, exclusive, and invalid) coherency
protocol which isacompatible subset of afour-state (modified/exclusive/shared/invalid) MESI protocol.
However, the e300 data cache contains a programmable MESI extension that supports the shared cache
coherency state (smilar to other PowerPC processors). Both protocols operate coherently in systems that
contain four-state caches. The core also supports single-beat and burst data transfers for memory accesses
and supports memory-mapped 1/O operations.

The true little-endian mode is another enhanced capability of the €300 core. Unlike the PowerPC
little-endian mode (which manipulates only the address bits), no longer supported on the e300, the true
little-endian mode actually operates on true little-endian instructions and data from memory.

The critical interrupt is an additional interrupt in the €300 core and has higher priority order than the
system management interrupt. Also, debug features are improved in the e300. Additional SPRG interrupt
handling registers are provided for enhancing flexibility for the operating system.

The e€300c3 and e300c4 include a performance monitor facility that provides the ability to monitor and
count predefined events such as core clocks, missesin theinstruction cache, data cache, or L2 cache, types
of instructions dispatched, mispredicted branches, and other occurrences. The count of such events (which
may be an approximation) can be used to trigger the performance monitor interrupt. Section 1.1.7.5, “Core
Performance Monitor,” describes the operation of the performance monitor diagnostic tool. This
functionality isfully described in Chapter 11, “Performance Monitor of the €300 Core Family Reference
Manual.

e300 Power Architecture Core Family Reference Manual, Rev. 4

1-6 Freescale Semiconductor

1.1.1

Overview

Features

This section describes the mgjor features of the e300 core:

High-performance, superscalar microprocessor core

— Asmany asthree instructionsissued and retired per clock (two instructions plus one branch
instruction)

— Asmany asfiveinstructionsin execution per clock
— Single-cycle execution for most instructions

— Pipelined floating-point unit (FPU) for all single- and double-precision operations (not
included in the e300c2)

Independent execution units and two register files
— Branch processing unit (BPU) featuring static branch prediction

— Two 32-hit integer units (1U) in the €300c2, €300c3, and e300c4. One 32-bit integer unit (1U)
in the e300c1

— FPU based on the IEEE Std 754™ for both single- and double-precision operations

— Load/store unit (LSU) for data transfer between data-cache and general-purpose registers
(GPRs) and floating-point registers (FPRS)

— System register unit (SRU) that executes condition register (CR), special-purpose register
(SPR), and integer add/compare instructions. Add/compare instructions are also executed in
thelUs.

— Thirty-two 32-bit GPRs for integer operands

— Thirty-two 64-bit FPRs for single- or double-precision operands

High instruction and data throughput

— Zero-cycle branch capability (branch folding)

— Programmable static branch prediction on unresolved conditional branches

— Two integer units with enhanced multipliersin thee300c2, €300c3, and e300c4 for increased
integer instruction throughput and a maximum two-cycle latency for multiply instructions

— Instruction fetch unit capable of fetching two instructions per clock from the instruction cache
— A six-entry instruction queue (1Q) that provides lookahead capability
— Independent pipelines with feed-forwarding that reduces data dependencies in hardware

— 32-Kbyte data cache and 32-Kbyte instruction cache with parity—eight-way, set-associative,
physically addressed, PLRU replacement algorithm on the e300c1 and e300c4. 16-Kbyte,
four-way set-associative instruction and data caches on the e300c2 and e300c3.

— Cache write-back or write-through operation programmable on a per-page or per-block basis
— Features for instruction and data cache locking and protection
— BPU that performs CR lookahead operations

— Address trandation facilities for 4-Kbyte page size, variable block size, and 256-Mbyte
segment size

— A 64-entry, two-way, set-associative ITLB and DTLB
— Eight-entry data and instruction BAT arrays providing 128-Kbyte to 256-Mbyte blocks

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 1-7

|
y

'
A

Overview

— Software table search operations and updates supported through fast trap mechanism
— 52-bit virtual address; 32-bit physical address
Facilities for enhanced system performance

— A 64-bit split-transaction internal data bus interface to the coherent system bus (CSB) with
burst transfers

— Support for one-level address pipelining on the CSB interface

— Support of core complex bus (CCB) for additional bus features on the €300c4. Note that this
feature may not be supported on all devices using the e300c4.

— True little-endian mode for compatibility with other true little-endian devices
— Critical interrupt support
— Hardware support for misaligned little-endian accesses
Integrated power management
— Internal processor/bus clock multiplier ratios
— Three power-saving modes: doze, nap, and sleep
— Automatic dynamic power reduction when internal functional unitsareidle
In-system testability and debugging features through JTAG boundary-scan capability

Features specific to the e300 core not present on the G2 processors follow:

Enhancements to the register set
— The e300 core has one more HIDO bit than the G2:
— The enable cache parity checking (ECPE) bit, HIDO[1], gives the €300 core the ability to

enable the taking of a machine check interrupt based on the detection of acache parity error

Enhancements to cache implementation

— 32-Kbyte data cache and 32-Kbyte instruction cache with parity—eight-way, set-associative,
physically addressed, PLRU replacement algorithm on the e300c1 and e300c4. 16-Kbyte,
four-way set-associative instruction and data caches on the e300c2 and e300c3.

— Full parity checking is performed on both instruction and data cache memory arrays

— Lockable L1 instruction and data caches—entire cache or on a per-way basisup to 7 of 8 ways

on the €300c1 and e300c4 and 3 of 4 ways on the €300c2 and €300c3

— New icbt instruction supports initialization of instruction cache

— Data cache supports four-state MESI coherency protocol

— Theinstruction cacheis blocked only until the critical load completes (hit under reloads
alowed)

— Instruction cancel mechanism improves utilization of instruction cache by supporting
hits-under-cancel s and misses-under-cancels.

— Thecritical doubleword issimultaneously written to the cache and forwarded to the requesting

unit, thus minimizing stalls due to load delays.
— Data cache queue sharing makes cast-outs and snoop pushes more efficient

e300 Power Architecture Core Family Reference Manual, Rev. 4

1-8

Freescale Semiconductor

Overview

— Provides for an optional data cache operation broadcast feature (enabled by HIDO[ABE]) that
allowsfor coherent system management. All of the datacache control instructions, except dcbz
(dchi, dcbf, and dcbst) require that HIDO[ABE] be enabled to broadcast.

— Instruction fetch burst feature allows all instruction fetches from caching-inhibited space to be
performed on the bus as burst transactions

* Interrupts

— The e300 core offers hardware support for misaligned little-endian accesses. Little-endian
load/store accesses that are not on aword boundary, except for strings and multiples, generate
interrupts under the same circumstances as big-endian accesses.

— The €300 core supports true little-endian mode to minimize the impact on software porting
from true little-endian systems.

— Aninput interrupt signal, cint, isprovided to trigger the critical interrupt exception on the e300
core. Thepm_event_ininput signal can be used by the performance monitor countersto trigger
an interrupt upon overflow on the e300c3 and e300c4.

» Busclock—PLL configuration signalsinclude seven signalsfor settings and control: pll_cfg[0:6].
» Debug features

— Breakpoint status recorded in DBCR and IBCR control registers

— Two signals for the debug interface: stopped and ext_halt

— Performance monitor registers for system analysis in the e300c3 and e300c4

, Figure 1-2 Figure 1-3, Figure 1-4 provide block diagrams of the €300 cores that show how the execution
units—IU, FPU, BPU, LSU, and SRU—operate independently and in parallel. It should be noted that this
isaconceptual diagram and does not attempt to show how these features are physically implemented on
the device.

The €300 core provides address trand ation and protection facilities, including an ITLB, DTLB, and
instruction and data BAT arrays. Instruction fetching and issuing are handled in the instruction unit.
Translation of addresses for cache or external memory accesses are handled by the MMUs. Both units are
discussed in more detail in Section 1.1.2, “Instruction Unit,” and Section 1.1.5.1, “Memory Management
Units (MMUs).”

1.1.2 Instruction Unit

Asshown in Figure 1-1, Figure 1-2, Figure 1-3, Figure 1-4, the €300 core instruction unit, containing a
fetch unit, instruction queue, dispatch unit, and BPU, provides centralized control of instruction flow to
the execution units. The instruction unit determines the address of the next instruction to be fetched based
on information from the sequential fetcher and from the BPU.

Theinstruction unit fetchestheinstructionsfrom the instruction cacheinto theinstruction queue. The BPU
receives branch instructions from the fetcher and uses static branch prediction to allow fetching from a
predicted instruction stream while a conditional branch is evaluated. The BPU folds out for unconditional
branch instructions and conditional branch instructions unaffected by instructions in the execution
pipeline.

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 1-9

Overview

Instructions issued beyond a predicted branch cannot complete execution until the branch is resolved,
preserving the programming model of sequential execution. If any of these are branch instructions, they
are decoded but not issued. Instructions to be executed by the FPU, 1U, LSU, and SRU are issued and
allowed to progress up to the register write-back stage. Write-back is allowed when a correctly predicted
branch is resolved, and execution continues along the predicted path.

If branch predictionisincorrect, theinstruction unit flushes all predicted path instructions, and instructions
areissued from the correct path.

1.1.21 Instruction Queue and Dispatch Unit

The instruction queue (1Q), shown in Figure 1-1, Figure 1-2, Figure 1-3, Figure 1-4, holds as many as six
instructionsand loads up to two instructions from the instruction unit during asingle cycle. Theinstruction
fetch unit continuoudly loads as many instructions as space in the IQ allows. Instructions are dispatched to
their respective execution units from the dispatch unit at a maximum rate of two instructions per cycle.
Dispatching isfacilitated to the IUs, FPU, LSU, and SRU by the provision of areservation station at each
unit. Thedispatch unit performs source and destination register dependency checking, determinesdispatch
serializations, and inhibits subsequent instruction dispatching as required.

For amore detailed overview of instruction dispatch, see Section 1.3.5, “Instruction Timing.”

1.1.2.2 Branch Processing Unit (BPU)

The BPU receives branch instructions from the fetch unit and performs CR lookahead operations on
conditional branches to resolve them early, achieving the effect of a zero-cycle branch in many cases.

The BPU usesabit in theinstruction encoding to predict the direction of the conditional branch. Therefore,
when an unresolved conditional branch instruction is encountered, the core fetches instructions from the
predicted target stream until the conditional branch is resolved.

The BPU contains an adder to compute branch target addresses and three user-control registers. the link
register (LR), the count register (CTR), and the conditional register (CR). The BPU calcul ates the return
pointer for sub-routine calls and savesit into the LR for certain types of branch instructions. The LR also
contains the branch target address for the Branch Conditional to Link Register (bclrx) instruction. The
CTR containsthe branch target address for the Branch Conditional to Count Register (bcctr x) instruction.
The contents of the LR and CTR can be copied to or from any GPR. Because the BPU uses dedicated
registersrather than GPRs or FPRs, execution of branch instructionsislargely independent from execution
of integer and floating-point instructions.

1.1.3 Independent Execution Units

The PowerPC architecture’s support for independent execution units alows implementation of processors
with out-of-order instruction execution. For example, because branch instructions do not depend on GPRs
or FPRs, branches can often be resolved early, eliminating stalls caused by taken branches.

The four other execution units and the completion unit are described in the following sections.

e300 Power Architecture Core Family Reference Manual, Rev. 4

1-10 Freescale Semiconductor

Overview

1.1.3.1 Integer Unit (IU)

The IU executes all integer instructions. The [U executes one integer instruction at atime, performing
computations with its arithmetic logic unit (ALU), multiplier, divider, and XER register. Most integer
instructions are single-cycleinstructions. The 32 GPRs hold integer operands. Stalls due to contention for
GPRs are minimized by the automatic allocation of rename registers. The core writes the contents of the
rename registersto the appropriate GPR when integer instructions are retired by the completion unit. The
€300c2, e300c3, and e300c4 provide two integer units for greater integer instruction throughput along
with enhanced multipliersin each IU for faster multiply-instruction execution.

1.1.3.2 Floating-Point Unit (FPU)

The FPU contains a single-precision multiply-add array and the floating-point status and control register
(FPSCR). The multiply-add array allows the core to efficiently implement multiply and multiply-add
operations. The FPU is pipelined so that single- and double-precision instructions can be issued
back-to-back. The 32 FPRs are provided to support floating-point operations. Stalls due to contention for
FPRs are minimized by the automatic allocation of rename registers. The core writes the contents of the
renameregistersto the appropriate FPR when floating-point instructions are retired by the compl etion unit.
The €300c2 does not include an FPU and does not support floating-point operations.

The €300c1, e300c3, and €300c4 cores support al floating-point data types based on the IEEE 754
standard (normalized, denormalized, NaN, zero, and infinity) in hardware, eliminating the latency incurred
by software interrupt routines.

1.1.3.3 Load/Store Unit (LSU)

The LSU executes all load and store instructions and provides the data transfer interface between the
GPRs, FPRs, and the cache/memory subsystem. The L SU cal cul ates effective addresses, performs data
alignment, and provides sequencing for load/store string and multiple instructions.

Load and store instructions areissued and executed in program order; however, the memory accesses can
occur out of order. Synchronizing instructions are provided to enforce strict ordering.

Cacheable loads, when free of data bus dependencies, can execute out of order with a maximum
throughput of one per cycle and with atwo-cycle total latency. Data returned from the cacheisheld in a
rename register until the completion logic commitsthe valueto a GPR or FPR. Stores cannot be executed
in a predicted manner and are held in the store queue until the completion logic signals that the store
operation isto be completed to memory. The core executes storeinstructions with a maximum throughput
of one per cycle and with athree-cycle total latency. Thetime required to perform the actual load or store
depends on whether the operation involves the cache, system memory, or an I/O device.

1.1.34 System Register Unit (SRU)

The SRU executes various system-level instructions, including condition register logical operations and
move to/from special-purpose register instructions. It also executes integer add/compare instructions. In
order to maintain system state, most instructions executed by the SRU are completion-serialized; that is,
theinstruction is held for execution in the SRU until al prior instructions issued have completed. Results

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 1-11

Overview

from completion-serialized instructions executed by the SRU are not available or forwarded for
subsequent instructions until they complete.

1.1.4 Completion Unit

The completion unit tracks instructions in program order from dispatch through execution and then
completes. Compl eting an instruction commitsthe core to any architectural register changes caused by that
instruction. In-order completion ensures the correct architectural state when the core must recover from a
mispredicted branch or an interrupt.

Instruction state and other information required for completion is kept in afive-entry FIFO completion
gueue. A single completion queue entry is allocated for each instruction once it enters the execution unit
from the dispatch unit. An available completion queue entry isarequired resource for dispatch; if no
completion entry is available, dispatch stalls. A maximum of two instructions per cycle are completed in
order from the queue.

1.1.5 Memory Subsystem Support

The core provides separate instruction and data caches and MMUs. The core also provides an efficient
processor bus interface to facilitate access to main memory and other bus subsystems. The memory
subsystem support functions are described in the following sections.

1.1.5.1 Memory Management Units (MMUs)

The core MMUs support up to 4 Petabytes (2°2) of virtual memory and 4 Gigabytes (232) of physical
memory (referred to asreal memory in the architecture specification) for instruction and data. The MM Us
also control access privileges for these spaces on block and page granularities. Referenced and changed
status is maintained by the processor for each page to assist implementation of a demand-paged virtual
memory system. Note that software assistanceis required for the device to maintain reference and changed
status. A key bit isimplemented to provide information about memory protection violations prior to page
table search operations.

The LSU calculates effective addresses for dataloads and stores, performs data alignment to and from
cache memory, and provides the sequencing for load and store string and multiple word instructions. The
instruction unit calcul ates effective addresses for instruction fetching.

After an EA isgenerated, itshigher-order bitsare translated by the appropriate MMU into physical address
bits. The lower-order EA bits are the same on the physical address which are directed to the on-chip cache
and formed the index into afour-way set-associative tag array. After translating the address, the MMU
passes the higher-order physical address bits to the cache and the cache lookup compl etes. For
caching-inhibited accesses or accesses that missin the cache, the untrand ated lower-order address bits are
concatenated with the trandated higher-order address bits; the resulting 32-bit physical addressis then
used by the memory unit and the core interface to access external memory.

The MMU also directs the address translation and enforces the protection hierarchy programmed by the
operating system in relation to the supervisor/user privilege level of the access and in relation to whether
the accessisaload or store.

e300 Power Architecture Core Family Reference Manual, Rev. 4

1-12 Freescale Semiconductor

Overview

For instruction fetches, the IMMU looks for the addressin the ITLB and in the IBAT array. If an address
hits both, the IBAT array translation is used. Data accesses cause alookup inthe DTLB and DBAT array.
In most cases, the translation isin a TLB and the physical address bits are available to the on-chip cache.

The €300 core implements four more IBAT and four more DBAT entries than the G2.

When the EA missesin the TLBS, the core provides hardware assistance for software to perform a search
of the translation tables in memory. The hardware assist consists of the following features:

* Automatic storage of the missed effective address in IMISS and DMISS

» Automatic generation of the primary and secondary hashed real addresses of the page-table entry
group (PTEG), which are readable from the HASH1 and HASH2 register locations.

The HASH data is generated from the contents of the IMISS or DMISS register. The register that
is selected depends on the miss (instruction or data) that was last acknowledged.

* Automatic generation of the first word of the page table entry (PTE) of the tables being searched
» A real page address (RPA) register that matches the format of the lower word of the PTE

* TLB accessinstructions (tIbli and tlbld) that are used to load an address translation into the
instruction or data TLBs

» Shadow registers for GPRO—GPRS3 that allow miss code to execute without corrupting the state of
any of the existing GPRs. Shadow registers are used only for servicinga TLB miss.

See Section 1.3.4.2, “Implementation-Specific Memory Management,” for more information about
memory management for the core.

1.1.5.2 Cache Units

The €300c1 and e300c4 provide independent, 32-Kbyte, eight-way, set-associative, instruction and data
caches. The e300c2 and €300c3 provide 16-Kbyte, four-way set-associative instruction and data caches.
The cache block is 32 bytes long. The caches adhere to awrite-back policy, but the e300 core allows
control of cacheability, write policy, and memory coherency at the page and block levels. The caches use
apseudo LRU replacement policy.

Asshown in Figure 1-1, Figure 1-2, Figure 1-3 Figure 1-4, the caches provide a 64-bit interface to the
instruction fetch unit and L SU. The surrounding logic selects, organizes, and forwards the requested
information to the requesting unit. Write operations to the cache can be performed on a byte basis, and a
compl ete read-modify-write operation to the cache can occur in each cycle.

The load/store and instruction fetch units provide the caches with the address of the data or instruction to
be fetched. In the case of a cache hit, the cache returns two words to the requesting unit.

Because the data cache tags are single-ported, simultaneous |oad/store and Snoop accesses cause resource
contention. Snoop accesses have the highest priority and are given first accessto the tags, unlessthe snoop
access coincides with atag write; in this case the snoop is retried and must rearbitrate for cache access.
Loads or stores deferred due to snoop accesses are performed on the clock cycle following the snoop.

The e300 core includes a new instruction cancel extension. The instruction cancel extension improves
utilization of the instruction cache during cancel operations. It allows anew instruction fetch to beissued
to the cache or to the bus if a canceled instruction fetch is pending or active on the bus. This supports
hit-under-cancel and miss-under-cancel instruction fetch operations.

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 1-13

Overview

1.1.6 Bus Interface Unit (BIU)

Because the caches are on-chip, write-back caches, the most common transactions are burst-read memory
operations, burst-write memory operations, and single-beat (noncacheable or write-through) memory read
and write operations. There can aso be address-only operations, variants of the burst and single-beat
operations, (for example, global memory operationsthat are snooped and atomic memory operations), and
address retry activity (for example, when a snooped read access hits a modified cache block).

Memory accesses can occur in single-beat (1-8 bytes) and four-beat burst (32 bytes) data transfers on the
64-bit data bus. The address and data buses operate independently to support pipelining and split
transactions during memory accesses.

The €300 bus interface unit (BIU) has been enhanced to allow a pipeline slot to become available once a
previous transaction has been granted the data bus (that is, as early as when the data tenure starts rather
than after the data tenure compl etes), thus allowing for greater bus utilization in systems that support it.
Thisis sometimes referred to as 1 1/2-level pipelining.

Typically, memory accesses are weakly ordered, meaning that sequences of operations, including
load/store string and multiple instructions, do not necessarily completein the order they begin. Thisweak
ordering maximizes the efficiency of the bus without sacrificing coherency of the data. The core allows
read operations to precede store operations (except when a dependency exists, or in cases where a
noncacheable access is performed), and provides support for awrite operation to proceed a previousy
gueued read data tenure (for example, allowing a snoop push to be enveloped by the address and data
tenures of aread operation). Because the processor can dynamically optimize run-time ordering of
load/store traffic, overall performance isimproved.

1.1.7 System Support Functions

The €300 core implements several support functions that include power management, time
base/decrementer registers for system timing tasks, a JTAG (based on |EEE Std 1149.1™) interface,
hardware debug, and a phase-locked loop (PLL) clock multiplier. These system support functions are
described in the following sections.

1.1.71 Power Management

The e300 core providesfour power modes, selectable by setting the appropriate control bitsinthe machine
state register (MSR) and the hardware implementation register O (HIDO). When entering into a power
mode other than full-power, the core will request entry viaagreq signal and will only enter another power
mode after an acknowledge (gack) is received. The four power modes are as follows:

* Full-power—Thisisthe default power state of the €300 core. The €300 core isfully powered and
the internal functional units are operating at the full processor clock speed. If the dynamic power
management mode is enabled, functional units that areidle will automatically enter alow-power
state without affecting performance, software execution, or external hardware.

» Doze—All the functional units of the e300 core are disabled except for the time base/decrementer
registers and the bus snooping logic. When the processor isin doze mode, an external
asynchronous interrupt, system management interrupt, decrementer interrupt, hard or soft reset, or
machine check brings the e300 core into the full-power state. The corein doze mode maintainsthe

e300 Power Architecture Core Family Reference Manual, Rev. 4

1-14 Freescale Semiconductor

Overview

PLL inafully-powered state and locked to the system external clock input (sysclk), so atransition
to the full-power state takes only afew processor clock cycles.

* Nap—The nap mode further reduces power consumption by disabling bus snooping, leaving only
the time base register and the PLL in a powered state. The core returns to the full-power state on
receipt of an external asynchronousinterrupt, system management interrupt, decrementer interrupt,
hard or soft reset, or machine check input (mcp) signal. A return to full-power state from anap state
takes only afew processor clock cycles.

* Sleep—Sleep mode reduces power consumption to a minimum by disabling all internal functional
units; then external system logic may disable the PLL and sysclk. Returning the core to the
full-power state requires the enabling of the PLL and sysclk, followed by the assertion of an
external asynchronous interrupt, system management interrupt, hard or soft reset, or mcp signal
after the time required to relock the PLL.

1.1.7.2 Time Base/Decrementer

Thetime baseisa64-bit register (accessed as two 32-bit registers) that isincremented once every four bus
clock cycles; external control of the time base is provided through the time base/decrementer clock base
enable (tben) signal. The decrementer is a 32-bit register that generates a decrementer interrupt after a
programmabl e delay. The contents of the decrementer register are decremented once every four bus clock
cycles, and the decrementer interrupt is generated as the count passes through zero.

1.1.7.3 JTAG Test and Debug Interface

The core provides JTAG and hardware debug functions for facilitating board testing and chip debugging.
The JTAG test interface (based on |EEE 1149.1) provides a means for boundary-scan testing of the core
and the attached system logic. The hardware debug function accesses the JTAG test port, providing a
means for executing test routines and facilitating chip and software debugging.

All instruction and data address breakpoints are accessible in the IBCR and DBCR. See Section 1.3.7,
“Debug Features,” for more information.

The stopped signal allows observation of theinternal clock state, and ext_halt can be used to force the core
into a halted state. See Chapter 5, “Interrupts and Exceptions,” for more information on test signals.

1.1.7.4 Clock Multiplier

The internal clocking of the e300 core is generated from and synchronized to the external clock signal,
sysclk, by means of avoltage-controlled, oscillator-based PLL. The PLL provides programmable internal
processor clock multiplier ratios which multiply the externally supplied clock frequency. The busclock is
the same frequency and is synchronous with sysclk. The configuration of the PLL can beread by software
from the hardware implementation register 1 (HID1).

1.1.75 Core Performance Monitor

The performance monitor provides the ability to count predefined events and processor clocks associated
with particular operations, such as cache misses, mispredicted branches, or the number of cycles an
execution unit stalls. The count of such events can be used to trigger the performance monitor interrupt.

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 1-15

Overview

The performance monitor can be used to do the following:

* Improve system performance by monitoring software execution and then recoding algorithms for
more efficiency. For example, memory hierarchy behavior can be monitored and analyzed to
optimize task scheduling or data distribution algorithms.

» Characterize processors in environments not easily characterized by benchmarking.

» Help system developers bring up and debug their systems.

The performance monitor uses the following resources:
* The performance monitor mark bit in the MSR (MSR[PMM]). This bit controls which programs
are monitored.
» The move to/from performance monitor registers (PMR) instructions, mtpmr and mfpmr.
* Theexternal coreinput, pm_event_in.
* PMRs:

— The performance monitor counter registers (PMCO-PMC3) are 32-bit counters used to count
software-sel ectable events. Each counter counts up to 128 events. UPM CO—UPMC3 provide
user-level read access to these registers. They are identified in Table 1-5.

— The performance monitor global control register (PMGCO) controls the counting of
performance monitor events. It takes priority over al other performance monitor control
registers. UPMGCO provides user-level read access to PM GCO.

— The performance monitor local control registers (PMLCa0—-PML Ca3) control each individual
performance monitor counter. Each counter has a corresponding PM L Caregister.
UPMLCa0-UPML Ca3 provide user-level read access to PMLCa0-PML Ca3).

* The performance monitor interrupt is assigned to interrupt vector OxOFOO.

Software communication with the performance monitor is achieved through PMRsrather than SPRs. The
PMRs are used for enabling conditions that can trigger the performance monitor interrupt.

1.2 PowerPC Architecture Implementation

The PowerPC architecture consists of the following layers, and adherence to the PowerPC architecture can
be measured in terms of which of the following levels of the architecture isimplemented:

» User instruction set architecture (Ul SA)—Defines the base user-level instruction set, user-level
registers, data types, floating-point interrupt model, memory models for a uniprocessor
environment, and programming mode! for a uniprocessor environment.

» Virtual environment architecture (V EA)—Describes the memory model for a multiprocessor
environment, defines cache control instructions, and describes other aspects of virtual
environments. Implementations that conform to the VEA also adhere to the UISA but may not
necessarily adhere to the OEA.

* Operating environment architecture (OEA)—Defines the memory management model,
supervisor-level registers, synchronization requirements, and interrupt model. |mplementations
that conform to the OEA also adhere to the UISA and VEA.

The PowerPC architecture allows awide range of designs for such features as cache and core interface
implementations.

e300 Power Architecture Core Family Reference Manual, Rev. 4

1-16 Freescale Semiconductor

Overview

1.3 Implementation-Specific Information

This section describes the PowerPC architecture in general and specific details about the implementation
of the e300 core as alow-power, 32-bit member of this PowerPC core family. The main topics addressed
areasfollows:

» Section 1.3.1, “Register Model,” describesthe registersfor the operating environment architecture
common among €300 cores that implement the PowerPC architecture and describes the
programming model. It also describes the additional registersthat are unique to the core.

e Section 1.3.1.4, “Instruction Set and Addressing Modes,” describes the PowerPC instruction set
and addressing modes for the OEA, and defines and describes the instructions implemented in the
core.

» Section 1.3.2, “Cache Implementation,” describes the cache model that is defined generally for
coresthat implement the PowerPC architecture by the VEA. It also provides specific detail s about
the e300 core cache implementation.

» Section 1.3.3, “Interrupt Model,” describes the interrupt model of the OEA and the differencesin
the core interrupt model.

» Section 1.3.4, “Memory Management,” describes generally the conventions for memory
management among these cores. This section also describes the core implementation of the 32-bit
PowerPC memory management specification.

» Section 1.3.5, “Instruction Timing,” provides agenera description of the instruction timing
provided by the superscalar, parallel execution supported by the PowerPC architecture and the
€300 core.

* Section 1.1.6, “Bus Interface Unit (BIU),” describes the signals implemented on the core.

The €300 core is a high-performance, superscalar processor core. The PowerPC architecture allows
optimizing compilersto schedule instructions to maximize performance through efficient use of the
PowerPC instruction set and register model. The multiple, independent execution unitsallow compilersto
optimize instruction throughput. Compilers that take advantage of the flexibility of the PowerPC
architecture can additionally optimize system performance.

The following sections summarize the features of the core, including both those that are defined by the
architecture and those that are unique to the various core implementations.

Specific features of the core arelisted in Section 1.1.1, “Features.”

1.3.1 Register Model

The PowerPC architecture defines register-to-register operations for most computational instructions.
Source operandsfor these instructions are accessed from the registers or are provided asimmediate values
embedded in the instruction opcode. The three-register instruction format allows specification of atarget
register distinct from the two-source operands. Load and store instructions transfer data between registers
and memory.

The e300 core has two levels of privilege: supervisor mode of operation (typically used by the operating
system) and user mode of operation (used by the application software). The programming models

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 1-17

Overview

incorporate 32 GPRs, 32 FPRs, special-purpose registers (SPRs), and several miscellaneous registers.
Each core aso has its own unique set of hardware implementation (HID) registers.

Having access to privileged instructions, registers, and other resources allows the operating system to
control the application environment (providing virtual memory and protecting operating system and
critical machine resources). Instructions that control the state of the e300 core, the address trandation
mechanism, and supervisor registers can be executed only when the coreis operating in supervisor mode.

Figure 1-5 shows al the core registers available at the user and supervisor level. The numbersto theright
of the SPRsindicate the number that is used in the syntax of theinstruction operands for the moveto/from
SPR instructions.

e300 Power Architecture Core Family Reference Manual, Rev. 4

1-18 Freescale Semiconductor

Overview

/

General-Purpose
Registers (32-Bit)

GPRO
GPR1

GPR31

Floating-Point

Registers (64-Bit)
FPRO
FPR1

L]
L]
L]

FPR31

CR

TBU

(read-only)
UPMGCO

UPMCs

UPMLCas

/ USER MODEL \

Condition Register

Floating-Point Status
and Control Register

SPR268
SPR269
Performance Monitor'

PMR384
PMR 0-3
PMR 128-131

SUPERVISOR MODEL

Hardware Machine State System/Processor
Implementation Register Version Register
Registers MSR SVR' |SPR286
HIDO SPR 1008 Memory Base Address PVR SPR 287
HID1 ' | SPR 1009 Register
HID2 ! SPR 1011 SPR 311
Instruction BAT Memory Management RegistersS oftware Table
Registers Data BAT Registers Search Registers
IBATOU | SPR 528 DBATOU SPR 536 DMISS SPR 976
IBATOL | SPR 529 DBATOL SPR 537 DCMP SPR 977
IBAT1U | SPR 530 DBAT1U | SPR 538 HASH1 SPR 978
IBATIL | SPR 531 DBATIL | SPR 539 HASH2 | SPR 979
IBAT2U | SPR 532 DBAT2U | SPR 540 IMISS | SPR 980
IBAT2L | SPR 533 DBAT2L | SPR 541 ICMP__ | SPR 981
IBAT3U | SPR534 DBAT3U | SPR 542 RPA SPR 982
IBAT3L | SPR 535 DBAT3L | SPR 543 SDR1
IBAT4U ' | SPR 560 DBAT4U ' | SPR 568 SPR 25
IBAT4L" | SPR 561 DBAT4L ' | SPR 569
IBATSU ' | SPR 562 DBAT5U ' | SPR 570 Segment Registers
IBATSL' | SPR 563 DBAT5L ' | SPR 571 SRO
IBAT6U ' | SPR 564 DBAT6U ' | SPR 572 SR1
IBAT6L ' | SPR 565 DBAT6L ' | SPR 573 E
IBAT7U ! | SPR 566 DBAT7U ' | SPR 574 SR15
IBAT7L ' | SPR 567 DBAT7L' | SPR575

Configuration Registers

Interrupt Handling Registers

SPRGs

SPRGO

SPRGH1

SPRG2

SPRG3

SPRG4 !

SPRG5 !

SPRG6 '

SPRG7!

Registers
CSRRo '

_/

o

CSRR1!

SPR 272
SPR 273
SPR 274
SPR 275
SPR 276
SPR 277
SPR 278
SPR 279

Critical Interrupt

SPR 58
SPR 59

DSISR

Save and Restore Registers

SRRO SPR 26
SRR1 SPR 27
Data Address Register

SPR19 Breakpoint Registers

Instruction/Data Address
Breakpoint Register

IABR |SPR 1010
IABR2' |SPR 1018
DABR™ |SPR 1013
DABR2" |SPR 317

~

Miscellaneous
Registers

Decrementer
DEC SPR 22

Time Base Facility
(for Writing)

TBL SPR 284
TBU SPR 285

Instruction/Data Address
Breakpoint Control

IBCR! |SPR 309
DBCR! |SPR 310

Performance Monitor!

PMR 400
PMR 16-19

' These registers are e300 core implementation-specific (not defined by the PowerPC architecture).

Figure 1-5. e300 Programming Model—Registers

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor

Overview

The following sections describe the e300-core-impl ementation-specific features as they apply to registers.

1.3.1.1 UISA Registers
UISA registers are user-level registers that include the following.

1.3.1.11 General-Purpose Registers (GPRs)

The PowerPC architecture defines 32 user-level GPRsthat are 32 bitswidein 32-bit cores. The GPRs serve
as the data source or destination for all integer instructions.

1.3.1.1.2 Floating-Point Registers (FPRs)

The PowerPC architecture also defines 32 user-level, 64-bit FPRs. The FPRs serve as the data source or
destination for floating-point instructions. These registers can contain data objects of either single- or
double-precision floating-point formats. FPRs are not included in the e300c2 core.

1.3.1.1.3 Condition Register (CR)

The CR isa 32-bit user-level register that provides a mechanism for testing and branching. It consists of
eight 4-bit fields that reflect the results of certain operations, such as move, integer and floating-point
comparisons, arithmetic, and logical operations.

1.3.1.14 Floating-Point Status and Control Register (FPSCR)

The user-level FPSCR contains al floating-point exception signal bits, exception summary bits, exception
enable bits, and rounding control bits needed for compliance with the | EEE 754 standard. FPSCRs are not
included in the €300c2 core.

1.3.1.1.5 User-Level SPRs

The PowerPC architecture defines numerous special purpose registers that serve a variety of functions,
such as providing controls, indicating status, configuring the core, and performing special operations.
During normal execution, a program can access the registers, as shown in Figure 1-5, depending on the
program’ s access privilege (supervisor or user, determined by the privilege-level bit, MSR[PR]). Note that
GPRs and FPRs are accessed through operands that are part of the instructions. Access to registers can be
explicit (that is, through the use of specific instructionsfor that purpose such as Move to Specia -Purpose
Register (mtspr) and Move from Special -Purpose Register (mfspr) instructions) or implicit, asthe part of
the execution of aninstruction. Someregisters are accessed both explicitly and implicitly. Inthe e300 core,
all SPRs are 32 bitswide.

The following SPRs are accessible by user-level software:

» Linkregister (LR)—The LR can be used to provide the branch target address and to hold the return
address after branch and link instructions. The LR is 32 bits wide in 32-bit implementations.

* Count register (CTR)—The CTR is decremented and tested automatically as a result of
branch-and-count instructions. The CTR is 32 bits wide in 32-bit implementations.

e300 Power Architecture Core Family Reference Manual, Rev. 4

1-20 Freescale Semiconductor

Overview

* XERregister—The 32-bit XER contains the summary overflow bit, integer carry bit, overflow bit,
and afield specifying the number of bytesto be transferred by aL oad String Word Indexed (Iswx)
or Store String Word Indexed (stswx) instruction.

1.3.1.2 VEA Registers

The VEA introducesthetimebasefacility (TB) for reading. The TB isa64-bit register pair whose contents
are incremented once every four core input clock cycles. The TB consists of two 32-bit registers—time
base upper (TBU) and time base lower (TBL). Note that the time base registers are read-only in user state.

1.3.1.3 OEA Registers

OEA registers are supervisor-level registers that include the following.

1.3.1.31 Machine State Register (MISR)

The MSR is a supervisor-level register that defines the state of the core. The contents of this register are
saved when an interrupt is taken, and restored when the interrupt handling completes. A critical interrupt
interrupt is taken in the e300 core when the cint signal is asserted and MSR[CE] is set. The e300 core
implements the MSR as a 32-bit register.

1.3.1.3.2 Segment Registers (SRs)

For memory management, 32-bit processors implement sixteen 32-bit SRs. To speed access, the core
implements the SRs as two arrays: amain array, for data memory accesses, and a shadow array, for
instruction memory accesses. L oading a segment entry with the Move to Segment Register (mtsr)
instruction loads both arrays.

1.3.1.3.3 Supervisor-Level SPRs

The e300 core, likethe G2_L E core, has additional supervisor-level SPRs, which are shown in Figure 1-5.
Two critical interrupt SPRs (CSRRO and CSRR1), eight SPRGs (SPRGO-SPRG7), eight pairs of
instruction BATs (IBATO-IBAT7), eight pairs of data BATs (DBATO-DBAT?7), one system version
register (SVR), one system memory base address (MBAR), one instruction address breakpoint control
(IBCR), one data address breakpoint control (DBCR), a new instruction breakpoint register (IABR2), and
two data address breakpoint registers (DABR and DABR?2) are integrated into the core.

Supervisor-level SPRsinclude the following:

» The DSISR definesthe cause of data access and alignment interrupts. The cause of aDSI interrupt
for adata breakpoint (match with DABR and DABR2) can be determined by the value of the
DSISR[DABR] bit (bit 9).

» Thedataaddressregister (DAR) holdsthe address of an access after an alignment or DSI interrupt.
For example, it contains the address of the breakpoint match condition.

* The decrementer register (DEC) is a 32-bit decrementing counter that provides a mechanism for
causing a decrementer interrupt after a programmable delay.

» SDRI1 specifies the page table format used in virtual-to-physical address trandation for pages.
(Note that physical addressisreferred to as ‘real address’ in the architecture specification.)

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 1-21

|
y

'
A

Overview

The machine status save/restore register 0 (SRRO) is used for saving the address of the instruction
that caused the interrupt, and the address to return to when a Return from Interrupt (rfi) instruction
IS executed.

The machine status save/restore register 1 (SRR1) isused to save machine status on interrupts and
to restore machine status when an rfi instruction is executed.

The SPRGO-SPRGY registers are provided for operating system use. They reduce the latency that
may be incurred in the saving of registers to memory while in a handler. Note that the e300
implements four more SPRGs than the G2 (SPRGO-SPRG3).

The time baseregister (TB) is a64-bit register that maintains the time of day and operatesinterval
timers. It consists of two 32-hit fields: time base upper (TBU) and time base lower (TBL).

The processor version register (PVR) isaread-only register that identifiesthe version (model) and
revision level of the processor. See Table 1-7 for the version and revision level of the PVR for the
€300 processor core.

Block addresstrandation (BAT) arrays—The PowerPC architecture defines 16 BAT registers. The
€300 coreincludes atotal of eight pairs of DBAT and eight pairs of IBAT registers. See Figure 1-5
for alist of the SPR numbers for the BAT arrays.

The following supervisor-level SPRs are implementation-specific (not defined in the PowerPC
architecture):

DMISS and IMISS are read-only registers that are loaded automatically on an instruction or data
TLB miss.

HASH1 and HASH2 contain the physical addresses of the primary and secondary page table entry
groups (PTEGS).

ICMP and DCMP contain aduplicate of the first word in the page table entry (PTE) for which the
table search islooking.

The required physical address (RPA) register is loaded by the core with the second word of the
correct PTE during a page table search.

The system version register (SVR) is available on the €300 core, which identifies the specific
version (model) and revision level of the system-on-a-chip (SOC) integration.

System memory base address (MBAR) is an implementation-specific register available on the
€300 core. It supports atemporary storage for the system-level memory map.

Theinstruction and data address breakpoint registers (IABR, IABR2, DABR, DABR?2) are |oaded
with an instruction or data address, respectively, that is compared to instruction addressesin the
dispatch queue or to the data address in the LSU. When an address match occurs, a breakpoint
interrupt is generated.

One instruction breakpoint control register (IBCR) and one data breakpoint control register
(DBCR) are implemented in the €300 core.

To support critical interrupts, two registers (CSRR0 and CSRR1) are included in the €300 core.
Eight SPRG registers (SPRGO-SPRG7) are in the €300 core.

Block address trandation (BAT) arrays—The e300 core has eight instruction and eight data BAT
registers.

e300 Power Architecture Core Family Reference Manual, Rev. 4

1-22

Freescale Semiconductor

Overview

The hardware implementation (HIDO and HID1) registers provide the means for enabling core
checkstops and features and allow software to read the configuration of the PLL configuration
signals. The HID2 register enables the true little-endian mode, cache way-locking, and the
additional BAT registers.

Table 1-1 shows the bit definitions for HIDO.

Table 1-1. e300 HIDO Bit Descriptions

Bits Name Function
0 EMCP Enable mcp. The purpose of this bit is to mask out machine check interrupts caused by assertion of
mcp, similar to how MSR[EE] can mask external interrupts.
0 Masks mcp. Asserting mcp does not generate a machine check interrupt or a checkstop.
1 Asserting mcp causes checkstop if MSR[ME] = 0 or a machine check interrupt if ME = 1
1 ECPE Enable cache parity errors.
0 Disables instruction and data cache parity error reporting
1 Allows a detected cache parity error to cause a machine check interrupt if MSR[ME] = 1 or a
checkstop if MSR[ME] = 0
2 EBA Enable ap_in[0:3] and ape for address parity checking. EBA and EBD allow the processor to operate
with memory subsystems that do not generate parity.
0 Disables address parity checking during a snoop operation
1 Allows an address parity error during snoop operations to cause a checkstop if MSR[ME] =0 or a
machine check interrupt if MSR[ME] = 1
3 EBD Enable dpe for data parity checking. EBA and EBD allow the processor to operate with memory
subsystems that do not generate parity.
0 Disables data parity checking
1 Allows a data parity error during reads to cause a checkstop if MSR[ME] = 0 or a machine check
interrupt if MSR[ME] = 1
4 SBCLK clk_out output enable. Used in conjunction with HIDO[ECLK] and hreset to configure clk_out. See
Table 1-2 for settings.
5 — Reserved, should be cleared
6 ECLK clk_out output enable. Used in conjunction with HIDO[SBCLK] and the hreset signal to configure
clk_out. See Table 1-2 for settings.
7 PAR Disable precharge of artry_out, core_abb_out, core_dbb_out, and core_shd_out. This bit should not be
set when running with split input/output 60x bus operation.
0 Precharge of artry_out enabled
1 Alters bus protocol slightly by preventing the processor from driving artry_outto high (negated) state.
If this is done, the integrated device must restore the signals to the high state.
8 DOZE Doze mode enable. Operates in conjunction with MSR[POWI].
0 Doze mode disabled
1 Doze mode enabled. Doze mode is invoked by setting MSR[POW] while this bit is set. In doze mode,
the PLL, time base, and snooping remain active.
9 NAP Nap mode enable. Operates in conjunction with MSR[POW].

0 Nap mode disabled
1 Nap mode enabled. Nap mode is invoked by setting MSR[POW] while this bit is set. In nap mode, the
PLL and time base remain active.

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 1-23

Overview

Table 1-1. e300 HIDO Bit Descriptions (continued)

Bits

Name

Function

10

SLEEP

Sleep mode enable. Operates in conjunction with MSR[POW].
0 Sleep mode disabled

1

Sleep mode enabled. Sleep mode is invoked by setting MSR[POW] while this bit is set. greq is
asserted to indicate that the processor is ready to enter sleep mode. If the system logic determines
that the processor may enter sleep mode, the quiesce acknowledge signal, gack, is asserted back to
the processor. Once gack assertion is detected, the processor enters sleep mode after several
processor clocks. At this point, the system logic may turn off the PLL by first configuring pll_cfg[0:6]
to PLL bypass mode, then disabling syscik.

11

DPM

Dynamic power management enable
0 Dynamic power management is disabled

1

Functional units enter a low-power mode automatically if the unit is idle. This does not affect
operational performance and is transparent to software or any external hardware.

13-141
2-15

Reserved, should be cleared.

16

ICE

Instruction cache enable
0 The instruction cache is neither accessed nor updated. All pages are accessed as if they were

1

marked cache-inhibited (WIM = x1x). Potential cache accesses from the bus (snoop and cache
operations) are ignored. In the disabled state for the L1 caches, the cache tag state bits are ignored
and all instruction fetches are propagated to the coherent system bus (CSB) as single-beat
transactions. For those transactions, however, cireflects the state of the | bit in the MMU for that page
regardless of cache disabled status. ICE is zero at power-up.

The instruction cache is enabled

17

DCE

Data cache enable
0 The data cache is neither accessed nor updated. All pages are accessed as if they were marked

1

cache-inhibited (WIM = x1x). Potential cache accesses from the bus (snoop and cache operations)
are ignored. In the disabled state for the L1 caches, the cache tag state bits are ignored and all data
read and write accesses are propagated to the CSB as single-beat transactions. For those
transactions, however, ci reflects the state of the | bit in the MMU for that page regardless of cache
disabled status. DCE is zero at power-up.

The data cache is enabled

18

ILOCK

Instruction cache lock
0 Normal operation

1

The entire instruction cache is locked (that is, all eight ways of the cache are locked). A locked cache
supplies data normally on a hit, but the access is treated as a cache-inhibited transaction on a miss.
On a miss, the transaction to the bus is single-beat; however, ci still reflects the state of the | bit in the
MMU for that page independent of cache locked or disabled status.

To prevent locking during a cache access, an isync instruction must precede the setting of ILOCK.

19

DLOCK

Data cache lock
0 Normal operation

1

The entire data cache is locked (that is, all eight ways of the cache are locked). A locked cache
supplies data normally on a hit, but is treated as a cache-inhibited transaction on a miss. On a miss,
the transaction to the bus is single-beat; however, ci still reflects the state of the | bit in the MMU for
that page independent of cache locked or disabled status. A snoop hit to a locked L1 data cache
performs as if the cache were not locked. A cache block invalidated by a snoop remains invalid until
the cache is unlocked.

To prevent locking during a cache access, a sync instruction must precede the setting of DLOCK.

e300 Power Architecture Core Family Reference Manual, Rev. 4

1-24

Freescale Semiconductor

Overview

Table 1-1. e300 HIDO Bit Descriptions (continued)

Bits Name Function
20 ICFI Instruction cache Flash invalidate

0 The instruction cache is not invalidated. The bit is cleared when the invalidation operation begins
(usually the next cycle after the write operation to the register). The instruction cache must be
enabled for the invalidation to occur.

1 An invalidate operation is issued that marks the state of each instruction cache block as invalid.
Cache access is blocked during this time. Setting ICFI clears all the valid bits of the blocks and the
PLRU bits to point to way LO of each set.

For the €300 core, the proper use of the ICFI and DCFI bits is to set and clear them with two consecutive

mtspr operations.

21 DCFI Data cache Flash invalidate

0 The data cache is not invalidated. The bit is cleared when the invalidation operation begins (usually
the next cycle after the write operation to the register). The data cache must be enabled for the
invalidation to occur.

1 An invalidate operation is issued that marks the state of each data cache block as invalid without
writing back modified cache blocks to memory. Cache access is blocked during this time. Bus
accesses to the cache are signaled as a miss during invalidate-all operations. Setting DCFI clears all
the valid bits of the blocks and the PLRU bits to point to way L0 of each set.

For the €300 core, the proper use of the ICFI and DCFI bits is to set and clear them with two consecutive

mtspr operations.

22-23 — Reserved, should be cleared.
24 IFEM Enable M bit on bus for instruction fetches

0 M bit not reflected on bus for instruction fetches. Instruction fetches are treated as nonglobal on the
bus.

1 Instruction fetches reflect the M bit from the WIM settings

25 DECAREN | Decrementer auto reload
0 Normal operation.
1 Decrementer loads last mtdec value for precise periodic interrupt.
26 — Reserved, should be cleared.
27 FBIOB Force branch indirect on the bus
0 Register indirect branch targets are fetched normally
1 Forces register indirect branch targets to be fetched externally
28 ABE Address broadcast enable. Controls whether certain address-only operations (such as cache
operations) are broadcast on the bus.

0 Address-only operations affect only local caches and are not broadcast

1 Address-only operations are broadcast on the bus

Affected instructions are dcbi, dcbf, and dcbst. Note that these cache control instruction broadcasts

are not snooped by the e300 core. Refer to Section 4.3.3, “Data Cache Control,” for more information.

29-30 — Reserved, should be cleared.
31 NOOPTI! |No-op the data cache touch instructions

0 The dcbt and dcbtst instructions are enabled
1 The dcbt and debtst instructions are no-oped internal to the e300 core

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 1-25

Overview

Table 1-2 shows how HIDO[ECLK] and HIDO[SBCLK] are used to configure the clk_out signal.

Table 1-3 shows the bit definitionsfor HID1

Table 1-2. Using HIDO[ECLK] and HIDO[SBCLK] to Configure clk_out

hreset ECLK SBCLK clk_out
Asserted X X Bus clock (small pulse for every rising edge of sysclk)
Negated 0 0 Clock output off
0 1 Core clock/2
1 0 Core clock
1 1 Bus clock

Table 1-3. HID1 Bit Descriptions

Bits Name Description
0 PCO | PLL configuration bit 0 (read-only)
1 PC1 PLL configuration bit 1 (read-only)
2 PC2 | PLL configuration bit 2 (read-only)
3 PC3 | PLL configuration bit 3 (read-only)
4 PC4 | PLL configuration bit 4 (read-only)
5 PC5 | PLL configuration bit 5 (read-only)
6 PC6 | PLL configuration bit 6 (read-only)
57-303 — Reserved, should be cleared

1

Note: The clock configuration bits reflect the state of the pll_cfg[0:46] signals.

Table 1-4 shows the bit definitions for HID2.

Table 1-4. e300HID2 Bit Descriptions

Bits

Name

Description

0-3

Reserved, should be cleared.

LET

True little-endian. This bit enables true little-endian mode operation for instruction and data accesses.
This bit is set to reflect the state of the tle signal at the negation of hreset. This bit is used in
conjunction with MSR[LE] to determine the endian mode of operation.

0 No function Modified (PowerPC) little-endian mode, not supported in the e300 core.

1 True little-endian mode, when MSR[LE] = 1

Changing the value of this bit during normal operation is not recommended

IFEB

Instruction fetch burst extension. This bit enables the instruction fetch burst extension.
0 Instruction fetch burst extension disabled
1 Instruction fetch burst extension enabled

Reserved, should be cleared.

e300 Power Architecture Core Family Reference Manual, Rev. 4

1-26

Freescale Semiconductor

Overview

Table 1-4. e300HID2 Bit Descriptions (continued)

Bits Name Description
7 MESISTATE | MESI state enable. This bit enables the four-state MESI cache coherency protocol.
0 MESI disabled. The data cache uses a three-state MEI coherency protocol.
1 MESI enabled. The data cache uses a four-state MESI protocol.
8 IFEC Instruction fetch cancel extension. This bit enables the instruction fetch cancel extension.
0 Instruction fetch cancel extension disabled
1 Instruction fetch cancel extension enabled
9 EBQS Enable BIU queue sharing. This bit enables data cache queue sharing.
0 Data cache queue sharing disabled
1 Data cache queue sharing enabled
10 EBPX Enable BIU pipeline extension.This bit enables the bus interface unit pipeline extension.
0 BIU pipeline extension disabled; 1 level pipeline
1 BIU pipeline extension enabled; 1-1/2 level pipeline
11-12 — Reserved for e300c1, should be cleared.
11 ELRW Enable weighted LRU. This bit enables the use of an adjusted (weighted) LRU.
0 Normal operation.
1 The dcbt, dcbtst, and dcbz instructions use and adjusted (weighted) LRU such that they always
select and replace the lowest unlocked way in the data cache.
12 NOKS No kill for snoop. This bit enables the forcing of kill-type snoops to flush data instead of killing it.
0 Normal operation.
1 Forces write-with-kill snoops to flush instead of kill (snoop can never kill data).
13 HBE High BAT enable. Regardless of the setting of HID2[HBE], these BATs are accessible by mfspr and
mtspr.
0 IBAT[4-7] and DBAT[4-7] are disabled
1 IBAT[4-7] and DBAT[4-7] are enabled
14-15 — Reserved, should be cleared.
Note bit 15 was SFP—Speed for power. Allows low power consumption at the cost of frequency.
Removed from e300.
16-18 | IWLCK[0-2] |Instruction cache way-lock. Useful for locking blocks of instructions into the instruction cache for
time-critical applications that require deterministic behavior. [David, pls fis the extra “and” in bit
settings 100 and on for ¢4 products -JC----I don’t see an extra “and.” Can you point it out? -DL]
000 no ways locked
001 way 0 locked
010 way 0 through way 1 locked
011 way 0 through way 2 locked
100 way 0 through way 3 locked in e300c1 and e300c4. way 0 through way 2 locked in e300c2 and
e300c3.
101 way 0 through way 4 locked in e300c1 and €300c4. way 0 through way 2 locked in €300c2 and
e300c3.
110 way 0 through way 5 locked in e300c1 and €300c4. way 0 through way 2 locked in €300c2 and
e300c3.
111 way 0 through way 6 locked in €300c1 and €300c4. way 0 through way 2 locked in €300c2 and
e300c3.
Setting HIDO[ILOCK] will lock all ways.
19 ICWP Instruction cache way protection. Used to protect locked ways in the instruction cache from being

invalidated.
0 Instruction cache way protection disabled
1 Instruction cache way protection enabled

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor

1-27

Overview

Table 1-4. e300HID2 Bit Descriptions (continued)

Bits Name Description

20-23 — Reserved, should be cleared.

24-26 | DWLCK[0-2] |Data cache way-lock. Useful for locking blocks of data into the data cache for time-critical applications

where deterministic behavior is required.

000 no ways locked

001 way O locked

010 way 0 through way 1 locked

011 way 0 through way 2 locked

100 way 0 through way 3 locked in e300c1 and e300c4. way 0 through way 2 locked in e300c2 and
e300c3.

101 way 0 through way 4 locked in e300c1 and e300c4. way 0 through way 2 locked in e300c2 and
e300c3.

110 way 0 through way 5 locked in e300c1 and e300c4. way 0 through way 2 locked in €300c2 and
e300c3.

111 way 0 through way 6 locked in e300c1 and e300c4. way 0 through way 2 locked in e300c2 and
e300c3.

Setting HIDO[DLOCK] will lock all ways.

279-31 — Reserved, should be cleared.

1.3.1.4 Instruction Set and Addressing Modes

The following sections describe the PowerPC instruction set and addressing modes in general.

1.3.1.5 PowerPC Instruction Set and Addressing Modes

All PowerPC instructions are encoded as single-word (32-bit) opcodes. Instruction formats are consi stent
among all instruction types, permitting efficient decoding to occur in parallel with operand accesses. This
fixed instruction length and consistent format simplifies instruction pipelining.
The PowerPC instructions are divided into the following categories:
* Integer instructions—T hese include computational and logical instructions.

— Integer arithmetic instructions

— Integer compare instructions

— Integer logical instructions

— Integer rotate and shift instructions

* Floating-point instructions—These include floating-point computational instructions, as well as
instructions that affect the FPSCR.

— Floating-point arithmetic instructions
— Floating-point multiply/add instructions
— Floating-point rounding and conversion instructions
— Floating-point compare instructions
— Floating-point status and control instructions
» Load/store instructions—T hese include integer and floating-point load and store instructions.
— Integer load and store instructions

e300 Power Architecture Core Family Reference Manual, Rev. 4

1-28 Freescale Semiconductor

Overview

— Integer load and store multiple instructions
— Hoating-point load and store
— Primitives used to construct atomic memory operations (lwar x and stwcx. instructions)

» Flow control instructions—T hese include branching instructions, condition register logical
instructions, trap instructions, and other instructions that affect the instruction flow.

— Branch and trap instructions
— Condition register logica instructions

* Processor control instructions—These instructions are used for synchronizing memory accesses
and management of caches, TLBs, and the segment registers.

— Moveto/from SPR instructions
— Moveto/from MSR
— Moveto/from PMR
— Synchronize
— Instruction synchronize
» Memory control instructions—These instructions provide control of caches, TLBs, and segment
registers.
— Supervisor-level cache management instructions

— Translation lookaside buffer management instructions. Note that there are additional
implementation-specific instructions.

— User-level cache instructions
— Segment register manipulation instructions
* The e300 core implements the following instructions which are defined as optional by the
PowerPC architecture:
— Hoating Select (fsel)
— Floating Reciprocal Estimate Single-Precision (fres)
— Hoating Reciprocal Square Root Estimate (frsgrte)
— Store Floating-Point as Integer Word (stfiwx)

Note that this grouping of instructions does not indicate the execution unit that executes a particular
instruction or group of instructions.

Integer instructions operate on byte, half-word, and word operands. Floating-point instructions operate on
single-precision (one word) and double-precision (one double word) floating-point operands. The
PowerPC architecture uses instructions that are 4 bytes long and word-aligned. It provides for byte,
half-word, and word operand |oads and stores between memory and a set of 32 GPRSs. It also providesfor
word and double-word operand loads and stores between memory and a set of 32 FPRs.

Computational instructions do not modify memory. To use amemory operand in a computation and then
modify the same or another memory location, the memory contents must be loaded into aregister,
modified, and then written back to the target location with distinct instructions.

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 1-29

Overview

The core follows the program flow when it isin the normal execution state. However, the flow of
instructions can be interrupted directly by the execution of an instruction or by an asynchronous event.
Either kind of interrupt may cause one of several components of the system software to be invoked.

1.3.1.6 Implementation-Specific Instruction Set

The €300 core instruction set is defined as follows:
* The core provides hardware support for all 32-bit PowerPC instructions.

» The core provides two implementation-specific instructions used for software table search
operations following TLB misses:

— Load Data TLB Entry (tlbld)
— Load Instruction TLB Entry (tlbli)

» The core implements the following instruction which is added to support critical interrupts (also
supported on the G2_L E). Thisis a supervisor-level, context synchronizing instruction.

— Return from Critical Interrupt (rfci)

* Thecoreimplementsthefollowing instruction which isadded to support easy start-upinitialization
or reloading of the instruction cache.

— Instruction Cache Block Touch (icbt)

» The core provides the following performance monitor instructions:
— Move to Performance Monitor Register (mtpmr)
— Move from Performance Monitor Register (mfpmr)

1.3.2 Cache Implementation

The following sections describe the general cache characteristics as implemented in the PowerPC
architecture and the core implementation.

1.3.2.1 PowerPC Cache Characteristics

The PowerPC architecture does not define hardware aspects of cache implementations. The e300 core
controls the following memory access modes on a page or block basis:

* Write-back/write-through mode

» Caching-inhibited mode

* Memory coherency

Note that in the core, a cache block is defined as eight words. The VEA defines cache management
instructions that provide a means by which the application programmer can affect the cache contents.

1.3.2.2 Implementation-Specific Cache Organization

The e300c1 and €300c4 provide independent, 32-Kbyte, eight-way, set-associative, instruction and data
caches. The e300c2 and e300c3 provide 16-Kbyte, four-way set-associative instruction and data caches.

e300 Power Architecture Core Family Reference Manual, Rev. 4

1-30 Freescale Semiconductor

Overview

The caches are physically addressed, and the data cache can operate in either write-back or write-through
mode as specified by the PowerPC architecture.

The data cache is configured as 128 sets of 8 blocks each on the e300c1 and e300c4. The data cacheis
configured as 128 sets of 4 blocks each on the €300c2 and €300c3. Each block consists of 32 bytes, 2 state
bits, and an address tag. The two state bits implement the three-state MEI (modified/exclusive/invalid)
protocol. Each block contains eight 32-bit words. Note that the PowerPC architecture defines the term
‘block’ as the cacheable unit. For the core, the block size isequivalent to acacheline. A block diagram of
the data cache organization is shown in Figure 1-7.

Theinstruction cacheisconfigured as 128 sets of 8 blocks each on the €300c1 and €300c4. Theinstruction
cacheisconfigured as 128 sets of 4 blocks each on the €300c2 and e300c3. Each block consists of 32 bytes,
an address tag, and avalid bit. The instruction cache may not be written to, except through a block fill
operation. Inthe e300 core, theinstruction cacheisblocked only until thecritical load completes. The €300
core supports instruction fetching from other instruction cache lines following the forwarding of the
critical-first-double-word of acache lineload operation. Successive instruction fetchesfrom the cachelline
being loaded are forwarded, and accessesto other instruction cache lines can proceed during the cacheline
load operation. The instruction cache is not snooped, and cache coherency must be maintained by
software. A fast hardware invalidation capability is provided to support cache maintenance. The
organization of the instruction cache for the e300c1 and €300c4 is very similar to the data cache shownin
Figure 1-6.

/ T T T T T T T

128 Sets * ‘ ‘ . ‘ ‘ ‘

L [[Ll [[[[

/ . .
‘ [l [\ ‘
|| T T T T T T T ||
Block 0 Address Tag 0 | | —Status Words [0-7] ||

| | | | | | |
\ \ \ \ \ \ \

Block 1 Address Tag1 | | 1 Status Words [0-7] L]
| | | | | | |
[[[[[[[

Block 2 Address Tag2 | | [—Status Words [0-7] L]
| | | | | | |
\ \ \ \ \ \ \

Block3| AddressTag3 | [| Status Words [0-7] L[]
| | | | | | |
T T T T T T T

Block 4 Address Tag4 | | [—Status Words [0-7] ol
| | | | | | |
\ \ \ \ \ \ \

Block 5 Address Tag 5 | | Status Words [0-7] L]
| | | | | | |
[[[[[[[

Block 6 Address Tag6 | | | Status Words [0-7] L
| | | | | | |
\ \ \ \ \ \ \

Block7| AddressTag7 | [|Status Words [0-7] L[
| | | | | | |

Figure 1-6. e300c1 and e300c4 Data Cache Organization

The e300c2 and €300c3 data cacheis configured as 128 sets of four blocks per set. The organization of the
data cacheis shown in Figure 1-7.

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 1-31

Overview

128 Sets * ‘ ‘ R ‘ ‘ ‘
. \ \ »l \ \ \ \
. .
[l [\ ‘
T T T T T T T
Block 0 Address Tag0 | | [State Words [0-7] L
| | | | | | |
\ \ \ \ \ \ \
Block 1 Address Tag 1 | | [State Words [0-7] N
| | | | | | |
[[[[[[[
Block 2 Address Tag2 | | | State Words [0-7] ol
| | | | | | |
\ \ \ \ \ \ \
Block 3| AddressTag3 | [State Words [0—7] L
| | | | | | |

|« 8Words/Block————————————»|
Figure 1-7. e300c2 and e300c3 Data Cache Organization

Each cache block contains eight contiguous words from memory that are loaded from an 8-word boundary
(that is, bits A[27-31] of the effective addresses are zero); thus, a cache block never crosses a page
boundary. Misaligned accesses across a page boundary can incur a performance penalty.

The e300 core cache blocks are loaded in four beats of 64 bits each on the 64-bit data bus. The burst load
is performed as critical-double-word-first. The data cacheis blocked to internal accesses until the load
completes; the instruction cache allows sequential fetching during a cache block load. In the core, the
critical-double-word is simultaneously written to the cache and forwarded to the requesting unit, thus
minimizing stalls due to load delays.

To ensure coherency among caches in a multiprocessor (or multiple caching-device) implementation, the
core implements the MEI protocol during normal operation of the data cache. The new data cache MESI
extension supports the additional fourth cache coherency shared state for the data cache. To support this
feature, the shared signal, shd, has been added to the bus interface. The following four states indicate the
state of the cache block:

* Modified—The cache block is modified with respect to system memory; that is, data for this
addressisvalid only in the cache and not in system memory.

» Exclusive—This cache block holdsvalid data that isidentical to the data at this addressin system
memory. No other cache has this data

» Shared—Only availableif HID2[MESISTATE] register bitisset. The address block isvalid in the
cache and in at least one other cache. Thisblock isalways consistent with system memory. That is,
the shared state is shared-unmodified; thereis no shared-modified state.

e |nvalid—This cache block does not hold valid data.

Cache coherency is enforced by on-chip bus snooping logic. Because the €300 core data cache tags are
single-ported, a simultaneous |oad/store and snoop access represents a resource contention. The snoop
access is given first access to the tags. The load or store then occurs on the clock following the snoop.

Parity isnow integrated into both instruction and data cache memory. A machine check interrupt is now
taken upon the detection of an instruction or data cache parity error. Parity is checked whenever valid data

e300 Power Architecture Core Family Reference Manual, Rev. 4

1-32 Freescale Semiconductor

Overview

isreturned from the instruction or data cache for acache hit or whenever valid datais read out of the cache
for acastout or snoop-push operation.

1.3.2.3 Instruction and Data Cache Way-Locking

The e300 core implements instruction and data cache way-locking, which guarantees that certain memory
accesses will hit in the cache. This provides deterministic access times for those accesses. See Chapter 4,
“Instruction and Data Cache Operation,” for more information.

1.3.3 Interrupt Model

This section describes the PowerPC interrupt model and the e300 core implementation specifically.

1.3.3.1 PowerPC Interrupt Model

The PowerPC interrupt mechanism allows the core to change to supervisor state as aresult of external
signals, errors, or unusua conditionsarising in the execution of instructions. The conditionsthat can cause
interrupts are called exceptions. When interrupts occur, information about the state of the coreis saved to
certain registers and the core begins execution at an address (interrupt vector) predetermined for each
interrupt type. Interrupts are processed in supervisor mode.

Some interrupts, such as program interrupts, can be triggered by a broad range of exception conditions.
Other interrupts, such asthe decrementer interrupt, have only asingle exception condition. Exceptions and
the interrupts they cause are described in Chapter 5, “Interrupts and Exceptions.” Although multiple
exception conditions can map to asingle interrupt vector, a more specific condition may be determined by
examining aregister associated with the interrupt—for example, the DSISR and the FPSCR. Additionally,
some exception conditions can be explicitly enabled or disabled by software.

The PowerPC architecture requires that interrupts be handled in program order; therefore, although a
particular implementation may recognize exception conditions out of order, they are presented strictly in
order. When an instruction-caused interrupt is recognized, any unexecuted instructionsthat appear earlier
intheinstruction stream, including any that have not yet entered the execute stage, are required to compl ete
before the interrupt is taken. Any interrupts caused by those instructions are handled first. Likewise,
asynchronous, precise interrupts are recognized when they occur, but are not handled until the instruction
currently in the completion stage successfully completes execution or generates an interrupt, and the
completed store queue is emptied.

Unless a catastrophic condition causes a system reset or machine check interrupt, only one interrupt is
handled at atime. If, for example, a single instruction encounters multiple interrupt conditions, those
conditions are handled sequentially. After the interrupt handler completes, the instruction execution
continues until the next interrupt condition is encountered. However, in many cases there is no attempt to
re-execute theinstruction. Thismethod of recognizing and handling interrupts sequentially guarantees that
interrupts are recoverable.

To prevent the program state from being lost due to a system reset, a machine check interrupt, or an
instruction-caused interrupt in the interrupt handler, interrupt handlers should save the information stored
in SRRO and SRR1 early and before enabling external interrupts.

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 1-33

|
y

'
A

Overview

The PowerPC architecture supports four types of interrupts:

» Synchronous, precise—These are caused by instructions. All instruction-caused interrupts are
handled precisely; that is, the machine state at the time the interrupt occurs is known and can be
completely restored. Thismeansthat (excluding the trap and system call interrupts) the address of
the faulting instruction is provided to the interrupt handler and neither the faulting instruction nor
subsequent instructions in the code stream will complete execution before the interrupt is taken.
Once the interrupt is processed, execution resumes at the address of the faulting instruction (or at
an alternate address provided by the interrupt handler). When an interrupt is taken dueto atrap or
system call instruction, execution resumes at an address provided by the handler.

» Synchronous, imprecise—The PowerPC architecture defines two imprecise floating-point
exception modes: recoverable and nonrecoverable. Even though the core provides a means to
enable the imprecise modes, it implements these modes identically to the precise mode (that is, all
enabled floating-point exceptions are always precise on the core).

» Asynchronous, maskable—The external system management interrupt (SMI) and decrementer
interrupts are maskable, asynchronous interrupts. When these interrupts occur, their handling is
postponed until the next instruction and any of itsassociated interrupts compl ete execution. If there
areno instructionsin the execution units, the interrupt is taken immediately upon determination of
the correct restart address (for loading SRRO).

» Asynchronous, nonmaskable—T he system reset and the machine check interrupt are nonmaskabl e,
asynchronous interrupts. They may not be recoverable, or they may provide alimited degree of
recoverability. All interrupts report recoverability through MSR[RI].

1.3.3.2 Implementation-Specific Interrupt Model

As specified by the PowerPC architecture, all interrupts can be described as either preciseor impreciseand
either synchronous or asynchronous. Asynchronous interrupts (some of which are maskable) are caused
by events external to the processor’s execution; synchronousinterrupts, which are al handled precisely by
the e300 core, are caused by instructions. A system management interrupt is an implementation-specific
interrupt. The interrupt classes are shown in Table 1-5. Theinterrupts are listed in Table 5-3 in order of
highest to lowest priority.

Table 1-5. Interrupt Classifications

Synchronous/Asynchronous Precise/lmprecise Interrupt Type
Asynchronous, nonmaskable Imprecise Machine check
System reset
Asynchronous, maskable Precise External interrupt
Decrementer

System management interrupt
Critical interrupt

Synchronous Precise Instruction-caused interrupts

Although interrupts have other characteristics, such as whether they are maskable, the distinctions shown
in Table 1-5 define categories of interrupts that the core handles uniquely. Note that Table 1-5 includes no
synchronous, imprecise instructions. While the PowerPC architecture supports imprecise handling of
floating-point exceptions, the core implements floating-point exception modes as precise.

e300 Power Architecture Core Family Reference Manual, Rev. 4

1-34 Freescale Semiconductor

Overview

The €300 core interrupts and exception conditions that cause them are listed in Table 1-6.

Table 1-6. Exceptions and Interrupts

Interrupt Type

Vector Offset
(hex)

Exception Conditions

Reserved

00000

System reset

00100

Caused by the assertion of either hreset.

Machine check

00200

Caused by the assertion of the tea signal during a data bus transaction, assertion of mcp,
an address or data parity error, or an instruction or data cache parity error. Note that the
e300 has SRR1 register values that are different from the G2/G2_LE cores’ when a
machine check occurs. See Table 5-14 for more information.

DSI

00300

Determined by the bit settings in the DSISR, listed as follows:

1 Setif the translation of an attempted access is not found in the primary hash table entry
group (HTEG), or in the rehashed secondary HTEG, or in the range of a DBAT register;
otherwise cleared

4 Set if a memory access is not permitted by the page or DBAT protection mechanism;

otherwise cleared

Set for a store operation and cleared for a load operation

9 Setif a data address breakpoint interrupt occurs when the data [0-28] in the DABR or
DABR2 matches the next data access (load or store instruction) to complete in the
completion unit. The different breakpoints are enabled as follows:

» Write breakpoints enabled when DABR[30] is set
* Read breakpoints enabled when DABR[31] is set

[e)]

ISI

00400

Caused when an instruction fetch cannot be performed for any of the following reasons:

* The effective (logical) address cannot be translated. That s, there is a page fault for this
portion of the translation, so an ISl interrupt must be taken to load the PTE (and possibly
the page) into memory.

* The fetch access violates memory protection (indicated by SRR1[4] set). If the key bits
(Ks and Kp) in the segment register and the PP bits in the PTE are set to prohibit read
access, instructions cannot be fetched from this location.

External interrupt

00500

Caused when MSR[EE] = 1 and the int signal is asserted.

Alignment

00600

Caused when the core cannot perform a memory access for any of the reasons described

below:

* The operand of a floating-point load or store instruction is not word-aligned.

* The operands of Imw, stmw, Iwarx, and stwex. instructions are not aligned.

e The instruction is Iswi, Iswx, stswi, stswx, and the core is in little-endian mode. Note
that PowerPC little-endian mode is not supported on the €300 core.

e The operand of debz is in memory that is write-through-required or caching-inhibited.

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor

1-35

Overview

Table 1-6. Exceptions and Interrupts (continued)

Interrupt Type

Vector Offset

Exception Conditions

(hex)
Program 00700 Caused by one of the following exception conditions, which correspond to bit settings in

SRR1 and arise during execution of an instruction.

Floating-point enabled exception—A floating-point enabled exception condition is

generated when the following condition is met:

(MSR[FEOQ] | MSR[FE1]) and FPSCRI[FEX] is 1.

* FPSCRIFEX] is set by the execution of a floating-point instruction that causes an
enabled exception or by the execution of one of the Move to FPSCR instructions that
results in both an exception condition bit and its corresponding enable bit being set in
the FPSCR.

¢ lllegal instruction—An illegal instruction program interrupt is generated when execution
of aninstruction is attempted with an illegal opcode or illegal combination of opcode and
extended opcode fields (including PowerPC instructions not implemented in the core),
or when execution of an optional instruction not provided in the core is attempted (these
do not include those optional instructions that are treated as no-ops).

* Privileged instruction—A privileged instruction program interrupt is generated when the
execution of a privileged instruction is attempted and the MSR register user privilege
bit, MSR[PRY], is set. In the e300 core, this interrupt is generated for mtspr or mfspr with
an invalid SPR field if SPR[0] = 1 and MSR[PR] = 1. This may not be true for all cores
that implement the PowerPC architecture.

» Trap—A trap type program interrupt is generated when any of the conditions specified
in a trap instruction are met.

Floating-point 00800 Caused by an attempt to execute a floating-point instruction (including floating-point load,
unavailable store, and move instructions) when the floating-point available bit (MSR[FP]) is cleared. In

the €300c2 core, any attempt to execute a floating-point instruction results in a

floating-point unavailable exception.

Decrementer 00900 Occurs when DECJ[0] changes from 0 to 1. This interrupt is enabled with MSR[EE].
Critical interrupt | 00A00 Taken when cint is asserted and MSR[CE] = 1.

Reserved 00B00-00BFF —

System call 00C00 Occurs when a System Call (sc) instruction is executed.

Trace 00D00 Taken when MSR[SE] =1 or when the currently completing instruction is a branch and

MSR[BE] =1.

Reserved 00EOQO0 The €300 core does not generate an interrupt to this vector. Other devices may use this
vector for floating-point assist interrupts.

Performance 00F00 Caused when a configured PM counter using the pm_event_in to transition overflows.

monitor

Instruction 01000 Caused when the effective address for an instruction fetch cannot be translated by the

translation miss ITLB.

Data load 01100 Caused when the effective address for a data load operation cannot be translated by the

translation miss DTLB.

Data store 01200 Caused when the effective address for a data store operation cannot be translated by the

translation miss DTLB, or when a DTLB hit occurs and the change bit in the PTE must be set due to a data
store operation.

Instruction 01300 Occurs when the address (bits 0—29) in the IABR matches the next instruction to complete

address in the completion unit, and IABR[30] is set. Note that the e300 core also implements

breakpoint IABR2, which functions identically to IABR.

e300 Power Architecture Core Family Reference Manual, Rev. 4

1-36

Freescale Semiconductor

Overview

Table 1-6. Exceptions and Interrupts (continued)

Interrupt Type Vector Offset Exception Conditions
(hex)
System 01400 Caused when MSR[EE] = 1 and the smi input signal is asserted.
management
interrupt
Reserved 01500-02FFF —

1.3.4 Memory Management

The following sections describe the memory management features of the PowerPC architecture and the
€300 core implementation, respectively.

1.3.4.1 PowerPC Memory Management

The primary functions of the MMU are to trandate logical (effective) addresses to physical addresses for
memory accesses and to provide access protection on blocks and pages of memory.

The core generates two types of accesses that require address translation: instruction accesses and data
accesses to memory generated by load and store instructions.

The PowerPC MMU and interrupt model support demand-paged virtual memory. Virtual memory
management permits execution of programs larger than the size of physical memory; demand-paged
impliesthat individual pages are loaded into physical memory from system memory only when they are
first accessed by an executing program.

The hashed page table is a variable-sized data structure that defines the mapping between virtual page
numbers and physical page numbers. The page table size is a power of two, and its starting addressis a
multiple of itssize.

The page table contains a number of page-table entry groups (PTEGS). A PTEG contains eight page-table
entries (PTEs) of 8 byteseach; therefore, each PTEG is 64 byteslong. PTEG addresses are entry pointsfor
table search operations.

Address trand ations are enabled by setting bits in the MSR—M SR[IR] enablesinstruction address
tranglations, and MSR[DR] enables data address trand ations.

1.3.4.2 Implementation-Specific Memory Management

The instruction and data memory management units in the e300 core provide 4 Ghbytes of logical address
Space accessible to supervisor and user programs with a 4-Kbyte page size and 256-Mbyte segment size.
Block sizes range from 128 Kbytes to 256 Mbytes and are software selectable. In addition, the core uses
an interim 52-bit virtual address and hashed page tables for generating 32-bit physical addresses. The
MMUs in the e300 core rely on the interrupt processing mechanism for the implementation of the paged
virtual memory environment and for enforcing protection of designated memory areas.

Instruction and data TLBs provide address trandlation in parallel with the on-chip cache access, incurring
no additional time penalty inthe event of aTLB hit. A TLB isacache of the most recently used pagetable

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 1-37

Overview

entries. Software is responsible for maintaining the consistency of the TLB with memory. The core TLBs
are 64-entry, two-way, set-associative caches that contain instruction and data address translations. The
core provides hardware assist for software table search operations through the hashed page table on TLB
misses. Supervisor software can invalidate TLB entries selectively.

For instructions and data that correspond to block address trand ation, the e300 core provides independent
eight-entry BAT arrays. These entries define blocks that can vary from 128 Kbytes to 256 Mbytes. The
BAT arrays are maintained by system software. HID2[HBE] is added to the €300 for enabling or disabling
the four additional pairs of BAT registers. However, regardless of the setting of HID2[HBE], these BATs
are accessible by mfspr and mtspr.

As specified by the PowerPC architecture, the hashed page table is a variable-sized data structure that
defines the mapping between virtual page numbers and physical page numbers. The pagetablesizeisa
power of two, and its starting addressis a multiple of its size.

Also as specified by the PowerPC architecture, the page table contains a number of PTEGs. A PTEG
contains 8 PTEs of 8 bytes each; therefore, each PTEG is 64 bytes long. PTEG addresses are entry points
for table search operations.

1.3.5 Instruction Timing

The €300 core is a pipelined superscalar processor core. Because instruction processing is reduced into a
series of stages, an instruction does not require al of the resources of an execution unit at the same time.
For example, after an instruction completes the decode stage, it can pass on to the next stage, while the
subsequent instruction can advance into the decode stage. Thisimproves the throughput of the instruction
flow. For example, it may take three cycles for a single floating-point instruction to execute, but if there
are no stallsin the floating-point pipeline, a series of floating-point instructions can have a throughput of
one instruction per cycle.

The core instruction pipeline has four major pipeline stages, described as follows:

» Thefetch pipeline stage primarily involves retrieving instructions from the memory system and
determining the location of the next instruction fetch. Additionally, if possible, the BPU decodes
branches during the fetch stage and folds out branch instructions before the dispatch stage.

» Thedispatch pipeline stage isresponsible for decoding the instructions supplied by the instruction
fetch stage and determining which of theinstructions are eligible to be dispatched in the current
cycle. In addition, the source operands of theinstructions are read from the appropriate register file
and dispatched with the instruction to the execute pipeline stage. At the end of the dispatch pipeline
stage, the dispatched instructions and their operands are latched by the appropriate execution unit.

* Inthe execute pipeline stage, each execution unit with an instruction executes the selected
instruction (perhaps over multiple cycles), writes the instruction's result into the appropriate
rename register, and notifies the completion stage when the execution has finished. In the case of
aninternal interrupt, the execution unit reports the interrupt to the compl etion/write-back pipeline
stage and discontinues instruction execution until the interrupt is handled. The interrupt is not
signaled until that instruction is the next to be completed. Execution of most fl oating-point
instructions s pipelined within the FPU, allowing up to three instructions to execute in the FPU
concurrently. The FPU pipeline stages are multiply, add, and round-convert. The L SU has two

e300 Power Architecture Core Family Reference Manual, Rev. 4

1-38 Freescale Semiconductor

Overview

pipeline stages: the first stage, for effective address calculation and MMU translation, and the
second, for accessing datain the cache.

» The complete/write-back pipeline stage maintains the correct architectural machine state and
transfers the contents of the rename registers to the GPRs and FPRs as instructions are retired. If
the completion logic detects an instruction causing an interrupt, all subsequent instructions are
canceled, their execution results in rename registers are discarded, and instructions are fetched
from the correct instruction stream.

A superscalar processor core issues multiple, independent instructions into multiple pipelines, allowing
instructions to execute in parallel. The €300c1 core has independent execution units for: integer
instructions, floating-point instructions, branch instructions, load/store instructions, and system register
instructions.The e300c2 does not include afloating-point unit. The €300c2, €300c3, and e300c4 provide
two IUs, which improves the throughput of integer instructions. Thee300c2, €300c3, and €300c4 provide
two integer unitsfor greater integer instruction throughput along with enhanced multipliersin each [U that
reduce the multiply instruction latency to a maximum of two cycles. The IU and the FPU each have
dedicated register files for maintaining operands (GPRs and FPRs, respectively), allowing integer and
floating-point calculations to occur simultaneously without interference. The e300c2 does not include
floating-point registers.

The core provides support for single-cycle store, and it providesan adder/comparator in the system register
unit that allowsthe dispatch and execution of multipleinteger add and compare instructions on each cycle.
Refer to Chapter 7, “Instruction Timing,” for more information.

Because the PowerPC architecture can be applied to such awide variety of implementations, instruction
timing among processor cores varies accordingly.

1.3.6 Core Interface
The coreinterface is specific for each processor core implementation.

The e300 core provides a versatile core interface that allows for awide range of implementations. The
interface includes a 32-bit address bus, a 64-bit data bus, and 56 control and information signals (see
Figure 1-8). The core interface alows for address-only transactions, as well as address and data
transactions. The core control and information signals include the address arbitration, address start,
addresstransfer, transfer attribute, addresstermination, dataarbitration, datatransfer, datatermination, and
core state signals. Test and control signals provide diagnostics for selected internal circuits.

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 1-39

Overview

Address Arbitration €«<———> l«<—> Data Arbitration
Address Start «——> l<«——> Data Transfer
Address Transfer €«———> l«—— Data Termination
Transfer Attribute <«———> «—— Interrupt, Checkstops
L e300 Core
Address Termination «———— l«—— Reset
Clocks —> > Processor Status
Output Enable €«—— ——> Debug Control
Input Enable €«——— «——— JTAG/Debug Interface
Debug Control «—— «— Test Interface
e
15V ~

Figure 1-8. Core Interface

The core interface supports bus pipelining, allowing the address tenure of one transaction to overlap the
data tenure of another. The extent of the pipelining depends on external arbitration and control circuitry.
Similarly, the core supports split-bus transactions for systems with multiple potential bus masters—one
device can have mastership of the address bus while another has mastership of the data bus. Allowing
multiple bus transactions to occur simultaneously increases the available bus bandwidth for other activity
and, as aresult, improves performance.

The core clocking structure allows the bus to operate at integer multiples of the core cycletime.

The following sections describe the core bus support for memory operations. Note that some signals
perform different functions depending on the addressing protocol used.

The €300c4 can optionally support the core complex bus (CCB). See Chapter 8, “Core Interface
Operation,” for more information on the CCB.

1.3.6.1 Memory Accesses
The €300 core CSB is a 64-bit data bus.

With a64-bit CSB, memory accesses allow transfer sizes of 8, 16, 24, 32, 40, 48, 56, or 64 bitsin one bus
clock cycle. Data transfers occur in either single-beat transactions or four-beat burst transactions.
Single-beat transactions are caused by noncached accesses that access memory directly (that is, reads and
writeswhen caching is disabled, caching-inhibited accesses, and storesin write-through mode). Four-besat
burst transactions, which alwaystransfer an entire cache block (32 bytes), areinitiated when alineis read
from or written to memory.

1.3.6.2 Signals

The €300 core signals are grouped as follows:

* Interrupts/Resets—These signalsinclude the external interrupt signal (ﬁ), critical interrupt signal
(cint), checkstop signals, performance monitor signal (pm_event_in) viathe PM counters, and both

e300 Power Architecture Core Family Reference Manual, Rev. 4

1-40 Freescale Semiconductor

Overview

soft reset and hard reset signals. They are used to interrupt and, under various conditions, to reset
the core.

» JTAG/debug interface signals—The JTAG (based on the |EEE 1149.1 standard) interface and
debug unit provides aserial interface to the system for performing monitoring and boundary tests.
Two additional signals are added to the e300 core to allow observation of the internal clock state
of the core (stopped) and to allow the external input to force the core into a halted state (ext_halt).

» Core status and control—These signals include the memory reservation signal, machine quiesce
control signals, time base/decrementer clock base enable signal, and the tlbisync signal.

» Clock control—These signals provide for system clock input and frequency control.

* Test interface signals—Signals like address matching, combinational matching, and watchpoint
are used in the core for production testing.

» Transfer attribute signals—These signals provide information about the type of transfer, such as
the transfer size and whether the transaction is bursted, write-through, or cache-inhibited.

NOTE

A bar over asignal name indicates that the signal is active low—for
example, artry_in (address retry) and ts_in (transfer start). Active-low
signals are referred to as asserted (active) when they are low and negated
when they are high. Signals that are not active low, such asap_in[0:3]
(address bus parity signals) and tt_in[0:4] (transfer type signals) are
referred to as asserted when they are high and negated when they are low.

1.3.7 Debug Features

Some new debug features are specific to the €300 core. Accessesto the debug facilities are available only
in supervisor mode by using the mtspr and mfspr instructions. The €300 providesthefollowing additional
feature in the JTAG/debug interface: Inclusion of breakpoint status and control pins. stopped and ext_halt.

1.3.7.1 Breakpoint Signaling

The breakpoint signaling provided on the e300 core allows observability of breakpoint matches external
tothe core. Theiabr, iabr2, dabr, and dabr 2 breakpoint signals are asserted for at least one bus clock cycle
when the respective breakpoint occurs. The status of the run state of the e300 core isindicated by the
stopped pin. An asynchronous external breakpoint can be asserted to the e300 core using the ext_halt pin:

When DBCR and IBCR are configured for an OR combinational signal type, the breakpoint signals
iabr, iabr2 and dabr, dabr2 reflect their respective breakpoints.

* Whenthe DBCR and IBCR are configured for AND combinational signal type, only theiabr2 and
dabr2 breakpoint signals are asserted after the AND condition is met (that is, both instruction
breakpoints occurred or both data breakpoints occurred).

* When the core_stopped pin is asserted, the e300 core has entered a stopped state and all internal
clocking has stopped, indicating that a hardware debug event has occurred.

» Theext_halt input pin can be used to force the coreinto halted state. The halted state may be a
hardstop, conditiona upon the HARDSTOP condition being set through the JTA G/debug interface

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 1-41

Overview

The breakpoint signaling conditions are described in Chapter 10, “Debug Features.”

1.4

Differences Between Cores

The e300 core has similar functionality to the G2_LE core. Table 1-7 describes the differences between
the G2_LE and the e300.

Table 1-7. Differences Between e300 and G2_LE Cores

e300 Core G2_LE Core Impact
New HIDO bits — The e300 core has a new HIDO bit defined to enable cache parity
error reporting (ECPE).
New HID1 bits — The e300 core has new HID1 bits defined to extend the number of
PLL configuration signals to seven (PC5, PC6).
New HID2 bits — The €300 core has new HID2 bits defined to support instruction

fetch bursting (IFEB), MESI coherency protocol (MESI),
instruction fetch cancels (IFEC), data cache queue sharing
(EBQS), pipelining extension (EBPX), additional cache way
locking (IWLCK and DWLCK), and instruction cache way
protection (ICWP).

New PVR register value

The processor version register values differ. See Table 1-8 for
e300 PVR values.

New IBCR and DBCR bits

The e300 core has new IBCR[IABRSTAT, IABR2STAT] and
DBCR[DABR1STAT, DABR2STAT] fields to provide instruction and
data address breakpoint status.

16-Kbyte, four-way,
set-associative, instruction
and data caches

Some e300 cores may have different cache sizes than the G2_LE.

L1 cache parity

The e300 core supports parity for both instruction and data
caches; the G2_LE does not support cache parity.

MEI or MESI coherency
protocols

MEI protocol only

The e300 supports two coherency protocols: MEI and MESI; the
G2_LE only supports the MEI protocol.

Instruction cancel extension

The e300 instruction cancel mechanism improves utilization of
instruction cache by supporting ‘hits-under-cancels’ and
‘misses-under-cancels’; the G2_LE requires the cancel to
complete before new instruction fetches can begin.

Instruction fetch bursts to
caching-inhibited space

Single-beat instruction
fetches to caching-inhibited
space

The e300’s instruction fetch burst extension allows all
caching-inhibited instruction fetches to be performed on the bus as
burst transactions, even though the instructions are not cached.
This improves performance for instruction space that is
caching-inhibited, because up to eight instructions are returned
with one bus operation. The G2_LE core must use single-beat
instruction fetches for caching-inhibited space, returning only two
instructions per bus operation.

Instruction cache way
protection

The e300 core can protect locked ways in the instruction cache
from invalidation; the G2_LE does not support instruction cache
way protection.

e300 Power Architecture Core Family Reference Manual, Rev. 4

1-42

Freescale Semiconductor

Overview

Table 1-7. Differences Between e300 and G2_LE Cores (continued)

e300 Core

G2_LE Core

Impact

Data cache queue sharing

The e300 has a new data cache queue sharing extension that
allows the two burst-write queues in the bus unit to be used
interchangeably for cache replacements and snoop pushes. Thus,
the data cache can support two outstanding cache replacements
or two outstanding snoop push operations on the bus at any given
time.

icbt instruction

The e300 supports a new instruction cache block touch instruction
that facilitates preloading the instruction cache before locking; the
G2_LE core requires speculatively fetching instructions before
locking the instruction cache.

1-1/2-level bus pipelining

1-level bus pipelining

For the e300, a new transaction can complete an address tenure
when the previous transaction has been granted the data bus; for
the G2_LE, a new transaction must wait until the previous data
tenure has completed before completing its address tenure.

PowerPC little-endian not
supported

PowerPC little-endian
supported

PowerPC little-endian will not be supported in the €300 core,
although true little-endian will be fully supported.

Data retry mode removed

Data retry mode available

drtry and drtrymode will no longer be supported on the e300 and
future versions.

External control instructions
removed

External control instructions
available

The eciwx and ecowx instruction pair will not be supported on the
€300 core. These are optional instructions in the PowerPC
architecture.

Reduced pin mode removed

Reduced pin mode available

Reduced pinout mode and the signal redpinmode will not be
supported in the e300 core.

1.5

Differences Between e300 Cores

Table 1-8 describes the differences between the e300 cores.

Table 1-8. Differences Between e300 Cores

Cache Sizes

Floating-Point

Integer Units

Enhanced

Multipliers PVR

Performance Monitor

e300c1 | 32Kbyte, 8-way,
set-associative
instruction and

data caches

Supported One

Not included Not included 0x8083

e300c2 | 16 Kbyte, 4-way,
set-associative
instruction and

data caches

Not supported

Two

Included Not included 0x8084

e€300c3 | 16 Kbyte, 4-way,
set-associative
instruction and

data caches

Supported Two

Included Included 0x8085

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor

1-43

Overview

Table 1-8. Differences Between e300 Cores (continued)

an execution unit stalls.

Cache Sizes | Floating-Point | Integer Units Enh?nf:ed Performance Monitor PVR
Multipliers
e300c4 | 32Kbyte, 8-way, Supported Two Included Included 0x8086
set-associative
instruction and
data caches
Impact | Some cores The e300c2 Two integer The enhanced | A performance monitor | The core version
implement does not execution units | multipliers are | provides the ability to number in the
smaller L1 implement provide higher |faster and count predefined events | processor version
instruction and | hardware throughput of | provide a and processor clocks register (PVR) is
data caches. support for integer maximum associated with listed in this table,
floating-point operations. two-cycle particular operations, and the revision
operations. latency for such as cache misses, |level for each core
multiply mispredicted branches, | starts at 0x0010
instructions. or the number of cycles |and changes for

each revision of
the core.

e300 Power Architecture Core Family Reference Manual, Rev. 4

1-44

Freescale Semiconductor

Chapter 2
Register Model

This chapter describes the PowerPC register model and its specificimplementation on the €300 core. First,
it outlines the register organization as defined by the three levels of the PowerPC architecture; user
instruction set architecture (UISA), virtual environment architecture (VEA), and operating environment
architecture (OEA). Secondly, this chapter describes the core implementation-specific registers. Full
descriptions of the basic register set defined by the PowerPC architecture are provided in Chapter 2,
“Register Set,” in the Programming Environments Manual.

The PowerPC architecture definesregister-to-register operationsfor all computational instructions. Source
data for these instructions is accessed from the on-chip registers or is provided as an immediate value
embedded in the opcode. The three-register instruction format allows specification of atarget register
distinct from the two source registers, thus preserving the original data for use by other instructions and
reducing the number of instructions required for certain operations. Data is transferred between memory
and registers with explicit load and store instructions only.

Note that there may be registers common to other processors of thisfamily that are not implemented in the
€300 core. When the core detects special-purpose register (SPR) encodings other than those defined in this
document, it either takes an interrupt or it treats the instruction as a no-op. Conversely, some SPRsin the
€300 core may not be implemented in other processors or may not be implemented in the same way.

2.1 PowerPC Register Set

The UISA registers, shown in Figure 2-1, can be accessed by either user- or supervisor-level instructions
(the architecture specification refers to user- and supervisor-level as problem state and privileged state,
respectively). The general-purpose registers (GPRs) and floating-point registers (FPRS) are accessed
through instruction operands. Floating-point registers are not supported by the €300c2 core. Accessto
registerscan be explicit (that is, through the use of specific instructionsfor that purpose, such asthe mtspr
and mfspr instructions) or implicit as part of the execution (or side effect) of aninstruction. Some registers
are accessed both explicitly and implicitly.

Figure 2-1 describes the registers in the €300 core. Note that the implementation-specific registersfor the
€300 core are shown in Figure 2-1.

The number to the right of the register name indicates the number that is used in the syntax of the
instruction operands to access the register (for example, the number used to access the XER is SPR1).

For more information on the PowerPC register set, refer to Chapter 2, “ Register Set,” in the Programming
Environments Manual .

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 2-1

Register Model

/
/ USER MODEL \

General-Purpose
Registers (32-Bit)

GPRO
GPR1

GPR31

Floating-Point

Registers (64-Bit)
FPRO
FPR1

]
L]
L]

FPR31

Condition Register

Floating-Point Status

SPR268
TBU SPR269

Performance Monitor
(read-only)
UPMGCO

PMR384
UPMCs | PMR 0-3

UPMLCas | PMR 128-131

SUPERVISOR MODEL

Hardware Machine State System/Processor
Implementation Register Version Register
Registers MSR SVR'! | SPR286
HIDO ' SPR 1008 Memory Base Address PVR SPR 287
HID1 ' | SPR 1009 Register
HID2' | SPR 1011 SPR 311
Instruction BAT Memory Management RegistersS oftware Table
Registers Data BAT Registers Search Registers
IBATOU | SPR 528 DBATOU SPR 536 DMISS SPR 976
IBATOL | SPR 529 DBATOL | SPR 537 DCMP | SPR 977
IBAT1U | SPR 530 DBAT1U SPR 538 HASH1 SPR 978
IBATIL | SPR 531 DBAT1L | SPR 539 HASH2 | SPR 979
IBAT2U | SPR 532 DBAT2U | SPR 540 IMISS SPR 980
IBAT2L | SPR 533 DBAT2L | SPR 541 ICMP SPR 981
IBAT3U | SPR 534 DBAT3U [SPR 542 RPA SPR 982
IBAT3L | SPR 535 DBAT3L SPR 543 SDR1
IBATAU ' | SPR 560 DBAT4U ' | SPR 568 SPR 25
IBAT4L" | SPR 561 DBATA4L ' | SPR 569
IBAT5U 1 | SPR 562 DBAT5U ' | SPR 570 Segment Registers
IBAT5L ' | SPR 563 DBAT5L ' | SPR 571 SRO
IBAT6U ' | SPR 564 DBAT6U ! | SPR 572 SR1
IBAT6L ' | SPR 565 DBAT6L ' | SPR 573 E
IBAT7U ' | SPR 566 DBAT7U' | SPR 574 SR15
IBAT7L' | SPR 567 DBAT7L' | SPR 575

Configuration Registers

Interrupt Handling Registers

SPRGs

SPRGO

SPRGH1

SPRG2

SPRG3

SPRG4 !

SPRG5 '

SPRG6 '

SPRG7!

Registers
CSRRoO '

/

L\

CSRR1 '

SPR 272
SPR 273
SPR 274
SPR 275
SPR 276
SPR 277
SPR 278
SPR 279

Critical Interrupt

SPR 58
SPR 59

DSISR

Save and Restore Registers

SRRO SPR 26
SRR1 SPR 27
Data Address Register

SPR19 Breakpoint Registers

Instruction/Data Address
Breakpoint Register

IABR |SPR 1010
IABR2'" |SPR 1018
DABR™ |SPR 1013
DABR2" |SPR 317

\

Miscellaneous
Registers

Decrementer
DEC SPR 22

Time Base Facility
(for Writing)

TBL SPR 284
TBU SPR 285

Instruction/Data Address
Breakpoint Control

IBCR! |SPR 309
DBCR! |SPR 310

Performance Monitor

PMR 400
PMR 16-19
PMR 144-14y

' These registers are e300 core implementation-specific (not defined by the PowerPC architecture).

Figure 2-1. e300 Programming Model—Registers

e300 Power Architecture Core Family Reference Manual, Rev. 4

2-2

Freescale Semiconductor

The €300 core user-level registers are described as follows:

User-level registers (UISA)—The user-level registers can be accessed by all software with either
user or supervisor privileges. The user-level register set includes the following:

— General-purpose registers (GPRs). The GPR file consists of thirty-two 32-bit GPRs designated

Register Model

as GPRO-GPR31. Thisregister file serves as the data source or destination for all integer
instructions and provides data for generating addresses.

Floating-point registers (FPRs). The FPR file consists of thirty-two 64-bit FPRs designated as
FPRO-FPR31, which serves asthe data source or destination for al floating-point instructions.
These registers can contain data objects of either single- or double-precision floating-point
format.

Beforethe stfd instruction is used to store the contents of an FPR to memory, the FPR must
have beeninitialized after reset (explicitly loaded with any value) by using afl oating-point load
instruction.

I mplementation Note—The €300c2 core does not support any floating point registers or
instructions.

Condition register (CR). The CR consists of 4-hit fields, CRO-CRY7, that reflect the results of
certain arithmetic operations and provides a mechanism for testing and branching.
Floating-point status and control register (FPSCR). The FPSCR contains all floating-point
exception signal bits, exception summary bits, exception enable bits, and rounding control bits
needed for compliance with the |IEEE 754 standard. Figure 2-2 shows the bit fields of the

FPSCR. The FPSCR is not supported on the €300c2 core. For more detailed information on the
FPSCR see the Programming Environments Manual .

Access: User read/write

2 3|4 5 6 7 8 9 10 11 12 13 14 15 19|20 21 22 23 24 25 26 27|28 29 30 31

FX

FEX|[VX|OX|UX|ZX|XX| VXSNAN [VXISI | VXIDI |VXZDZ | VXIMZ | VXVC [FR|FI| FPRF [—| VXSOFT | VXSQRT | VXCVI|VE|OE |UE|ZE| XE|NI| RN

All zeros

Figure 2-2. Floating-Point Status and Control Register (FPSCR)

FPSCR bhits are described in Table 2-1

Table 2-1. FPSCR Bit Settings

Bits

Name Description

FX Floating-point exception summary. Every floating-point instruction, except mtfsfi and mtfsf, implicitly sets
FXif that instruction causes any FPSCR floating-point exception bit to transition from 0 to 1. The merfs,
mtfsfi, mtfsf, mtfsb0, and mtfsb1 instructions can alter FX explicitly. This is a sticky bit.

FEX Floating-point enabled exception summary. Signals the occurrence of any enabled exception conditions. It

is the logical OR of all the floating-point exception bits masked by their respective enable bits (FEX = (VX &
VE) A (OX & OE) A (UX & UE) A (ZX & ZE) A (XX & XE)). The mcrfs, mtfsf, mtfsfi, mtfsb0, and mifsb1
instructions cannot alter FPSCR[FEX] explicitly. This is not a sticky bit.

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 2-3

Register Model

Table 2-1. FPSCR Bit Settings (continued)

Bits Name Description

2 VX Floating-point invalid operation exception summary. This bit signals the occurrence of any invalid operation
exception. It is the logical OR of all of the invalid operation exception bits. The mcrfs, mtfsf, mtfsfi, mtfsbO0,
and mtfsb1 instructions cannot alter FPSCR[VX] explicitly. This is not a sticky bit.

3 OX Floating-point overflow exception. This is a sticky bit.

4 UXx Floating-point underflow exception. This is a sticky bit.

5 ZX Floating-point zero divide exception. This is a sticky bit.

6 XX Floating-point inexact exception. This is a sticky bit. XX is the sticky version of FPSCRI[FI]. A given
instruction sets XX as follows:

e If the instruction affects FPSCR[FI], the new value of FPSCR[XX] is obtained by logically ORing the old
value of FPSCR[XX] with the new value of FPSCRIFI].
e If the instruction does not affect FPSCRIFI], the value of FPSCR[XX] is unchanged.

7 VXSNAN | Floating-point invalid operation exception for SNaN. This is a sticky bit.

8 VXISI | Floating-point invalid operation exception for e — <. This is a sticky bit””

9 VXIDI |Floating-point invalid operation exception for e + . This is a sticky bit.

10 VXZDZ | Floating-point invalid operation exception for 0 + 0. This is a sticky bit.

11 VXIMZ | Floating-point invalid operation exception for « * 0. This is a sticky bit.

12 VXVC | Floating-point invalid operation exception for invalid compare. This is a sticky bit.

13 FR Floating-point fraction rounded. The last arithmetic, rounding, or conversion instruction incremented the
fraction. This bit is not sticky.

14 Fl Floating-point fraction inexact. The last arithmetic, rounding, or conversion instruction either produced an
inexact result during rounding or caused a disabled overflow exception. This is not a sticky bit. For more
information regarding the relationship between FPSCR[FI] and FPSCR[XX], see the description of the
FPSCR[XX] bit.

15-19 | FPRF |Floating-pointresultflags. For arithmetic, rounding, and conversion instructions, FPRF is based on the result
placed into the target register, except that if any portion of the result is undefined, the value placed here is
undefined.

15 Floating-point result class descriptor (C). Arithmetic, rounding, and conversion instructions may set this
bit with the FPCC bits to indicate the class of the result.

Bits 16—19 comprise the floating-point condition code (FPCC). Floating-point compare instructions always

set one of the FPCC bits to one and the other three FPCC bits to zero. Arithmetic, rounding, and conversion

instructions may set the FPCC bits with the C bit to indicate the class of the result. Note that in this case the

high-order three bits of the FPCC retain their relational significance indicating that the value is less than,

greater than, or equal to zero.

16 Floating-point less than or negative (FL or <)

17 Floating-point greater than or positive (FG or >)

18 Floating-point equal or zero (FE or =)

19 Floating-point unordered or NaN (FU or ?)

Note that these are not sticky bits.

20 — Reserved, should be cleared.

21 | VXSOFT | Floating-point invalid operation exception for software request. This is a sticky bit. This bit can be altered
only by the mcrfs, mtfsfi, mtfsf, mtfsb0, or mtfsb1 instructions.

22 | VXSQRT | Floating-point invalid operation exception for invalid square root. This is a sticky bit.

e300 Power Architecture Core Family Reference Manual, Rev. 4

2-4

Freescale Semiconductor

Register Model

Table 2-1. FPSCR Bit Settings (continued)

Bits Name Description

23 VXCVI |Floating-point invalid operation exception for invalid integer convert. This is a sticky bit.

24 VE Floating-point invalid operation exception enable.

25 OE IEEE floating-point overflow exception enable.

26 UE IEEE floating-point underflow exception enable.

27 ZE IEEE floating-point zero divide exception enable.

28 XE Floating-point inexact exception enable.

29 NI Floating-point non-IEEE mode. If this bit is set, results need not conform with IEEE standards and the other
FPSCR bits may have meanings other than those described here. If the bit is set and if all
implementation-specific requirements are met and if an IEEE-conforming result of a floating-point operation
would be a denormalized number, the result produced is zero (retaining the sign of the denormalized
number). Any other effects associated with setting this bit are described in the user’'s manual for the
implementation.

Effects of the setting of this bit are implementation-dependent.
30-31 RN Floating-point rounding control.

00 Round to nearest

01 Round toward zero
10 Round toward +infinity
11 Round toward —infinity

The remaining user-level registers are SPRs. Note that the PowerPC architecture provides a
separate mechanism for accessing SPRs (themtspr and mfspr instructions). Theseinstructionsare
commonly used to explicitly access certain registers, while other SPRsmay be accessed asthe side
effect of executing other instructions.

— XER register (XER). The 32-bit XER indicates overflow and carries for integer operations. It
isset implicitly by many instructions.

— Link register (LR). The 32-bit LR provides the branch target address for the Branch
Conditional to Link Register (bclrx) instruction and can optionally be used to hold the logical
address (referred to as the effective addressin the architecture specification) of the instruction
that follows a branch and link instruction, typically used for linking to subroutines.

— Count register (CTR). The32-bit CTR can be used to hold aloop count that can be decremented
during execution of appropriately coded branch instructions. It can aso provide the branch
target address for the Branch Conditional to Count Register (bcctr x) instruction.

User-leve registers (VEA)—The VEA introduces the time base facility (TB) for reading. The TB
isa64-bit register pair whose contents are incremented once every four core input clock cycles.
The TB consists of two 32-bit registers—time base upper (TBU) and time base lower (TBL). Note
that the time base registers are read-only in user state.

The core supervisor-level registers are described as follows:

Supervisor-level registers (OEA)—The OEA defines the registers an operating system uses for
memory management, configuration, and interrupt handling. The PowerPC architecturedefinesthe
following supervisor-level registers:

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 2-5

Register Model

— Configuration registers

— Processor versionregister (PVR). Thisread-only register identifies the version (model) and
revision level of this processor core. The contents of the PV R can be copied to aGPR by the
mfspr instruction. Read access to the PVR is supervisor-level only; write access is not
provided. The PV R consists of thefieldsasdescribed in Table 2-2. Architecturaly, the PVR
consists of two 16-bit fields as described in Table 2-2 and Figure 2-3. The e300cl core
version number is 0x8083, and the revision level starts at 0x0010 and changes for each
revision of the core. The e300c2 core version number is0x8084, and therevision level starts
at 0x0010. The e300c3 core version number is 0x8085, and the revision level starts at
0x0010. The e300c4 core version number is 0x8086, and the revision level startsat 0x0010.

Table 2-2. Architectural PVR Field Descriptions

Bits Name Description

0-15 |Version |A 16-bit number that uniquely identifies a particular processor version. This number can be used to
determine the version of a processor; it may not distinguish between different end product models if more
than one model uses the same processor.

16-31 | Revision | A 16-bit number that distinguishes between various releases of a particular version (that is, an engineering
change level). The value of the revision portion of the PVR is implementation-specific. The processor
revision level is changed for each revision of the device.

SPR 287 Access: Supervisor read-only
0 15|16 31
R Version Number Revision Level
w
Reset 0x8083_0010 for e300c1, 0x8084_0010 for e300c2, 0x8085_0010 for €300c3, 0x8086_1010 or 0x8086_0010 for
e300c4

Figure 2-3. e300 Processor Version Register

Table 2-3 describes some of the PVR values for e300-related devices.
Table 2-3. Assigned PVR Values

Device Name Version No. | Revision No.

MPC603r (PID7) 0x0007 0x1201
G2 core—original 0x0081 0x0011
G2 core 0x8081 0x1010
G2_LE core (general-purpose) 0x8082 0x1010
G2_LE core (general-purpose) 0x8082 0x2010
MPC603e (PID6) 0x0006 0x0101
MPC603e (PID7v) 0x0007 0x0100,

0x0201
e300cH 0x8083 0x0010
e300c2 0x8084 0x0010
e300c3 0x8085 0x0010

e300 Power Architecture Core Family Reference Manual, Rev. 4

2-6 Freescale Semiconductor

Register Model

Table 2-3. Assigned PVR Values (continued)

Device Name Version No. | Revision No.
€300c4 (used in MPC5121¢) 0x8086 0x0010
€300c4 (used in MPC83xx devices) 0x8086 0x1010

Space for future versions

Machine state register (MSR). The M SR defines the state of the processor. The M SR can be
modified by the Move to Machine State Register (mtmsr), System Call (sc), and Return
from Interrupt (rfi) and Return from Critical Interrupt (rfci) instructions. It can be read by
the Move from Machine State Register (mfmsr) instruction. Figure 2-4 shows the machine
state register (MSR).

Access: Supervisor read/write

‘ ‘ ‘12 13 14 1516 17 18 19| 20 21 22 23 |24 25 26 27 |28 29 30 31

— POW |TGPR|ILE |EE|PR|FP|ME|FEO|SE|BE|FE1|CE|IP|IR|DR| — |RI|LE

0000_0040 or 0000_0000 or 0001_0041 or 0001_0001
Figure 2-4. Machine State Register

Table 2-4 shows the MSR bit settings.

Table 2-4. MSR Bit Settings

Name

Description

Reserved. Full function.

Reserved. Partial function.

Reserved. Full function.

Reserved. Partial function.

POW

Power management enable (implementation-specific)

0 Disables programmable power modes (normal operation mode)

1 Enables programmable power modes (nap, doze, or sleep mode).

This bit controls the programmable power modes only; it has no effect on dynamic power management (DPM).
MSR[POW] may be altered with an mtmsr instruction only. Also, when altering the POW bit, software may alter
only this bit in the MSR and no others. The mtmsr instruction must be followed by a context-synchronizing
instruction.

See Chapter 9, “Power Management,” for more information.

14

TGPR

Temporary GPR remapping (implementation-specific)

0 Normal operation

1 TGPR mode. GPRO-GPRS3 are remapped to TGPRO-TGPRS for use by TLB miss routines.

The contents of GPRO-GPR3 remain unchanged while MSR[TGPR] = 1. Attempts to use GPR4-GPR31 with
MSR[TGPR] = 1 yield undefined results. Temporarily replaces TGPR0O-TGPR3 with GPRO-GPR3 for use by
TLB miss routines. The TGPR bit is set when either an instruction TLB miss, data read miss, or data write miss

interrupt is taken. The TGPR bit is cleared by an rfi instruction.

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 2-7

Register Model

Table 2-4. MSR Bit Settings (continued)

Bits |Name Description

15 ILE | Interrupt little-endian mode. When an interrupt occurs, this bit is copied into MSRI[LE] to select the endian
mode for the context established by the interrupt.

16 EE | External interrupt enable

0 The processor ignores external interrupts, system management interrupts, and decrementer interrupts.

1 The processor is enabled to take an external interrupt, system management interrupt, or decrementer
interrupt.

17 PR | Privilege level
0 The processor can execute both user- and supervisor-level instructions
1 The processor can only execute user-level instructions

18 FP | Floating-point available (this bit is read-only on the €300¢2 core)

0 The processor prevents dispatch of floating-point instructions, including floating-point loads, stores, and
moves.

1 The processor can execute floating-point instructions and can take floating-point enabled exception type
program interrupts.

19 ME | Machine check enable
0 Machine check interrupts are disabled
1 Machine check interrupts are enabled

20 FEO | Floating-point exception mode 0 (see Table 5-9) (This bit is read-only on the €300c2 core)

21 SE | Single-step trace enable
0 The processor executes instructions normally
1 The processor generates a trace interrupt upon the successful completion of the next instruction

22 BE |Branch trace enable
0 The processor executes branch instructions normally
1 The processor generates a trace interrupt upon the successful completion of a branch instruction

23 FE1 |Floating-point exception mode 1 (see Table 5-9) (This bit is read-only on the €300c2 core)

24 CE |Critical interrupt enable (e300 implementation-specific)

0 Critical interrupts disabled

1 Critical interrupts enabled; critical interrupt and rfei instruction enabled

The critical interrupt is an asynchronous implementation-specific interrupt. The critical interrupt vector offset
is 0x0O0A00. The rfei instruction is implemented to return from these interrupt handlers. Also, CSRRO0 and
CSRR1 are used to save and restore the processor state for critical interrupts.

25 IP | Interrupt prefix. The setting of this bit specifies whether an interrupt vector offset is prepended with Fs or 0s.
In the following description, nnnnn is the offset of the interrupt. See Table 5-2.

0 Interrupts are vectored to the physical address 0x000n_nnnn

1 Interrupts are vectored to the physical address OxFFFn_nnnn

26 IR | Instruction address translation

0 Instruction address translation is disabled
1 Instruction address translation is enabled
See Chapter 6, “Memory Management.”

27 DR | Data address translation

0 Data address translation is disabled

1 Data address translation is enabled
See Chapter 6, “Memory Management.”

28-29'| — | Reserved. Full function. Bit 29 reserved on €300c1 and e300c2 only.

e300 Power Architecture Core Family Reference Manual, Rev. 4

2-8 Freescale Semiconductor

Register Model

Table 2-4. MSR Bit Settings (continued)

Bits

Name

Description

29

PMM

Performance monitor mark bit (€300c3 and €300c¢4 only). System software can set PMM when a marked
process is running to enable statistics to be gathered only during the execution of the marked process.
MSRI[PR] and MSR[PMM] together define a state that the processor (supervisor or user) and the process
(marked or unmarked) may be in at any time. If this state matches an individual state specified in the PMLCan,
the state for which monitoring is enabled, counting is enabled.

30

RI

Recoverable interrupt (for system reset and machine check interrupts)
0 Interrupt is not recoverable
1 Interrupt is recoverable

31

LE

Little-endian mode enable

0 The processor runs in big-endian mode

1 The processor runs in little-endian mode. See Section 3.1.2, “Endian Modes and Byte Ordering,” for a
description of the core operating in true little-endian mode.

T All reserved bits should be set to zero for future compatibility.

NOTE

The core defines M SR[13] asthe power management enable (POW) bit and
MSR[14] asthe temporary GPR remapping (TGPR) bit. The €300 allocates
MSR[24] is used to enable the critical interrupt and rfci, the return from
critical interrupt instruction. MSR[31] is used in conjunction with
HID2[LET] to indicate the endian mode of operation of the e300 core.
These bits are described in Table 2-4.

— Memory management registers:

Block-address trandation (BAT) registers. The device also supports 16 block-address
translation registers (BATS) through the use of 2 independent instruction and data block
addresstranslation (IBAT and DBAT) arrays, each containing 8 pairs of BATS, for atotal of
16 BAT registers. Effective addresses are compared simultaneously with al eight entriesin
the BAT array during block trand ation. Figure 2-1 lists SPR numbersfor the BAT registers.

SDR1. The SDR1 register specifies the page table base address used in virtual-to-physical
address trandation. (Note that physical addressisreferred to asreal addressin the
architecture specification.)

Segment registers (SRs). The OEA defines sixteen 32-bit segment registers (SRO-SR15).
Thefieldsin the segment register areinterpreted differently depending on the value of bit O.

— Interrupt-handling registers

Data address register (DAR). After adata access or an alignment interrupt, the DAR is set
to the effective address generated by the faulting instruction.

The SPRGO-SPRGY registers are provided for operating system use, which reduce the
latency that may be incurred because of saving registers to memory while in ahandler and
also assist in searching the page tablesin software. I softwaretable searching isnot enabled,
then these registers may be used for any supervisor purpose. Note that the €300 core
implements four additional SPRGs (SPRG4—-SPRG7) than previous PowerPC cores. These

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 2-9

Register Model

additional registers are not defined by the PowerPC architecture. The format of these
registersis defined in Section 2.2.11, “ SPRGO-SPRG7.”

— DSISR. The DSISR defines the cause of data access and alignment interrupts.
Machine status save/restore register [0-1] (SRRO, SRR1). The SRRO and SRR1 are used to

save machine status on interrupts and to restore machine status when an rfi instruction is
executed. For more information refer to Chapter 6, “Memory Management.”

NOTE

The €300 core implements the KEY bit (bit 12) in the SRR1 register to
smplify the table search software. For more information refer to Chapter 6,
“Memory Management.”

Note that to support critical interrupts, two new registers, CSRRO and
CSRR1, are implemented on the e300 core, which are not defined by the
PowerPC architecture. These registers have the same bit assignments as
SRRO and SRR1, abeit with different SPR numbers, as described in
Section 2.2, “Implementation-Specific Registers.”

— Miscellaneous registers:

— Thetime base facility (TB) for writing. The TB is a 64-bit register pair that can be used to
provide time-of-day or interval timing. It consists of two 32-bit registers—time base upper
(TBU) and time baselower (TBL). The TB isincremented once every four core input clock
cycles.

— Decrementer (DEC). The DEC register is a 32-bit decrementing counter that provides a

mechanism for causing a decrementer interrupt after a programmable delay. The DEC is
decremented once every four core input clock cycles.

2.2 Implementation-Specific Registers

This section describes the implementation-specific registers of the e300 core. The core defines the
following registers used for software table search operations: DMISS, IMISS, DCMP, ICMP, HASH1,
HASH2, and RPA. Theseregisters should be accessed only when addresstranslation isdisabled (MSR[IR]
and M SR[DR] are both zero). For acomplete discussion, refer to Section 6.5.2, “Implementation-Specific
Table Search Operation.”

The implementation-specific registers also include HIDO, HID1, HID2, and IABR SPRs. All of these
registers can be accessed by supervisor-level instructions only using the SPR numbers shown in
Figure 2-1.

In addition, the e300 core defines the following implementation-specific registers:

» Eight additional BATs (IBAT4-IBAT7 and DBAT4-DBAT7), providing better performancein
protecting accesses on a segment, block, or page basis along with memory accesses and 1/0
accesses. See Figure 2-1 for alist of the SPR numbers for the BAT arrays.

» Twocritical interrupt registers (CSRRO, CSRR1), which areimplementation-specific. The CSRRO
and CSRR1 registers support the critical interrupt function, which have the same bit assignments
as SRRO and SRR1, respectively. The effective address for resuming program execution is saved

e300 Power Architecture Core Family Reference Manual, Rev. 4

2-10 Freescale Semiconductor

Register Model

into CSRRO and the content of the MSR is saved into CSRR1. An additional rfci instruction is
implemented for supporting the return from a critical interrupt, selecting the CSRR0 and CSRR1
registers.

Four additional interrupt handling SPRG registers, which are provided for operating system use.

A new system version register (SVR). See Section 2.2.12, “ System Version Register (SVR),” for
bit definitions.

System memory base address (MBAR) is a new implementation-specific register for the G2_LE
core. It supports a system-level memory map. See Section 2.2.13, “ System Memory Base Address
(MBAR),” for more information.

One new instruction address breakpoint control register (IBCR), two new data address breakpoint
registers (DABR, DABR2), and one new data address breakpoint control register (DBCR) are
implemented in the e300 processor core. All of these new registers, as well asthe |ABR2
(instruction address breakpoint register 2), are implementation-specific and are described in the
Section 2.2.14, “Instruction Address Breakpoint Registers (IABR and IABR2),” and

Section 2.2.16, “Data Address Breakpoint Register (DABR and DABR2).”

Performance monitor registers are available in the e300c3 and €300c4:

— The performance monitor counter registers (PMCO-PMC3) are 32-bit counters used to count
software-sel ectable events. Each counter counts up to 128 events. UPM CO—UPMC3 provide
user-level read access to these registers. Reference events are those that should be applicable
to most microprocessor microarchitectures and be of general value. They are identified in
Figure 2-1.

— The performance monitor global control register (PMGCO) controls the counting of
performance monitor events. It takes priority over al other performance monitor control
registers. UPMGCO provides user-level read access to PM GCO.

— The performance monitor local control registers (PMLCa0-PML Ca3) control each individual
performance monitor counter. Each counter has a corresponding PML Caregister.
UPML Ca0-UPML Ca3 provide user-level read accessto PMLCa0-PML Ca3).

2.2.1 Hardware Implementation Register 0 (HIDO)
Figure 2-5 shows the €300 implementation of HIDO. HIDO can be accessed with mtspr and mfspr using
SPR1008.
SPR 1008 Access: Supervisor read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 14 15
VF\; EMCP |ECPE| EBA | EBD |SBCLK| — |ECLK|PAR|DOZE|NAP|SLEEP| DPM — NHR
Reset All zeros
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
VF\; ICE | DCE |ILOCK |DLOCK| ICFI |DCFI — IFEM — FBIOB|ABE | — [NOOPTI
Reset All zeros

Figure 2-5. HIDO Register

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 2-11

Register Model

Table 2-5 shows the bit definitions for HIDO.

Table 2-5. e300 HIDO Field Descriptions

Bits Name Function
0 EMCP Enable mcp. The purpose of this bit is to mask out machine check interrupts caused by assertion of mcp,
similar to how MSR[EE] can mask external interrupts.
0 Masks mcp. Asserting mcp does not generate a machine check interrupt or a checkstop.
1 Asserting mcp causes checkstop if MSR[ME] = 0 or a machine check interrupt if ME = 1
1 ECPE Enable cache parity errors.
0 Disables instruction and data cache parity error reporting
1 Allows a detected cache parity error to cause a machine check interrupt if MSR[ME] = 1 or a
checkstop if MSR[ME] = 0
2 EBA Enable ap_in[0:3] and ape for address parity checking.
0 Disables address parity checking during a snoop operation
1 Allows an address parity error during snoop operations to cause a checkstop if MSR[ME] = 0 or a
machine check interrupt if MSR[ME] = 1
3 EBD Enable dpe for data parity checking.
0 Disables data parity checking
1 Allows a data parity error during reads to cause a checkstop if MSR[ME] = 0 or a machine check
interrupt if MSR[ME] = 1

4 SBCLK | clk_out output enable. Used in conjunction with HIDO[ECLK] and hresetto configure clk_out.

5 — Reserved, should be cleared

6 ECLK clk_outoutput enable. Used in conjunction with HIDO[SBCLK] and the hreset signal to configure clk_out.

7 PAR Disable precharge of artry_out
0 Precharge of artry_out enabled
1 Alters bus protocol slightly by preventing the processor from driving artry_outto high (negated) state.

If this is done, the integrated device must restore the signals to the high state.
8 DOZE Doze mode enable. Operates in conjunction with MSR[POW].
0 Doze mode disabled
1 Doze mode enabled. Doze mode is invoked by setting MSR[POW] while this bit is set. In doze mode,
the PLL, time base, and snooping remain active.

9 NAP Nap mode enable. Operates in conjunction with MSR[POW]. The greq signal is asserted to indicate that
the processor is ready to enter nap mode. If the system logic determines that the processor may enter
nap mode, the quiesce acknowledge signal, qack, is asserted to notify the processor.

0 Nap mode disabled

1 Nap mode enabled. Nap mode is invoked by setting MSR[POW] while this bit is set. In nap mode, the
PLL and time base remain active.

10 SLEEP | Sleep mode enable. Operates in conjunction with MSR[POW].

0 Sleep mode disabled

1 Sleep mode enabled. Sleep mode is invoked by setting MSR[POW] while this bit is set. qreq is
asserted to indicate that the processor is ready to enter sleep mode. If the system logic determines
that the processor may enter sleep mode, the quiesce acknowledge signal, gack, is asserted back to
the processor. Once qack assertion is detected, the processor enters sleep mode after several
processor clocks. At this point, the system logic may turn off the PLL by first configuring pll_cfg[0:6]
to PLL bypass mode, then disabling sysclk.

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor

Register Model

Table 2-5. e300 HIDO Field Descriptions (continued)

Bits Name Function

11 DPM Dynamic power management enable

0 Dynamic power management is disabled

1 Functional units enter a low-power mode automatically if the unit is idle. This does not affect
operational performance and is transparent to software or any external hardware.

12-15 — Reserved, should be cleared.

16 ICE Instruction cache enable

0 The instruction cache is neither accessed nor updated. All pages are accessed as if they were
marked cache-inhibited (WIM = x1x). Potential cache accesses from the bus (snoop and cache
operations) are ignored. In the disabled state for the L1 caches, the cache tag state bits are ignored
and all instruction fetches are propagated to the coherent system bus (CSB) as single-beat or burst
transactions, depending on the value of HID2[IFEB]. For those transactions, however, ci reflects the
state of the | bit in the MMU for that page regardless of cache disabled status. ICE is zero at power-up.

1 The instruction cache is enabled

17 DCE Data cache enable

0 The data cache is neither accessed nor updated. All pages are accessed as if they were marked
cache-inhibited (WIM = x1x). Potential cache accesses from the bus (snoop and cache operations)
are ignored. In the disabled state for the L1 caches, the cache tag state bits are ignored and all data
read and write accesses are propagated to the CSB as single-beat transactions. For those
transactions, however, ci reflects the state of the | bit in the MMU for that page regardless of cache
disabled status. DCE is zero at power-up.

1 The data cache is enabled

18 ILOCK Instruction cache lock

0 Normal operation

1 The entire instruction cache is locked (that is, all eight ways of the cache are locked). A locked cache
supplies data normally on a hit, but the access is treated as a cache-inhibited transaction on a miss.
On a miss, the transaction to the bus is single-beat or burst, depending on the value of HID2[IFEB];
however, cistill reflects the state of the | bit in the MMU for that page, regardless of whether the cache
is locked or disabled.

To prevent locking during a cache access, an isync instruction must precede the setting of ILOCK.

19 DLOCK | Data cache lock

0 Normal operation

1 The entire data cache is locked (that is, all eight ways of the cache are locked). A locked cache
supplies data normally on a hit, but is treated as a cache-inhibited transaction on a miss. On a miss,
the transaction to the bus is single-beat; however, ¢i still reflects the state of the | bit in the MMU for
that page regardless of whether the cache is locked or disabled. A snoop hit to a locked L1 data cache
performs as if the cache were not locked. A cache block invalidated by a snoop remains invalid until
the cache is unlocked.

To prevent locking during a cache access, a sync instruction must precede the setting of DLOCK.

20 ICFI Instruction cache flash invalidate

0 The instruction cache is not invalidated. The bit is cleared when the invalidation operation begins
(usually the next cycle after the write operation to the register). The instruction cache must be enabled
for the invalidation to occur.

1 An invalidate operation is issued that marks the state of each instruction cache block as invalid.
Cache access is blocked during this time. Setting ICFI clears all the valid bits of the blocks and the
PLRU bits to point to way LO of each set.

For the €300 core, the proper use of the ICFl and DCFI bits is to set and clear them with two consecutive

mtspr operations.

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 2-13

Register Model

Table 2-5. e300 HIDO Field Descriptions (continued)

Bits Name Function

21 DCFI Data cache flash invalidate

0 The data cache is not invalidated. The bit is cleared when the invalidation operation begins (usually
the next cycle after the write operation to the register). The data cache must be enabled for the
invalidation to occur.

1 An invalidate operation is issued that marks the state of each data cache block as invalid without
writing back modified cache blocks to memory. Cache access is blocked during this time. Bus
accesses to the cache are signaled as a miss during invalidate-all operations. Setting DCFI clears all
the valid bits of the blocks and the PLRU bits to point to way LO of each set.

For the €300 core, the proper use of the ICFl and DCFI bits is to set and clear them with two consecutive

mtspr operations.

22-23 — Reserved, should be cleared.
24 IFEM Enable M bit on bus for instruction fetches
0 M bit not reflected on bus for instruction fetches. Instruction fetches are treated as nonglobal on the
bus.

1 Instruction fetches reflect the M bit from the WIM settings

25 DECAREN | Decrementer auto reload (not supported on the e300c1)
0 Normal operation.
1 Decrementer loads last mtdec value for precise periodic interrupt.

25-26 — Reserved, should be cleared. Bit 25 reserved in e300c1 only.

27 FBIOB Force branch indirect on the bus
0 Register indirect branch targets are fetched normally
1 Forces register indirect branch targets to be fetched externally

28 ABE Address broadcast enable. Controls whether certain address-only operations (such as cache
operations) are broadcast on the bus.

0 Address-only operations affect only local caches and are not broadcast

1 Address-only operations are broadcast on the bus

Affected instructions are dcbi, debf, and dcbst. Note that these cache control instruction broadcasts
are not snooped by the e300 core. Refer to Section 4.3.3, “Data Cache Control,” for more information.

29-30 — Reserved, should be cleared.

31 NOOPTI! |No-op the data cache touch instructions
0 The dcbt and dcbtst instructions are enabled
1 The dcbt and dcbtst instructions are no-oped internal to the e300 core

e300 Power Architecture Core Family Reference Manual, Rev. 4

2-14 Freescale Semiconductor

Register Model

Table 2-6 shows how HIDO[SBCLK], HIDO[ECLK], and hreset are used to configure clk_out. See
Section 8.3.15.2, “Test Clock Output (core_clk_out),” for more information.

Table 2-6. HIDO[SBCLK] and HIDO[ECLK] c/k_out Configuration

hreset HIDO[ECLK] | HIDO[SBCLK] clk_out
Asserted X X Core

Negated 0 0 Core

Negated 0 1 Core clock frequency/2
Negated 1 0 Core

Negated 1 1 Bus

HIDO can be accessed with mtspr and mfspr using SPR1008.

22.2 Hardware Implementation Register 1 (HID1)
The €300 implementation of HID1 is shown in Figure 2-6.

SPR 1009 Access: Supervisor read/write
0 1 2 3 4 5 6 7 ‘ ‘ ‘ 31
R
W PCO|PC1|PC2|PC3|PC4|PC5|PC6 —
Reset pll_cfg[0:6] 1| 0x000_0000

Figure 2-6. HID1 Register

Table 2-7 shows the bit definitions for HID1.
Table 2-7. HID1 Bit Settings

Bits Name Description
0 PCO PLL configuration bit O (read-only)
1 PC1 PLL configuration bit 1 (read-only)
2 PC2 PLL configuration bit 2 (read-only)
3 PC3 PLL configuration bit 3 (read-only)
4 PC4 PLL configuration bit 4 (read-only)
5 PC5 PLL configuration bit 5 (read-only)
6 PC6 PLL configuration bit 6 (read-only)

7-31 — Reserved, should be cleared

Note: The clock configuration bits reflect the state of the
pll_cfg[0:6] signals.

HID1 can be accessed with mfspr using SPR1009.

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 2-15

Register Model

2.2.3

Hardware Implementation Register 2 (HID2)

The core implements an additional hardware implementation-dependent HID2 register, shown in

Figure 2-7, which enables cache way-locking; the HID2 a so enables true little-endian mode and the new
additional BAT registers. It is a supervisor-only, read/write, implementati on-specific special-purpose
register (SPR) which is accessed as SPR1011 (decimal). The HID2 bits are shown in Table 2-12.

SPR 1011 Access: Supervisor read/write
0 3 4 5 6 7 8 9 10 11 ‘ 12 13 14 15
R
W — LET | IFEB| — | MESI|IFEC |[EBQS|EBPX — HBE —
Reset All zeros
16 18 19 20 23 24 26 27 31
R
IWLCK ICWP — DWLCK —
w
Reset All zeros

Figure 2-7. HID2 Register

Table 2-8 describes the HID2 fields.

Table 2-8. e300 HID2 Field Descriptions

Bits

Name

Description

0-3

Reserved, should be cleared.

LET

True little-endian. This bit enables true little-endian mode operation for instruction and data accesses.
This bit is set to reflect the state of the tle signal at the negation of hreset. This bit is used in conjunction

with MSRI[LE] to determine the endian mode of operation.

0 Modified (PowerPC) little-endian mode, not supported in the e300 core.
1 True little-endian mode, when MSR[LE] = 1

Changing the value of this bit during normal operation is not recommended

IFEB

Instruction fetch burst extension. This bit enables the instruction fetch burst extension.
0 Instruction fetch burst extension disabled
1 Instruction fetch burst extension enabled

Reserved, should be cleared.

MESISTATE

MESI state enable. This bit enables the four-state MESI cache coherency protocol.
0 MESI disabled. The data cache uses a three-state MEI coherency protocol.
1 MESI enabled. The data cache uses a four-state MESI protocol.

IFEC

Instruction fetch cancel extension. This bit enables the instruction fetch cancel extension.

0 Instruction fetch cancel extension disabled
1 Instruction fetch cancel extension enabled

EBQS

Enable BIU queue sharing. This bit enables data cache queue sharing.
0 Data cache queue sharing disabled
1 Data cache queue sharing enabled

10

EBPX

Enable BIU pipeline extension.This bit enables the bus interface unit pipeline extension.
0 BIU pipeline extension disabled; 1 level pipeline
1 BIU pipeline extension enabled; 1-1/2 level pipeline

e300 Power Architecture Core Family Reference Manual, Rev. 4

2-16

Freescale Semiconductor

Register Model

Table 2-8. e300 HID2 Field Descriptions (continued)

Bits

Name

Description

11-12

Reserved for e300c1, should be cleared.

11

ELRW

Enable weighted LRU. This bit enables the use of an adjusted (weighted) LRU.

0 Normal operation.

1 The dcbt, decbtst, and dcbz instructions use and adjusted (weighted) LRU such that they always select
and replace the lowest unlocked way in the data cache.

12

NOKS

Reserved for e300c1, should be cleared.

For e300c2 , e300c3, and e300c4:

No kill for snoop. This bit enables the forcing of kill-type snoops to flush data instead of killing it.
0 Normal operation.

1 Forces write-with-kill snoops to flush instead of kill (snoop can never kill data).

13

HBE

High BAT enable. Regardless of the setting of HID2[HBE], these BATs are accessible by mfspr and
mtspr.

0 IBAT[4-7] and DBAT[4-7] are disabled

1 IBAT[4-7] and DBAT[4-7] are enabled

14-15

Reserved, should be cleared.

16-18

IWLCK[0—2]

Instruction cache way-lock. Useful for locking blocks of instructions into the instruction cache for
time-critical applications that require deterministic behavior.

000 = no ways locked

001 = way O locked

010 = way 0 through way 1 locked

011 = way 0 through way 2 locked

100 = way 0 through way 3 locked in e300c1. Way 0 through way 2 locked in e300c2, e300c3 and
e300c4.

101 = way 0 through way 4 locked in e300c1. Way 0 through way 2 locked in e300c2, e300c3 and
e300c4.

110 = way 0 through way 5 lockedin e300c1. Way 0 through way 2 locked in e300c2, e300c3 and
e300c4.

111 = way 0 through way 6 locked in e300c1. Way 0 through way 2 locked in e300c2, e300c3 and
e300c4.
Setting HIDO[ILOCK] will lock all ways in all e300 cores.

19

ICWP

Instruction cache way protection. Used to protect locked ways in the instruction cache from being
invalidated.

0 Instruction cache way protection disabled

1 Instruction cache way protection enabled

20-23

Reserved, should be cleared.

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 2-17

Register Model

Table 2-8. e300 HID2 Field Descriptions (continued)

Bits Name Description

2426 | DWLCK][0-2] | Data cache way-lock. Useful for locking blocks of data into the data cache for time-critical applications
where deterministic behavior is required.

000 = no ways locked

001 = way O locked

010 = way 0 through way 1 locked

011 = way 0 through way 2 locked

100 = way 0 through way 3 locked in e300c1. Way 0 through way 2 locked in e300c2, e300c3 and
e300c4.

101 = way 0 through way 4 locked in e300c1. Way 0 through way 2 locked in e300c2, e300c3 and
e300c4.

110 = way 0 through way 5 locked in e300c1. Way 0 through way 2 locked in €300c2, e300c3 and
e300c4.

111 = way 0 through way 6 locked in e300c1. Way 0 through way 2 locked in e300c2, e300c3 and
e300c4.
Setting HIDO[DLOCK] will lock all ways in all e300cores.

27-31 — Reserved, should be cleared.

2.2.4 Data and Instruction TLB Miss Address Registers
(DMISS and IMISS)

DMISS and IMISS, shown in Figure 2-8, are loaded automatically on a data or instruction TLB miss.
DMISS and IMISS contain the effective address of the access that caused the TLB missinterrupt. The
contents are used by the core when cal culating the values of HASH1 and HASH2 and by thetlbld and tIbli
instructions when loading anew TLB entry. Note that the core aways loads DMISS with a big-endian
address, even when MSR[LE] isset. Theseregistersare both read- and write-accessible. However, caution
should be used when writing to these registers.

SPR DMISS 976 Access: Supervisor read/write
SPR IMISS 980
0 | | | S
R .
Effective Address
w
Reset All zeros

Figure 2-8. DMISS and IMISS Registers

e300 Power Architecture Core Family Reference Manual, Rev. 4

2-18 Freescale Semiconductor

Register Model

2.2.5 Data and Instruction TLB Compare Registers
(DCMP and ICMP)

DCMP and ICMP, shown in Figure 2-9, contain the first word in the required PTE. The contents are
constructed automatically from the contents of the segment registers and the effective address (DMISS or
IMISS) when aTLB missinterrupt occurs. Each PTE read from the tables during the table search process
should be compared with this value to determine if the PTE isamatch. Upon execution of atlbld or tibli
instruction, the upper 25 bits of the DCMP or ICM P register and 11 bits of the effective address are loaded
into the first word of the selected TLB entry. These registers are read and write to the software.

SPR 977 (DCMP) Access: Supervisor read/write
SPR 981 (ICMP)
0o 1 ‘ ‘ ‘ ‘ ‘ ‘24 25 26 ‘ 31
R
\Y VSID H API
w
Reset All zeros

Figure 2-9. DCMP and ICMP Registers

Table 2-9 describes the bit settings for the DCMP and ICMP registers.
Table 2-9. DCMP and ICMP Bit Settings

Bits | Name Description

0 V | Valid bit. Set by the processor on a TLB miss interrupt.

1-24 | VSID | Virtual segment ID. Copied from VSID field of corresponding segment register.

25 H Hash function identifier. Cleared by the processor on a TLB miss interrupt.

26-31| APl |Abbreviated page index. Copied from API of effective address.

2.2.6 Primary and Secondary Hash Address Registers
(HASH1 and HASH2)

HASH1 and HASHZ2, shown in Figure 2-10, contain the physical addresses of the primary and secondary
PTEGs, respectively, for the access that caused the TLB miss interrupt. For convenience, the device
automatically constructsthe full physical address by routing SDR1 bits 06 into HASH1 and HASH2 and
clearing the lower 6 address bits. These read-only registers are constructed from the DMISS or IMISS
contents (the register choice is determined by which miss most recently occurred).

SPR 978 (HASH1) Access: Supervisor read-only
SPR 979 (HASH2)
0 | 6 7. | | | | 25 2 3t
R HTABORG Hashed Page Address —
W
Reset All zeros

Figure 2-10. HASH1 and HASH2 Registers

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 2-19

V¥ ¢
i

Register Model

Table 2-10 describes the bit settings of the HASH1 and HASH?2 registers.
Table 2-10. HASH1 and HASH2 Bit Settings

Bits Name Description

0-6 HTABORG Copy of the upper 7 bits of the HTABORG field from SDR1

7-25 Hashed page address | Address bits 7-25 of the PTEG to be searched

26-31 — Reserved

2.2.7 Required Physical Address Register (RPA)

During a page table search operation, the software must load the RPA, shown in Figure 2-11, with the
second word of the correct PTE. When the tIbld or tIbli instruction is executed, the RPA and DMISS or
IMISS register are merged and loaded into the selected TLB entry. The referenced (R) bit isignored when
the write occurs (no location existsin the TLB entry for this bit). The RPA register isread- and
write-accessible to the software.

SPR 982 Access: Supervisor read/write
0 ‘ ‘ ‘ ‘ 19| 20 22 23|24 25 ‘28 29 30 31
R
RPN — R|(C WIMG —| PP
w
Reset All zeros

Figure 2-11. Required Physical Address Register (RPA)

Table 2-11 describes the bit settings of the RPA register.
Table 2-11. RPA Bit Settings

Bits Name Description

0-19 RPN | Physical page number from PTE

20-22 — Reserved
23 R Referenced bit from PTE
24 C Changed bit from PTE

25-28 WIMG | Memory/cache access attribute bits

29 — Reserved

30-31 PP Page protection bits from PTE

2.2.8 BAT Registers (BAT4—-BAT7)

The MMU hasfour additional IBAT and four additional DBAT array entriesthat provide a mechanism for
tranglating additional blocks as large as 256 Mbytes from the 32-bit effective address space into the
physical memory space. This can be used for translating large address ranges whose mappings do not
change frequently.

e300 Power Architecture Core Family Reference Manual, Rev. 4

2-20 Freescale Semiconductor

Register Model

BATs are software-controlled arrays that store the available block address trand ations on-chip. The core
supports block address trand ation through the use of two independent instruction and data block address
tranglation (IBAT and DBAT) arrays, each array iscomprised of four additional entriesused for instruction
accesses and four additional entries used for data accesses.

IBAT4-IBAT7 and DBAT4-DBAT7 are implementation-specific registers on the e300 core, which are
optionally enabled in HID2. The format of these registersis the same as that of IBATO-IBAT3 and
DBATO-DBAT3. Each BAT array entry consists of apair of BAT registers—an upper and alower BAT
register for each entry. Figure 2-12 and Figure 2-13 show the format and bit definitions of the upper and

lower BATs for 32-bit processor cores, respectively.

SPR

528 (IBATOU)
530 (IBAT1U)
532 (IBAT2U)
534 (IBAT3U)
560 (IBAT4U)
562 (IBAT5U)
564 (IBAT6U)

536 (DBATOU)
538 (DBAT1U)
540 (DBAT2U)
542 (DBAT3U)
568 (DBAT4U)
570 (DBAT5U)
572 (DBAT6U)

Access: Supervisor read/write

566 (IBAT7U) 574 (DBAT7U)
0 ‘ ‘ 14 15 18 19 29 30 31
R
BEPI — BL Vs |Vp
W
Reset All zeros
Figure 2-12. Upper BAT Register
SPR 529 (IBATOL) 537 (DBATOL) Access: Supervisor read/write

531 (IBATAL)
533 (IBAT2L)
535 (IBAT3L)
561 (IBAT4L)
563 (IBAT5L)
565 (IBAT6L)

539 (DBAT1L)
541 (DBAT2L)
543 (DBAT3L)
569 (DBATA4L)
571 (DBATS5L)
573 (DBAT6L)

567 (IBAT7L) 575 (DBAT7UI)

0 | | |

14 15 24 25 28 29 30 31
R 1
BRPN — WIMG —1| PP
w
Reset All zeros

' Neither the W or G bits of the IBAT registers should be set. Attempting to write to these bits causes
boundedly-undefined results.

Figure 2-13. Lower BAT Register

The BAT registers contain the effective-to-physical address mappingsfor blocks of memory. Thismapping
includes the effective address bits that are compared with the effective address of the access, the
memory/cache access mode bits (WIMG), and the protection bits for the block. The size of the block and
the starting address of the block are defined by the physical block number (BRPN) and block size mask
(BL) fields.

The sixteen new BAT registers are enabled by HID2[HBE]. However, regardless of the setting of thishbit,
the BAT registers are accessible by the mfspr and mtspr instructions and are only accessible to

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 2-21

Register Model

supervisor-level programs. See Section 2.2.3, “Hardware Implementation Register 2 (HID2),” for more
information on the HBE bit.

2.2.9 Critical Interrupt Save/Restore Register 0 (CSRRO0)

CSRRO is used to save the return address of critical interrupts. It is set to the effective address of the
instruction that the processor would have attempted to complete next if no critical interrupt had occurred.
The format of CSRRO is shown in Figure 2-14.

SPR 58 Access: Supervisor read/write
0 | | | | | | | 29 50 at
R CSRRO —
w
Reset All zeros

Figure 2-14. Critical Interrupt Save/Restore Register 0 (CSRR0)

For information on how specific interrupts affect CSRRO, refer to the descriptions of individual interrupts
in Chapter 5, “Interrupts and Exceptions.”

2.2.10 Critical Interrupt Save/Restore Register 1 (CSRR1)

CSRR1is used to save machine status on interrupts and to restore machine status when an r fci instruction
is executed. Figure 2-15 shows the CSRR1 format.

Figure 2-15. Critical Interrupt Save/Restore Register 1 (CSRR1)

SPR 59 Access: Supervisor read/write
0 | | 3t
R
CSRR1
w
Reset All zeros

Figure 2-16. Critical Interrupt Save/Restore Register 0 (CSRR0)

For information on how specific interrupts affect CSRR1, refer to the individual interruptsin Chapter 5,
“Interrupts and Exceptions.”

e300 Power Architecture Core Family Reference Manual, Rev. 4

2-22 Freescale Semiconductor

Register Model

2.2.11 SPRGO0-SPRG7

The core providesfour additional SPRG (SPRG4-SPRG7) registersfor general operating system use, such
asperforming afast state save or for supporting multiprocessor implementations. Theformats of the SPRG
registers are shown in Figure 2-17. Note that SPRG4-SPRG7 are not supported in the G2 core.

SPR 272 (SPRGO) 276 (SPRG4) Access: Supervisor read/write
273 (SPRG1) 277 (SPRG5)
274 (SPRG2) 278 (SPRG6)
275 SPRG3) 279 (SPRG9)
0 | | | 31
R
SPRGn
w
Reset All zeros

Figure 2-17. SPRGn Register
For information on conventional uses for SPRG4-SPRG7, refer to Section 5.2.1.3, “ SPRG0-SPRG7.”

2.2.12 System Version Register (SVR)

The system version register (SVR) isa32-bit read-only register that identifiesthe specific version (model)
and revision level of the system on achip (SoC). Supervisor mode write accessis reserved for future use.
Figure 2-18 shows an implementation of the SVR, although it should be noted that this register is
determined by the SoC.

SPR 286 Access: Supervisor read-only
0 | | | | | | | 3
R SVR
W

Reset1000\00000\00000\00000\00000\00000\000
Figure 2-18. SVR Register

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 2-23

V¥ ¢
i

Register Model
The SVR can be accessed with mfspr using SPR286. The bitsin SVR are defined in Table 2-12.

Note that all bits within this register are guaranteed to be configured by the SOC and unused bits are
cleared to zero. Also, SVR4-SVR15 are control fields for this register.

Table 2-12. System Version Register (SVR) Bit Settings

Bits Name Description

0-3 CID Company or manufacturer ID. These bits are required.
Bit 0 must setto 1.

4-15 SID' | SoC ID. This required field is used to identify the SoC device.

16—-19| PROC | Process revision field. This optional field is used to indicate different process revisions of the SoC.

20-23| MFG | Manufacturing revision. This optional field identifies uniquely different manufacturing revisions of the SoC.

24-27| MJREV | Major SoC design revision indicator. This is a required field.

28-31| MNREV | Minor SoC design revision indicator. This is a required field.

' The SoC value is an optional field assigned by the SoC design integrator.

2.2.13 System Memory Base Address (MBAR)

The core implements a new memory base address register (MBAR) to support the system level memory
map. The MBAR can be accessed with mtspr or mfspr using SPR311 in supervisor mode. The present

memory base address for the system memory map is stored in this register. It isimportant to ensure that
the present value of the base offset is current in the system memory.

2.2.14 Instruction Address Breakpoint Registers (IABR and IABR2)

The IABR, shown in Figure 2-19, controls the instruction address breakpoint interrupt. In the core, an
additional address breakpoint register (IABR2) isimplemented. IABR[CEA] holds an effective addressto
which each instruction’saddressis compared. Theinterrupt isenabled by setting IABR[BE]. Theinterrupt
is taken when there is an instruction address breakpoint match on the next instruction to complete. The
instruction tagged with the match cannot complete before the breakpoint interrupt is taken. The address of
the instruction which matches the breakpoint condition is stored in SRRO. The tagged instruction is
completed and retired on return from the interrupt (rfi or rfci). The results are then committed to the
destination registers and address.

Notethat if IABR/IABR2 values are set to any interrupt vector, an unrecoverable processor state occurs.

SPR 1010 (IABR) Access: User read/write
1018 (IABR2)
0 | | | | | | | 20 30 af
R
CEA BE|—
w
Reset All zeros

Figure 2-19. IABR and IABR2 Registers

e300 Power Architecture Core Family Reference Manual, Rev. 4

2-24 Freescale Semiconductor

Register Model

The bitsinthe IABR and IABR2 are defined in Table 2-13. For more information about the instruction
breakpoint interrupt, see Section 5.5.17, “Instruction Address Breakpoint Interrupt (0x01300).”

Table 2-13. Instruction Address Breakpoint Register (IABR and IABR2) Bit Settings

Bits Name Description

0-29 CEA Compare effective address. Word address to be compared.
30 BE Breakpoint enable. IABR (or IABR2) enabled. Setting this bit enables the IABR interrupt.
31 — Reserved

2.2.15 Instruction Address Breakpoint Control Register (IBCR)

The IBCR, shown in Figure 2-20, is a supervisor-level register with SPR309 on the €300 core, which is
accessible only by using an mtspr or mfspr instruction. The IBCR controls the compare and match type
conditionsfor IABR and IABR2. Notethat IABR and IABR2 must be enabled before the effects of IBCR
arerealized.

SPR 309 Access: Supervisor read/write
0 ‘ 5 6 7 8 9 10 11 12 13 14 15
R IABR IABR2 SIG_
w o STAT STAT CMP CMP2 o Type | PNS
Reset All zeros

Figure 2-20. IBCR Register

Table 2-14 describes the IBCR fields.

Table 2-14. Instruction Address Breakpoint Control Registers (IBCR)

Bits Name Description

0-5 — Reserved

6 IABRSTAT | IABR status.
0 Match on IABR has not occurred.
1 Match on IABR has occurred.

7 IABR2STAT | IABR2 status.
0 Match on IABR2 has not occurred
1 Match on IABR2 has occurred

8-9 CMP IABR breakpoint compare type

00 Match if instruction’s EA equals IABR[CEA]

01 Reserved

10 Match if instruction’s EA is less than IABR[CEA]

11 Match if instruction’s EA is greater than or equal to IABR[CEA]

10-11 CMP2 IABR2 breakpoint compare type

00 Match if instruction’s EA equals IABR2[CEA]

01 Reserved

10 Match if instruction’s EA less than IABR2[CEA]

11 Match if instruction’s EA greater than or equal to IABR2[CEA]

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 2-25

Register Model

Table 2-14. Instruction Address Breakpoint Control Registers (IBCR) (continued)

Bits Name Description
12 — Reserved
13 — Reserved

14 | SIG_TYPE | Combinational signal type
0 Instruction’s EA matches IABR[CEA] OR instruction’s EA matches IABR2[CEA]
1 Instruction’s EA matches IABR[CEA] AND instruction’s EA matches IABR2[CEA]

15 DNS Do not signal. Disable jabr and iabr2 output signals
0 Allow signal to toggle on a match
1 Do not toggle signal on match

2.2.16 Data Address Breakpoint Register (DABR and DABR2)

The optional data address breakpoint facility on the e300 coreis controlled by optional SPRs, DABR and
DABR2. The data address breakpoint facility provides a means to detect data accesses to a designated
double-word address. The breakpoint address is compared to the effective address of all data accesses; it
does not apply to instruction fetches.

DABR and DABR?2, the two data address breakpoint registers shown in Figure 2-21, can both cause the
data address breakpoint interrupt.

SPR 1013 (DABR) Access: Supervisor read/write
317 (DABR2)
0 ‘ ‘ ‘ 28 29 30 31
R
CEA BT | WBE | RBE
w
Reset All zeros

Figure 2-21. DABR and DABR2 Registers

When an enabled data breakpoint condition matches with the address of a data access, a DSl interrupt
occurs. When a DSl interrupt is taken to indicate a data breakpoint condition, DAR is set to the data
address that causes the breakpoint and DSISR[9] is set. The address of the instruction associated with the
breakpoint condition is stored in SRRO.

Notethat if the DABR/DABR2 register values are set to match on any interrupt vector, an indeterminate
or unrecoverable processor state may occur.

Table 2-15 describes the fieldsin DABR and DABR2.
Table 2-15. Data Address Breakpoint Registers (DABR and DABRZ2) Bit Settings

Bits Name Description

0-28 CEA Data address breakpoint
29 BT Breakpoint translation enable. Match if MSR[DR] = DABR[BT].
30 WBE Data write enable. Matching on data writes enabled.
31 RBE Data read enable. Matching on data reads enabled.

e300 Power Architecture Core Family Reference Manual, Rev. 4

2-26 Freescale Semiconductor

Register Model

A data address breakpoint match is detected for aload or store instruction if the following conditions are
met for any byte accessed:

« EAO0-EA28=DABR[CEA]
« MSR[DR] = DABR[BT]
* Theingtructionisastore and DABR[WBE] = 1 or the instruction is aload and DABR[RBE] = 1

Even if the above conditions are satisfied, it is undefined whether a match occursin the following cases:
» A store conditional indexed instruction (stwcx.) in which the storeis not performed
* Aload or store string instruction (Iswx or stswx) with a zero length

* A dcbz, dcba, eciwx, or ecowx instruction. For the purpose of determining whether a match
occurs, eciwx istreated asaload and dcbz, dcba, and ecowx are treated as stores. Note that eciwx
and ecowx may generate illegal transactions in some implementations and are not supported in the
€300.

The cache management instructions other than dcbz and dcba never cause amatch. If dcbz or dcba causes
amatch, some or al of the target memory locations may have been updated.

When amatch occurs, a DSI interrupt is generated. Refer to Section 5.5.3, “DSI Interrupt (0x00300),”
more information on the data address breakpoint facility.

2.2.17 Data Address Breakpoint Control Register (DBCR)

The DBCR isasupervisor-level register with SPR310 on the €300 core, which is accessible only by using
mtspr and mfspr. The DBCR controls the compare and match type conditions for DABR and DABR2.
Figure 2-22 shows the format of the DBCR.

SPR 310 Access: Supervisor read/write
0 ‘ 5 6 7 8 9 10 11 12 13 14 15
R DABR | DABR2 SIG_
W o STAT | STAT CMP CMP2 - TypE | PNS
Reset All zeros

Figure 2-22. DBCR Register

Table 2-16 provides the description of DBCR bit settings.
Table 2-16. Data Address Breakpoint Control Registers (DBCR)

Bits Name Description

0-5 — Reserved

6 DABRSTAT | DABR status
0 Match on DABR has not occurred
1 Match on DABR has occurred

15 DNS Do not signal. Disable dabrand dabr2 output signals.
0 Allow signal to toggle on a match
1 Do not toggle signal on match

1631 — Reserved

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 2-27

Register Model

Table 2-16. Data Address Breakpoint Control Registers (DBCR) (continued)

Bits

Name

Description

DABR2STAT

DABR2 status
0 Match on DABR2 has not occurred
1 Match on DABR2 has occurred

CMP

DABR breakpoint compare type

00 Match if data’s EA equals DABR[CEA]

01 Reserved

10 Match if data’s EA less than DABR[CEA]

11 Match if data’s EA greater than or equal to DABR[CEA]

10-11

CMP2

DABR2 breakpoint compare type

00 Match if data’s EA equals DABR2[CEA]

01 Reserved

10 Match if data’s EA less than DABR2[CEA]

11 Match if data’s EA greater than or equal to DABR2[CEA]

12-13

Reserved

14

SIG_TYPE

Combinational signal type
0 Data access EA matches DABR[CEA] OR EA matches DABR2[CEA]
1 Data access EA matches DABR[CEA] AND EA matches DABR2[CEA]

15

DNS

Do not signal. Disable dabrand dabr2 output signals.
0 Allow signal to toggle on a match
1 Do not toggle signal on match

16-31

Reserved

2.2.18

Performance Monitor Registers

The performance monitor provides a set of PMRs for defining, enabling, and counting conditions that
trigger the performance interrupt. It aso the performance monitor interrupt vector.

The supervisor-level performance monitor registers are accessed with mtpmr and mfpmr. Attempting to
read or write supervisor-level registersin user-mode causes a privilege exception.

The user-level performance monitor registers are read-only and are accessed with the mfpmr instruction.
Attempting to writethese user-level registersin either supervisor or user mode causesanillegal instruction

exception.

See Chapter 11, “Performance Monitor for a detailed description of performance monitor registers.

e300 Power Architecture Core Family Reference Manual, Rev. 4

2-28

Freescale Semiconductor

Chapter 3
Instruction Set Model

This chapter describes the operand conventions as they are represented in two levels of the PowerPC
architecture. It also provides detailed descriptions of conventions used for storing valuesin registers and
memory, accessing the core registers, and the representation of data in these registers. This chapter
explains the following:

* Operand conventions
e e300 coreinstruction set

3.1 Operand Conventions

This section describes the integer and floating-point operand conventions. It also describes the big- and
little-endian byte ordering for the €300 core. Note that floating-point instructions or operands are not
supported on the e300c2 core.

3.1.1 Data Organization in Memory and Memory Operands

Bytesin memory are numbered consecutively starting with 0. Each number is the address of the
corresponding byte.

Memory operands may be bytes, half words, words, or double words, or, for the load/store multiple and
move assist instructions, a sequence of bytes or words. The address of amemory operand isthe address of
itsfirst byte (that is, of its lowest-numbered byte). Operand length isimplicit for each instruction.

3.1.2 Endian Modes and Byte Ordering

The PowerPC architecture supports both big- and little-endian byte ordering. The default byte and bit
ordering is big-endian. See Section 3.1.2, “Byte Ordering,” in the Programming Environments Manual,
for more information about big- and little-endian byte ordering. Note that the e300 core does not support
the modified (PowerPC) little-endian mode present in previous PowerPC cores but supports true
little-endian mode.

Truelittle-endian mode is supported in the €300 core to minimize theimpact on software porting from true
little-endian systems. Thetruelittle-endian mode appliesfor all instruction fetches and dataload and store
operationsto and from memory. The e300 powers up in one of two endian modes, big-endian mode or true
little-endian mode, selected by thetle signal at the negation of hreset. The endian mode should be set at

the negation of hreset, and should remain unchanged by software for the duration of the system operation.

Bit 4 of HID2, (HID2[LET]) is used in conjunction with MSR[LE] to indicate the endian mode of
operation of the e300 core as shown in Table 3-1. Note that the e300 core no longer supports modified
(PowerPC) little-endian mode as in previous PowerPC cores.

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 3-1

Instruction Set Model

Table 3-1. Endian Mode Indication

MSR[LE] | HID2[LET] Endian Mode
0 X Big-endian
1 1 True little-endian

When the e300 coreisin true little-endian mode, memory and 1/O subsystems are treated as true
little-endian. The following occurs when operating in true little-endian mode:

» The byte reversing for instruction occurs before the instruction is decoded.

» The byte reversing for data occurs when the dataitem is being moved to or from the GPR.

Therefore, the bytereversal inlittle-endian mode for |oad or store accesses occurs between memory or the
data cache, and the register files for the e300 core.

3.1.3 Alignment and Misalighed Accesses

The operand of asingle-register memory access instruction has a natural alignment boundary equal to the
operand length. In other words, the natural address of an operand is an integral multiple of the operand
length. A memory operand issaid to be aligned if it isaligned at its natural boundary; otherwiseit is
misaligned. For adetailed discussion about memory operands, see Chapter 3, “Operand Conventions,” in
the Programming Environments Manual.

Operands for single-register memory access instructions have the characteristics shown in Table 3-2.
(Although not permitted as memory operands, quad words are shown because quad-word alignment is
desirable for certain memory operands.)

Table 3-2. Memory Operands

Operand Length Ad:rg:;j"]
Byte 8 bits XXXX
Half word 2 bytes xxx0
Word 4 bytes xx00
Double word 8 bytes x000
Quad word 16 bytes 0000

Note: An xin an address bit position indicates that
the bit can be 0 or 1 regardless of the state
of other address bits.

The concept of alignment is also applied more generally to datain memory. For example, a 12-byte data
item is said to be word-aligned if its address is amultiple of four.

Implementation Notes—The following describes how the €300 core handles alignment and misaligned
accesses.

» The core provides hardware support for some misaligned memory accesses. However, misaligned
accesses suffer a performance degradation compared to aligned accesses of the same type.

e300 Power Architecture Core Family Reference Manual, Rev. 4

3-2 Freescale Semiconductor

Instruction Set Model

* The core does not provide hardware support for floating-point load/store operations that are not
word-aligned. In such acase, the coreinvokes an alignment interrupt and theinterrupt handler must
break up the misaligned access. For this reason, floating-point single- and double-word accesses
should always be word-aligned. Note that a floating-point double-word access on a word-aligned
boundary requires an extracycleto complete. The e€300c2 core does not support any fl oating-point
operations.

Any half-word, word, double-word, and string reference access that crosses an alignment boundary must
be broken into multiple discrete accesses. For string accesses, the hardware makes no attempt to get
aligned to reduce the number of accesses. (Multiple word accesses are architecturally required to be
aligned.) Theresulting performance degradation depends on how well each individual accessbehaveswith
respect to the memory hierarchy. At aminimum, additional cache access cycles arerequired. More
dramatically, each discrete accessto anoncacheable pageinvolves anindividual bus operation that reduces
the effective bus bandwidth.

The frequent use of misaligned accesses is discouraged because they can compromise the overall
performance.

3.14 Floating-Point Execution Model

The e300c1 core provides hardware support for al single- and double-precision floating-point operations
for most value representations and all rounding modes. The PowerPC architecture providesfor hardware
to implement afloating-point system as defined in ANSI/IEEE Standard 754-1985, IEEE Sandard for
Binary Floating Point Arithmetic. For detailed information about the floating-point execution model, refer
to Chapter 3, “Operand Conventions,” in the Programming Environments Manual. Note that the e300c2
core does not support floating-point operations.

The IEEE 754 standard includes 64- and 32-bit arithmetic. The standard requires that single-precision
arithmetic be provided for single-precision operands. The standard permits double-precision arithmetic
instructions to have either (or both) single-precision or double-precision operands, but states that
single-precision arithmetic instructions should not accept double-precision operands.

The UISA follows these guidelines:

» Double-precision arithmetic instructions may have single-precision operands but always produce
double-precision results.

» Single-precision arithmetic instructions require all operands to be single-precision and always
produce single-precision results.

For arithmetic instructions, conversions from double- to single-precision must be done explicitly by
software, while conversions from single- to double-precision are done implicitly.

All PowerPC implementations provide the equivalent of the following execution models to ensure that
identical results are obtained. The definition of the arithmetic instructions for infinities, denormalized
numbers, and NaNs follow conventions described in the following sections.

Although the double-precision format specifies an 11-bit exponent, exponent arithmetic uses two
additional bit positions to avoid potential transient overflow conditions. An extrabit is required when
denormalized double-precision numbers are prenormalized. A second bit is required to permit

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 3-3

Instruction Set Model

computation of the adjusted exponent value in the following examples when the corresponding exception
enable bit is one:

* Underflow during multiplication using a denormalized factor
» Overflow during division using a denormalized divisor

3.15 Effect of Operand Placement on Performance

The VEA states that the placement (location and alignment) of operandsin memory affect the relative
performance of memory accesses. The best performance is guaranteed if memory operands are aligned on
natural boundaries. To obtain the best performance from the core, the programmer should assume the
performance model described in Chapter 3, “ Operand Conventions,” in the Programming Environments
Manual.

3.2 Instruction Set Summary

This section describes instructions and addressing modes defined for the €300 core. These instructionsare
divided into the following functional categories:

* Integer instructions—These include arithmetic and logical instructions. For more information, see
Section 3.2.4.1, “Integer Instructions.”

* Floating-point instructions—T hese include floating-point arithmetic instructions, aswell as
instructions that affect the floating-point status and control register (FPSCR). For more
information, see Section 3.2.4.2, “Floating-Point Instructions.” Floating-point instructions are not
supported on the e300c2 core.

* Load and store instructions—T hese include integer and floating-point load and store instructions.
For more information, see Section 3.2.4.3, “Load and Store I nstructions.”

* Flow control instructions—T hese include branching instructions, condition register logical
instructions, and other instructions that affect the instruction flow. For more information, see
Section 3.2.4.4, “Branch and Flow Control Instructions.”

» Trapinstructions—These are used to test for a specified set of conditions; see Section 3.2.4.5,
“Trap Instructions.”

* Processor control instructions—These are used for synchronizing memory accesses and managing
caches, TLBs, and segment registers. For more information, see Section 3.2.4.6, “ Processor
Control Instructions,” Section 3.2.5.1, “Processor Control Instructions,” and Section 3.2.6.2,
“Processor Control Instructions—OEA.”

» Memory synchronization instructions—These are used for synchronizing memory accesses. See
Section 3.2.4.7, “Memory Synchronization Instructions—UISA,” and Section 3.2.5.2, “Memory
Synchronization Instructions—VEA.”

» Memory control instructions—T hese provide control of caches, TLBs, and segment registers. For
more information, see Section 3.2.5.3, “Memory Control Instructions—VEA,” and
Section 3.2.6.3, “Memory Control Instructions—OEA.”

» System linkage instructions—These include the System Call (sc) and Return from Interrupt (rfi)
instructions. See Section 3.2.6.1, “ System Linkage Instructions.”

e300 Power Architecture Core Family Reference Manual, Rev. 4

3-4 Freescale Semiconductor

Instruction Set Model

Note that this grouping of instructions does not necessarily indicate the execution unit that processes a
particular instruction or group of instructions. Thisinformation, which is useful in taking full advantage
of the core superscalar parallel instruction execution, is provided in Chapter 8, “Instruction Set,” of the
Programming Environments Manual.

Integer instructions operate on word operands. Floating-point instructions operate on single- and
double-precision floating-point operands. PowerPC instructions are 4-byte words. The UISA providesfor
byte, half-word, and word operand |oads and stores between memory and aset of 32 GPRs. It also provides
for word and double-word operand |oads and stores between memory and a set of 32 FPRs. Floating-point
instructions and registers are not supported on the e300c2 core.

Arithmetic and logical instructions do not read or modify memory. To use the contents of a memory
location in a computation and then modify the same or another memory location, the memory contents
must be loaded into a register, modified, and then written to the target location using load and store
instructions.

The description of each instruction includes the mnemonic and aformatted list of operands. To simplify
assembly language programming, a set of simplified mnemonics (extended mnemonicsin the architecture
specification) and symbolsis provided for some of the frequently-used instructions; see Appendix F,
“Simplified Mnemonics,” in the Programming Environments Manual, for a complete list of simplified
mnemonic exampl es.

3.2.1 Classes of Instructions

The e300 core instructions belong to one of the following three classes:

 Defined
o lllega
e Reserved

Note that although the definitions of these terms are consistent among the processors of this family, the
assignment of these classifications is not. For example, an instruction that is specific to 64-bit
implementations is considered defined for 64-bit implementations but illegal for 32-bit implementations
such as the e300 core.

The classis determined by examining the primary opcode and the extended opcode, if any. If either is not
that of a defined instruction or of areserved instruction, theinstructionisillegal.

In future versions of the PowerPC architecture, instruction codings that are now illegal may become
assigned to instructions in the architecture or may be reserved by being assigned to processor-specific
instructions.

3.21.1 Definition of Boundedly Undefined

If instructions are encoded with incorrectly set bitsin reserved fields, the results on execution can be said
to be boundedly undefined. If auser-level program executestheincorrectly coded instruction, the resulting
undefined results are bounded in that a spurious change from user to supervisor state is not allowed, and
the level of privilege exercised by the program in relation to memory access and other system resources

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 3-5

Instruction Set Model

cannot be exceeded. Boundedly undefined results for a given instruction may vary between
implementations, and between execution attempts in the same implementation.

3.2.1.2 Defined Instruction Class

Defined instructions are guaranteed to be supported in al PowerPC implementations, except as stated in
the instruction descriptions in Chapter 8, “Instruction Set,” in the Programming Environments Manual.
The €300 core provides hardware support for all instructions defined for 32-bit implementations.

A processor of thisfamily invokestheillegal instruction error handler (part of the program interrupt) when
the unimplemented PowerPC instructions are encountered so they can be emulated in software, as
required.

A defined instruction can have invalid forms, as described in the following section.

3.21.3 lllegal Instruction Class

Illegal instructions are grouped into the following categories:

» Instructions not defined in the PowerPC architecture. These opcodes are available for future
extensions of the PowerPC architecture; that is, future versions of the PowerPC architecture may
define any of these instructions to perform new functions.

The following primary opcodes are defined asillegal but may be used in future extensions to the
architecture:

1,4,5,6,9, 22, 56, 57, 60, 61
* Instructions defined in the PowerPC architecture but not implemented in a specific PowerPC
implementation. For example, instructionsthat can be executed on 64-bit processorsare considered
illegal by 32-bit processor cores.

The following primary opcodes are defined for 64-bit implementations only and are illegal on the
core:

2, 30, 58, 62
* All unused extended opcodes are illegal. The unused extended opcodes can be determined from
information in Appendix A.2, “Instructions Sorted by Opcode,” [and Section 3.2.1.4, “ Reserved

Instruction Class.” Notice that extended opcodes for instructions that are defined only for 64-bit
implementations are illegal in 32-bit implementations, and vice versa.

The following primary opcodes have unused extended opcodes:

17,19, 31, 59, 63 (primary opcodes 30 and 62 areillegal for all 32-bit implementations, but as
64-bit opcodes they have some unused extended opcodes)

* Aninstruction consisting entirely of zerosis guaranteed to be anillegal instruction. Thisincreases
the probability that an attempt to execute data or uninitialized memory invokes the system illegal
instruction error handler (a program interrupt). Note that if only the primary opcode consists of all
zeros, the instruction is considered a reserved instruction. Thisis further described in
Section 3.2.1.4, “Reserved Instruction Class.”

e300 Power Architecture Core Family Reference Manual, Rev. 4

3-6 Freescale Semiconductor

Instruction Set Model

An attempt to execute an illegal instruction invokes theillegal instruction error handler (a program
interrupt) but has no other effect. Section 5.5.7, “Program Interrupt (0x00700),” describesillegal and
invalid instruction interrupts.

Except for an instruction consisting entirely of binary zeros, illegal instructions are available for further
additions to the PowerPC architecture.

3.2.1.4 Reserved Instruction Class

Reserved instructions are allocated to specific implementation-dependent purposes not defined by the
PowerPC architecture. An attempt to execute an unimplemented reserved instruction invokes the illegal
instruction error handler (aprogram interrupt). See Section 5.5.7, “Program Interrupt (0x00700),” for
additional information about illegal and invalid instruction interrupts.

The following types of instructions are included in this class:

* Implementation-specific instructions (for example, Load Data TLB Entry (tIbld) and Load
Instruction TLB Entry (tlbli) instructions).

» Optional instructions defined by the PowerPC architecture but not implemented by the core (for
example, Floating Square Root (fsgrt) and Floating Square Root Single (fsgrts) instructions).

3.2.2 Addressing Modes

This section provides an overview of conventions for addressing memory and calculating effective
addresses as defined by the PowerPC architecture for 32-bit implementations. For more detailed
information, see “Conventions’ in Chapter 4, “ Addressing Modes and Instruction Set Summary,” of the
Programming Environments Manual.

3.2.2.1 Memory Addressing

A program references memory using the effective (logical) address computed by the processor when it
executes a memory access or branch instruction or when it fetches the next sequential instruction.

Asdescribed in Section 3.1.1, “Data Organization in Memory and Memory Operands,” bytesin memory
are numbered consecutively starting with zero. Each number is the address of the corresponding byte.

3.2.2.2 Memory Operands

Memory operands may be bytes, half words, words, or double words, or, for the load/store multiple and
load/store string instructions, a sequence of bytes or words. The address of a memory operand is the
address of itsfirst byte (that is, of itslowest-numbered byte). Operand length isimplicit for each
instruction. The PowerPC architecture supports both big- and little-endian byte ordering. The default byte
and bit ordering is big-endian. See Section 3.1.2, “Byte Ordering,” in the Programming Environments
Manual, for more information about big- and little-endian byte ordering.

The operand of asingle-register memory access instruction has a natural alignment boundary equal to the
operand length. In other words, the “natural” address of an operand is an integral multiple of the operand
length. A memory operand issaid to be aligned if it isaligned at its natural boundary; otherwiseit is

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 3-7

Instruction Set Model

misaligned. For adetailed discussion about memory operands, see Chapter 3, “Operand Conventions,” in
the Programming Environments Manual.

3.2.2.3 Effective Address Calculation

An effective address (EA) is the 32-bit sum computed by the processor core when executing a memory
access or branch instruction or when fetching the next sequential instruction. For a memory access
instruction, if the sum of the effective address and the operand length exceeds the maximum effective
address, the memory operand is considered to wrap around from the maximum effective address through
effective address 0, as described in the following paragraphs.

Effective address computations for both data and instruction accesses use 32-bit unsigned binary
arithmetic. A carry from bit O isignored.
Load and store operations have three categories of effective address generation:

* Register indirect with immediate index mode

* Register indirect with index mode

* Register indirect mode
Section 3.2.4.3.2, “Integer L oad and Store Address Generation,” describes effective address generation for
load and store operations.
Branch instructions have three categories of effective address generation:

* Immediate

» Link register indirect

» Count register indirect

Section 3.2.4.4.1, “Branch Instruction Address Calculation,” describes branch instruction effective
address generation.

3.2.24 Synchronization

The synchronization described in this section refersto the state of the core performing the synchronization.

3.2.2.41 Context Synchronization

The System Call (sc) and Return from Interrupt (rfi) instructions perform context synchronization by
allowing previously issued instructions to complete before performing a change in context. Execution of
one of these instructions ensures the following:
» No higher priority interrupt exists (sc).
» All previousinstructions have completed to a point where they can no longer cause an interrupt. If
aprior memory access instruction causes direct-store error interrupts, the results are guaranteed to
be determined before thisinstruction is executed.

e300 Power Architecture Core Family Reference Manual, Rev. 4

3-8 Freescale Semiconductor

Instruction Set Model

* Previous instructions complete execution in the context (privilege, protection, and address
translation) under which they were issued.

» Theinstructions following the sc or rfi instruction execute in the context established by these
instructions.

3.2.2.4.2 Execution Synchronization

Aninstruction isexecution synchronizing if al previously initiated instructions appear to have completed
before the instruction isinitiated or, in the case of the Synchronize (sync) and Instruction Synchronize
(isync) instructions, before the instruction completes. For example, the Move to Machine State Register
(mtmsr) instruction is execution synchronizing. It ensures that all preceding instructions have completed
execution and will not cause an interrupt before the instruction executes but does not ensure subsequent
instructions execute in the newly established environment. For example, if the mtmsr sets MSR[PR],
unless an isync immediately follows the mtmsr instruction, a privileged instruction could be executed or
privileged access could be performed without causing an interrupt even though M SR[PR] indicates user
mode.

3.2.2.43 Instruction-Related Interrupts

There aretwo kinds of interruptsin the e300 core—those caused directly by the execution of an instruction
and those caused by an asynchronous event. Either may cause components of the system software to be
invoked.

Interrupts can be caused directly by the execution of an instruction as follows:

* Anattempt to execute an illegal instruction causestheillegal instruction (program interrupt)
handler to be invoked. An attempt by a user-level program to execute the supervisor-level
instructions listed below causes the privileged instruction (program interrupt) handler to be
invoked. The core providesthe following supervisor-level instructions:. icbt, dcbi, mfmsr, mfspr,
mfsr, mfsrin, mtmsr, mtspr, mtsr, mtsrin, rfi, tibie, tlbsync, tibld, and tlbli. Note that the
privilege level of the mfspr and mtspr instructions depends on the SPR encoding.

* An attempt to access memory that is not available (page fault) causes the ISl interrupt handler to
be invoked.

* Anattempt to access memory with an effective address alignment that isinvalid for the instruction
causes the alignment interrupt handler to be invoked.

» Theexecution of an scinstruction invokesthe system call interrupt handler that permits a program
to request the system to perform aservice.

» The execution of atrap instruction invokes the program interrupt trap handler.

» The execution of afloating-point instruction when floating-point instructions are disabled or
unavailable invokes the floating-point unavailable interrupt handler.

» Theexecution of aninstruction that causes afloating-point exception while exceptions are enabled
inthe M SR invokes the program interrupt handler. Floating-point instructions are not supported on
the e300c2 core.

Interrupts caused by asynchronous events are described in Chapter 5, “Interrupts and Exceptions.”

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 3-9

Instruction Set Model

3.2.3 Instruction Set Overview

Thissection providesabrief overview of the PowerPC instructionsimplemented in the core and highlights
any special information with respect to how the e300 core implements a particular instruction. Note that
the categories used in this section correspond to those used in Chapter 4, “ Addressing Modes and
Instruction Set Summary,” in the Programming Environments Manual. These categorizations are
somewhat arbitrary and are provided for the convenience of the programmer and do not necessarily reflect
the PowerPC architecture specification.
Note that some of the instructions have the following optional features:

* CR Update—Thedot (.) suffix on the mnemonic enables the update of the CR.

* Overflow option—The o suffix indicates that the overflow bit in the XER is enabled.

3.24 PowerPC UISA Instructions

The UISA includes the base user-level instruction set (excluding afew user-level cache control,
synchronization, and time base instructions), user-level registers, programming model, data types, and
addressing modes. This section discusses the instructions defined in the UISA.

3.241 Integer Instructions

This section describes the integer instructions. These consist of the following:
* Integer arithmetic instructions
* Integer compareinstructions
» Integer logical instructions
* Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place results into GPRs, into the
XER, and into condition register (CR) fields.
3.24.141 Integer Arithmetic Instructions

Table 3-3 lists the integer arithmetic instructions for the core.

Table 3-3. Integer Arithmetic Instructions

Name Mnemonic Operand Syntax

Add add (add. addo addo.) rD,rA,rB

Add Carrying addc (addc. addco addco.) rD,rA,rB

Add Extended adde (adde. addeo addeo.) rD,rA,rB

Add Immediate addi rD,rA,SIMM

Add Immediate Carrying addic rD,rA,SIMM

Add Immediate Carrying and Record addic. rD,rA,SIMM

Add Immediate Shifted addis rD,rA,SIMM

Add to Minus One Extended addme (addme. addmeo addmeo.) rD,rA

e300 Power Architecture Core Family Reference Manual, Rev. 4

3-10 Freescale Semiconductor

Table 3-3. Integer Arithmetic Instructions (continued)

Instruction Set Model

Name Mnemonic Operand Syntax

Add to Zero Extended addze (addze. addzeo addzeo.) rD,rA
Divide Word divw (divw. divwo divwo.) rD,rA,rB
Divide Word Unsigned divwu (divwu. divwuo divwuo.) rD,rA,rB
Multiply High Word mulhw (mulhw.) rD,rA,rB
Multiply High Word Unsigned mulhwu (mulhwu.) rD,rA,rB
Multiply Low mullw (mullw. mullwo muliwo.) rD,rA,rB
Multiply Low Immediate mulli rD,rA,SIMM
Negate neg (neg. nego nego.) rD,rA
Subtract From subf (subf. subfo subfo.) rD,rA,rB
Subtract From Carrying subfc (subfc. subfco subfco.) rD,rA,rB
Subtract From Extended subfe (subfe. subfeo subfeo.) rD,rA,rB
Subtract From Immediate Carrying subfic rD,rA,SIMM
Subtract From Minus One Extended subfme (subfme. subfmeo subfmeo.) rD,rA
Subtract From Zero Extended subfze (subfze. subfzeo subfzeo.) rD,rA

Although thereis no Subtract Immediate instruction, its effect can be achieved by using an addi instruction
with the immediate operand negated. Simplified mnemonics are provided that include this negation. The
subf instructions subtract the second operand (r A) from the third operand (r B). Simplified mnemonicsare
provided in which the third operand is subtracted from the second operand. See Appendix F, “ Simplified
Mnemonics,” in the Programming Environments Manual, for examples.

3.2.4.1.2

The integer compare instructions algebraically or logically compare the contents of r A with either the
UIMM operand, the SIMM operand, or the contents of r B. The comparison issigned for thecmpi andcmp
instructions, and unsigned for the cmpli and cmpl instructions. Table 3-4 lists the integer compare
instructions.

Integer Compare Instructions

Table 3-4. Integer Compare Instructions

Name Mnemonic Operand Syntax
Compare cmp crfD,L,rA,rB
Compare Immediate cmpi crfD,L,rA,SIMM
Compare Logical cmpl crfD,L,rA,rB
Compare Logical Immediate cmpli crfD,L,rA,UIMM

The crfD operand can be omitted if the result of the comparison is to be placed in CRO. Otherwise, the
target CR field must be specified in the instruction crfD field.

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 3-11

Instruction Set Model

For more information refer to Appendix F, “Simplified Mnemonics,” in the Programming Environments
Manual.

3.24.13

Thelogical instructions shown in Table 3-5 perform bit-parallel operations. Logical instructions with the
CR update enabled and instructions andi. and andis. set CR field CRO to characterize the result of the
logical operation. These fields are set as if the sign-extended low-order 32 bits of the result were
algebraically compared to zero. Logical instructions without CR update and the remaining logical
instructions do not modify the CR. Logical instructions do not affect the XER[SO], XER[OV], and
XER[CA] bits.

For simplified mnemonics examples for the integer logical operations see Appendix F, “Simplified
Mnemonics,” in the Programming Environments Manual.

Integer Logical Instructions

Table 3-5. Integer Logical Instructions

Name Mnemonic Operand Syntax

AND and (and.) rA,rS,rB
AND Immediate andi. rA,rS,UIMM
AND Immediate Shifted andis. rA,rS,UIMM
AND with Complement andc (andc.) rA,rS,rB
Count Leading Zeros Word cntlzw (cntlzw.) |rA,rS
Equivalent eqv (eqv.) rA,rS,rB
Extend Sign Byte extsb (extsb.) rA,rS
Extend Sign Half Word extsh (extsh.) rA,rS
NAND nand (nand.) rA,rS,rB
NOR nor (nor.) rA,rS,rB
OR or (or.) rA,rS,rB
OR Immediate ori rA,rS,UIMM
OR Immediate Shifted oris rA,rS,UIMM
OR with Complement orc (orc.) rA,rS,rB
XOR xor (xor.) rA,rS,rB
XOR Immediate Xori rA,rS,UIMM
XOR Immediate Shifted xoris rA,rS,UIMM

Integer Rotate and Shift Instructions

Rotation operations are performed on datafrom a GPR, and the result, or aportion of theresult, isreturned
to a GPR. See Appendix F, “ Simplified Mnemonics,” in the Programming Environments Manual, for a
completelist of simplified mnemonicsthat allowssimpler coding of often-used functions such as clearing
the left-most or right-most bits of aregister, left justifying or right justifying an arbitrary field, and ssimple
rotates and shifts.

e300 Power Architecture Core Family Reference Manual, Rev. 4

3-12 Freescale Semiconductor

Instruction Set Model

Integer rotate instructions rotate the contents of aregister. The result of the rotation is either inserted into
thetarget register under control of amask (if amask bit is 1, the associated bit of the rotated datais placed
into the target register; and if the mask bit is O, the associated bit in the target register is unchanged), or
ANDed with a mask before being placed into the target register.

The integer rotate instructions are listed in Table 3-6.

Table 3-6. Integer Rotate Instructions

Name Mnemonic Operand Syntax

Rotate Left Word Immediate then AND with Mask rlwinm (rlwinm.) | rA,rS,SH,MB,ME

Rotate Left Word Immediate then Mask Insert rlwimi (rlwimi.) |rA,rS,SH,MB,ME

Rotate Left Word then AND with Mask rlwnm (rlwnm.) |rA,rS,rB,MB,ME

The integer shift instructions perform left and right shifts. Immediate-form logical (unsigned) shift
operations are obtained by specifying masks and shift values for certain rotate instructions. Simplified
mnemonics are provided, making coding of such shifts smpler and easier to understand.

Multiple-precision shifts can be programmed as shown in Appendix C, “Multiple-Precision Shifts,” in the
Programming Environments Manual.

The integer shift instructions are listed in Table 3-7.
Table 3-7. Integer Shift Instructions

Name Mnemonic Operand Syntax
Shift Left Word slw (slw.) rA,rS,rB
Shift Right Algebraic Word sraw (sraw.) rA,rS,rB
Shift Right Algebraic Word Immediate srawi (srawi.) rA,rS,SH
Shift Right Word Srw (srw.) rA,rS,rB

3.24.2 Floating-Point Instructions

This section describes the floating-point instructions, which include the following:
* Floating-point arithmetic instructions
» Floating-point multiply-add instructions
» Floating-point rounding and conversion instructions
» Floating-point compare instructions
» Floating-point status and control register instructions
» Floating-point move instructions

See Section 3.2.4.3, “Load and Store Instructions,” for information about floating-point loads and stores.
I mplementation Note—The €300c2 core does not support floating-point instructions.

The PowerPC architecture supports a floating-point system as defined in the |EEE 754 standard, but
requires software support to conform with that standard. All floating-point operations conformto the |EEE
754 standard, except if software sets the non-IEEE mode bit (NI) in the FPSCR. The e300 coreisin the

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 3-13

Instruction Set Model

nondenormalized mode when the NI bit isset in the FPSCR. If adenormalized result is produced, a default
result of zero is generated. The generated zero has the same sign as the denormalized number. The core
performs single- and double-precision floating-point operations compliant with the IEEE 754
floating-point standard.

Implementation note—Single-precision denormalized results require two additional processor clock
cyclesto round. When loading or storing a single-precision denormalized number, the |oad/store unit may
take up to 24 processor clock cycles to convert between the internal double-precision format and the
external single-precision format.

3.24.21 Floating-Point Arithmetic Instructions

The floating-point arithmetic instructions are listed in Table 3-8.

Table 3-8. Floating-Point Arithmetic Instructions

Name Mnemonic Operand Syntax

Floating Add (Double-Precision) fadd (fadd.) frD,frA,frB
Floating Add Single fadds (fadds.) | frD,frA,frB
Floating Divide (Double-Precision) fdiv (fdiv.) frD,frA,frB
Floating Divide Single fdivs (fdivs.) frD,frA,frB
Floating Multiply (Double-Precision) fmul (fmul.) frD,frA,frC
Floating Multiply Single fmuls (fmuls.) frD,frA,frC
Floating Reciprocal Estimate Single fres (fres.) frD,frB
Floating Reciprocal Square Root Estimate frsqrte (frsqrte.) | frD,frB
Floating Select fsel (fsel.) frD,frA,frC,frB
Floating Subtract (Double-Precision) fsub (fsub.) frD,frA,frB
Floating Subtract Single fsubs (fsubs.) |frD,frA,frB

3.24.22 Floating-Point Multiply-Add Instructions

These instructions combine multiply and add operations without an intermediate rounding operation. The
fractional part of the intermediate product is 106 bits wide, and all 106 bits take part in the add/subtract
portion of the instruction.

The floating-point multiply-add instructions are listed in Table 3-9.
Table 3-9. Floating-Point Multiply-Add Instructions

Name Mnemonic Operand Syntax
Floating Multiply-Add (Double-Precision) fmadd (fmadd.) frD,frA,frC,frB
Floating Multiply-Add Single fmadds (fmadds.) frD.,frA,frC,frB
Floating Multiply-Subtract (Double-Precision) fmsub (fmsub.) frD,frA,frC,frB
Floating Multiply-Subtract Single fmsubs (fmsubs.) frD.,frA,frC,frB
Floating Negative Multiply-Add (Double-Precision) fnmadd (fnmadd.) frD,frA,frC,frB

e300 Power Architecture Core Family Reference Manual, Rev. 4

3-14 Freescale Semiconductor

Instruction Set Model

Table 3-9. Floating-Point Multiply-Add Instructions (continued)

Name Mnemonic Operand Syntax
Floating Negative Multiply-Add Single fnmadds (fnmadds.) |frD,frA,frC,frB
Floating Negative Multiply-Subtract (Double-Precision) fnmsub (fnmsub.) frD.,frA,frC,frB
Floating Negative Multiply-Subtract Single fnmsubs (fnmsubs.) | frD,frA,frC,frB

Implementation note—Single-precision multiply-type instructions operate faster than their
double-precision equivalents. See Chapter 7, “Instruction Timing,” for more information.

3.24.23 Floating-Point Rounding and Conversion Instructions

The Floating Round to Single-Precision (fr sp) instruction is used to truncate a 64-bit double-precision
number to a 32-bit single-precision floating-point number. The floating-point conversion instructions
convert a 64-bit double-precision floating-point number to a 32-bit signed integer number.

The PowerPC architecture defines bits 0-31 of floating-point register frD as undefined when executing
the Floating Convert to Integer Word (fctiw) and Floating Convert to Integer Word with Round Toward
Zero (fctiwz) instructions.

Examples of uses of these instructions to perform various conversions can be found in Appendix D,
“Floating-Point Models,” in the Programming Environments Manual. The floating-point rounding
instructions are shown in Table 3-10.

Table 3-10. Floating-Point Rounding and Conversion Instructions

Name Mnemonic Operand Syntax
Floating Convert to Integer Word fctiw (fetiw.) frD,frB
Floating Convert to Integer Word with Round Toward Zero fctiwz (fctiwz.) |frD,frB
Floating Round to Single-Precision frsp (frsp.) frD,frB

3.24.24 Floating-Point Compare Instructions

Floating-point compare instructions compare the contents of two floating-point registers. The comparison
ignores the sign of zero (that is+0 = —0). The floating-point compare instructions are listed in Table 3-11.

Table 3-11. Floating-Point Compare Instructions

Name Mnemonic Operand Syntax
Floating Compare Ordered fcmpo crfD,frA,frB
Floating Compare Unordered fcmpu crfD,frA,frB

3.24.2.5 Floating-Point Status and Control Register Instructions

Every FPSCR instruction appears to synchronize the effects of al floating-point instructions executed by
agiven processor. Executing an FPSCR instruction ensures that all floating-point instructions previously
initiated by the given processor appear to have completed before the FPSCR instruction is initiated and

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 3-15

V¥ ¢
i

Instruction Set Model

that no subsequent floating-point instructions appear to beinitiated by the given processor until the FPSCR
instruction has completed. The FPSCR instructions are listed in Table 3-12.

Table 3-12. Floating-Point Status and Control Register Instructions

Name Mnemonic Operand Syntax
Move from FPSCR mffs (mffs.) frD
Move to Condition Register from FPSCR mcrfs crfD,crfS
Move to FPSCR Bit 0 mtfsb0 (mtfsb0.) crbD
Move to FPSCR Bit 1 mtfsb1 (mtfsb1.) crbD
Move to FPSCR Field Immediate mtfsfi (mtfsfi.) crfD,IMM
Move to FPSCR Fields mtfsf (mtfsf.) FM,frB

I mplementation Note—The architecture notesthat, in someimplementations, the Moveto FPSCR Fields
(mtfsfx) instruction may perform more slowly when only aportion of the fields are updated as opposed to
all of thefields. Thisis not the case in the e300 core.

3.2.4.2.6

Floating-point move instructions copy datafrom one floating-point register to another. The floating-point
move instructions do not modify the FPSCR. The CR update option in these instructions controls the
placing of result status into CR1. Floating-point move instructions are listed in Table 3-13.

Floating-Point Move Instructions

Table 3-13. Floating-Point Move Instructions

Name Mnemonic Operand Syntax
Floating Absolute Value fabs (fabs.) frD,frB
Floating Move Register fmr (fmr.) frD,frB
Floating Negate fneg (fneg.) frD,frB
Floating Negative Absolute Value fnabs (fnabs.) |frD,frB

3.2.4.3

Load and store instructions are issued and translated in program order; however, the accesses can occur
out of order. Synchronizing instructions are provided to enforce strict ordering. This section describes the
load and store instructions of the e300 core, which consist of the following:

* Integer load instructions

* Integer storeinstructions

* Integer load and store with byte-reverse instructions
* Integer load and store multiple instructions

* Integer load and store string instructions

» Floating-point load instructions

» Floating-point store instructions

Load and Store Instructions

e300 Power Architecture Core Family Reference Manual, Rev. 4

3-16 Freescale Semiconductor

Instruction Set Model

3.24.3.1 Self-Modifying Code

When a processor modifies amemory location that may be contained in the instruction cache, software
must ensure that memory updates are visible to the instruction fetching mechanism. This can be achieved
by the following instruction sequence:

dcbst |update memory

sync |wait for update

icbi |remove (invalidate) copy in instruction cache
isync | remove copy in own instruction buffer

These operations are required because the data cache is a write-back cache. Since instruction fetching
bypasses the data cache, changesto itemsin the data cache may not be reflected in memory until the fetch
operations complete.

Specia care must be taken to avoid coherency paradoxes in systems that implement unified secondary
caches, and designers should carefully follow the guidelines for maintaining cache coherency that are
provided in the VEA, and discussed in Chapter 5, “ Cache Model and Memory Coherency,” in the
Programming Environments Manual . Because the core does not broadcast the M bit for instruction fetches
(except when HIDO[IFEM] is set), external caches are subject to coherency paradoxes.

3.2.4.3.2 Integer Load and Store Address Generation

Integer load and store operations generate effective addresses using register indirect with immediate index
mode, register indirect withindex mode, or register indirect mode. See Section 3.2.2.3, “Effective Address
Calculation.” Note that the core is optimized for load and store operations that are aligned on natural
boundaries, and operations that are not naturally aligned may suffer performance degradation. Refer to
Section 5.5.6.1, “Integer Alignment Exceptions.”

3.24.3.3 Register Indirect Integer Load Instructions

For integer load instructions, the byte, half word, word, or double word addressed by the EA isloaded into
rD. Many integer load instructions have an update form, in which r A is updated with the generated
effective address. For these forms, the EA is placed into r A and the memory element (byte, half word,
word, or double word) addressed by EA isloaded into rD.

Implementation Note—In some implementations, the load half word algebraic instructions (lha and
Ihax) and the load with update (Ibzu, Ibzux, Ihzu, Ihzux, Ihau, Ihaux, Iwu, and Iwux) instructions may
execute with greater latency than other types of load instructions. In the e300 core, these instructions
operate with the same latency as other load instructions.

Table 3-14 lists the integer load instructions.

Table 3-14. Integer Load Instructions

Name Mnemonic Operand Syntax
Load Byte and Zero bz rD,d(rA)
Load Byte and Zero Indexed Ibzx rD,rA,rB
Load Byte and Zero with Update Ibzu rD,d(rA)
Load Byte and Zero with Update Indexed Ibzux rD,rA,rB

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 3-17

Instruction Set Model

Table 3-14. Integer Load Instructions (continued)

Name Mnemonic Operand Syntax
Load Half Word Algebraic lha rD,d(rA)
Load Half Word Algebraic Indexed lhax rD,rA,rB
Load Half Word Algebraic with Update lhau rD,d(rA)
Load Half Word Algebraic with Update Indexed lhaux rD,rA,rB
Load Half Word and Zero lhz rD,d(rA)
Load Half Word and Zero Indexed lhzx rD,rA,rB
Load Half Word and Zero with Update lhzu rD,d(rA)
Load Half Word and Zero with Update Indexed lhzux rD,rA,rB
Load Word and Zero lwz rD,d(rA)
Load Word and Zero Indexed lwzx rD,rA,rB
Load Word and Zero with Update lwzu rD,d(rA)
Load Word and Zero with Update Indexed lwzux rD,rA,rB
3.2434 Integer Store Instructions

For integer store instructions, the contents of r S are stored into the byte, half word, word, or double word
in memory addressed by the effective address. Many store instructions have an update form, in which r A
is updated with the EA. For these forms, the following rules apply:

« IfrA#0,theEA isplacedintorA.
* IfrS=rA, the contents of r S are copied to the target memory element, then the generated EA is
placedintorA (rS).

The core defines store with update instructions with r A = 0 and integer store instructions with the CR
update option enabled (Rc field, bit 31, in the instruction encoding = 1) to be invalid forms. Table 3-15
provides alist of theinteger store instructions for the core.

Table 3-15. Integer Store Instructions

Name Mnemonic Operand Syntax
Store Byte stb rS,d(rA)
Store Byte Indexed stbx rS,rA,rB
Store Byte with Update stbu rS,d(rA)
Store Byte with Update Indexed stbux rS,rA,rB
Store Half Word sth rS,d(rA)
Store Half Word Indexed sthx rS,rA,rB
Store Half Word with Update sthu rS,d(rA)
Store Half Word with Update Indexed sthux rS,rA,rB
Store Word stw rS,d(rA)
Store Word Indexed stwx rS,rA,rB

e300 Power Architecture Core Family Reference Manual, Rev. 4

3-18 Freescale Semiconductor

Instruction Set Model

Table 3-15. Integer Store Instructions (continued)

Name Mnemonic Operand Syntax
Store Word with Update stwu rS,d(rA)
Store Word with Update Indexed stwux rS,rA,rB
3.24.3.5 Integer Load and Store with Byte-Reverse Instructions

Table 3-16 describes integer load and store with byte-reverse instructions. When used in a system
operating with the default big-endian byte order, these instructions have the effect of loading and storing
datain little-endian order. Likewise, when used in a system operating with little-endian byte order, these
instructions have the effect of loading and storing data in big-endian order. When operating with true
little-endian byte order, these instructions have the effect of loading and storing data in true little-endian
order. For moreinformation about big- and little-endian byte ordering, see Section 3.1.2, “ Byte Ordering,”
in the Programming Environments Manual. For more information about true little-endian operation, see
Section 3.1.2, “Endian Modes and Byte Ordering.”

The e300 core supports the true little-endian mode. In true little-endian mode, the core treats the memory
and I/0 subsystemsaslittle-endian memory. Inthis case, instruction and databytes arereserved asfollows:

» The byte reversing for instruction accesses occurs before the instruction is decoded.
* Thebytereversing occursfor data accesses when the dataitemis being moved to or from the GPR.

Therefore, byte reversal during theload or store accessesis performed between memory or the data cache,
and the register files.

Table 3-16. Integer Load and Store with Byte-Reverse Instructions

Name Mnemonic Operand Syntax
Load Half Word Byte-Reverse Indexed lhbrx rD,rA,rB
Load Word Byte-Reverse Indexed lwbrx rD,rA,rB
Store Half Word Byte-Reverse Indexed sthbrx rS,rA,rB
Store Word Byte-Reverse Indexed stwbrx rS,rA,rB

Implementation Note—In some implementations, load byte-reverse instructions (Ihbrx and Iwbrx) may
have greater |atency than other load instructions; however, theseinstructions operate with the same latency
as other load instructions in the core.

3.2.4.3.6 Integer Load and Store Multiple Instructions

Theinteger load/store multiple instructions are used to move blocks of datato and from the GPRs. In some
implementations, these instructions are likely to have greater latency and take longer to execute, perhaps
much longer, than a sequence of individual load or store instructions that produce the same results.

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 3-19

V¥ ¢
i

Instruction Set Model

Implementation notes—The following describes the e300 core implementation of the |oad/store multiple
instruction:

Theload multiple and store multipleinstructions may have operands that require memory accesses
crossing a 4-Kbyte page boundary. As aresult, these instructions may be interrupted by aDS
interrupt associated with the address trandlation of the second page. In this case, the core performs
some or al of the memory references from the first page, and none of the memory references from
the second page before taking the interrupt. On return from the DSI interrupt, the load or store
multiple instruction will re-execute from the beginning. For additional information, refer to “DSI
Interrupt (0x00300)” in Chapter 6, “Interrupts,” in the Programming Environments Manual.

The PowerPC architecture defines the load multiple word (Imw) instruction with r A in the range
of registersto be loaded as an invalid form. It defines the load multiple and store multiple
instructions with misaligned operands (that is, the EA isnot a multiple of four) to cause an
alignment interrupt. The core definesthe load multipleword (Imw) instruction withr A intherange
of registersto be loaded as an invalid form.

The PowerPC architecture describes some preferred instruction formsfor theinteger load and store
multiple instructions that may perform better than other formsin some implementations. None of
these preferred forms affect instruction performancein the core.

Table 3-17. Integer Load and Store Multiple Instructions

Name Mnemonic Operand Syntax
Load Multiple Word Imw rD,d(rA)
Store Multiple Word stmw rS,d(rA)

3.2.4.3.7 Integer Load and Store String Instructions

The integer load and store string instructions allow movement of data from memory to registers or from
registers to memory without concern for alignment. These instructions can be used for a short move
between arbitrary memory locations or to initiate along move between misaligned memory fields.

When the core is operating with little-endian byte order, execution of aload or store string instruction
causes the system alignment error handler to be invoked; see Section 3.1.2, “Byte Ordering,” in the
Programming Environments Manual, for more information.

Table 3-18 lists the integer load and store string instructions.

Table 3-18. Integer Load and Store String Instructions

Name Mnemonic Operand Syntax
Load String Word Immediate Iswi rD,rA,NB
Load String Word Indexed Iswx rD,rA,rB
Store String Word Immediate stswi rS,rA,NB
Store String Word Indexed stswx rS,rA,rB

Load string and store string instructions may involve operands that are not word-aligned. As described in
“Alignment Interrupt (0x00600)” in Chapter 6, “Interrupts,” in the Programming Environments Manual,

e300 Power Architecture Core Family Reference Manual, Rev. 4

3-20

Freescale Semiconductor

Instruction Set Model

amisaligned string operation suffers a performance penalty compared to a word-aligned operation of the
same type.

When a string operation crosses a4-Kbyte boundary, the instruction may beinterrupted by aDSl interrupt
associated with the address trandation of the second page. In this case, the core performs some or all
memory references from the first page and none from the second before taking the interrupt. On return
from the DS interrupt, the load or store string instruction will re-execute from the beginning. For more
information, refer to “DSI Interrupt (0x00300)” in Chapter 6, “ Interrupts,” in the Programming
Environments Manual.

Implementation Note—If r A isin the range of registers to be loaded for a Load String Word |mmediate
(Iswi) instruction or if either rA or rB isin the range of registersto be loaded for a Load String Word
Indexed (Iswx) instruction, the PowerPC architecture defines the instruction to be of an invalid form. In
addition, the Iswx and stswx instructions that specify a string length of zero are defined to be invalid by
the PowerPC architecture. However, none of these cases hold true for the e300 core—the core treats these
cases as valid forms.

3.2.4.3.8 Floating-Point Load and Store Address Generation

Floating-point load and store operations generate effective addresses using the register indirect with
immediate index addressing mode and register indirect with index addressing mode (details are described
below). Floating-point loads and stores are not supported for direct-store accesses. The use of the
floating-point load and store operations for direct-store accesses resultsin aDSI interrupt.

I mplementation Note—The €300c2 core does not support floating-point operations.

3.24.3.9 Floating-Point Load Instructions

Separate floating-point load instructions are used for single-precision and double-precision operands.
Because FPRs support only double-precision format, the FPU converts single-precision data to
double-precision format beforeloading the operandsinto the target FPR. Thisconversionisdescribed fully
in “Floating-Point Load Instructions” in Appendix D, “Floating-Point Models,” in the Programming
Environments Manual .

Implementation Note—The PowerPC architecture defines load with update instructionswithrA =0 as
aninvalid form; however, the core treats this case asa valid form.

Table 3-19 provides a list of the floating-point load instructions.

Table 3-19. Floating-Point Load Instructions

Name Mnemonic Operand Syntax
Load Floating-Point Double Ifd frD,d(rA)
Load Floating-Point Double Indexed Ifdx frD,rA,rB
Load Floating-Point Double with Update Ifdu frD,d(rA)
Load Floating-Point Double with Update Indexed Ifdux frD,rA,rB
Load Floating-Point Single Ifs frD,d(rA)
Load Floating-Point Single Indexed Ifsx frD,rA,rB

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 3-21

Instruction Set Model

Table 3-19. Floating-Point Load Instructions (continued)

Name Mnemonic Operand Syntax
Load Floating-Point Single with Update Ifsu frD,d(rA)
Load Floating-Point Single with Update Indexed Ifsux frD,rA,rB

3.2.4.3.10 Floating-Point Store Instructions

There are three basic forms of the store instruction—single-precision, double-precision, and integer. The
integer form is supported by the optional stfiwx instruction. Because the FPRs support only
double-precision format for floating-point data, the FPU converts double-precision data to
single-precision format before storing the operands. The conversion steps are described in “ Floating-Point
Store Instructions” in Appendix D, “Floating-Point Models,” in the Programming Environments Manual .

Implementation Note—The PowerPC architecture defines store with update instructionswithrA =0 as
aninvalid form; however, the core treats this case as valid.

Table 3-20 lists the floating-point store instructions.

Table 3-20. Floating-Point Store Instructions

Name Mnemonic Operand Syntax
Store Floating-Point as Integer Word Indexed stfiwx frS,rA,rB
Store Floating-Point Double stfd frS,d(rA)
Store Floating-Point Double Indexed stfdx frS,rA,rB
Store Floating-Point Double with Update stfdu frS,d(rA)
Store Floating-Point Double with Update Indexed stfdux frS,rA,rB
Store Floating-Point Single stfs frS,d(rA)
Store Floating-Point Single Indexed stfsx frS,rA,rB
Store Floating-Point Single with Update stfsu frS,d(rA)
Store Floating-Point Single with Update Indexed stfsux frS,rA,rB

3.24.4 Branch and Flow Control Instructions

Branch instructions are executed by the branch processing unit (BPU). The BPU receives branch
instructions from the fetch unit and performs CR |ookahead operations on conditional branchesto resolve
them early, achieving the effect of azero-cycle branch in many cases.

Some branch instructions can redirect instruction execution conditionally based on the value of bitsin the
CR. When the branch processor encounters one of these instructions, it scans the execution pipelines to
determine whether an instruction in progress may affect the particular CR bit. If no interlock isfound, the
branch can be resolved immediately by checking the bit in the CR and taking the action defined for the
branch instruction.

If an interlock is detected, the branch is considered unresolved and the direction of the branch is predicted
using static branch prediction as described in “Conditional Branch Control” in Chapter 4, “ Addressing
Modes and Instruction Set Summary,” in the Programming Environments Manual. The interlock is

e300 Power Architecture Core Family Reference Manual, Rev. 4

3-22 Freescale Semiconductor

Instruction Set Model

monitored whileinstructionsarefetched for the predicted branch. When theinterlock iscleared, the branch
processor determineswhether the prediction was correct, based on the value of the CR bit. If the prediction
is correct, the branch is considered completed and instruction fetching continues. If the prediction is
incorrect, the fetched instructions are purged, and instruction fetching continues along the alternate path.
See Chapter 8, “Instruction Timing,” in the Programming Environments Manual, for more information
about how branches are executed.

3.2.4.41 Branch Instruction Address Calculation

Branch instructions can change the instruction sequence. Instruction addresses are always assumed to be
word aligned; the processor ignores the two low-order bits of the generated branch target address.

Branch instructions compute the effective address (EA) of the next instruction address using the following
addressing modes:

* Branchreative

» Branch conditional to relative address

» Branch to absolute address

» Branch conditional to absolute address

» Branch conditional to link register

» Branch conditional to count register

3.2.4.4.2 Branch Instructions

Table 3-21 lists the branch instructions provided by the processors that implement the PowerPC
architecture. To simplify assembly language programming, a set of simplified mnemonics and symbolsis
provided for the most frequently used forms of branch conditional, compare, trap, rotate and shift, and
certain other instructions. See Appendix F, “ Simplified Mnemonics,” in the Programming Environments
Manual, for alist of simplified mnemonic examples.

Table 3-21. Branch Instructions

Name Mnemonic Operand Syntax
Branch b (ba bl bla) target_addr
Branch Conditional bc (bca bel bcla) BO,Bl,target_addr
Branch Conditional to Count Register becetr (becetrl) BO,BI
Branch Conditional to Link Register belr (belrl) BO,BI

3.24.43 Condition Register Logical Instructions

Condition register logical instructions, shown in Table 3-22, and the Move Condition Register Field
(mcrf) instruction are also defined as flow control instructions, although they are executed by the system
register unit (SRU). Most instructions executed by the SRU are compl etion-serialized to maintain system
state; that is, the instruction is held for execution in the SRU until al prior instructions issued have
completed.

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 3-23

Instruction Set Model

Table 3-22. Condition Register Logical Instructions

Name Mnemonic Operand Syntax
Condition Register AND crand crbD,crbA,crbB
Condition Register AND with Complement crandc crbD,crbA,crbB
Condition Register Equivalent creqv crbD,crbA,crbB
Condition Register NAND crnand crbD,crbA,crbB
Condition Register NOR crnor crbD,crbA,crbB
Condition Register OR cror crbD,crbA,crbB
Condition Register OR with Complement crorc crbD,crbA,crbB
Condition Register XOR crxor crbD,crbA,crbB
Move Condition Register Field mcerf crfD,crfS

Notethat if the LR update option is enabled for any of these instructions, these forms of the instructions
areinvalid in the €300 core.

3.245 Trap Instructions

The trap instructions shown in Table 3-23 are provided to test for a specified set of conditions. If any of
the conditions tested by atrap instruction are met, the system trap handler isinvoked. If the tested
conditions are not met, instruction execution continues normally.

Table 3-23. Trap Instructions

Name Mnemonic Operand Syntax
Trap Word tw TO,rA,rB
Trap Word Immediate twi TO,rA,SIMM

See Appendix F, “ Simplified Mnemonics,” in the Programming Environments Manual, for acomplete set
of smplified mnemonics.

3.2.4.6 Processor Control Instructions

UISA-level processor control instructions are used to read from and write to the condition register (CR).

3.2.4.6.1 Move to/from Condition Register Instructions

Table 3-24 lists the instructions provided by the core for reading from or writing to the CR.

Table 3-24. Move fo/from Condition Register Instructions

Name Mnemonic Operand Syntax
Move from Condition Register mfcr rD
Move to Condition Register Fields mtcrf CRM,rS
Move to Condition Register from XER mcerxr crfD

e300 Power Architecture Core Family Reference Manual, Rev. 4

3-24 Freescale Semiconductor

Instruction Set Model

3.24.7 Memory Synchronization Instructions—UISA

Memory synchronization instructions control the order in which memory operations are completed with
respect to asynchronous events and the order in which memory operations are seen by other processors or
memory access mechanisms. See Chapter 2, “Instruction and Data Cache Operation,” for additional
information about these instructions and about related aspects of memory synchronization.

The sync instruction delays execution of subsequent instructions until previous instructions have
completed to the point that they can no longer cause an interrupt and until al previous memory accesses
are performed globally; the sync operation isnot broadcast onto the e300 core Coherent System Bus (CSB)
interface. Additionally, all load and store cache/bus activitiesinitiated by prior instructions are completed.
Touch load operations (icbt, dcbt and dcbtst) are required to complete at |east through address trandation
but are not required to complete on the bus.

The functions performed by the sync instruction normally take a significant amount of time to complete;
as aresult, frequent use of thisinstruction may adversely affect performance. In addition, the number of
cyclesrequired to complete a sync instruction depends on system parameters and on the processor's state
when the instruction is issued.

The proper paired use of the Iwarx and stwcx. instructions allows programmers to emul ate common
semaphore operations such as test and set, compare and swap, exchange memory, and fetch and add.
Examples of these operations can befound in Appendix E, “ Synchronization Programming Examples,” in
the Programming Environments Manual. Typically, the lwar x instruction should be paired with an stwcx.
instruction with the same effective address used for both instructions of the pair. Note that the reservation
granularity is 32 bytes.

The concept behind the use of the lwar x and stwcx. instructionsis that a processor may |oad a semaphore
from memory, compute aresult based on the value of the semaphore, and conditionally storeit back to the
samelocation (only if that location has not been modified sinceit wasfirst read), and determineif the store
was successful. The conditional storeis performed, based on the existence of areservation established by
the preceding Iwar x instruction. If the reservation existswhen the store is executed, the storeis performed
which setsabit in the CR. If the reservation does not exist when the store is executed, the target memory
location is not modified and a bit is cleared in the CR.

If the store was successful, the sequence of instructions from the read of the semaphore to the store that
updated the semaphore appear to have been executed atomically (that is, no other processor or mechanism
modified the semaphore location between the read and the update), thus providing the equivalent of area
atomic operation. However, in reality, other cores may have read from the location during this operation.
In the €300 core, the reservations are made on behalf of aligned 32-byte sections of the memory address
space.

The Iwarx and stwcex. instructions require the EA to be aligned. Interrupt-handling software should not
attempt to emulate a misaligned lwar x or stwcx. instruction, because there is no correct way to define the
address associated with the reservation.

In general, the Iwar x and stwcex. instructions should be used only in system programs, which can be
invoked by application programs as needed.

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 3-25

Instruction Set Model

At most, one reservation exists smultaneously on any processor. The address associated with the
reservation can be changed by a subsequent Iwar x instruction. The conditional storeis performed, based
on the existence of areservation established by the preceding lwar x regardless of whether the address
generated by the Iwar x matches that generated by the stwcex. instruction. A reservation held by the
processor is cleared by one of the following:

» Executing an stwcx. instruction to any address
» Attempt by some other device to modify alocation in the reservation granularity (32 bytes)

The Iwarx and stwcx. instructions to write-through memory do not cause a DSI interrupt.

Table 3-25 lists the UISA memory synchronization instructions for the e300 core.

Table 3-25. Memory Synchronization Instructions—UISA

Name Mnemonic Operand Syntax
Load Word and Reserve Indexed lwarx rD,rA,rB
Store Word Conditional Indexed stwex. rS,rA,rB
Synchronize sync —

3.2.5 PowerPC VEA Instructions

The VEA describes the semantics of the memory model that can be assumed by software processes, and
includes descriptions of the cache model, cache-control instructions, address aliasing, and other related
I SSues.

3.2.5.1 Processor Control Instructions

The VEA defines the Move from Time Base (mftb) instruction for reading the contents of the time base
register. The mftb is a user-level instruction, as shown in Table 3-26.

Table 3-26. Move from Time Base Instruction

Name Mnemonic Operand Syntax

Move from Time Base mftb rD, TBR

Simplified mnemonics are provided for the mftb instruction so it can be coded with the TBR name as part
of the mnemonic rather than requiring it to be coded as an operand. The mftb instruction serves as both a
basic and simplified mnemonic. Assemblersrecognize an mftb mnemonic with two operands as the basic
form, and an mftb mnemonic with one operand as the smplified form. Simplified mnemonics are also
provided for Movefrom Time Base Upper (mftbu), avariant of the mftb instruction rather than of mfspr.
The core ignores the extended opcode differences between mftb and mfspr by ignoring bit 25 of both
instructions and treating them identically. Refer to Appendix F, “Simplified Mnemonics,” in the
Programming Environments Manual.

e300 Power Architecture Core Family Reference Manual, Rev. 4

3-26 Freescale Semiconductor

Instruction Set Model

3.2.5.2 Memory Synchronization Instructions—VEA

Memory synchronization instructions control the order in which memory operations are performed with
respect to asynchronous events, and the order in which memory operations are seen by other processors or
memory access mechanisms. See Chapter 2, “Instruction and Data Cache Operation,” for additional
information about these instructions and about related aspects of memory synchronization.

Implementation Notes—The following describes how the core handles memory synchronization in the
VEA.

» The Instruction Synchronize (isync) instruction causes the core to discard all prefetched
instructions, wait for any preceding instructionsto complete, and then branch to the next sequential
instruction (having the effect of clearing the pipeline behind the isync instruction).

» TheEnforce In-Order Execution of 1/0 (eleio) instruction is used to ensure memory reordering of
noncacheable memory access. Because the core does not reorder noncacheable memory accesses,
the eieio instruction is treated as a no-op.

Table 3-27 lists the VEA memory synchronization instructions for the core.

Table 3-27. Memory Synchronization Instructions—VEA

Name Mnemonic Operand Syntax
Enforce In-Order Execution of /O eieio —
Instruction Synchronize isync —

3.2.5.3 Memory Control Instructions—VEA

Memory control instructions include the following types:
» Cache management instructions
* Segment register manipulation instructions
» Tranglation lookaside buffer management instructions
This section describes the user-level cache management instructions defined by the VEA. See

Section 3.2.6.3, “Memory Control Instructions—OEA,” for information about supervisor-level cache,
segment register manipulation, and translation lookaside buffer management instructions.

The ingtructions listed in Table 3-28 provide user-level programs the ability to manage on-chip caches
when they exist.

Table 3-28. User-Level Cache Instructions

Name Mnemonic Operand Syntax
Data Cache Block Flush dcbf rA,rB
Data Cache Block Set to Zero dcbz rA,rB
Data Cache Block Store dcbst rA,rB
Data Cache Block Touch dcbt rA,rB
Data Cache Block Touch for Store dcbtst rA,rB
Instruction Cache Block Invalidate icbi rA,rB

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 3-27

Instruction Set Model

Aswith other memory-related instructions, the effect of the cache management instructions on memory
areweakly ordered. If the programmer needs to ensure that cache or other instructions have been
performed with respect to all other processors and system mechanisms, a sync instruction must be placed
in the program following those instructions.

Note that when data address translation is disabled (MSR[DR] = 0), the Data Cache Block Set to Zero
(dcbz) instruction allocates acache block in the cache and may not verify that the physical addressisvalid.
If acacheblock is created for aninvalid physical address, a machine check condition may result when an
attempt is made to write that cache block back to memory. The cache block could be written back as a
result of the execution of an instruction that causes a cache miss and the invalid addressed cache block is
the target for replacement or a Data Cache Block Store (dcbst) instruction.

Table 3-28 lists the cache instructions that are accessible to user-level programs.

3.2.6 PowerPC OEA Instructions

The OEA includes the structure of the memory management model, supervisor-level registers, and
interrupt model.

3.2.6.1 System Linkage Instructions

This section describes the system linkage instructions (see Table 3-29). The sc instruction is a user-level
instruction that permitsauser program to call on the system to perform a service and causes the processor
to take an interrupt. The Return from Interrupt (rfi) instruction is a supervisor-level instruction that is
useful for returning from an interrupt handler.

The Return from Critical Interrupt (rfci) instruction is a supervisor-level instruction that is implemented
inthe core. Therfci instruction is useful for returning from acritical interrupt handler. Thisinstruction is
described in Section 3.2.8, “Implementation-Specific Instructions.”

Table 3-29. System Linkage Instructions

Name Mnemonic Operand Syntax
Return from Interrupt rfi —
System Call sC —

3.2.6.2 Processor Control Instructions—OEA

Processor control instructions are used to read from and write to the condition register (CR), machine state
register (MSR), and specia-purpose registers (SPRs), and to read from the time base register (TBU or
TBL).

e300 Power Architecture Core Family Reference Manual, Rev. 4

3-28 Freescale Semiconductor

Instruction Set Model

3.2.6.2.1 Move to/from Machine State Register Instructions

Table 3-30 lists the instructions provided by the core for reading from or writing to the MSR.

Table 3-30. Move to/from Machine State Register Instructions

Name Mnemonic Operand Syntax
Move from Machine State Register mfmsr rD
Move to Machine State Register mtmsr rS

3.2.6.2.2 Move to/from Special-Purpose Register Instructions

Simplified mnemonics are provided for the mtspr and mfspr instructions so they can be coded with the
SPR name as part of the mnemonic rather than as a numeric operand. See Appendix F, “ Simplified
Mnemonics,” in the Programming Environments Manual, for simplified mnemonic examples. The mtspr
and mfspr instructions are shown in Table 3-31.

Table 3-31. Move to/from Special-Purpose Register Instructions

Name Mnemonic Operand Syntax
Move from Special-Purpose Register mfspr rD,SPR
Move to Special-Purpose Register mtspr SPR,rS

For mtspr and mfspr instructions, the SPR number coded in assembly language does not appear directly
as a 10-bit binary number in the instruction. The number coded is split into two 5-bit halves that are
reversed in the instruction encoding, with the high-order 5 bits appearing in bits 16—20 of the instruction
encoding and the low-order 5 bitsin bits 11-15.

If the SPR field contains any value other than one of the values shown in Table 3-32, either the program
interrupt handler isinvoked or the results are boundedly undefined.

Table 3-32. Implementation-Specific SPR Encodings (mfspr)

SPR!
Register Name Access
Decimal spr[5-9] spr[0-4]

1 00000 00001 XER User

8 00000 01000 LR User

9 00000 01001 CTR User

18 00000 10010 DSISR Supervisor
19 00000 10011 DAR Supervisor
22 00000 10110 DEC Supervisor
25 00000 11001 SDR1 Supervisor
26 00000 11010 SRRO Supervisor
27 00000 11011 SRR1 Supervisor
58 00001 11010 CSRR0? Supervisor
59 00001 11011 CSRR1 2 Supervisor

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 3-29

Instruction Set Model

Table 3-32. Implementation-Specific SPR Encodings (mfspr) (continued)

SPR!
Register Name Access
Decimal spr[5-9] spr[0-4]
272 01000 10000 SPRGO Supervisor
273 01000 10001 SPRG1 Supervisor
274 01000 10010 SPRG2 Supervisor
275 01000 10011 SPRG3 Supervisor
276 01000 10100 SPRG4 2 Supervisor
277 01000 10101 SPRG5 2 Supervisor
278 01000 10110 SPRG6 2 Supervisor
279 01000 10111 SPRG7 2 Supervisor
284 01000 11100 TBL Supervisor
285 01000 11101 TBU Supervisor
286 01000 11110 SVR 2 Supervisor
287 01000 11111 PVR Supervisor
309 01001 10101 IBCR 2 Supervisor
310 01001 10110 DBCR 2 Supervisor
311 01001 10111 MBAR 2 Supervisor
317 01001 11101 DABR2 2 Supervisor
528 10000 10000 IBATOU Supervisor
529 10000 10001 IBATOL Supervisor
530 10000 10010 IBAT1U Supervisor
531 10000 10011 IBAT1L Supervisor
532 10000 10100 IBAT2U Supervisor
533 10000 10101 IBAT2L Supervisor
534 10000 10110 IBAT3U Supervisor
535 10000 10111 IBAT3L Supervisor
536 10000 11000 DBATOU Supervisor
537 10000 11001 DBATOL Supervisor
538 10000 11010 DBAT1U Supervisor
539 10000 11011 DBAT1L Supervisor
540 10000 11100 DBAT2U Supervisor
541 10000 11101 DBAT2L Supervisor
542 10000 11110 DBAT3U Supervisor
543 10000 11111 DBAT3L Supervisor
560 10001 10000 IBAT4U 2 Supervisor

e300 Power Architecture Core Family Reference Manual, Rev. 4

3-30

Freescale Semiconductor

Table 3-32. Implementation-Specific SPR Encodings (mfspr) (continued)

SPR!
Register Name Access
Decimal spr[5-9] spr[0-4]
561 10001 10001 IBAT4L 2 Supervisor
562 10001 10010 IBAT5U 2 Supervisor
563 10001 10011 IBAT5L 2 Supervisor
564 10001 10100 IBAT6U 2 Supervisor
565 10001 10101 IBAT6L 2 Supervisor
566 10001 10110 IBAT7U 2 Supervisor
567 10001 10111 IBAT7L 2 Supervisor
568 10001 11000 DBAT4U 2 Supervisor
569 10001 11001 DBATA4L 2 Supervisor
570 10001 11010 DBAT5U 2 Supervisor
571 10001 11011 DBATS5L 2 Supervisor
572 10001 11100 DBAT6U 2 Supervisor
573 10001 11101 DBAT6L Supervisor
574 10001 11110 DBAT7U 2 Supervisor
575 10001 11111 DBAT7L 2 Supervisor
976 11110 10000 DMISS Supervisor
977 11110 10001 DCMP Supervisor
978 11110 10010 HASH1 Supervisor
979 11110 10011 HASH2 Supervisor
980 11110 10100 IMISS Supervisor
981 11110 10101 ICMP Supervisor
982 11110 10110 RPA Supervisor
1008 11111 10000 HIDO Supervisor
1009 11111 10001 HID1 Supervisor
1010 11111 10010 IABR Supervisor
1011 11111 10011 HID2 Supervisor
1013 11111 10101 DABR 2 Supervisor
1018 11111 11010 IABR2 2 Supervisor

1

Note that the order of the two 5-bit halves of the SPR number is reversed
compared with actual instruction coding.

For mtspr and mfspr instructions, the SPR number coded in assembly

language does not appear directly as a 10-bit binary number in the instruction.

The number coded is split into two 5-bit halves that are reversed in the

instruction, with the high-order 5 bits appearing in bits 16—20 of the instruction

and the low-order 5 bits in bits 11-15.

2 These registers are implementation-specific for e300 core only.

e300 Power Architecture Core Family Reference Manual, Rev. 4

Instruction Set Model

Freescale Semiconductor

3-31

|
y

'
A

Instruction Set Model

Implementation note—The core ignores the extended opcode differences between mftb and mfspr by
ignoring TB[25] and treating both instructions identically.

3.2.6.2.3 Move to/from Performance Monitor Register Instructions
The APU defines instructions for reading and writing the PMRs as shown in Table 3-33.

Table 3-33. Performance Monitor APU Instructions

Name Mnemonic Syntax
Move from Performance Monitor Register mfpmr rD,PMRN
Move to Performance Monitor Register mtpmr PMRN,rS

3.2.6.3 Memory Control Instructions—OEA

This section describes memory control instructions, which include the following types:
» Cache management instructions
* Segment register manipulation instructions
» Trandlation lookaside buffer management instructions

3.2.6.3.1 Supervisor-Level Cache Management Instruction

The supervisor-level cache management instruction in the PowerPC architecture, dcbi, is used to
invalidate individual cache blocks. The icbt instruction, another supervisor-level instruction, performsa
busread operation from the bus and allocatesinto the instruction cache. Thisinstruction isnew to the e300
core, and supplements the instruction cache locking mechanisms and the new lock-protect feature. The
user-level dcbf instruction, described in Section 3.2.5.3, “Memory Control Instructions—VEA,” and
Section 2.5.2, “ Cache Control Instructions,” should be used when the program needs to invalidate cache
blocks. Note that the dcbf instruction causes modified blocks to be flushed to system memory if they are
the target of a dcbf instruction, whereas, by definition in the PowerPC architecture, the dcbi instruction
only invalidates modified blocks.

3.2.6.3.2 Segment Register Manipulation Instructions

The instructions listed in Table 3-34 provide access to the segment registers for the e300 core. These
instructions operate completely independently from the M SR[IR] and MSR[DR] bit settings. Refer to
“Synchronization Requirements for Special Registersand TLBS" in Chapter 2, “Register Set,” in the
Programming Environments Manual, for serialization requirements and other recommended precautions
to observe when manipulating the segment registers.

Table 3-34. Segment Register Manipulation Instructions

Name Mnemonic Operand Syntax
Move from Segment Register mfsr rD,SR
Move from Segment Register Indirect mfsrin rD,rB

e300 Power Architecture Core Family Reference Manual, Rev. 4

3-32 Freescale Semiconductor

Instruction Set Model

Table 3-34. Segment Register Manipulation Instructions (continued)

Name Mnemonic Operand Syntax
Move to Segment Register mtsr SR,rS
Move to Segment Register Indirect mtsrin rS,rB

3.2.6.3.3 Translation Lookaside Buffer Management Instructions

The address trandlation mechanism is defined in terms of segment descriptors and page table entries
(PTES) used by the processors to locate the effective-to-physical address mapping for a particular access.
The PTES reside in page tablesin memory. As defined for 32-bit implementations by the PowerPC
architecture, segment descriptorsreside in 16 on-chip segment registers.

The e300 core providesthe ability to invalidate aTLB entry. The TLB Invalidate Entry (tIbie) instruction
invalidates the TLB entry indexed by the EA, and operates on both the instruction and data TLBs
simultaneously invalidating four TLB entries (both setsin each TLB). Theindex correspondsto bits 15-19
of the EA. Toinvalidate all entries within both TLBs, 32 tlbie instructions should be issued, incrementing
thisfield by one each time.

The core providestwo implementation-specificinstructions (tIbld and tIbli) that are used by softwaretable
search operations following TLB missesto load TLB entries on-chip.

For more information on tibld and tibli refer to Section 3.2.8, “Implementation-Specific Instructions.”
Note that the tIbia instruction is not implemented on the core.

Refer to Chapter 6, “Memory Management,” for more information about the TLB operationsfor the core.
Table 3-35 lists the TLB instructions.

Table 3-35. Translation Lookaside Buffer Management Instructions

Name Mnemonic Operand Syntax
Load Data TLB Entry tibld rB
Load Instruction TLB Entry tibli rB
TLB Invalidate Entry tibie rB
TLB Synchronize tibsync —

Because the presence and exact semantics of the trandation lookaside buffer management instructionsis
implementation-dependent, system software should incorporate uses of the instructions into subroutines
to maximize compatibility with programs written for other processors.

For more information on the PowerPC instruction set, refer to Chapter 4, “ Addressing Modes and
Instruction Set Summary,” and Chapter 8, “Instruction Set,” in the Programming Environments Manual.

3.2.7 Recommended Simplified Mnemonics

To smplify assembly language programs, a set of simplified mnemonicsis provided for some of the most
frequently used operations (such as no-op, load immediate, |oad address, move register, and complement
register). PowerPC compliant assemblers provide the simplified mnemonics listed in “Recommended

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 3-33

Instruction Set Model

Simplified Mnemonics’ in Appendix F, “Simplified Mnemonics,” in the Programming Environments
Manual, and listed with some of the instruction descriptions in this chapter. Programs written to be
portable across the various assemblers for the PowerPC architecture should not assume the existence of
mnemonics not described in this document.

For acomplete list of smplified mnemonics, see Appendix F, “ Simplified Mnemonics,” in the
Programming Environments Manual.

e300 Power Architecture Core Family Reference Manual, Rev. 4

3-34 Freescale Semiconductor

Instruction Set Model

3.2.8 Implementation-Specific Instructions

This section provides a detailed ook at the €300 core implementation-specific instructions—icbt, tibld,
tIbli, and rfci.

icbt icbt

Instruction Cache Block Touch Integer Unit
icht rA,rB
b'111111 b’0000010110
| 31 00000 | A | B | 22 0]
0 5 6 10 11 15 16 20 21 30 31
D Reserved

EA isthe sum (rA[0) + (rB)

Theinstruction is a hint that the performance will be improved if the block containing the instruction
addressed by the EA isfetched into the instruction cache, because the program will execute from the
addressed |ocation. Executing an icbt instruction does not cause any interrupt to be invoked.

If the EA specifies alocation outside of the main memory, the instruction is treated as a no-op. Also, the
icbt instruction istreated asano-op if touch load operation is disabled by the HIDO[NOPTI] configuration
bit. Theicbt instruction is effective regardless of WIMG settings, instruction or data cache enable status,
or the instruction cache lock status.

Thisis a supervisor-level, context synchronizing instruction. It is e300-specific and not part of the
PowerPC instruction set.

Other registers altered:
* None

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 3-35

|
y

'
A

Instruction Set Model

tibid

Load Data TLB Entry

tibld

rB

10 M

15 16

20 21

tibid

Integer Unit

30 31

31

00000

00000

978 0

EA <

(rB)

TLB entry created from DCMP and RPA

DTLB entry selected by EA[15-19] and SRR1[WAY] ¢« created TLB entry

The EA isthe contents of rB. Thetlbld instruction loads the contents of the data PTE compare (DCMP)
and required physical address (RPA) registersinto the first word of the selected data TLB entry. The

specific DTLB entry to be loaded is selected by the EA and SRR1[WAY] bit.

Thetlbld instruction should only be executed when address translation is disabled (MSR[IR] = 0 and

MSR[DR] =

0).

Note that it is possible to execute the tIbld instruction when address translation is enabled; however,
extreme caution should be used in doing so. If data address translation is set (MSR[DR] = 1) tIbld must
be preceded by a sync instruction and succeeded by a context synchronizing instruction.

Als0, note that care should be taken to avoid modification of the instruction TLB entries that trand ate
current instruction prefetch addresses.

Thisis asupervisor-level instruction; it is also an €300 core-specific instruction, and not part of the
PowerPC instruction set.

Other registers altered:

« None

e300 Power Architecture Core Family Reference Manual, Rev. 4

3-36

Freescale Semiconductor

Instruction Set Model

tibli tibli

Load Instruction TLB Entry Integer Unit
tibld rB
0 5 6 10 M 15 16 20 21 31
31 00000 00000 B 1010 0
EA <« (rB)

TLB entry created from ICMP and RPA
ITLB entry selected by EA[15-19] and SRR1[WAY] ¢« created TLB entry

The EA isthe contents of rB. The tlbli instruction loads the contents of the instruction PTE compare
(ICMP) and required physical address (RPA) registers into the first word of the selected instruction TLB
entry. The specific ITLB entry to be loaded is selected by the EA and SRR1[WAY] hit.

Thetlbli instruction should only be executed when address trandation is disabled (MSR[IR] = 0 and
MSR[DR] = 0).

Notethat it is possible to execute the tIbld instruction when address trandlation is enabled; however,
extreme caution should be used in doing so. If instruction address trandation is set (MSR[IR] = 1), tlbli
must be followed by a context synchronizing instruction such asisync or rfi.

Als0, note that care should be taken to avoid modification of the instruction TLB entries that trand ate
current instruction prefetch addresses.

Thisis asupervisor-level instruction; it is also an €300 core-specific instruction, and not part of the
PowerPC instruction set.

Other registers altered:
* None

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 3-37

Instruction Set Model

Return from Critical Interrupt
0 5 6 10 11 15 16 20 21 30 31
19 00 000 0 0000 0000 0 51 0

MSR[16-27, 30-31] ¢« CSRR1[16-27, 30-31]
NIA <iea CSRRO[0-29]

Bits CSRR1[16-27, 30-31] are placed into the corresponding bits of the MSR. If the new M SR value does
not enable any pending interrupts, then the next instruction isfetched, under control of the new MSR value,
from the address CSRRO[0-29] || ObQO. If the new M SR value enables one or more pending interrupts, the
interrupt associated with the highest priority pending interrupt is generated; in this case the value placed
into CSRRO by the interrupt processing mechanism is the address of the instruction that would have been
executed next had theinterrupt not occurred. Note that an implementation may define additional M SR bits,
and in this case, may also cause them to be saved to CSRR1 from MSR on an interrupt and restored to
MSR from CSRR1 on anrfci.

Thisis a supervisor-level, context synchronizing instruction. Thisinstruction is defined only for 32-bit

implementations.

Other registers altered:
* MSR

e300 Power Architecture Core Family Reference Manual, Rev. 4

| | oboo

3-38

Freescale Semiconductor

Instruction Set Model

The following instruction has been added to support performance monitor operations:

mfpmr - mfpmr
Move From Performance Monitor Register Integer Unit
mfpmr rD, PMRN

01111 1] D | PMRNsg PMRNo-4 [0 1 0 1 0 0 1 11 0 0
0 56 10 11 15 16 20 21 31

GPR (rD) <-- PMREG(PMRN)

PMRN denotes a performance monitor register as listed in Table 11-1 and Table 11-2.
The contents of the designated performance monitor register are placed into GPR[rD].

When MSR[PR] = 1, specifying a performance monitor register that is not implemented and is not
privileged (PMRN[5] = 0) resultsin an illegal instruction exception-type program interrupt. When
MSR[PR]=1, specifying a performance monitor register that is privileged (PMRN[5] = 1) resultsin a
privileged instruction execution-type program interrupt. When MSR[PR] = 0, specifying an
unimplemented performance monitor register is boundedly undefined.

Other registers altered:
* None
mtpmr o mtpmr
Move to Performance Monitor Register Integer Unit
mtpmr PMRN, rS
01111 1] 'S | PMRNsg PMRNo-4 [0 1 1 1 0 0 1 11 0 0
0 5 6 10 11 15 16 20 21 31

PMREG(PMRN) <-- GPR (rS)

PMRN denotes a performance monitor register, aslisted in Table 11-1 and Table 11-2.
The contents of GPR[rS] are placed into the designated performance monitor register.

When MSR[PR] = 1, specifying a performance monitor register that is not implemented and is not
privileged (PMRN[5] = 0) resultsin an illegal instruction exception-type program interrupt. When
MSR[PR]=1, specifying a performance monitor register that is privileged (PMRN[5] = 1) resultsin a

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 3-39

Instruction Set Model

privileged instruction execution-type program interrupt. When MSR[PR] = 0, specifying an
unimplemented performance monitor register is boundedly undefined.

Other registers altered:
* None

e300 Power Architecture Core Family Reference Manual, Rev. 4

3-40 Freescale Semiconductor

Chapter 4

Instruction and Data Cache Operation

This chapter describes the organization of the cache, cache coherency protocols, cache control
instructions, and various cache operations. It describes the interaction between the caches, the load/store

unit, the instruction unit, and the memory subsystem. It aso describes the cache way-locking features
provided in the core.

Note that in this chapter the term ‘multiprocessor’ is used in the context of maintaining cache coherency.
These multiprocessor devices could be actual processorsand other devicesthat can access system memory,
maintain their own caches, and function as bus masters requiring cache coherency.

4.1 Introduction

The core provides two independent L 1 instruction and data caches to allow the registers and execution
unitsrapid access to instructions and data.

411 Instruction and Data Cache Features

The cache implementation has the following characteristics:
* Harvard architecture—separate instruction and data caches
» 32-Kbyte instruction and data caches on €300c1 and €300c4; 16-Kbyte caches on €300c2 and

€300c3

» Eight-way, set-associativity on e300c1 and €300c4, and four-way set-associative on €300c2 and
€300c3

» Physically addressed cache directories. The physical (real) addresstag is stored in the cache
directory.

» 32-byte cache blocks. A cache block isthe block of memory that a coherency state describes, also
referred to as a cacheline.

» Afour-state modified/exclusive/shared/invalid (MES), or athree-state modified/exclusive/invalid
(MEI) coherency protocol for the data cache

» Two status bits for each data cache block to indicate the coherency state as follows:
— Modified (M)
— Exclusive (E)
— Shared (S)
— Invalid (1)
» A singlestatus bit for each instruction cache block that allows encoding for the following two
possible states:

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 4-1

Instruction and Data Cache Operation

— Invalid
— Valid
» Cachelocking:
— Entire cache locking for each cache by setting the appropriate bitsin the HIDO
— Way-locking support for instruction and data caches using controlsin HID2
» Cacheinvalidation by setting the appropriate bitsin HIDO
* A pseudo least-recently-used (PLRU) replacement algorithm within each set

* Aninstruction cancel mechanism that improves use of instruction cache by supporting
hits-under-cancel s and misses-under-cancels

» Data cache queue sharing that makes cast-outs and snoop pushes more efficient
* New icbt instruction supports initializing instruction cache

* Aninstruction fetch burst feature that allows all instruction fetches from caching-inhibited space
to be performed on the bus as burst transactions

» Parity support for both instruction and data caches

4.1.2 Overview

The core supports a fully coherent, 4-Gbyte physical memory address space. Bus snooping is used to
ensure the coherency of global memory with respect to the data cache.

On a cache miss, cache blocks are loaded in four beats of 64 bits each when the core is configured for a
64-bit data bus; when the coreis configured for a32-bit bus, cache block loads are performed as eight beats
of 32 bits each. Regardless of the bus size, the burst load is performed as a critical -double-word-first
operation.

For data cache loads, the data cache is blocked to internal accesses until the load completes. The
critical-double-word iswritten to the cache and forwarded to the requesting unit, minimizing stalls due to
load delays. Note that the cache line being filled cannot be accessed internally until the fill completes.

The instruction cache allows sequential fetching during a cache block load; the instruction cache is
blocked only until the cache line load completes.

Both caches are tightly coupled to the core businterface unit (BIU) to alow efficient access to the system
memory controller and other bus masters. The core load/store unit (L SU) is also directly coupled to the
data cache to allow the efficient movement of data to and from the general-purpose and floating-point
registers. The core bus interface unit receives requests for bus operations from the instruction and data
caches, and executes the operations according to the coherent system bus (CSB) protocol. The BIU
provides transaction queuing, prioritization, and bus control logic. The BIU also captures snoop addresses
for data cache, address queue, and memory reservation (Iwarx and stwcx. instruction) operations. The
instruction cache is not snooped; therefore, instruction cache coherency must be maintained by software.

The LSU provides the data transfer interface between the data cache and the GPRs and FPRs. It provides
all logic required to calculate effective addresses, handle data alignment to and from the data cache, and
provides sequencing for load and store string and multiple operations. As shown in Figure 1-1, the caches

e300 Power Architecture Core Family Reference Manual, Rev. 4

4-2 Freescale Semiconductor

Instruction and Data Cache Operation

provide a 64-bit interface to the instruction fetcher and LSU. Write operations to the data cache can be
performed on a byte, half-word, word, or double-word basis.

4.2 Data Cache Organization

The e300c1 and e300c4 data cache is configured as 128 sets of eight blocks per set. The organization of
the e300c1 and €300c4 data cache is shownin Figure 4-1.

/

128 Sets

W

T
Words [0-7]

Block 0 Address Tag 0 || State
| | | | | | |
Block 1 Address Tag 1 || State | | | Words‘ [0-7] | | |
| | | | | | |
Block 2 Address Tag 2 || State | | | Word; [0-7] | | |
| | | | | | |
Block 3 Address Tag 3 || State | | | Word; [0-7] | | |
| | | | | | |
Block 4 Address Tag 4 || State | | | Word; [0-7] | | |
| | | | | | |
Block 5 Address Tag 5 || State | | | Word; [0-7] | | |
| | | | | | |
Block 6 Address Tag 6 || State | | | Word; [0-7] | | |
| | | | | | |
Block 7 Address Tag 7 State | | | ‘ | | |

Words [0-7]
|

\4— 8 Words/Block —>¢

Figure 4-1. e300c1 and e300c4 Data Cache Organization

The e300c2 and €300c3 data cacheis configured as 128 sets of four blocks per set. The organization of the
€300c2 and e300c3 data cache is shown in Figure 4-2.

/

128 Sets

Pl/l .

Block 0 Address Tag 0 || State
| | | | | | |
Block 1 Address Tag 1 || State | | | Word; [0-7] | | |
| | | | | | |
Block 2 Address Tag 2 || State | | | Word; [0-7] | | |
| | | | | | |
Block 3 Address Tag 3 State | | | ‘ | | |

Words [0-7]
| |

|«<————— 8Words/Block————————»

Figure 4-2. e300c2 and e€300c3 Data Cache Organization

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor

4-3

Instruction and Data Cache Operation

Each block consists of 32 bytes of data, 32 parity bits, state bits, and an address tag. Each cache block
contains eight contiguous words from memory that are loaded from an eight-word boundary (that is, bits
A27-A31 are not part of the cache block address); thus, a cache block never crosses a page boundary.
Misaligned accesses across a page boundary can incur a performance penalty.

BitsA20-A26 provide anindex to select aset. BitsA27-A31 select abytewithin ablock. Thetags consists
of bits PAO-PA19. Address trandation occurs in parallel, such that higher-order bits (the tag bitsin the
cache) are physical.

The state bits implement either a standard, four-state MESI coherency protocol or a three-state MEI
protocol. Cache coherency is enforced by on-chip bus snooping logic. Since the data cache tags are
single-ported, aload or store, simultaneous with a snoop access, represents a resource contention. The
snoop accessis given first access to the tags. Load or store operations can be performed to the cache on
the clock cycle immediately following a snoop accessif the snoop misses. Snoop hits may block the data
cache for two or more cycles, depending on whether a copy back to main memory isrequired. The
replacement algorithm isaPLRU algorithm; that is, the pseudo |east-recently used block isfilled with new
data on a cache miss.

4.3 Instruction Cache Organization

The e300c1 and e300c4 instruction cache also consists of 128 sets of eight blocks per set. The €300c1 and
€300c4 instruction cache organization is shown in Figure 4-3.

128 Sets . ‘ ‘ . ‘ ‘ ‘
Ld [[L d [[[[
/ . .
‘ [l [\ ‘
T T T T T T T ||
Block 0 Address Tag0 | | | State Words [0-7] ||

| | | | | | |
[[[[[[[

Block 1 Address Tag1 | | | State Words [0-7] N
| | | | | | |
[[[[[[[

Block 2 Address Tag2 | | | State Words [0-7] L]
| | | | | | |
\ \ \ \ \ \ \

Block 3 Address Tag3 || | State Words [0-7] ||

| | | | | | |
T T T T T T T

Block 4 Address Tag4 | | | State Words [0-7] L
| | | | | | |
\ \ \ \ \ \ \

Block 5 Address Tag 5 | | 1 State Words [0-7] N
| | | | | | |
[[[[[[[

Block 6 Address Tag6 | | | State Words [0-7] ol
| | | | | | |
\ \ \ \ \ \ \

Block 7| AddressTag7 | [State Words [0-7] L

| | |
«——————— 8 Words/Block—————————»|

Figure 4-3. e300c1 and e300c4 Instruction Cache Organization

The €300c2 and €300c3 instruction cacheis configured as 128 sets of four blocks per set. The organization
of the e300c2 and €300c3 instruction cacheis shown in Figure 4-4.

e300 Power Architecture Core Family Reference Manual, Rev. 4

4-4 Freescale Semiconductor

Instruction and Data Cache Operation

128 Sets * ‘ ‘ R ‘ ‘ ‘
. \ \ »l \ \ \ \
. .
[l [\ ‘
T T T T T T T
Block 0 Address Tag0 | | [State Words [0-7] L
| | | | | | |
\ \ \ \ \ \ \
Block 1 Address Tag 1 | | [State Words [0-7] N
| | | | | | |
[[[[[[[
Block 2 Address Tag2 | | | State Words [0-7] ol
| | | | | | |
\ \ \ \ \ \ \
Block 3| AddressTag3 | [State Words [0—7] L
| | | | | | |

|« 8Words/Block————————————»|
Figure 4-4. e300c2 and e300c3 Instruction Cache Organization

Each block consists of 32 bytes of data, 32 parity bits, an address tag, and a valid bit. Each cache block
contains eight contiguous words from memory that are loaded from an eight-word boundary (that is, bits
A27-A31 are not part of the cache block address); thus, a cache block never crosses a page boundary.
Misaligned accesses across a page boundary can incur a performance penalty.

Address hits A20-A26 provide an index to select a set. Bits A27-A31 select a byte within a block. The
tags consists of bits PAO-PA19. Address trandation occursin parallel, such that higher-order bits (the tag
bitsin the cache) are physical. The replacement algorithm isa PLRU algorithm; that is, the pseudo
least-recently used block is filled with new instructions on a cache miss.

The instruction cache is only written as aresult of ablock fill operation on a cache miss. A hardware
invalidation capability is provided to support cache maintenance. The instruction fetcher accesses the
instruction cache frequently in order to sustain the high throughput provided by the six-entry instruction
queue.

44 Memory and Cache Coherency

The primary objective of acoherent memory systemisto providethe sameimage of memory to all devices
using the system. Coherency allows synchronization and cooperative use of shared resources. Otherwise,
multiple copies of amemory location, some containing stale values, could exist in a system, resulting in
errors when the stale values are used. This section describes the coherency mechanisms of the PowerPC
architecture and the cache coherency protocol that the data cache supports. Note that, unless specifically
noted, the discussion of coherency in this section appliesto the data cache only. The instruction cacheis
not snooped. Instruction cache coherency must be maintained by software.

4.4.1 Memory/Cache Access Attributes (WIMG Bits)

Some memory characteristics can be set on either ablock or page basisby usingthe WIMG bitsinthe BAT
registersor page table entry (PTE), respectively. The WIMG attributes control the following functionality:
* Write-through (W bit)
» Caching-inhibited (I bit)

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 4-5

|
y

'
A

Instruction and Data Cache Operation

* Memory coherency (M bit)
* Guarded memory (G bit)

The WIMG attributes are programmed by the operating system for each page and block. The W and |
attributes control how the processor performing an access usesits own cache. The M attribute ensures that
coherency is maintained for all copies of the addressed memory location. The G attribute prevents
speculative (referred to as ‘out-of-order’ in the architecture specification) loading and prefetching from
the addressed memory location. These bits allow both uniprocessor and multiprocessor system designsto
exploit numerous system-level performance optimizations.

For accesses performed with real addressing mode (MSR[IR] = 0 or MSR[DR] = O for instruction or data
access, respectively), the WIMG bits are automatically generated as 0b0011 (the data is write-back,
caching is enabled, memory coherency is enforced, and memory is guarded).

Careless use of these bitsmay create situations where coherency paradoxes are observed by the processor.
In particular, this can happen when the state of these bits is changed without appropriate precautions. For
example, when flushing the pages that correspond to the changed bits from the caches of all processorsin
the system isrequired, or when the address translations of aliased physical addresses (referred to asreal
addresses in the architecture specification), specify different values for any of the WIM bits). The core
considers any of these cases to be a programming error that may compromise the coherency of memory.
These paradoxes can occur within a single processor or across several devices, as described in

Section 4.4.2.4, “ Coherency in Single-Processor Systems.”

4411 Write-Through Attribute (W)

When an accessis designated aswrite-through (W = 1), if the dataisin the cache, astore operation updates
the cached copy of the data. In addition, the update iswritten to the external memory location (as described
below).

While the PowerPC architecture permits multiple store instructions to be combined for write-through
accesses except when the storeinstructions are separated by async or eieioinstruction, the e300 core does
not implement this combined-store capability. A store operation that uses the write-through attribute may
cause any part of valid datain the cacheto be written back to main memory. The eieio instruction istreated
as ano-op by the e300 core.

The definition of the external memory location to be written to, in addition to the on-chip cache, depends
on the implementation of the memory system and can beillustrated by the following examples:
* RAM—The storeis sent to the RAM controller to be written into the target RAM.
* |/O device—The store is sent to the memory-mapped 1/O control hardware to be written to the
target register or memory location.

In systems with multilevel caching, the store must be written to at least a depth in the memory hierarchy
that is seen by all processors and devices.

Accesses that correspond to W = 0 are considered write-back. For this case, although the store operation
isperformed to the cache, it isonly made to external memory when a copy-back operationisrequired. Use
of the write-back mode (W = 0) can improve overal performance for areas of the memory space that are
seldom referenced by other mastersin the system.

e300 Power Architecture Core Family Reference Manual, Rev. 4

4-6 Freescale Semiconductor

Instruction and Data Cache Operation

44.1.2 Caching-Inhibited Attribute (1)

If I =1, the memory access is completed by referencing the location in main memory, bypassing the
on-chip cache. During the access, the addressed location is not loaded into the cache, nor is the location
allocated in the cache. It is considered a programming error if a copy of the target location of an accessto
caching-inhibited memory is resident in the cache. Software must ensure that the location has not been
previously loaded into the cache, or, if it has, that it has been flushed from the cache.

The PowerPC architecture permits data accesses from more than one instruction to be combined for
caching-inhibited operations, except when the accesses are separated by a sync instruction or by an eieio
instruction when the page or block is aso designated as guarded. This combined-access capability is not
implemented on the €300 core. The eieio instruction is treated as a no-op by the e300 core.

The caching-inhibited (1) bit in the core also controls whether |oad and store operations are strongly or
weakly ordered. If an 1/0O device requires load and store accesses to occur in program order, then the | bit
for the page must be set. Refer to Section 4.4.3.2, * Sequential Consistency of Memory Accesses,” for more
information.

4413 Memory Coherency Attribute (M)

When an access requires coherency, the processor performing the access must inform the coherency
mechanisms throughout the system that the access requires memory coherency. The M attribute
determines the kind of access performed on the bus (global or local). This attribute is provided to allow
improved performance in systems where hardware-enforced coherency isrelatively slow and where
software is able to enforce the required coherency. When M = 0, the processor does not enforce data
coherency. When M = 1, the processor enforces data coherency, and the corresponding access is
considered to be a global access.

When the M attribute is set, and the access is performed, the global signal is asserted to indicate that the
accessis global. Snooping devices affected by the access must then respond to this global accessif their
datais modified by signaling retry and by updating the memory location.

For instruction accesses, HIDO[IFEM] control how accesses are performed (global or local) on the bus. If
translation is enabled, setting IFEM causes the coreto reflect the M bit state on the bus during instruction
fetches.

441.4 Guarded Attribute (G)

When the guarded bit is set, the memory area (block or page) is designated as guarded. This setting can be
used to protect certain memory areas from read accesses made by the processor that are not dictated
directly by the program. If there are areas of memory that are not fully populated (in other words, there are
holes in the memory map within this area), this setting can protect the system from undesired accesses
caused by speculative load operations or instruction prefetches that could lead to the generation of the
machine check interrupt. Also, the guarded bit can be used to prevent speculative load operations or
prefetches from occurring to certain peripheral devices where such speculative accesses could produce
undesired results (for example, a destructive read from a FIFO buffer).

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 4-7

Instruction and Data Cache Operation

The processor will perform speculative out-of-order accesses to this area of memory, only as follows:

» Speculative |oad operations from guarded memory areas are performed only if the corresponding
datais resident in the cache.

* The processor prefetches from guarded areas, but only when required, and only within the memory
boundary dictated by the cache block. That is, if aninstruction is certain to be required for
execution by the program, it is fetched and the remaining instructions in the block may be
prefetched, even if the areais guarded.

4415 W, I, and M Bit Combinations

Table 4-1 summarizes the six combinations of the WIM bits. A setting of zero or onefor the G bit is
allowed for each of these WIM bit combinations.

Table 4-1. Combinations of W, |, and M Bits

WIM Setting Meaning

000 Data may be cached.
Loads or stores whose target hits in the cache use that entry in the cache.
Memory coherency is not enforced by hardware.

001 Data may be cached.
Loads or stores whose target hits in the cache use that entry in the cache.
Memory coherency is enforced by hardware.

n10 Caching is inhibited.
The access is performed to external memory, completely bypassing the cache.
Memory coherency is not enforced by hardware.

ni1 Caching is inhibited.

The access is performed to external memory, completely bypassing the cache.

Memory coherency must be enforced by external hardware (processor provides hardware indication that
access is global).

100 Data may be cached.

Load operations whose target hits in the cache use that entry in the cache.

Stores are written to external memory. The target location of the store may be cached and is updated on a hit.
Memory coherency is not enforced by hardware.

101 Data may be cached.

Load operations whose target hits in the cache use that entry in the cache.

Stores are written to external memory. The target location of the store may be cached and is updated on a hit.
Memory coherency is enforced by hardware.

4.4.2 Coherency Support

The data cache of the e300 core supports both the three-state MEI and four-state MESI cache coherency
protocols, as selected by the HID2[MESI] control parameter. For these modes, each 32-byte block in the
data cacheisawaysin one of thefollowing states: modified (M), exclusive (E), shared (S), or invalid (1).
The shared state is only available in MESI protocol mode. The instruction cache always operatesin a
reduced two-state mode using the states: valid (V) or invalid (I). Cache blocksin the instruction cache are
never modified.

e300 Power Architecture Core Family Reference Manual, Rev. 4

4-8 Freescale Semiconductor

Instruction and Data Cache Operation

The four MES| states are defined in Table 4-2.
Table 4-2. MEI/MESI State Definitions

MESI State Definition

Modified (M) | The addressed cache block is valid only in the cache. The cache block is modified with respect to system
memory—that is, the modified data in the cache block has not been written back to memory.

Exclusive (E) | The addressed block is in this cache only. The data in this cache block is consistent with system memory.

Shared (S) The addressed cache block is valid in this cache, and the data in the block is consistent with system memory.
Unlike the exclusive state, however, the block may also simultaneously be in the shared state in another cache
in the system. The data in the block may be read at any time by this processor; however, before it may be written
with any newer data by this processor, it must first be removed (de-allocated) from all other caches in the
system.

Note: This state is only available when HID2[MESI] is set.

Invalid (1) This state indicates that the addressed cache block is not resident in the cache.

4.4.2.1 MEI Coherency Protocol

The default cache coherency protocol is acoherent subset of the standard MESI four-state cache protocol
that omits the shared state. Since data cannot be shared using MEI, the e300 core signals all cache block
fillsasif they were write misses (read-with-intent-to-modify, or RWITM), flushing the corresponding
copies of the datain all caches external to the core prior to the core cache block fill operation. Following
the cache block load, the coreisthe exclusive owner of the data and may writeto it without abus broadcast
transaction.

To maintain this coherency, all global reads observed on the bus by the e300 core are snooped as if they
arewrites, causing the core to write a modified cache block back to memory and invalidate the cache
block, or ssimply invalidate the cache block if it is unmodified. The exception to this rule occurs when a
snooped transaction is a single-beat read (implying caching-inhibited), in which case the core does not
invalidate the snooped cache block. If the cache block is modified, the block is written back to memory,
and the cache block is marked exclusive. If the cache block is marked exclusive when snooped, no bus
action is taken, and the cache block remainsin the exclusive state. This treatment of caching-inhibited
reads decreases the possibility of data thrashing by allowing noncaching devices to read data without
invalidating the entry from the core data cache.

44211 MEI State Transitions

Figure 4-5 shows the state transitions when the coreis configured for MEI coherency protocol
(HID2[MESI] = 0). Figure 4-5 assumes that the WIM bits for the page or block are set to 001, that is,
write-back, caching-not-inhibited, and memory-coherency-required. The MEI protocol is the default
cache coherency protocol for the e300 core.

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 4-9

Instruction and Data Cache Operation

SH/CRW

RM

WH

sHICLN—(})

Modified

RH

SH/SBR
Bus Transactions
SH=Snoop Hit = Snoop Push
RH=Read Hit
RM =Re_ad Muss = Cache Line Fill
WH=Write Hit

WM=Write Miss

SH/CRW = Snoop Hit, Caching-Allowed Read/Write
SH/SBR = Snoop Hit, Single-Beat Read

SH/CLN = Snoop hit, Clean broadcast

Figure 4-5. MEI Cache Coherency Protocol—State Diagram (WIM = 001)

44.2.2 MESI Coherency Protocol

Before enabling MESI mode, the data cache must first be flushed and a flash invalidate performed to
empty the cache of any valid data.

When operating in the four-state protocol, astore-hit to ashared lineistreated as acache miss, and theline
isre-fetched from memory with intent-to-modify status on the bus. The newly re-fetched line replacesthe
same way-entry in the cache. Also, any clean operation in the data cache (dcbst, or any snoop-clean type)
puts the cache line in the shared state. In MEI mode, a clean operation puts the line in the exclusive state.

When MESI mode is enabled, other nuances of core operation are affected. The transaction type signals
on the bus reflect the MESI intention rather than the MEI intention. In particular, aload-miss operation
(including for lwar x) uses the READ bus transaction, rather than a RWITM bus transaction asisrequired
for the MEI protocol. The dcbt instruction causes a READ transaction, and the dcbtst instruction causes
aRWITM transaction. Note that MM U trandation should be enabled when using these instructions. In
addition, instruction fetches are performed as READ transactions, and signal the glb pin according to the
true WIMG status, including signaling global when the MMU trandlation is disabled (real addressing
mode).

e300 Power Architecture Core Family Reference Manual, Rev. 4

4-10 Freescale Semiconductor

Instruction and Data Cache Operation

4.4.2.2.1 MESI State Transitions

Figure 4-6 shows the state transitions when the core is configured for MESI coherency protocol
(HID2[MESI] = 1). Figure 4-6 assumes that the WIM bits for the page or block are set to 001, that is,
write-back, caching-not-inhibited, and memory-coherency-required.

snoop w/push hit
read hit

snoop w/flush hit

CA read miss snoop w/kill hit

snoop w/push hit Shared signaled CA/WT/CI write hit snoop w/push hit
(RO line fill)
snoop w/flush hit snoop w/flush hit
snoop w/kill hit snoop w/kill hit

CA write miss CA read miss
(RWITM (RWITM, RO
line fill) line fill)
Modified CA write hit (no broadcast) Exclusive

read hit

CA/WT/CI write hit read hit

WT/CI write hit
CA = Caching-Allowed, WT= Write-Through, Cl = Caching-Inhibited
RO = Read-only
RWITM = Read-with-Intent-to-Modify
snoop w/push = RO bus request, performs a copy-back if the block is in the modified state

snoop w/flush = RWITM bus request, performs a copy-back if the block is in the modified state
snoop w/kill = broadcasts an invalidate on the CSB, no copy-back if the block is in the modified state

Figure 4-6. MESI Cache Coherency Protocol—State Diagram (WIM = 001)

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 4-11

Instruction and Data Cache Operation

4.4.2.3

Load and Store Coherency Summary

Table 4-4 provides a summary of memory coherency actions performed by the e300 core on load
operations. Caching-inhibited cases are not considered in this table.

Table 4-3. Memory Coherency Actions on Load Operations

Cache State Transaction External Response Action
Generated
M None Don't care Read from cache
None Don’t care Read from cache

St None Don't care Read from cache

| READ No response Load data and mark exclusive
| READ Share signaled1 Load data and mark shared
| READ Retry signaled Retry read operation

' MESI mode only

Table 4-4 provides an overview of memory coherency actions on store operations. This table does not

include caching-inhibited or write-through cases.

Table 4-4. Memory Coherency Actions on Store Operations

Cache State Transaction External Response Action
Generated
M None Don’t care Modify cache
None Don’t care Modify cache and mark modified

S! RWITM No response Load data, modify it, and mark as modified
St RWITM Retry signaled Retry the RWITM

| RWITM No response Load data, modify it, and mark as modified

| RWITM Retry signaled Retry the RWITM

' MESI mode only

The RWITM transactions involve selecting a replacement class and casting-out modified data that may
have resided in that replacement class.

4.4.2.4

The following situations concerning coherency can be encountered within a single-processor system:
» Load or store to a caching-inhibited page (WIM = Obx1x) and a cache hit occurs.

Cachingisinhibited for thispage (I = 1)—Load or store operationsto a caching-inhibited page that
hit in the cache cause boundedly undefined results.

Coherency in Single-Processor Systems

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor

Instruction and Data Cache Operation

* Storeto a page marked write-through (WIM = 0b10x) and a cache read hit to a modified cache
block.

This page is marked as write-through (W = 1)—The core pushes the modified cache block to
memory and the block remains marked modified (M).

Notethat when WIM bitsare changed, itiscritical that the cache contentsreflect the new WIM bit settings.
For example, if ablock or page that had allowed caching becomes caching-inhibited, software should
ensure that the appropriate cache blocks are flushed to memory and invalidated.

4.4.3 Core-Initiated Load/Store Operations

Load and store operations are assumed to be weakly ordered. In general, the load/store unit (LSU) can
perform load operationsthat occur later in the program ahead of store operations, even when the datacache
isdisabled. Any load followed by any store is performed in order. See Section 4.4.3.2, “ Sequential
Consistency of Memory Accesses” for more information.

4.4.3.1 Performed Loads and Stores

The PowerPC architecture defines a performed |oad operation as one that has the addressed memory
location bound to the target register of the load instruction. The architecture defines a performed store
operation as one where the stored value is the value that any other processor will receive when executing
aload operation (that is, of course, until it is changed again). With respect to the core, caching-allowed
(WIMG = nOnn) loads and caching-allowed write-back (WIMG = 00nn) stores are performed when they
have arbitrated to address the cache block in the data cache or the coherent system bus (CSB). Loads are
considered performed at the data cache only if the cache containsavalid copy of that address. Write-back
stores are considered performed at the data cache only if the cache contains avalid copy of that address.
Caching-inhibited (WIMG = nlnn) loads, caching-inhibited (WIMG = nlnn) stores, and write-through
(WIMG = 10nn) stores are performed when they have been successfully presented to the CSB.

4.43.2 Sequential Consistency of Memory Accesses

The PowerPC architecture requires that all memory operations executed by a single processor be
sequentially consistent with respect to that processor. This means that all memory accesses appear to be
executed in program order with respect to interrupts and data dependencies.

The e300 load/store unit isvery simple, allowing only one load at atime and only one (or one-and-a-half)
stores at atime. However, loads are allowed to bypass caching-allowed stores once interrupt checking has
been performed for the store, but data dependency checking ishandled in the load/store unit so that aload
will not bypass a store with an address match. Loads do not bypass caching-inhibited stores.

Although memory accesses that missin the cache are forwarded to the CSB interface, al potential
synchronous interrupts have been resolved before the cache. In addition, although subsequent memory
accesses can address the cache, full coherency checking between the cache and the memory queueis
provided to avoid dependency conflicts.

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 4-13

Instruction and Data Cache Operation

4.4.3.3 Enforcing Load/Store Ordering

Asdefined by the PowerPC architecture, the eieio instruction provides an ordering function for the effects
of certain classes of |oad and storeinstructions executed by agiven processor. These classes of instructions
areautomatically ordered by the L SU on the e300 core, and thus core treats the eiel 0 instruction as ano-op.

For the €300 core, caching-inhibited load and store operations are performed in strict program order.
Therefore, the caching-inhibited WIMG bit may be used to strictly order memory accesses. In addition,
the syncinstruction may be used to enforce the ordering of any class of |oad/store operations. The sync
instruction provides a stronger ordering on the bus by requiring the transaction to compl ete on the bus. The
€300 does not broadcast eieio and sync instructions.

4.4.3.4 Atomic Memory References

The Load Word and Reserve Indexed (Iwar x) and Store Word Conditional Indexed (stwcx.) instructions
provide an atomic update function for asingle, aligned word of memory. While an Iwar x instruction
should normally be paired with an stwcx. instruction with the same effective address, an stwcx. instruction
to any address will cancel the reservation. For detailed information on these instructions, refer to
Chapter 3, “Instruction Set Model,” in this book and Chapter 8, “Instruction Set,” in the Programming
Environments Manual .

4.5 Cache Control

The core provides several means of cache control through the use of the memory/cache access attributes
(WIMG bits), implementation-specific control bitsin the HIDO and HID2 registers, and dedicated cache
control instructions. Memory block/page level cache control is provided by the WIMG bits as described
in Section 4.4.1, “Memory/Cache Access Attributes (WIMG Bits).” The following sections describe the
HIDO/HID2 register controls and the cache control instructions.

4.5.1 Cache Control Parameters in HIDO and HID2

The L1 caches are controlled by programming specific bitsin the HIDO and HID2 special -purpose
registers. This section describes the HID register cache control bits.

45.1.1 Cache Parity Error Reporting—HIDO[ECPE]

Both instruction and data caches support parity generation, checking, and reporting. Cache parity
generation is aways on and stored in the cache, but the reporting of cache parity errorsis enabled or
disabled by using the enable cache parity error bit, HIDO[ECPE]. When cache parity errors are enabled,
instruction and data cache parity errors are reported by a machine check interrupt.

451.2 Data Cache Enable—HIDO[DCE]

The data cache may be disabled by using the data cache enable bit, HIDO[DCE]. DCE is cleared on
power-up, disabling the data cache. When the data cache isin the disabled state (HIDO[DCE] = 0), the
cache tag state bits are ignored, and all accesses are propagated to the CSB as single-beat transactions.

e300 Power Architecture Core Family Reference Manual, Rev. 4

4-14 Freescale Semiconductor

Instruction and Data Cache Operation

The changing of the DCE bit must be preceded by a sync instruction to prevent the cache from being
enabled or disabled in the middle of a data access. In addition, the cache must be globally flushed before
it is disabled to prevent coherency problems when it is re-enabled.

Although snooping is not performed when the data cache is disabled, cache operations (caused by the
dcbz, dcbf, dcbst, and dcbi instructions) are not affected by disabling the cache. Thus, thereis arisk of
coherency errors.

Regardless of the state of DCE, |oad and store operations are assumed to be weakly ordered. Thus, theLSU
can perform load operations that occur later in the program ahead of store operations, even when the data
cacheisdisabled. However, strongly ordered |oad and store operations can be enforced through the setting
of thel bit (of the page WIMG bits) when addresstrandl ation isenabled. Note that when addresstrand ation
isdisabled, the default WIMG bits cause the | bit to be cleared (accesses are assumed to be
caching-allowed); thus, the accesses are weakly ordered. Refer to Section 4.4.1.2, “ Caching-Inhibited
Attribute (1),” for adescription of the operation of the | bit, and Section 6.2, “ Real Addressing Mode,” for
adescription of the WIMG bits when address trandation is disabled.

45.1.3 Data Cache Lock—HIDO[DLOCK]

The entire contents of the data cache may be locked by setting the data cache lock bit, HIDO[DLOCK].
For alocked data cache, there are no new tag all ocations except those caused by dcbz instructions. The
setting of DLOCK must be preceded by a sync instruction to prevent the cache from being locked during
adata access.

A locked data cache supplies data normally on a cache hit, but cache misses are treated as
caching-inhibited accesses. On amiss, the transaction to the CSB is single-beat; however, ci still reflects
the state of the | bit in the MMU for that page, regardless of whether the cache islocked or disabled. A
snoop hit to alocked data cache performsasif the cache were not locked. Any cache block invalidated by
asnoop hit remainsinvalid until the cache is unlocked.

The e300 core also provides data cache way-locking in addition to entire data cache locking as described
in Section 4.5.1.4, “ Data Cache Way-lock—HID2[DWL CK].”

45.1.4 Data Cache Way-lock—HID2[DWLCK]

Locking only a portion of the data cache is accomplished by locking ways within the cache using
HID2[DWL CK]. Locking always beginswith the first way (way 0) and is sequential. That is, itisvalid to
lock waysO, 1, and 2, but itis not possibleto lock just way 0 and way 2. When using way-locking (without
DLOCK) at least one way is aways left unlocked. The maximum number of lockable waysis seven on
€300c1 and e300c4 and three ways on €300c2 and e300c3.

45.1.5 Data Cache Flash Invalidate—HIDO[DCFI]

The data cache flash invalidate bit, HIDO[DCFI], is used to invalidate the entire data cache in asingle
operation. Note that using DCFI invalidatesthe cachein asingle cycle on €300c1; however, on €300c2 and
€300c3 and e300c4, DCFI is a 128-cycle sequential reset of the cache. Thereis no broadcast of aflash
invalidate operation, and any modified datain the cacheislost. Flash invalidation of the data cacheis

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 4-15

Instruction and Data Cache Operation

accomplished by setting DCFI and subsequently clearing DCFI in two consecutive mtspr [HIDO]
instructions.

The data cacheisautomatically invalidated when the core is powered up and during ahard reset. However,
a soft reset does not automatically invalidate the data cache. Software must set and clear HIDO[DCFI] to
invalidate the entire data cache after a soft reset.

4.5.1.6 Instruction Cache Enable—HIDO[ICE]

Theinstruction cache may be disabled through the use of the instruction cache enable bit, HIDO[ICE]. ICE
is cleared at power-on reset, disabling the instruction cache. To prevent the cache from being enabled or
disabled in the middle of an instruction fetch, an isync instruction should be issued before changing the
value of ICE.

When theinstruction cacheisin the disabled state, the cache tag state bits are ignored and all accesses are
propagated to the bus as single-beat transactions when HID2[IFEB] is cleared; when HID2[IFEB] is set,
all accesses are propagated as burst transactions. Note that disabling the instruction cache does not affect
the tranglation logic; trandation for instruction accessesis controlled by MSR[IR].

451.7 Instruction Cache Lock—HIDO[ILOCK]

The entire contents of the instruction cache may be locked through the use of HIDO[ILOCK]. A locked
instruction cache supplies instructions normally on a cache hit, but cache misses are treated as
caching-inhibited accesses. On amiss, the transaction to the CSB is single-beat; however, ci still reflects
the state of the | bit in the MMU for that page, regardless of whether the cache islocked or disabled. The
setting of the ILOCK bit must be preceded by an isync instruction to prevent the instruction cache from
being locked during an instruction access.

The core also provides instruction cache way-locking in addition to entire instruction cache locking, as
described in Section 4.10, “ Applications Information—Cache Locking.”

45.1.8 Instruction Cache Way-Lock—HID2[IWLCK]

Locking only a portion of the instruction cache is accomplished by locking ways within the cache using

HID2[IWLCK]. Locking aways begins with the first way (way 0) and is sequential. That is, it isvalid to
lock ways 0, 1, and 2, but it is not possible to lock just way 0 and way 2. Way-locking (without ILOCK)
always|eaves at |east one way unlocked. The maximum number of lockable waysis seven on €300cl and
€300c4 and three ways on €300c2 and €300c3.

45.1.9 Instruction Cache Flash Invalidate—HIDO[ICFI]

Theinstruction cache flash invalidate bit, HIDO[ICFI], is used to invalidate the entire instruction cache in
asingle operation. Note that using | CFl invalidates the cache in a single cycle on e300c1; however, on
€300c2, €300c3 and €300c4, I CFl isa 128-cycle sequential reset of the cache. Flash invalidation of the
instruction cache is accomplished by setting ICFl and subsequently clearing ICFI in two consecutive
mtspr [HIDO] instructions.

e300 Power Architecture Core Family Reference Manual, Rev. 4

4-16 Freescale Semiconductor

Instruction and Data Cache Operation

The instruction cache is automatically invalidated when the core is powered up and during a hard reset.
However, a soft reset does not automatically invalidate the instruction cache. Software must set and clear
HIDO[ICFI] to invalidate the entire instruction cache after a soft reset.

4.5.1.10 Instruction Cache Way Protect—HID2[ICWP]

Typically, instruction cache management routines rely on icbi instructions or flash invalidate
(HIDO[ICFI]) operations to clear out part or all of the instruction cache for program-related operations,
such as for process changes or MMU page deallocation. Often, these cache management operations clear
out both the locked and unlocked portions of the instruction cache (icbi invalidates all ways of a cache set
unconditionally, and HIDO[I CFI] invalidates the entire instruction cache unconditionally).

The e300 core hasanew instruction cacheway protection feature. By setting HID2[ICWP] = 1, any locked
ways in the instruction cache are protected from cache block (icbi) or flash (HIDO[ICFI]) invalidation.
This alows any locked portion of the instruction cache to have the same persistence as main memory,
while still allowing the remaining unlocked portions of the instruction cache to be managed by the
program.

4.5.1.11 Cache Operation Broadcasting—HIDO[ABE]

In MEI mode, the core does not broadcast cache operations caused by cache instructions. They are
intended for the management of the local cache but not for other cachesin the system. The HIDO[ABE]
bit enables the cache management instructions to unconditionally cause abus transaction (either apush as
aresult of modified data that needs to be written back to memory or an address-only transaction). The use
of ABE is generally intended to extend cache management to a front-side level-2 cache. In MESI mode,
the cache management instructions are automatically broadcast on the bus as defined by the M-bit of the
WIMG field.

4.5.2 Cache Control Instructions

The PowerPC architecture defines instructions for controlling both the instruction and data caches when

they exist. The core interprets the cache control instructions (dcbt, dcbtst, dcbz, dcbst, dcbf, dcbi, icht,

and ichi) asif they pertain only to the core caches. They are not intended for use in managing other caches
in the system.

The dcbz instruction causes an address-only broadcast on the bus if the addressed cache block is marked
memory-coherency-required (global) through the WIMG bits. This broadcast is performed for coherency
reasons; the dcbz instruction is effectively a normal store class instruction.

In MEI mode, the execution of a dcbf, dcbi, or dcbst instruction causes an address-only broadcast if the
HIDO[ABE] bitisset. Also, in MEI mode, the dcbz instruction isthe only cache operation that is snooped
by the core.

In MESI mode, the execution of the dcbf, dcbi, and dcbst instructions are broadcast if the HIDO[ABE] bit
isset or if the addressed cache block is marked memory-coherency-required. Alsoin MESI mode, the core
snoops the dcbst, dcbz, dcbf, and dcbi instructions.

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 4-17

Instruction and Data Cache Operation

The ability of the core to optionally perform address-only broadcasts when executing the dcbi, dcbf, and
dcbst instructions allows for managing coherency of external cachesif they are present.

45.2.1 Data Cache Block Touch (dcbt) Instruction

This instruction provides a method for improving performance through the use of software-initiated
prefetch hints. The core performs the fetch when the address hitsin the TLB or BAT registers, and when
itisapermitted load access from the addressed page. The operation is treated similarly to abyte load
operation with respect to coherency.

The dcbt instruction which misses in the data cache istreated as a burst read operation on the bus, with a
transactiontype of RWITM if operating in three-state M El mode, or READ if operating in four-state MESI
mode. The resulting cache line is marked as exclusive if operating in three-state MEI mode. If operating
in four-state MESI mode, it is marked as exclusive or shared, depending on the shared indication on the
CSB.
The dcbt instruction istreated as ano-op if any of the following apply:

* It hitsin the data cache.

» Thetarget address is mapped to caching-inhibited (even if the data cache is disabled).

» Touch load operations are disabled by HIDO[NOPTI].

» Thetarget address is mapped as guarded.

* The address trandation does not hit in the TLB or BAT mechanism.

* The address trandlation does not have load access permission.

45.2.2 Data Cache Block Touch for Store (dcbtst) Instruction

The dcbtst instruction, like the data cache block touch instruction (dcbt), allows software to prefetch a
cache block in anticipation of astore operation (RWITM).

The dcbtst instruction istreated similarly to the dcbt instruction, except that the transaction type RWITM
isaways used if operating in 4-state MESI mode, and the resulting cache line is always marked as
exclusive (not modified). When operating in MEI mode, the dcbtst has exactly the same behavior asdcbt.

45.2.3 Data Cache Block Clear to Zero (dcbz) Instruction
If the block containing the byte addressed by the EA isin the data cache, al bytes are cleared.

If memory coherency isrequired (WIMG = nnln), the dcbz instruction broadcasts on the bus on a cache
miss or hit to ashared block. It is the only cache control instruction that may broadcast without being
specifically enabled using HIDO[ABE]. The dcbz instruction is essentially a store operation rather than a
cache management operation and, therefore, always participatesin normal cache coherency asdirected by
the M-hit.

The core initiates an aignment interrupt when the operand of adcbz isin a page that is write-through or
caching-inhibited or when the data cache is disabled. The dcbz instruction is not executed in these cases.

If the dcbz instruction is otherwise not aborted, it allocates into the cache and performs an address
broadcast, if necessary, for normal store coherency. The resulting cache lineismarked as modified. In the

e300 Power Architecture Core Family Reference Manual, Rev. 4

4-18 Freescale Semiconductor

Instruction and Data Cache Operation

case where the dcbz operation hitsin the cache, it re-allocates to that cache line. Note that the dcbz
instruction ignores HIDO[DL OCK] setting and always allocates atag. That is, when DLOCK is s&t, the
dcbz occurs asif the cache were not locked.

45.2.4 Data Cache Block Store (dcbst) Instruction
Thisinstructionistreated as aload to the addressed byte with respect to address translation and protection.

If the address hits in the data cache, the target cache lineis pushed to memory as aburst write bus
transaction. The cachelineremainsin the data cache and ismarked as exclusiveif operating in MEI mode,
or marked as shared if operating in MESI mode. If no push is required from the data cache, the dcbst
instruction instead conditionally generates an address broadcast operation on the bus. The address
broadcast is contingent upon whether HIDO[ABE] is set, or whether the target address is mapped as
memory-coherency-required (M = 1) in MESI mode.

The dcbst instruction is always effective on the data cache or the bus, regardiess of WIMG settings or
whether the data cache is enabled.

4.5.2.5 Data Cache Block Flush (dcbf) Instruction

The effective address is computed, translated, and checked for protection violations as defined in the
PowerPC architecture. Thisinstruction is treated as aload to the addressed byte with respect to address
translation and protection.

If the address hits in the cache, and the block isin the modified state, the modified block is written back
to memory and the cache block isinvalidated. If the address hitsin the cache, and the cache block isin the
exclusive or shared state, the cache block isinvaidated. If the address missesin the cache, no action is
taken.

The function of thisinstruction is independent of the WIMG bit settings of the block or PTE containing
the effective address. However, the execution of dcbf broadcasts an address-only flush transaction on the
CSB if HIDO[ABE] is set or if operating in four-state MESI mode and the target address is marked
memory-coherency-required. Execution of a dcbf instruction affects the cache even if the cacheis
disabled.

4.5.2.6 Data Cache Block Invalidate (dcbi) Instruction

The effective address is computed, translated, and checked for protection violations as defined in the
PowerPC architecture. Thisinstruction is treated as a store to the addressed byte with respect to address
translation and protection.

The dcbi instruction should be used with caution on the e300 core.

If the address hits in the cache, the cache block is invalidated, regardless of the state of the cache block.
Even if the cache block is modified, it is not pushed to main memory and the associated datais lost.
Because thisinstruction may effectively destroy modified data, itisprivileged (that is, dcbi isavailableto
programs at the supervisor privilege level, MSR[PR] = 0). A BAT or TLB protection violation for adcbi
translation generates a DS| interrupt.

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 4-19

Instruction and Data Cache Operation

The function of thisinstruction is independent of the WIMG bit settings of the block or PTE containing
the effective address. However, the execution of dcbi broadcasts an address-only kill transaction on the
CSB if HIDO[ABE] is set or if operating in four-state MESI mode and the target address is marked
memory-coherency-required. Execution of adcbi instruction affects the cache even if the cacheis
disabled.

45.2.7 Instruction Cache Block Touch (icbt) Instruction

The icbt instruction performs a bus read operation from the bus and allocates into the instruction cache.
Thisinstruction is new to the €300 core, and supplements the instruction cache locking mechanisms and
the new way-protect feature.

Theicbt instruction is treated as a no-op if touch load operation is disabled by HIDO[NOPTI].

Theicbt instruction is effective, regardless of WIMG settings, instruction or data cache enable status, and
the instruction cache lock status (that is, unconditional alocate). This allowsthe icbt instruction to easily
initialize the locked portion of the instruction cache before enabling.

Note that to prevent user-level code from inadvertently overwriting a supervisor-level page that has been
locked in the instruction cache, that page of memory should be protected with appropriate MMU
translation and access privileges, or by using HIDO[NOPTI] to treat the icbt instruction as a no-op.

Theicbt instruction is dispatched to the load/store unit and data cache, and, therefore, goes through
data-side addresstrand ation. It istreated similarly to dcbt for translation and storage protection purposes.
The data cache then issues the icbt operation to the bus unit without checking for a data cache hit.
Therefore, if theinstruction block isalready residing in the data cache (for example, dueto self-modifying
code), the program must first perform a dcbf of that addressto flush that data block back to main memory
for the subsequent icbt.

A sync instruction must follow an icbt instruction to ensure all cache load operations are completed. An
isync instruction must also follow an icbt if the newly touched and loaded instructions is expected to be
fetched immediately after the icbt is executed.

45.2.8 Instruction Cache Block Invalidate (icbi) Instruction

Theicbi instruction unconditionally invalidates all ways of the target cache set (that is, icbi invalidates by
tag index only). No address comparison is performed to check for acache hit. The icbi instruction does
not broadcast to the bus.

If the instruction cache way-protect bit, HID2[ICWP], is set, only the non-locked ways of the instruction
cache set are invalidated by the icbi instruction.

Anichi instruction should always be followed by a sync and an isync instruction. This ensures that the
effects of theicbi are seen by theinstruction fetchesfollowing theicbi itself. For self-modifying code, the
following sequence should be used to synchronize the instruction stream:

1. dcbst (push new code from the data cache out to memory)
2. sync (wait for the dcbst to complete)
3. icbi (invalidate the old instruction cache entry in this processor)

e300 Power Architecture Core Family Reference Manual, Rev. 4

4-20 Freescale Semiconductor

Instruction and Data Cache Operation

4. sync (wait for theicbi to complete its bus operation)
5. isync (re-sync this processor’s instruction fetch)

The second sync instruction ensures completion of al prior icbi instructions. Note that the second sync
instruction is not shown in Section 5.1.5.2, “Instruction Cache Instructions,” in The Programming
Environments Manual.

Since the sync instruction strongly serializes the memory subsystem, performance of code containing
several icbi instructionscan be improved by batching theicbi instructionstogether such that only one sync
instruction is used to synchronize all the icbi instructions in the batch.

4.6 Cache Operations

This section describes the three types of operationsthat can occur to the caches, and how these operations
are implemented in the €300 core.

4.6.1 Data Cache Fill Operations

A cache block fill is caused by a cacheable [oad or store miss in the cache. The cache block that
corresponds to the missed addressis updated by aburst transfer of the data from system memory. If aread
miss occurs in asystem with multiple bus masters, and the datais modified in another cache, the modified
dataisfirst written to external memory before the cache fill occurs.

When the core is configured with a 64-bit data bus, cache blocks are loaded in four beats of 8 bytes each.
When the coreis configured with a 32-bit bus, cache block loads are performed with eight beats of 4 bytes
each. The burst load is performed as critical-double-word-first. The data cache is blocked to subsequent
load/store operations until the load completes. The critical-double-word is simultaneoudy written to the
cache and forwarded to the requesting unit, thus minimizing stalls due to load delays.

4.6.2 Instruction Cache Fill Operations

When the core is configured with a 64-bit data bus, instruction cache blocks are loaded in four bests of 8
byteseach. When the coreis configured with a 32-bit bus, cache block loads are performed with eight beats
of 4 bytes each. The burst fetch is performed as critical-double-word-first. On a cache miss, the critical
and following double words fetched from memory are simultaneously written to the instruction cache and
forwarded to the dispatch queue, thus minimizing stalls due to cache fill latency. The instruction cache
allows sequential fetching from the remainder of the cache block during a cache block load.

4.6.3 Instruction Fetch Cancel Extension

In superscalar architectures, instructions are routinely fetched ahead of the time they are needed, but these
prefetched instructions may be cancelled due to instruction redirection, such as by branches or interrupts.
The instruction fetch cancel extension improves the utilization of the instruction cache during such cancel
operations.

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 4-21

Instruction and Data Cache Operation

Theinstruction fetch cancel extension allows anew instruction fetch to be issued to the cache or to the bus
if acancelled instruction fetch is pending or active on the bus. This supports hit-under-cancel and
miss-under-cancel instruction fetch operations. This feature is enabled using HID2[IFEC].

4.6.4 Data Cache Cast-Out Operations

The core uses a PLRU replacement algorithm to determine which of the possible cache locations should
be used for a cache update on a cache miss. Adding a new block to the cache causes any modified data
associated with the replacement element to be written back, or cast out, to system memory to maintain
memory coherence. Refer to Section 4.6.7, “ Cache Block Replacement Selection,” for more information
on how the replacement block is selected.

4.6.5 Cache Block Push Operation

When a cache block in the coreis snooped and hit by another bus master and the datais modified, the cache
block must be written to memory and made available to the snooping device. The cache block that is hit,
is pushed out onto the CSB. If the snooped transaction is awrite-with-kill transaction that hits a modified
cache block, no push will be performed.

There is no snooping of the instruction cache.

4.6.6 Data Cache Queue Sharing Extension

In previous G2 cores, two write queues are available for data cache burst write operations: one reserved
for cache replacements only, and one for snoop pushes only. (Thereis also athird write queue always
available for non-burst write operations.)

The €300 features a data cache queue sharing extension that allows the two burst write queues in the bus
unit to be used interchangeably, or shared, for cache replacements and snoop pushes. This alowsthe data
cacheto support two outstanding cache replacements or two outstanding snoop push operations on the bus
at any given time. This supports greater bus throughput between the data cache and memory, and less stall
latency during data cache miss operations due to unavailable bus queues. However, when queue sharing is
enabled, the snoop queue may not be availabl e because there may be 2 pending cast-outs. In this case, there
may be a window-of-opportunity push from an address other than the snooped address.

Queue-sharing is enabled by setting HID2[EBQS].

4.6.7 Cache Block Replacement Selection

Theinstruction and data caches both use a three-step selection process to determine which cache way will
be used for the instruction or data. First, the core determinesif thereisahit to avalid way. If thereisahit,
then that way is selected. Next, the core checksto see if there are any invalid ways in the set and chooses
the lowest-order, invalid way asthe recipient. Last, when thereis not a hit, but all eight waysin the set are
valid (and not locked), the PLRU agorithm is used to select the replacement target.

e300 Power Architecture Core Family Reference Manual, Rev. 4

4-22 Freescale Semiconductor

Instruction and Data Cache Operation

For e300c1 and €300c4, there are 7 PLRU bits, B[0—6] for each set in the cache. A way is selected for
replacement according to the PLRU bit encodings shown in Table 4-5.

Table 4-5. e300c1 PLRU Replacement Way Selection

If the PLRU bits are:

Then the way selected
for replacement is:

B1

o| ol o ©

0

B3

w0

wi

B4

w2

w3

BO

B2

1

B5

w4

w5

1

1

B6

0

w6

1

w7

For e300c2 and e300c3, the BO bit isalways 0, so there are effectively only 3 PLRU bits (B1, B3, and B4)
for each set in the cache. A way is selected for replacement according to the PLRU bit encodings shown

in Table 4-6.

Table 4-6. e300c2 PLRU Replacement Way Selection

If the PLRU bits are:

Then the way selected
for replacement is:

B1

0 0 w0
0 B3 1 wi
1 0 w2
1 B4 1 w3

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor

4-23

Instruction and Data Cache Operation

The PLRU algorithm is shown graphically in Figure 4-7.

replace 1st hitting way
(w0, or wi, or w2...)

any invalid ?

replace lowest-order, invalid way
(w0, or wi, or w2...)

PLRU bits: BO...B6
(after way-lock override)

N

BO =1

< R

B2 =1

£ ?x .

= B3 =1 = B4 =1 = B5 =1 = B6 =1

shrddrdede

Figure 4-7. PLRU Replacement Algorithm

Note: BO = 0 always taken on e300c2.

During power-up or hard reset, all the valid bits of the ways are cleared and the PLRU bits are cleared to
point to way 0 of each set. Thisisalso the state of the data or instruction cache after setting their respective
flash invalidate bits (HIDO[DCFI] or HIDO[ICFI]).

e300 Power Architecture Core Family Reference Manual, Rev. 4

4-24 Freescale Semiconductor

Instruction and Data Cache Operation

Each time a cache block is accessed, it is tagged as the most recently used way of the set. For every hitin
the cache or when a new block is reloaded, the PLRU bitsfor the set are updated using the rules specified
in Table 4-7.

Table 4-7. PLRU Bit Update Rules

If the Then the PLRU bits in the set are changed to:
current
accf;s is B0 B1 B2 B3 B4 B5 B6
wO 1 1 X 1 X X X
w1 1 1 X 0 X X X
w2 1 0 X X 1 X X
w3 1 0 X X 0 X X
w4 0 X 1 X X 1 X
wb 0 X 1 X X 0 X
w6 0 X 0 X X X 1
w7 0 X 0 X X X 0

x = Does not change

' Note that the €300c2 only has 4 ways, so B0 is always 0.

Note that for the €300c1 and €300c4 only 3 PLRU bits are updated for any given access and for the e300c2
and e300c3 only 2 PLRU hits are updated for any given access.

In the case of way-locking, the PLRU value read from the cache is first modified before using it to ensure
that alocked way is not selected. Because way-locking involves locking an incrementing range of ways
starting with way O (way O, or way 0-1, or way 0-2, etc.), the appropriate bits of the PLRU value are
simply overridden to 1 in an incrementing fashion away from the locked ways to prevent that range of
ways from being selected. In the binary tree figure, this can be visually described as forcing the bits
required to reach the locked ways to the value 1 so that the binary treeis traversed down one of the
remaining branches.

Thefinal PLRU value for the selected way of the cache set is written back to the cachefor load hits, store
hits (including dcbz), and normal cache allocations. The value written back is adjusted to ensure that way
will not be immediately selected the next time(s) a replacement is required for that particular cache set.
The PLRU value written back isthe PLRU value pointing to that way with its three critical bitsinverted.
The three critical bits are the three bits that were traversed down the binary tree to reach the final way
selection. The remaining bits are left unchanged. Inverting the three critical bits essentially convertsthe
PLRU value to a PMRU (pseudo most-recently-used) value. In the case of way-locking, the way-locking
override described above is not factored into the PLRU write-back value. In the case of a cache hit, the
PLRU write-back value has the three critical bits inverted for the specific hitting way.

4.7 L1 Cache Parity

The €300 coreincludes parity checking for both theinstruction and data caches. A machine check interrupt
is taken upon detecting an instruction or data cache parity error when HIDO[ECPE] and MSR[ME] are

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 4-25

Instruction and Data Cache Operation

both set. For the instruction cache, parity is checked for instruction fetches that hit in the cache. For the
data cache, parity is checked for loads that hit in the cache aswell asfor any cache line writes to memory
(replacement copy-backs, dcbf/dcbst pushes, and snoop copy-backs). Note that data and instruction cache
parity generation and checking are always on; the ECPE parameter ssimply enables reporting of parity
errors.

The state of SRR1 reflects the additional machine check conditions of instruction cache parity error (bit
10) or data cache parity error (bit 11). Cache parity errors are logged as non-recoverable. Refer to
Section 5.5.2, “Machine Check Interrupt (0x00200),” for more information.

4.8 Bus Interface

The bus interface buffers receive requests from the instruction and data caches, and execute the requests
per the CSB protocol. They include addressregister queues, prioritization logic, and bus control logic. The
businterface al so captures snoop addresses for snooping in the cache and address register queues, snoops
for reservations, and holds the touch load address for the cache. All data storage for the address register
buffers (load and store data buffers) is located in the cache logic. The data buffers are considered
temporary storage for the cache and not part of the bus interface.
The general functions and features of the bus interface are asfollows:
* Addressregister buffers that include:
— Instruction cache load address buffer
— Data cache |oad address buffer
— Data cache cast-out/store address buffers (associated data line buffer located in cache)
— Data cache single-beat write address buffers (associated data line buffer located in cache)
— Data cache snoop copy-back address buffer (associated data line buffer located in cache)
— Reservation address buffer for snoop monitoring
* Pipeline collision detection for data cache buffers
* Reservation address snooping for Iwar x/stwcex. instructions
* One-level or one-and-a-half-level address pipelining
* Load-ahead-of-store capability

e300 Power Architecture Core Family Reference Manual, Rev. 4

4-26 Freescale Semiconductor

Instruction and Data Cache Operation

Figure 4-8 isaconceptual block diagram of the businterface. The addressregister queues hold transaction
requeststhat the businterface may issue on the CSB independently of the other requests. The businterface
may have up to two transactions operating at any given time through the use of address pipelining.

_| Instruction [<
Cache Data |
»| Cache |«
\ A /
Y \i A — \4
BIU | I-Cache I-Cache D-Cache D-Cache D-Cache
Control | | LD Addr LD Addr LD Addr CST/ST Addr SNP Addr
A A A
A
Y Y \4 A4 A4
Snoop
A
Y Y Y Y
Control Address Address Data

Coherent System Bus

Figure 4-8. Bus Interface Address Buffers

4.9 Caches and CSB Transactions

The core transfers data to and from the data cache in single-beat transactions of two words, or in four-beat
transactions of eight words which fill acache block.

4.9.1 Single-Beat Transactions

Single-beat bus transactions can transfer from 1 to 8 bytesto or from the core. Single-beat transactions can
be caused by cachewrite-through accesses, caching-inhibited accesses(l bit of the WIMG bitsfor the page
IS set), accesses that miss when the cache islocked (HIDO[DLOCK] is set), accesses when the cache is
disabled (HIDO[DCE] hit is cleared), and misaligned accesses.

4.9.2 Burst Transactions

Burst transactions on the core aways transfer eight words of data at atime and are aligned to a
double-word boundary. Burst transactions have an assumed address order. For caching-allowed read
operations or caching-allowed, non-write-through write operations that miss the cache, the core presents
the double-word aligned address associated with the load or store instruction that initiated the transaction.

As shown in Figure 4-9, this quad word contains the address of the load or store that missed the cache.
This minimizes latency by allowing the critical code or data to be forwarded to the processor before the
rest of the block isfilled. For all other burst operations, however, the entire block is transferred in order
(eight-word aligned). Critical-double-word-first fetching on a cache miss applies to both the data and
instruction cache.

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 4-27

|
y

'
A

Instruction and Data Cache Operation

e300 Core Cache Address

Bits 27:28
00 01 10 11
A B C D

If the address requested is in double-word A, the address placed on the bus is that of double-word A, and
the four data beats are ordered in the following manner:

Beat
1 2

A B C D

If the address requested is in double-word C, the address placed on the bus will be that of double-word C,
and the four data beats are ordered in the following manner:

Beat
1 2 3

C D A B

Figure 4-9. Double-Word Address Ordering—Critical-Double-Word-First

4.9.3 Instruction Fetch Burst Enable for Caching-Inhibited Space

Inthe G2 core, all instruction fetchesto caching-inhibited (Cl) spaceresultsin single-beat bustransactions
and inthefetched instructionsnot being cached. Theci_b signal reflectsthe setting of the | bit for the block
or page that contains the address of the current transaction.

In the e300 core, the instruction fetch burst enable extension alows all instruction fetches from
caching-inhibited instruction space to be performed on the CSB as burst transactions, smilar to
caching-allowed instruction space, even though the instructions are not cached. This allows for greater
performance to instruction space that is not desired to be cached. With this performance extension, up to
an entire cache line may be returned (up to 8 instructions) with one bus operation. The remaining
instructionsin the burst transaction that follow thecritical instruction areforwarded to theinstruction fetch
unit as they are normally requested, until an instruction redirect or instruction stall occurs. Because
instruction fetching does not normally wrap within the cache line, an instruction fetch initiated to double
word address 3 of a 32-byte block is still performed as a single-beat read on the CSB. Thisfeatureis
enabled by setting the HID2[I FEB] register bit.

When the HID2[IFEB] register bit is set and the HIDO[ICE] register bit is cleared (instruction cache
disabled), any instruction fetch resultsin burst transactions on the bus, similar to caching-allowed
instruction space, but the instruction is not cached.

This feature should not be enabled for systems that do not support bursting from all caching-inhibited
instruction space which could otherwise be accessed while burst modeis enabled. Thisfeature affectsonly
caching-inhibited instruction fetches, not caching-inhibited load or store operations.

e300 Power Architecture Core Family Reference Manual, Rev. 4

4-28 Freescale Semiconductor

Instruction and Data Cache Operation

4.9.4

Table 4-8 provides an overview of the bus operations initiated by cache control instructions. The cache
control, TLB management, and synchronization instructions supported by the core may affect or be
affected by the operation of the CSB. None of the instructions actively broadcast through address-only
transactions on the bus (except for dcbz), and no broadcasts by other masters are snooped by the core
(except for killsand those required by the MESI protocol). The operation of theinstructions, however, may
indirectly cause bus transactions to be performed, or their completion may be linked to the bus. Table 4-8
summarizes how these instructions may operate with respect to the CSB.

CSB Operations Caused by Cache Control Instructions

Table 4-8. e300 Bus Operations Caused by Cache Control Instructions

Operation | Cache State | Next Cache State CSB Operation Comment
sync Don’t care No change None Waits for data path related queues to
complete bus activity
icbi Don’t care | None —
dcbi Don’t care | None or Kill block Broadcast dependent on whether
HIDO[ABE] is set in MEI mode
dcbf M | Write-with-kill Block is pushed
dcbf E, S, I | None or Write Broadcast dependent on whether
HIDO[ABE] is set in MEI mode
dcbst M E (MEI -mode) Write Block is pushed
S (MESI-mode)
dcbst E, S, I No change None —
dcbz E M None Clear all bytes in the block
dcbz S M Kill block Invalidate cache line
Allocate the tag
Clear all bytes in the block
dcbz | M Kill block —
dcbt M, E No change None —
dcbt | No change Read-with-intent- Load the block into cache
to-modify (MEI)
Read (MESI)
dcbtst | No change Read-with-intent- Load the block into cache
to-modify
dcbtst E, M No change None —

Table 4-8 assumesthat the WIM bitsare set to 001; that is, since the cache isoperating in write-back mode,
caching is permitted and coherency is enforced. Table 4-8 does not include caching-inhibited or
write-through cases, nor does it completely describe the mechanisms for the operations described.

4.9.5

The core maintains data cache coherency in hardware by coordinating activity between the data cache,
memory system, and bus interface logic.

Snooping

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 4-29

Instruction and Data Cache Operation

The global (ghl) signal, asserted as part of the address attributes during a bus transaction, enables the
snooping hardware of the core. Address bus masters assert gbl to indicate that the current transaction is a
global access (that is, an access to memory shared by more than one device). If gbl is not asserted for the
transaction, that transaction isnot snooped by the core. The gbl signal is not asserted for instruction fetches
(except when HIDO[IFEM] is set and the instruction address is marked memory-coherency-required); gbl
is asserted for all dataread or write operations when using real addressing mode.

Normally, gbl reflects the M-bit value specified for the memory reference in the corresponding MMU
translation descriptor(s). Care must be taken to minimize the number of pages marked as global, because
the retry protocol enforces coherency and thisincurs additional overhead.

As global bus transactions are performed on the bus by other bus masters, the core bus snooping logic
monitors the addresses that are referenced. These addresses are compared with the cachetags. If thereisa
snoop hit, the core bus snooping logic responds with the appropriate snoop status (for example, aretry).
Additional snoop action may be forwarded to the cache as a result of a snoop hit in some cases (a cache
push of modified data or cache block invalidation). The specific response depends on the transaction type.
There are severa bus transaction types defined for the CSB. The core snoops these transactions and
performs the appropriate action to maintain memory coherency as described in Table 4-9.

Table 4-9. Snoop Response to CSB Transactions

Snooped Transaction €300 Core Response
Type
Clean block MEI: No action is taken
MESI: The clean block operation is an address-only bus transaction initiated when a dcbst
instruction is executed.The core may have the following response:
e If the addressed block is in the invalid or shared state, no action is taken and the state of the
addressed block is unchanged.
* If the addressed block is in the exclusive state, the address snoop forces the state of the
addressed block to shared.
* Ifthe addressed block is in the modified state, the address snoop signals retry and initiate a push
of the modified block out of the cache and changes the state of the block to shared.
Flush block MEI: No action is taken
MESI: The flush block operation is an address-only bus transaction that initiates when a dcbf
instruction is executed. The core may have the following response:
e If the addressed block is in the invalid state, no action is taken.
* If the addressed block is in the exclusive or shared state, the address snoop forces the state of
the addressed block to invalid.
* If the addressed block is in the modified state, the address snoop signals retry and initiates a
flush of the modified block out of the cache and changes the state of the block to invalid.
* Any associated reservation is canceled.
Write-with-flush MEI/MESI: Write-with-flush and write-with-flush-atomic operations occur after the processor issues
Write-with-flush-atomic a store or stwex. instruction, respectively.
e If the addressed block is in the invalid state, no action is taken.
e If the addressed block is in the shared state, the address snoop forces the state of the
addressed block to invalid.
* If the addressed block is in the exclusive state, the address snoop forces the state of the
addressed block to invalid.
* If the addressed block is in the modified state, the address snoop signals retry initiate a push of
the modified block out of the cache, and change the state of the block to invalid.
* Any associated reservation is canceled.

e300 Power Architecture Core Family Reference Manual, Rev. 4

4-30 Freescale Semiconductor

Instruction and Data Cache Operation

Table 4-9. Snoop Response to CSB Transactions (continued)

Snooped Transaction
Type
Kill block MEI/MESI: The kill block operation is an address-only bus transaction initiated when a debz
instruction is executed. When snooped by the core, the addressed cache block is invalidated if in
the exclusive or shared state, or flushed to memory and invalidated if in the modified state; and any
associated reservation is canceled.

e300 Core Response

Write-with-Kkill MEI/MESI: In a write-with-kill operation, the core snoops the cache for a copy of the addressed
block. If one is found, an additional snoop action is initiated internally and the cache block is forced
to the invalid state, killing modified data that may have been in the block. Any reservation
associated with the block is also canceled.

There is an exception to this rule, if there is any pending single-beat-write atomic write-through
(stwex.) in BIU, the core treats the write-with-kill as if it were a write-with-flush bus transaction.

Read MEI: The read operation is used by most single-beat-read and burst read operations on the bus.
Read-atomic All burst reads observed on the bus are snooped as if they were writes (RWITM), causing the
addressed cache block to be flushed. A read on the bus with the gbl signal asserted causes the
following responses:

e If the addressed block in the cache is in the invalid state, the core takes no action.

¢ |f the addressed block in the cache is in the exclusive state, the block is invalidated.

* If the addressed block in the cache is in the modified state, the block is flushed to memory and

the block is invalidated.

If the snooped transaction is a single-beat-read (caching-inhibited) and the block in the cache is

in the exclusive state, the snoop causes no bus activity and the block remains in the exclusive

state. If the block is in the cache in the modified state, the core initiates a push of the modified
block out to memory and marks the cache block as exclusive.

Read-atomic operations appear on the bus in response to lwarx instructions and generate the
same snhooping responses as read operations.

MESI: The read operation is used by most single-beat-read and burst read operations on the bus.

In the MESI protocol, burst reads are treated as reads. All burst reads observed on the bus are

snooped as if they were reads. A read on the bus with the gbl signal asserted causes the following
responses:

e If the addressed block in the cache is in the invalid state, the core takes no action.

e If the addressed block in the cache is in the exclusive state, the core signals shared and the
address snoop forces the state of the addressed block to shared.

* If the addressed block in the cache is in the modified state, the address snoop signals retry and
shared and initiates a push of the modified block out of the cache and changes the state of the
block to shared.

Read-atomic operations appear on the bus in response to lwarx instructions and generate the

same snooping responses as read operations.

Read-with-intent-to- MEI/MESI: A RWITM operation is issued to acquire exclusive use of a memory location for the

modify (RWITM) purpose of modifying it.

RWITM-atomic e If the addressed block is in the invalid state, the core takes no action.

e If the addressed block in the cache is in the exclusive or shared state, the core initiates an
additional snoop action to change the state of the cache block to invalid.

* If the addressed block in the cache is in the modified state, the block is flushed to memory and
the block is invalidated.

* Any associated reservation is canceled (MESI state only).

The RWITM-atomic operations appear on the bus in response to stwcex. instructions and are

snooped like RWITM instructions.

sync No action is taken

TLB invalidate No action is taken

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 4-31

V¥ ¢
i

Instruction and Data Cache Operation

In addition to the retries described in Table 4-9, the core may signal retry for any bus transaction due to
internal conflicts that prevent the appropriate snooping. The following scenarios cause the core to signal
aretry:

* Snoop hitsto ablock in the M state (flush or clean)

This caseisanormal snoop hit and resultsin retry being signaled if the snooped transaction is a
flush or clean request. If the snooped transaction is akill request, retry is not signaled.

* Snoop hitsto line in the cast-out buffer. The cast-out buffer is kept coherent with main memory,
and snoop operations that hit in the cast-out buffer cause retry to be signaled.

* Snoop attempt during the tag allocation period from dcbz instruction or load or store operations.
During the execution of adcbz instruction or during aload or store operation that requires a cache
line cast-out, the cache tags are inaccessible during the first and last cycle of the operation. The
period of any associated cast-out due to reallocation overlaps the tag allocate period.

* Snoop attempt during the cycle when a dcbf, dcbst, or dcbi instruction is updating the tag. If the
EA of adcbf or dcbst instruction hitsin the cache, the tag will be changed to its new state. During
that clock, the tag is not accessible and snoop transactions during that cycle cause retry to be
signaled.

* Snoop hitsin the data load buffer for a burst read while the data is still being transferred from
memory (that is, dataisin transit).

e Other internal resource collisions

While the €300 core provides the hardware required to monitor bus traffic for coherency, the core data
cache tags are single-ported, and a simultaneous load or store and snoop access represent a resource
conflict. In general, the snoop access has highest priority and is given first access to the tags. A pending
load or store access will then occur on the clock following the snoop. However, the snoop is not given
priority into the tags when the snoop coincideswith atag write (for example, validation after a cache block
load). In these situations, the snoop is retried and must re-arbitrate before the lookup is possible.

Occasionally, cache snoops cannot be serviced and must beretried. Theseretries occur if the cacheisbusy
with aburst read or write when the snoop operation takes place.

It is possible for asnoop to hit amodified cache block that is already in the process of being written to the
copy-back buffer for replacement purposes. If this happens, the core retries the snoop, and raises the
priority of the cast-out operation to allow it to occur on the CSB before the cache block fill.

4.10 Applications Information—Cache Locking

This section describes the entire cache locking and cache way-locking features of the e300 core.

4.10.1 Cache Locking Terminology

Cache locking refersto the ability to prevent some or all of a processor’s instruction or data cache from
being overwritten. Cache locking can be set for either an entire cache or for individua ways within the
cache asfollows:

» Entire cache locking—When an entire cache is locked, datafor read hits within the cache are
supplied to the requesting unit in the same manner as hitsfrom an unlocked cache. Similarly, writes

e300 Power Architecture Core Family Reference Manual, Rev. 4

4-32 Freescale Semiconductor

Instruction and Data Cache Operation

that hit in the data cache are written to the cachein the same way aswrite hitsto an unlocked cache.
However, any accessthat missesin the cacheistreated as acaching-inhibited access. Cache entries
that are invalid at the time of locking remain invalid and inaccessible until the cache is unlocked.
When the cache has been unlocked, all entries (including invalid entries) are available. Entire cache
lockingisinefficient if the number of instructionsor the size of datato belocked issmall compared
to the cache size.

Way-locking—L ocking only a portion of the cache is accomplished by locking ways within the
cache. Locking always begins with the first way (way 0) and is sequential; that is, locking ways 0,
1, and 2 ispossible, but it is not possible to lock only way 0 and way 2. When using way-locking,
at least one way must be left unlocked. The maximum number of lockable ways is seven on the
€300c1 and e300c4 core (way O—way 6) and three on the €300c2 and e300c3 (way 0-way 2).

Unlike entire cache locking, invalid entriesin alocked way are accessible and available for data
replacement. As hitsto the cachefill invalid entries within alocked way, the entries become valid
and locked. This behavior differs from entire cache locking in which invalid entries cannot be
allocated. Unlocked ways of the cache behave normally.

Table 4-10 summarizes the e300 core cache organization.

Table 4-10. Cache Organization

Instruction Cache Size | Data Cache Size | Associativity Block Size Way Size
e300c1 32 Kbytes 32 Kbytes 8-way 8 words 4 Kbytes
e300c2 16 Kbytes 16 Kbytes 4-way 8 words 4 Kbytes
e300c3 16 Kbytes 16 Kbytes 4-way 8 words 4 Kbytes
e300c4 32 Kbytes 32 Kbytes 8-way 8 words 4 Kbytes

4.10.2 Cache Locking Register Summary

Table 4-11 through Table 4-13 outline the registers and bits used to perform cache locking on the €300

core. Refer to Section 2.2.1, “Hardware |mplementation Register 0 (HIDO),” for acompl ete description of
the HIDO and M SR registers. Refer to Section 2.2.3, “Hardware Implementation Register 2 (HID2),” for
acomplete description of the HID2 register.

Table 4-11. HIDO Bits Used to Perform Cache Locking

Bits Name Description

16 ICE Instruction cache enable. This bit must be set for instruction cache locking. See
Section 4.10.3.1.1, “Enabling the Data Cache’”

17 DCE Data cache enable. This bit must be set for data cache locking. See Section 4.10.3.1.1,
“Enabling the Data Cache.”

18 ILOCK Instruction cache lock. Set to lock the entire instruction cache. See Section 4.10.3.2.5,
“Locking the Entire Instruction Cache.”

19 DLOCK Data cache lock. Set to lock the entire data cache. See Section 4.10.3.1.6, “Locking the Entire
Data Cache”

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor

4-33

Instruction and Data Cache Operation

Table 4-11. HIDO Bits Used to Perform Cache Locking (continued)

Bits Name Description
20 ICFI Instruction cache flash invalidate. Setting and then clearing this bit invalidates the entire
instruction cache. See Section 4.10.3.2.7, “Invalidating the Instruction Cache (Even if
Locked).”
21 DCFI Data cache flash invalidate. Setting and then clearing this bit invalidates the entire data cache.
See Section 4.10.3.1.4, “Invalidating the Data Cache”
Table 4-12. HID2 Bits Used to Perform Cache Way-locking
Bits Name Description
16-18 IWLCK Instruction cache way-lock. These bits are used to lock individual ways in the instruction
cache. See Section 4.10.3.2.6, “Way-Locking the Instruction Cache.”
24-26 DWLCK Data cache way-lock. These bits are used to lock individual ways in the data cache. See
Section 4.10.3.1.7, “Way-Locking the Data Cache”
Table 4-13. MSR Bits Used to Perform Cache Locking
Bits | Name Description
16 EE |External interrupt enable. This bit must be cleared during instruction and data cache loading. See
Section 4.10.3.1.3, “Disabling Interrupts for Data Cache Locking.”
19 ME | Machine check enable. This bit must be cleared during instruction and data cache loading. See
Section 4.10.3.1.3, “Disabling Interrupts for Data Cache Locking.”
26 IR | Instruction address translation. This bit must be set to enable instruction address translation by the MMU. See
Section 4.10.3.1.2, “Address Translation for Data Cache Locking.”
27 DR | Data address translation. This bit must be set to enable data address translation by the MMU. See
Section 4.10.3.1.2, “Address Translation for Data Cache Locking.”
4.10.3 Performing Cache Locking

This section outlines the basic procedures for locking the data and instruction caches and provides some
example code for locking the caches. The procedures for the data cache are described first, followed by
the corresponding sections for locking the instruction cache.

The basic procedures for cache locking are as follows:
» Enabling the cache
» Enabling address trandation for example code
» Disabling interrupts
* Loading the cache
» Locking the cache (entire cache locking or cache way-locking)

In addition, this section describes how to invalidate the data and instruction caches, even when they are

locked.

e300 Power Architecture Core Family Reference Manual, Rev. 4

4-34

Freescale Semiconductor

Instruction and Data Cache Operation

4.10.3.1

This section describes the procedures for performing data cache locking on the €300 core.

Data Cache Locking—Procedures

4.10.3.1.1 Enabling the Data Cache

To lock the data cache, the data cache enable bit HIDO[DCE], bit 17, must be set. The following assembly
code enables the data cache:

Enable the data cache. This corresponds
to setting DCE bit in HIDO (bit 17)

mfspr rl, HIDO
ori rl, rl, 0x4000
sync
mtspr HIDO, rl
isync
4.10.3.1.2 Address Translation for Data Cache Locking

Two distinct memory areas must be set up to enable cache locking:

* Thefirst areais where the code that performs the locking resides and is executed.
* The second areais where the data to be locked resides.

Both areas of memory must be in locations that are translated by the memory management unit (MMU).
This trandation can be performed either with the page table or the block address trandation (BAT)
registers.

For the purposes of the cache locking examplein thisdocument, the two areas of memory are defined using
the BAT registers. Thefirst areais a 1-Mbyte areain the upper region of memory that contains the code
performing the cachelocking. The second areaisa256-Mbyte block of memory (not all of the 256 M bytes
of memory islocked in the cache; thisareais set up as an example) that contains the datato lock. Both
memory areas use identity trandation (the logical memory address equals the physical memory address).

Table 4-14 summarizes the BAT settings used in this example.
Table 4-14. Example BAT Settings for Cache Locking

Area Base Address Memory Size WIMG Bits BATU Setting BATL Setting
First 0xFFFO_0000 1 Mbyte 0b0100! OXFFFO_001F | OxFFF0_0002'
Second 0x0000_0000 256 Mbyte 0b0000 0x0000_1FFF | 0x0000_0002

1 Caching-inhibited memory is not a requirement for data cache locking. A setting of OxFFF0_0002 with a
corresponding WIMG of 0b0000 marks the memory area as caching-allowed.

The block address trandlation upper (BATU) and block address translation lower (BATL) settingsin
Table 4-14 can be used for both instruction block address translation (IBAT) and data block address
tranglation (DBAT) registers. After the BAT registers have been set up, the MMU must be enabled. The
following assembly code enables both instruction and data memory address translation:

Enable instruction and data memory address translation. This
corresponds to setting IR and DR in the MSR (bits 26 & 27)

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 4-35

Instruction and Data Cache Operation

mfmsr rl

ori rl, rl, 0x0030
sync

mtmsr rl

isync

4.10.3.1.3 Disabling Interrupts for Data Cache Locking

To ensure that interrupt handler routines do not execute while the cache is being loaded (which could
possibly pollute the cache with undesired contents), all interrupts must be disabled. Thisis accomplished
by clearing the appropriate bits in the machine state register (MSR). See Table 4-15 for the bits within the
MSR that must be cleared to ensure that interrupts are disabled.

Table 4-15. MSR Bits for Disabling Interrupts

Bits Name Description
16 EE External interrupt enable

19 ME Machine check enable

20 FEO' Floating-point exception mode 0

23 FE1' Floating-point exception mode 1

24 CE Critical interrupt enable

' The floating-point exception may not need to be disabled because the example code shown in
this document that performs cache locking does not execute any floating-point operations.

The following assembly code disables all asynchronous interrupts:
Clear the following bits from the MSR:

EE (16) ME (19)
FEO (20) FE1 (23)
ME (24)
mfmsr rl
lis r2, OXFFFF
ori r2, r2, 0x667F
and rl, rl, r2
sync
mtmsr rl
isync

4.10.3.1.4 Invalidating the Data Cache

If anon-empty data cache has modified data, and the data cannot be discarded, the data cache must be
flushed before it can be invalidated. Data cache flushing is accomplished by filling the data cache with
known data and performing a flash invalidate or a series of dcbf instructions that force a flush and
invalidation of the data cache block.

The following code sequence shows how to flush the data cache:

r6 contains a block-aligned address in memory with which to £ill
the data cache. For this example, address 0x0 is used
1i r6, 0x0

CTR = number of data blocks to load

e300 Power Architecture Core Family Reference Manual, Rev. 4

4-36 Freescale Semiconductor

Instruction and Data Cache Operation

e300cl and e300c4 number of blocks = (32K) / (32 Bytes/block)
= 2"15 / 2”5 = 29 = 0x400
e300c2 and e300c3 number of blocks = (16K) / (32 Bytes/block)
= 2"14 / 2”5 = 2™8 = 0x200
1i rl, 0x400 # Use e300cl and e30c4 value for this example

mtctr rl

Save the total number of blocks in cache to r8
mr r8, rl

Load the entire cache with known data

loop: 1wz r2, 0(ré6)

addi r6, r6, 32 # Find the next block

bdnz loop # Decrement the counter, and
branch if CTR != 0

Now, flush the cache with dcbf instructions

1i r6, 0x0 # Address of first block
mtctr r8 # Number of blocks
loop2:
dcbf r0, ré6
addi r6, r6, 32 # Find the next block
bdnz loop2 # Decrement the counter, and
branch if CTR != 0

If the content of the data cache does not need to be flushed to memory, the cache can be directly
invalidated. The entire data cache is invalidated through the data cache flash invalidate bit HIDO[DCFI],
bit 21. Setting HIDO[DCFI] and thenimmediately clearing it causesthe entire data cache to beinvalidated.
The following assembly code invalidates the entire data cache (does not flush modified entries):

Set and then clear the HIDO[DCFI] bit, bit 21

mfspr rl, HIDO

mr r2, rl

ori rl, rl, 0x0400
sync

isync

mtspr HIDO, rl

mtspr HIDO, r2

isync

4.10.3.1.5 Loading the Data Cache

This section explains loading datainto the data cache. The data cache can be loaded in severa ways. The
examplein this document loads the datafrom memory. The following assembly code loads the data cache:

Assuming interrupts are turned off, cache has been flushed,
MMU on, and loading from contiguous caching-allowed memory.
r6 = Starting address of code to lock
r20 = Temporary register for loading into
CTR = Number of cache blocks to lock
loop: lwz r20, 0(xre6) # Load data into d-cache
addi r6, r6, 32 # Find next block to load
bdnz loop # CTR = CTR-1, branch if CTR != 0

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 4-37

Instruction and Data Cache Operation

4.10.3.1.6

Locking the Entire Data Cache

Locking of the entire data cache is controlled by the data cache lock bit (HIDO[DLOCK], bit 19). Setting
HIDO[DLOCK] to 1 locks the entire data cache. To unlock the data, the HIDO[DLOCK] must be cleared
to 0. Setting the DLOCK hit must be preceded by a sync instruction to prevent the data cache from being
locked during a data access. The following assembly code locks the entire data cache:

Set the DLOCK bit in HIDO (bit 19)

mfspr rl, HIDO

ori
sync

rl, rl, 0x1000

mtspr HIDO, rl
isync

410.3.1.7

HID2[DWL CK[0-2]] settings for the e€300c1 and e300c4 core embedded processor.
Table 4-16. €300c1 and e300c4 Core DWLCK[0-2] Encodings

NOTE

ThedcbzinstructionignoresDLOCK and alwaysallocatesatag. Therefore,
itisrecommended that, when setting DLOCK the user a so set the way-lock
bitsto lock the maximum number of ways. Refer to Section 4.10.3.1.7,

“Way-Locking the Data Cache,” for more information.

Way-Locking the Data Cache
Data cache way-locking is controlled by HID2[DWL CK], bits 24-26. Table 4-16 shows the

DWLCK]0:2] Ways Locked
0b000 No ways locked
0b001 Way 0 locked
0b010 Ways 0 and 1 locked
0b011 Ways 0, 1, and 2 locked
0b100 Ways 0, 1, 2, and 3 locked
0b101 Ways 0, 1, 2, 3, and 4 locked
0b110 Ways 0, 1, 2, 3, 4, and 5 locked
Ob111 Ways 0, 1, 2, 3, 4, 5, and 6 locked

e300 Power Architecture Core Family Reference Manual, Rev. 4

4-38

Freescale Semiconductor

Instruction and Data Cache Operation

Table 4-16 shows the HID2[DWL CK[0-2]] settings for the €300c2 and e300c3 core embedded processor.

Table 4-17. e300c2 and e300c3 Core DWLCK[0-2] Encodings

DWLCK]0:2] Ways Locked
0b000 No ways locked
0b001 Way 0 locked
0b010 Ways 0 and 1 locked
0b011 Ways 0, 1, and 2 locked
0b100 Reserved (Ways 0, 1, and 2 locked)
0b101 Reserved (Ways 0, 1, and 2 locked)
0b110 Reserved (Ways 0, 1, and 2 locked)
0Ob111 Reserved (Ways 0, 1, and 2 locked)

Note that on the e300c2 and €300c3, values greater than 0b011 are reserved but default to the maximum
number of ways locked (Ways 0,1, and 2).

The following assembly code locks way O of the e300 core data cache:

Lock way 0 of the data cache
This corresponds to setting dwlck(0-2) 0b001 (bits 24-26)

mfspr rl, HID2

lis r2, OxXFFFF

ori r2, r2, OxFF1F
and rl, rl, r2

ori rl, rl, 0x0020
sync

mtspr HID2, rl

isync

4.10.3.1.8 Invalidating the Data Cache (Even if Locked)

There are two methods for invalidating the instruction or data cache:

» Invalidate the entire cache by setting and then immediately clearing the data cache flash invalidate
bit HIDO[DCFI], bit 21. Even when a cache is locked, toggling the DCFI bit invalidates all of the
data cache.

» The data cache block invalidate (dcbi) instruction can be used to invalidate individual cache
blocks.

4.10.3.2 Instruction Cache Locking—Procedures

This section describes the procedures for performing instruction cache locking on the e300 core.

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 4-39

Instruction and Data Cache Operation

4.10.3.2.1
To lock the instruction cache, the instruction cache enable bit HIDO[ICE], bit 16 must be set.

Enable the data cache. This corresponds
to setting DCE bit in HIDO (bit 17)

Enabling the Instruction Cache

mfspr rl, HIDO
ori rl, rl, 0x8000
sync
mtspr HIDO, rl
isync
4.10.3.2.2 Address Translation for Instruction Cache Locking

Two distinct memory areas must be set up to enable cache locking:
* Thefirst areais where the code that performs the locking resides and is executed.
* The second areais where the instructions to be locked reside.

Both areas of memory must be in locations that are translated by the memory management unit (MMU).
This trandation can be performed either with the page table or the block address trandation (BAT)
registers.

For the purposes of the cache locking example in this document, two areas of memory are defined using
the BAT registers. Thefirst areais a 1-Mbyte areain the upper region of memory that contains the code
performing the cache locking. This area of memory must be caching-inhibited for instruction cache
locking. The second areaisa256-Mbyte block of memory that contains the instructionsto lock (not all of
the 256 Mbytes of memory islocked in the cache; this areais set up as an example). Both memory areas
use identity trandation (the logical memory address equal s the physical memory address). Table 4-18
summarizes the BAT settings used in this example.

Table 4-18. Example BAT Settings for Cache Locking

Area Base Address Memory Size WIMG Bits BATU Setting BATL Setting
First OxFFFO0_0000 1 Mbyte 0b0100 OxFFFO_001F | OxFFF0_0022'
Second 0x0000_0000 256 Mbytes 0b0000 0x0000_1FFF 0x0000_0002

1 OXFFF0_0022 defines a caching-inhibited memory area used for instruction cache locking and corresponds
to a WIMG of 0b0100. Caching-inhibited memory is not a requirement for data cache locking. A setting of
O0xFFF0_0002 with a corresponding WIMG of 0b0000 marks the memory area as caching-allowed.

The block address trandation upper (BATU) and block address translation lower (BATL) settingsin
Table 4-18 can be used for both instruction block address translation (IBAT) and data block address
translation (DBAT) registers. After the BAT registers have been set up, the MMU must be enabled.

The following assembly code enables both instruction and data memory address trand ation:

Enable instruction and data memory address translation. This
corresponds to setting IR and DR in the MSR (bits 26 & 27)

mfmsr rl

ori rl, rl, 0x0030

e300 Power Architecture Core Family Reference Manual, Rev. 4

4-40 Freescale Semiconductor

Instruction and Data Cache Operation

sync
mtmsr rl
isync

4.10.3.2.3 Disabling Interrupts for Instruction Cache Locking

To ensure that interrupt handler routines do not execute while the cache is being loaded (which could
possibly pollute the cache with undesired contents) all interrupts must be disabled. Thisis accomplished
by clearing the appropriate bits in the machine state register (MSR). See Table 4-19 for the bits within the
MSR that must be cleared to ensure that interrupts are disabled.

Table 4-19. MSR Bits for Disabling Interrupts

Bit Name Description
16 EE External interrupt enable

19 ME Machine check enable

20 FEO! Floating-point exception mode 0

23 FE11 Floating-point exception mode 1

24 CE Critical interrupt enable

' The floating-point exception may not need to be disabled because the example code shown
in this document that performs cache locking does not execute any floating-point operations.

The following assembly code disables all asynchronous interrupts:

Clear the following bits from the MSR:

EE (16) ME (19)
FEO (20) FE1 (23)
ME (24)
mfmsr rl
lis r2, OxXFFFF
ori r2, r2, 0x667F
and rl, rl, r2
sync
mtmsr rl
isync

4.10.3.2.4 Preloading Instructions into the Instruction Cache

To optimize performance, processors that implement the PowerPC architecture automatically prefetch
instructions into the instruction cache. This feature can be used to preload explicit instructions into the
cache even when it is known that their execution will be canceled. Although the execution of the
instructionsis canceled, the instructions remain valid in the instruction cache.

Because instructions are intentionally executed speculatively, care must be taken to ensure that all 1/0
memory is marked guarded. Otherwise, speculative loads and stores to 1/O space could potentially cause
data loss. See the Programming Environments Manual for afull discussion of guarded memory.

The code that prefetches must be in caching-inhibited memory asin the following example:

Assuming interrupts are disabled, cache has been flushed,
the MMU is on, and we are executing in a caching-inhibited

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 4-41

Instruction and Data Cache Operation

location in memory

LR and r6 = Starting address of code to lock

CTR = Number of cache blocks to lock

r2 = non-zero numerator and denominator

‘loop’ must begin on an 8-byte boundary to ensure that
the divw and beglr+ are fetched on the same cycle.

.orig 0xFFF04000
loop: divw. r2, r2, r2 # LONG divide w/ non-zero result
beglr+ # Cause the prefetch to happen
addi r6, r6, 32 # Find next block to prefetch
mtlr ré6 # set the next block
bdnz- loop # Decrement the counter and
branch if CTR != 0

In the above example, both the divw and beqglr + instructions are fetched at the same time (this assumes a
64-bit data bus; the preloading code does not work for a 32-bit data bus) due to their placement on a
double-word boundary. The divide instruction was chosen because it takes many cyclesto execute. During
execution of the divide, the processor starts fetching instructions speculatively at the target destination of
the branch instruction. The speculation occurs because the branch is statically predicted as taken. This
speculative fetching causes the cache block that is pointed to by thelink register (LR) to beloaded into the
cache. Because the divw. instruction always produces a non-zero result, the beglr + is not taken and
execution of all speculatively fetched instructions is canceled. However, the instructions remain valid in
the cache.

If the destination instruction stream contains an unconditional branch to another memory location, it is
possible to also prefetch the destination of the unconditional branch instruction. This does not cause a
problem if the destination of the unconditional branch is also inside the area of memory that needs to be
preloaded. But if the destination of the unconditional branch is not in the area of memory to be loaded,
then care must be taken to ensure that the branch destination is to an area of memory that is
caching-inhibited. Otherwise, unintentional instructions may be locked in the cache and the desired
instructions may not be in their expected way within the cache.

Theicbt isanew feature to the €300 core and supplements the instruction cache |ocking mechanisms and
the new way-protect feature. Theicbt instruction performs abusread operation from the bus and allocates
into the instruction cache.

Theicbt instruction functionsindependently of WIM G settings, instruction or data cache enable status, or
theinstruction cachelock status (i.e. unconditional allocate). Thisallowsthe icbt instruction to be used to
easily initialize the locked portion of the instruction cache before enabling.

Notethat to prevent user-mode code from inadvertently over-writing a supervisor-mode page that hasbeen
locked in the instruction cache, that page of memory should be protected with appropriate MMU
translation and access privileges, or HIDO[NOPTI] should be set in order to no-op further uses of the
instruction.

Theicbt instruction is dispatched to the load/store unit and data cache, and therefore goes through
data-side addresstrand ation. It istreated similarly to dcbt for translation and storage protection purposes.
The data cache then issues the icbt operation to the bus unit without checking for a data cache hit.

e300 Power Architecture Core Family Reference Manual, Rev. 4

4-42 Freescale Semiconductor

Instruction and Data Cache Operation

Thereforeif the instruction block may already be residing in the data cache (because of self-modifying
code, for example), the program must first perform adcbf or dcbst of that address to flush that data block
back to main memory for the icbt to accessiit.

A sync instruction must follow an icbt instruction to ensure all cache load operations are completed. An
isync instruction must also follow anicbt if instruction fetching to the newly touched and |oaded
instructions may occur immediately after the icbt was executed.

4.10.3.2.5 Locking the Entire Instruction Cache

Locking the entireinstruction cacheis controlled by theinstruction cachelock bit (HIDO[ILOCK], bit 18).
Setting HIDO[ILOCK] locks the entire instruction cache, and clearing HIDO[ILOCK] allows the
instruction cache to operate normally. The setting of the HIDO[ILOCK] should be preceded by an isync
instruction to prevent the instruction cache from being locked during an instruction access. The following
assembly code locks the contents of the entire instruction cache.

Set the ILOCK bit in HIDO (bit 18)

mfspr rl, HIDO

ori rl, rl, 0x2000
sync

isync

mtspr HIDO, rl

isync

4.10.3.2.6 Way-Locking the Instruction Cache

Instruction cache way-locking is controlled by the HID2[IWLCK], bits 16-18. Table 4-20 shows the
HID2[IWLCK[0-2]] settings for the core.

Table 4-20. €300c1 and €300c4 Core IWLCK[0-2] Encodings

IWLCK]0:2] Ways Locked
0b000 No ways locked
0b001 Way 0 locked
0b010 Ways 0 and 1 locked
0b011 Ways 0, 1, and 2 locked
0b100 Ways 0, 1, 2, and 3 locked
0b101 Ways 0, 1, 2, 3, and 4 locked
0b110 Ways 0, 1, 2, 3, 4, and 5 locked
Ob111 Ways 0, 1, 2, 3, 4, 5, and 6 locked

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 4-43

'
A

Instruction and Data Cache Operation

Table 4-16 shows the HID2[IWLCK|[0-2]] settings for the €300c2 and €300c3.

Table 4-21. e300c2 Core IWLCK[0-2] Encodings

IWLCK]0:2] Ways Locked
0b000 No ways locked
0b001 Way 0 locked
0b010 Ways 0 and 1 locked
0b011 Ways 0, 1, and 2 locked
0b100 Reserved (Ways 0, 1, and 2 locked)
0b101 Reserved (Ways 0, 1, and 2 locked)
0b110 Reserved (Ways 0, 1, and 2 locked)
0Ob111 Reserved (Ways 0, 1, and 2 locked)

Note that on the e300c2 and €300c3, values greater than 0b011 are reserved but default to the maximum
number of ways locked (Ways 0,1, and 2).
The following assembly code locks way O of the core instruction cache:

Lock way 0 of the instruction cache
This corresponds to setting iwlck(0-2) to 0b001 (bits 16-18)

mfspr rl, HID2

lis r2, OxXFFFF

ori r2, r2, O0x1FFF
and rl, rl, r2

ori rl, rl, 0x2000
sync

isync

mtspr HID2, rl

isync

4.10.3.2.7 Invalidating the Instruction Cache (Even if Locked)

There are two methods for invalidating the instruction cache. In the first way, invalidate the entire cache
by setting and then immediately clearing the instruction cache flash invalidate bit (HIDO[ICFI], bit 20).
Even when a cacheislocked, toggling the ICFI bit invalidates all of the instruction cache. The following
assembly code invalidates the entire instruction cache:

Set and then clear the HIDO[ICFI] bit, bit 20

mfspr rl, HIDO

mr r2, rl

ori rl, rl, 0x0800
sync

isync

mtspr HIDO, rl

mtspr HIDO, r2

isync

e300 Power Architecture Core Family Reference Manual, Rev. 4

4-44 Freescale Semiconductor

Instruction and Data Cache Operation

In the second method, the instruction cache block invalidate (icbi) instruction can be used to invalidate
individual cache blocks. Theicbi instruction invalidates blocksin an entirely locked instruction cache. The
ichi instruction also may invalidate way-locked blocks within the instruction cache.

4.10.3.2.8 Instruction Cache Way Protection

The instruction cache way-protect extension supplements the existing cache lock capability of the
instruction cache. For normal operation, from one to all ways (eight ways for 32K byte caches/four ways
for 16K byte caches) of theinstruction cache may be locked using HID2[IWL CK] and HIDO[ILOCK]. The
locking mechanism normally allows a portion or all of the instruction cache to be used as a very fast,
always resident, program memory. Specifically, pages of memory (up to afull 4Kbytes per page per way)
may belocked in the instruction cache and used asfast, always-resident program memory, while allowing
the remaining unlocked portion of the instruction cache to continue to operate as normal cache for the
remaining program.

Normal instruction cache management, however, typically relies on the icbi instruction and the flash
invalidate mechanism (HIDO[ICFI]) to routinely clear out part or all of the instruction cache for
program-related operations, such as process changes and MMU page deall ocation. These cache
management operations clear out both the locked and unlocked portions of the cache (icbi invalidates all
ways of a cache set unconditionally, and HIDO[ICFI] clears the entire instruction cache unconditionally).

In the e300 core, the new instruction cache way protect extension prevents the locked portion of the
instruction cache from being invalidated by the icbi instruction or by the flash invalidate mechanism
(HIDO[ICFI]). Thisallowsthelocked portion of theinstruction cache to have the same persistenceasmain
memory, while still allowing the remaining unlocked portion of the instruction cache to be managed by the
program. This way-protect extension is enabled by setting HID2[ICWP].

In addition to the way-protect extension, the instruction cache block touch (icbt) instruction is added to
support easy start-up initialization or reloading of the instruction cache. This specifically supports the
way-lock and way-protect mechanism by allowing the locked portion of the cache to be easily initialized
in a predictable fashion. (The natural prefetch mechanism of super-scalar processors otherwise precludes
this.)

Theicbt instruction allocates blocks into the instruction cache, regardless of WIMG settings or whether
the instruction cache is enabled, so that the instruction cache can be easily locked and preloaded before
turning on. In addition, in case of acache hit, the icbt instruction will re-write to the same hitting line, so
that an existing locked and protected page in the instruction cache can be easily re-loaded with adifferent
program without going back to an initial start-up state.

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 4-45

Instruction and Data Cache Operation

e300 Power Architecture Core Family Reference Manual, Rev. 4

4-46 Freescale Semiconductor

Chapter 5
Interrupts and Exceptions

The PowerPC interrupt mechanism allows the processor to change to supervisor state asaresult of external
signals, errors, or unusual conditions arising in the execution of instructions. When interrupts occur,
information about the state of the processor is saved to certain registers and the processor begins execution
at an address (interrupt vector) predetermined for each interrupt. Processing of interrupts occursin
supervisor mode.

Although multiple exception conditions can map to asingleinterrupt vector, amore specific condition may
be determined by examining aregister associated with the interrupt or exception that causes it—for
example, the DSISR or FPSCR. Additionally, certain exception conditions and interrupts can be explicitly
enabled or disabled by software.

The PowerPC architecture requires that interrupts be handled in program order; therefore, although a
particular implementation may recognize interrupt conditions out of order, they are handled strictly in
order with respect to the instruction stream. When an instruction-caused interrupt is recognized, any
unexecuted instructionsthat appear earlier intheinstruction stream, including any that have not yet entered
the execute state, are required to complete before the interrupt is taken. Any interrupts caused by those
instructions are handled first. Likewise, interrupts that are asynchronous and precise are recognized when
they occur, but are not handled until the instruction currently in the completion stage successfully

compl etes execution or generates an interrupt, and the completed store queue is emptied (see Section 7.1,
“Terminology and Conventions,” for the definition). Aninstruction is said to have completed when the
results of that instruction’s execution have been committed to the registers defined by the architecture (for
example, the GPRs or FPRs, rather than rename buffers). If a single instruction encounters multiple
exception conditions, those exceptions are taken and handled sequentially. Likewise, interrupts that are
asynchronous are recognized when they occur, but are not handled until the next instruction to complete
in program order successfully completes. Throughout thischapter, the phrase‘ next instruction’ impliesthe
next instruction to complete in program order.

Note that interrupts can occur while an interrupt handler routine is executing, and multiple interrupts can
become nested. It isup to theinterrupt handler to save the statesto allow control to ultimately return to the
original excepting program.

Unless a catastrophic condition causes a system reset or machine check interrupt, only one interrupt is
handled at atime. If, for example, a single instruction encounters multiple interrupt conditions, those
conditions are handled sequentially. After the interrupt handler isfinished, instruction execution continues
until the next interrupt is encountered. However, in many cases there is no attempt to re-execute the
instruction. This method of recognizing and handling interrupts sequentially guaranteesthat interrupts are
recoverable.

To prevent loss of state information, interrupt handlers should save the information stored in SRRO and
SRR1 (or in CSRRO/CSRRL1 for critical interrupts) soon after the interrupt istaken. This prevents loss of

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 5-1

Interrupts and Exceptions

information due to a system reset or machine check interrupt or to an instruction-caused interrupt in the
interrupt handler before disabling external interrupts.

In this chapter, the following terminology is used to describe the various stages of exception processing:
Exception A condition that, if enabled, generates an interrupt.
Recognition Interrupt recognition occurs when the exception that can cause an interrupt is

identified by the processor.

Taken Aninterrupt is said to be taken when control of instruction execution is passed to
the interrupt handler; that is, the context is saved and the instruction at the
appropriate vector offset isfetched and the interrupt handler routing isexecutedin
supervisor mode.

Handling Interrupt handling is performed by the software linked to the appropriate vector
offset. Interrupt handling is performed at the supervisor-level.

5.1 Interrupt Classes

The PowerPC architecture supports four types of interrupts:

Synchronous, precise—These are caused by instructions. All instruction-caused interrupts are
handled precisely; that is, the machine state at the time the interrupt occurs is known and can be
completely restored. This meansthat (excluding the trap and system call interrupts) the address of
the faulting instruction is provided to the interrupt handler and that neither the faulting instruction
nor subsequent instructions in the code stream will complete execution before the interrupt is
taken. Once theinterrupt is processed, execution resumes at the address of the faulting instruction
(or at an alternate address provided by the interrupt handler). When an interrupt istaken dueto a
trap or system call instruction, execution resumes at an address provided by the handler.

Synchronous, imprecise—T he PowerPC architecture defines two imprecise floating-point
exception modes:. recoverable and nonrecoverable. Even though the e300 core providesameansto
enable the imprecise modes, it implements these modes identically to the precise mode (that is, all
enabled floating-point exceptions are always precise on the e300 core). These are not implemented
on the e300c2 core as it does not support floating-point instructions.

Asynchronous, maskable—The external interrupt (int), system management interrupt (smi),
decrementer interrupt, and critical interrupt (cint) are maskable asynchronous interrupts. When
these interrupts occur, their handling is postponed until the next instruction completes execution
and until any interrupts associated with that instruction complete execution. If there are no
instructions in the execution units, the interrupt is taken immediately upon determination of the
correct restart address (for loading SRRO).

Asynchronous, nonmaskable—T here are two nonmaskabl e asynchronous interrupts: system reset
and the machine check interrupt. Theseinterrupts may not berecoverable, or may providealimited
degree of recoverability. All interrupts report recoverability through the MSR[RI] bit.

e300 Power Architecture Core Family Reference Manual, Rev. 4

5-2

Freescale Semiconductor

Interrupts and Exceptions

The €300 core interrupt classes are shown in Table 5-1.

Table 5-1. Interrupt Classifications

Synchronous/Asynchronous Precise/lmprecise Interrupt Type
Asynchronous, nonmaskable Imprecise Machine check
System reset
Asynchronous, maskable Precise External interrupt
Decrementer

System management interrupt
Critical interrupt

Synchronous Precise Instruction-caused interrupts

Table 5-1 definesinterrupt categories that are handled uniquely by the e300 core. Note that Table 5-1
includes no synchronous imprecise interrupts. While the PowerPC architecture supportsimprecise
handling of floating-point exceptions, the e300 core implements them as precise. Although the PowerPC
architecture specifiesthat the recognition of the machine check interrupt is nonmaskabl e, on the e300 core
the stimuli that cause thisinterrupt are maskable. For example, the machine check interrupt is caused by
the assertion of tea, ape, dpe, or mcp. However, mep, ape, and dpe can be disabled by bits 0, 2, and 3,
respectively, in HIDO. Therefore, the machine check caused by asserting tea isthe only truly nonmaskable
machine check interrupt.

The €300 core interrupts, and conditions that cause them, are listed in Table 5-2.Note that the €300c2 core
does not support floating-point operations.

Table 5-2. Interrupts and Exception Conditions

Vector Offset

Interrupt Type (hex) Exception Conditions

Reserved 00000 —

System reset 00100 A system reset is caused by the assertion of either sreset or hreset.

Machine check 00200 A machine check is caused by the assertion of the tea signal during a data bus transaction,
assertion of mcp, an address or data parity error, or an instruction or data cache parity
error. Note that when a machine check occurs, the e300 has SRR1 register values that are
different from the G2/G2_LE cores because the e300 core supports cache parity. See
Table 5-14 for more information.

DSI 00300 The cause of a DSl interrupt can be determined by the bit settings in the DSISR, listed as

follows:

1 Setif the translation of an attempted access is not found in the primary hash table entry
group (HTEG), orin the rehashed secondary HTEG, or in the range of a DBAT register;
otherwise cleared.

4 Setif a memory access is not permitted by the page or DBAT protection mechanism;

otherwise cleared.

Set for a store operation and cleared for a load operation

9 Setif a data address breakpoint interrupt occurs when the data [0—28] in the DABR or
DABR2 matches the next data access (load or store instruction) to complete in the
completion unit. The different breakpoints are enabled as follows:

* Write breakpoints enabled when DABR[30] is set
* Read breakpoints enabled when DABR[31] is set

[e)]

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 5-3

Interrupts and Exceptions

Table 5-2. Interrupts and Exception Conditions (continued)

Interrupt Type

Vector Offset
(hex)

Exception Conditions

ISI

00400

An ISl interrupt is caused when an instruction fetch cannot be performed for any of the
following reasons:

* The effective (logical) address cannot be translated. That s, there is a page fault for this
portion of the translation, so an ISl interrupt must be taken to load the PTE (and possibly
the page) into memory.

* The fetch access violates memory protection (indicated by SRR1[4] set). If the key bits
(Ks and Kp) in the segment register and the PP bits in the PTE are set to prohibit read
access, instructions cannot be fetched from this location.

External interrupt

00500

An external interrupt is caused when MSRI[EE] = 1 and the int signal is asserted.

Alignment

00600

An alignment interrupt is caused when the core cannot perform a memory access for any

of the reasons described below:

* The operand of a floating-point load or store instruction is not word-aligned.

* The operands of Imw, stmw, lwarx, and stwex. instructions are not aligned.

* The operand of a load, store, load multiple, store multiple, load string, or store string
instruction crosses a protection boundary.

e The instruction is Iswi, Iswx, stswi, stswx, and the core is in little-endian mode. Note
that PowerPC little-endian mode is not supported on the e300 core.

* The operand of dcbz is in memory that is write-through-required or caching-inhibited.

Program

00700

A program interrupt is caused by one of the following exceptions, which correspond to bit

settings in SRR1 and arise during execution of an instruction.

Floating-point enabled exception—A floating-point enabled exception condition is

generated when the following condition is met:

(MSR[FEO] | MSR[FE1]) & FPSCRI[FEX] is 1.

* FPSCRIFEX] is set by the execution of a floating-point instruction that causes an
enabled exception or by the execution of one of the ‘move to FPSCR’ instructions that
results in both an exception condition bit and its corresponding enable bit being set in
the FPSCR.

* lllegal instruction—An illegal instruction program exception is generated when

execution of an instruction is attempted with an illegal opcode or illegal combination of

opcode and extended opcode fields (including PowerPC instructions not implemented
in the core), or when execution of an optional instruction not provided in the core is
attempted (these do not include those optional instructions that are treated as no-ops).

Privileged instruction—A privileged instruction type program exception is generated

when the execution of a privileged instruction is attempted and the MSR register user

privilege bit, MSR[PRY], is set. In the €300 core, this exception is generated for mtspr or
mfspr with an invalid SPR field if SPR[0] = 1 and MSR[PR] = 1. This may not be true
for all cores that implement the PowerPC architecture.

* Trap—A trap type program exception is generated when any of the conditions specified
in a trap instruction is met.

Floating-point
unavailable

00800

A floating-point unavailable interrupt is caused by an attempt to execute a floating-point
instruction (including floating-point load, store, and move instructions) when the
floating-point available bit is cleared (MSR[FP] = 0).

Decrementer

00900

The decrementer interrupt occurs when DEC[0] changes from 0 to 1. This interrupt is
enabled with MSR[EE].

Critical interrupt

00A00

A critical interrupt is taken when cint is asserted and MSR[CE] = 1.

Reserved

00B00-00BFF

System call

00C00

A system call interrupt occurs when a System Call (sc) instruction is executed.

e300 Power Architecture Core Family Reference Manual, Rev. 4

5-4

Freescale Semiconductor

Interrupts and Exceptions

Table 5-2. Interrupts and Exception Conditions (continued)

Interrupt Type Vector Offset Exception Conditions
(hex)
Trace 00D00 A trace interrupt is taken when MSR[SE] =1 or when the currently completing instruction
is a branch and MSR[BE] =1.
Reserved 00EO0O0 The e300 core does not generate an interrupt to this vector. Other devices may use this
vector for floating-point assist interrupts.
Performance 00F00 Caused when performance monitor counters using the pm_event_in to transition
monitor overflows.
Instruction 01000 An instruction translation miss interrupt is caused when the effective address for an
translation miss instruction fetch cannot be translated by the ITLB.
Data load 01100 A data load translation miss interrupt is caused when the effective address for a data load
translation miss operation cannot be translated by the DTLB.
Data store 01200 A data store translation miss interrupt is caused when the effective address for a data store
translation miss operation cannot be translated by the DTLB, or where a DTLB hit occurs, and the change
bit in the PTE must be set due to a data store operation.
Instruction 01300 An instruction address breakpoint interrupt occurs when the address (bits 0-29) in the
address IABR matches the next instruction to complete in the completion unit, and IABR[30] is set.
breakpoint Note that the e300 core also implements IABR2, which functions identically to IABR.
System 01400 A system management interrupt is caused when MSR[EE] = 1 and the smi input signal is
management asserted.
interrupt
Reserved 01500-02FFF —

Interrupts are roughly prioritized by class, asfollows:

1. Nonmaskable, asynchronous interrupts have priority over all other interrupts— system reset and
machine check interrupts (although the machine check exception conditions can be disabled so the
condition causes the processor to go directly into the checkstop state). These interrupts cannot be
delayed and do not wait for the completion of any precise interrupt handling.

2. Synchronous, precise interrupts are caused by instructions and are taken in strict program order.
3. Maskable asynchronousinterrupts (for example, external interrupt and decrementer interrupts) are
delayed until higher priority interrupts are taken.

System reset and machine check interrupts may occur at any time and are not delayed even if an interrupt
isbeing handled. As aresult, state information for the interrupted interrupt may be lost; therefore, these
interrupts are typically nonrecoverable.

All other interrupts have lower priority than system reset and machine check interrupts, and the interrupt
may not be taken immediately when it is recognized.

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 5-5

Interrupts and Exceptions

5.1.1

Interrupt Priorities

The interrupts are listed in Table 5-3 in order of highest to lowest priority.

Table 5-3. Interrupt Priorities

Interrupt

execution

iori Int t
Category Priority nterrup Cause
Asynchronous 0 System reset hreset
1 Machine check tea, mep, ape, or dpe
2 System reset sreset
3 Critical interrupt cint. See Section 5.2.1.2, “CSRR0 and CSRR1 Bit Settings,” for more
information
4 System management smi
interrupt
External interrupt int
Performance monitor Performance monitor counters using the pm_event_in to transition
interrupt overflows.
7 Decrementer interrupt Decrementer passed through 0x0000_0000
Instruction fetch 0 ITLB miss Instruction TLB miss
1 Instruction access Instruction access interrupt
Instruction 0 IABR Instruction address breakpoint interrupt
dlspatt(_:h/ 1 Program Program interrupt due to the following:
execution ¢ lllegal instruction
¢ Privileged instruction
e Trap
2 System call System call interrupt
3 Floating-point unavailable | Floating-point unavailable interrupt
4 Program Floating-point enabled interrupt
5 Alignment One to the following:
* Floating-point not word-aligned
* Imw, stmw, lwarx, or stwex. not word-aligned
* ecwix or ecowx operands not aligned
 String access with little-endian bit (MSRI[LE]) set
e The operand of a load, store, load multiple, store multiple, load
string, or store string instruction crosses a protection boundary.
e The instruction is Iswi, Iswx, stswi, stswx, and the core is in
little-endian mode. Note that PowerPC little-endian mode is not
supported on the e300 core.
6 Data access BAT page protection violation
7 DTLB miss A store or load miss
8 Alignment A dcbz to a write-through or caching-inhibited page
9 Data access A TLB page protection violation
10 DTLB miss A change bit not set on a store operation
Post-instruction 0 Trace One of the following:

e MSR[SE] = 1
* MSRI[BE] = 1 for branches

e300 Power Architecture Core Family Reference Manual, Rev. 4

5-6

Freescale Semiconductor

Interrupts and Exceptions

Interrupt priorities are described in detail in “Interrupt Priorities,” in Chapter 6, “Interrupts,” in the
Programming Environments Manual.

5.1.2

Summary of Front-End Interrupt Handling

Thefollowing list of interrupt categories describes how the €300 core handles interrupts up to the point of
signaling the appropriate interrupt to occur. Note that arecoverable stateis reached if the completed store
gueue is empty (drained, not canceled) and any instruction that is next in program order and has been
signaled to complete has completed. If MSR[RI] is clear, the coreisin anonrecoverable state by default.
Also, completion of an instruction isdefined as performing all architectural register writes associated with
that instruction, and then removing that instruction from the compl etion buffer queue.

Asynchronous nonmaskable nonrecoverable—(system reset caused by the assertion of hreset).
These interrupts have highest priority and are taken immediately regardless of other pending
interrupts or recoverability. A nonpredicted address is guaranteed.

Asynchronous maskabl e nonrecoverable—(machine check). A machine check interrupt takes
priority over any other pending interrupt except a nonrecoverable system reset caused by the
assertion of either hreset or internally during POR. A machine check interrupt istaken immediately
regardless of recoverability. A machine check interrupt can occur only if the machine check enable
bit, MSR[ME], isset. If MSR[ME] iscleared, the processor goesdirectly into checkstop statewhen
amachine check exception condition occurs. A nonpredicted address is guaranteed.

Asynchronous nonmaskable recoverable—(system reset caused by the assertion of sreset). This
interrupt takes priority over any other pending interrupts except nonrecoverable interrupts listed
above. Thisinterrupt is taken immediately when arecoverable state is reached.

Asynchronous maskabl e recoverable—(system management interrupt, critical interrupt, external
interrupt, decrementer interrupt). Before handling this type of interrupt, the next instruction in
program order must complete or except. If thisaction causesanother type of interrupt, that interrupt
is taken and the asynchronous maskable recoverable interrupt remains pending. Once an
instruction can complete without causing an interrupt, further instruction completion is halted
while the interrupt not taken remains pending. The interrupt is taken when arecoverable state is
reached.

Instruction fetch—(ITLB, 1Sl). When this type of interrupt is detected, dispatch is halted and the
current instruction stream is allowed to drain. If completing any instructions in this stream causes
an interrupt, that interrupt is taken and the instruction fetch interrupt is forgotten. Otherwise, as
soon as the machine is empty and a recoverable state is reached, the instruction fetch interrupt is
taken.

Instruction dispatch/execution—(program, DSI, alignment, emulation trap, system call, DTLB
miss on load or store, IABR). This type of interrupt is determined at dispatch or execution of an
instruction. The interrupt remains pending until al instructions in program order before the
interrupt-causing instruction are completed. The interrupt is then taken without completing the
interrupt-causing instruction. If any other exception condition is created in completing these
previous instructions in the machine, that interrupt takes priority over the pending instruction
dispatch/execution interrupt, which is then forgotten.

Post-instruction execution—(trace). Thistype of interrupt is generated following execution and
completion of an instruction while atrace mode is enabled. If executing the instruction produces

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 5-7

|
y

'
A

Interrupts and Exceptions

conditions for another type of interrupt, that interrupt is taken and the post-instruction execution
interrupt is forgotten for that instruction.

5.2 Interrupt Processing

When an interrupt is taken, the processor uses the save/restore registers, SRRO and SRR1, to save the
contents of the machine state register for user-level mode and to identify where instruction execution
should resume after the interrupt is handled.

5.2.1 Interrupt Processing Registers

The €300 core implements the SRRO and SRR registers that are used for saving processor state on an
interrupt. Additionally, the e300 coreimplements CSRRO and CSRRL to specifically save state for critical
interrupt interrupts.

5.2.1.1 SRRO0 and SRR1 Bit Settings

When an interrupt occurs, SRRO is set to point to the instruction at which instruction processing should
resume when the interrupt handler returns control to the interrupted process. All instructionsin the
program flow preceding this one will have completed and no subsequent instruction will have completed.
This may be the address of the instruction that caused the interrupt or the next one (as in the case of a
system call interrupt). Theinstruction addressed can be determined from the interrupt type and status bits.
This addressis used to resume instruction processing in the interrupted process, typically when an rfi
instruction is executed. The SRRO register is shown in Figure 5-1.

SPR 26 Access: Supervisor read/write
0 | | | | | | | 3
R
W SRRO (holds EA for resuming program execution)

Reset All zeros

Figure 5-1. Machine Status Save/Restore Register 0 (SRR0)

The save/restore register 1 (SRR1) is used to save machine status (the contents of the M SR) on interrupts
and to restore those values when rfi is executed. SRR1 is shown in Figure 5-2.

SPR 27 Access: Supervisor read/write
0 | | | | | | | a1
R I . .
W Interrupt-specific information and MSR bit values
Reset All zeros

Figure 5-2. Machine Status Save/Restore Register 1 (SRR1)

e300 Power Architecture Core Family Reference Manual, Rev. 4

5-8 Freescale Semiconductor

Interrupts and Exceptions

Typically, when an interrupt occurs, SRR1[0-15] are loaded with interrupt-specific information and bits
16-31 of M SR are placed into the corresponding bit positions of SRR1. The e300 core loads SRR1 with
specific bits for handling machine check interrupts, as shown in Table 5-4.

Table 5-4. SRR1 Bit Settings for Machine Check Interrupts

Bits Name Description
0-9 — Cleared
10 ICPE Instruction cache parity error
11 DCPE Data cache parity error
12 MCP Machine check
13 TEA TEA error
14 DPE Data parity error
15 APE Address parity error
16-29 | MSR[16-29] | Copy of MSR bits16—29
30 MSR[30] | Cleared for instruction cache parity error, data cache parity error, tea, dpe, ape; copied from MSR[30]
for mep. If mep and tea are asserted simultaneously, then SRR1[30] is cleared and the interrupt is not
recoverable.
31 MSR[31] | Copy of MSR[31]

The €300 core loads SRR1 with specific bits for handling program interrupts, as shown in Table 5-5.

Table 5-5. SRR1 Bit Settings for Program Interrupts

Bits Name Description
0-10 — Cleared
11 — Floating-point enabled program exception. Otherwise cleared.
12 — lllegal instruction program exception. Otherwise cleared.
13 — Privileged instruction program exception. Otherwise cleared.
14 — Trap program exception. Otherwise cleared.
15 — Set if SRRO contains the address of a subsequent instruction. Cleared if SRRO contains the address of
the instruction causing the exception condition.
16-29 | MSR[16-29] | Copy of MSR bits 16—-29
30 MSR[30] | Cleared for instruction cache parity error, data cache parity error, tea, dpe, ape; copied from MSR[30]
for mep. If mep and tea are asserted simultaneously, then SRR1[30] is cleared and the interrupt is not
recoverable.
31 MSR[31] | Copy of MSR[31]

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 5-9

Interrupts and Exceptions

The e300 core loads SRR1 with specific bits for handling the three TLB miss interrupts, as shown in
Table 5-6.

Table 5-6. SRR1 Bit Settings for Software Table Search Operations

Bits Name Description
0-3 CRFO Copy of condition register field 0 (CRO)
4 — Reserved
5-9 MSR[5-9] Copy of MSR bits 5-9
10-11 — Reserved
12 KEY TLB miss protection key
13 I/D Instruction/data TLB miss
0 DTLB miss
1 ITLB miss
14 WAY Bit 14 indicates which TLB associativity set should be replaced
0 SetO
1 Seti
15 S/L Store/load protection instruction
0 Load miss
1 Store miss
16-31 MSR[16-31] |Copy of MSR bits 16-31

Note that in some implementations, every instruction fetch when MSR[IR] = 1 and every instruction
execution requiring address translation when MSR[DR] = 1 may modify SRR1.

5.2.1.2 CSRR0 and CSRR1 Bit Settings

The e300 core also implements the CSRRO and CSRRL to save state for critical interrupt interrupts only.
Note that the values saved in CSRRO are the same as those saved in SRRO for all other interrupts, and the
values saved in CSRR1 are the same as those saved in the M SR for critical interrupts. CSRR0O and CSRR1
have unique SPR numbers, as described in Chapter 2, “ Register Model.”

Figure 5-3 shows the format of CSRRO.

SPR 58 Access: Supervisor read/write
0 ‘ ‘ ‘ 29 30 31
R
CSRRO —
w
Reset All zeros

Figure 5-3. Critical Interrupt Save/Restore Register 0 (CSRRO0)

When acritical interrupt occurs, CSRRO is set to point to aninstruction such that all prior instructions have
completed execution and no subsequent instruction has begun execution. When an rfci instruction is
executed, the contents of CSRRO are copied to the next instruction address—the 32-bit address of the next
instruction to be executed.

e300 Power Architecture Core Family Reference Manual, Rev. 4

5-10 Freescale Semiconductor

Interrupts and Exceptions

Figure 5-4 shows the format of CSRRL1.

SPR 59 Access: Supervisor read/write
0 | | | 31
R
CSRR1
w
Reset All zeros

Figure 5-4. Critical Interrupt Save/Restore Register 1 (CSRR1)

When an interrupt occurs, CSRR1[0-31] are |oaded with the values of M SR[0-31], which are placed in
corresponding CSRR1 hit positions. When rfci executes, M SR[0-31] are |oaded from CSRR1[0-31].

5.2.1.3 SPRGO0-SPRG7

The e300 core provides eight SPRG (SPRG4-SPRG7) registersfor general operating system use, such as
performing a fast state save or for supporting multiprocessor implementations. SPRGO-SPRG7 have
unique SPR numbers, as described in Chapter 2, “Register Model.” The formats of SPRG4-SPRG7 are
shown in Figure 5-5.

SPR 272 (SPRGO0) 276 (SPRG4) Access: Supervisor read/write
273 (SPRG1) 277 (SPRG5)
274 (SPRG2) 278 (SPRG6)
275 SPRG3) 279 (SPRG9)
0 | | | 51
R
SPRGn
w
Reset All zeros

Figure 5-5. SPRGn Register

Table 5-7 describes conventional uses of SPRG4 —SPRG7 for the e300 core.
Table 5-7. Conventional Uses of SPRG0-SPRG7

Register Descriptions

SPRGO |SPRGO may be used by the operating system as needed.

SPRG1 |SPRG1 may be used by the operating system as needed.

SPRG2 |SPRG2may be used by the operating system as needed.

SPRG3 | SPRG3 may be used by the operating system as needed.

SPRG4 | Software may load a unique physical address in this register to identify an area of memory reserved for use by the
first-level interrupt handler. This area must be unique for each processor in the system.

SPRG5 | SPRG5 may be used as a scratch register by the first-level interrupt handler to save the content of a GPR. That GPR
then can be loaded from SPRG4 and used as a base register to save other GPRs to memory.

SPRG6 | SPRG6 may be used by the operating system as needed.

SPRG7 |SPRG7 may be used by the operating system as needed.

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 5-11

Interrupts and Exceptions

5.2.1.4

The MSR is shown in Figure 5-6. When an interrupt occurs, M SR bits, as described in Table 5-8, are
altered as determined by the interrupt.

MSR Bit Settings

Access: Supervisor read/write

‘ ‘ ‘12 13 14 15 |16 17 18 19| 20 21 22 23 |24 25 26 27 |28 29 30 31

— POW |TGPR|ILE |EE|PR|FP|ME|FEO|SE|BE|FE1|CE|IP|IR|DR| — |RI|LE

0000_0040 or 0000_0000 or 0001_0041 or 0001_0001
Figure 5-6. Machine State Register (MSR)

Table 5-8 shows the bit definitions for the MSR. Full function reserved bits are saved in SRR1 when an
interrupt occurs; partial function reserved bits are not saved.

Table 5-8. MSR Bit Settings

Bits | Name Description
0 — | Reserved. Full function.
1-4 — | Reserved. Partial function.
5-9 — | Reserved. Full function.
10-12| — |Reserved. Partial function.
13 POW | Power management enable (implementation-specific)
0 Disables programmable power modes (normal operation mode)
1 Enables programmable power modes (nap, doze, or sleep mode)
This bit controls the programmable power modes only; it has no effect on dynamic power management (DPM).
MSR[POW] may be altered with an mtmsr instruction only. Also, when altering the POW bit, software may alter
only this bit in the MSR and no others. The mtmsr instruction must be followed by a context-synchronizing
instruction.
See Chapter 9, “Power Management,” for more information.
14 | TGPR | Temporary GPR remapping (implementation-specific)
0 Normal operation
1 TGPR mode. GPR0O-GPRS3 are remapped to TGPRO-TGPRS3 for use by TLB miss routines
The contents of GPRO—GPR3 remain unchanged while MSR[TGPR] = 1. Attempts to use GPR4-GPR31 with
MSR[TGPR] = 1 yield undefined results. Temporarily replaces TGPR0O-TGPR3 with GPR0O-GPR3 for use by
TLB miss routines. The TGPR bit is set when either an instruction TLB miss, data read miss, or data write miss
interrupt is taken. The TGPR bit is cleared by an rfi instruction.
15 ILE |Interruptlittle-endian mode. When an interrupt occurs, this bit is copied into MSR[LE] to select the endian mode
for the context established by the interrupt.
16 EE |External interrupt enable
0 The processor ignores external interrupts, system management interrupts, and decrementer interrupts.
1 The processor is enabled to take an external interrupt, system management interrupt, or decrementer
interrupt.
17 PR | Privilege level
0 The processor can execute both user- and supervisor-level instructions (supervisor mode).
1 The processor can only execute user-level instructions (user mode).

e300 Power Architecture Core Family Reference Manual, Rev. 4

5-12

Freescale Semiconductor

Interrupts and Exceptions

Table 5-8. MSR Bit Settings (continued)

Bits

Name

Description

18

FP

Floating-point available (this bit is read-only on the €300c2 core)

0 The processor prevents dispatch of floating-point instructions, including floating-point loads, stores, and
moves. If execution of one of these types of instructions is attempted, a floating-point unavailable interrupt
occurs.

1 The processor can execute floating-point instructions, and can take floating-point enabled type program
interrupts.

19

ME

Machine check enable
0 Machine check interrupts are disabled
1 Machine check interrupts are enabled

20

FEO

Floating-point interrupt mode 0 (see Table 5-9) (this bit is read-only on the e300c2 core)

21

SE

Single-step trace enable
0 The processor executes instructions normally
1 The processor generates a trace interrupt on the successful completion of the next instruction

22

BE

Branch trace enable
0 The processor executes branch instructions normally
1 The processor generates a trace interrupt upon the successful completion of a branch instruction

23

FE1

Floating-point interrupt mode 1 (see Table 5-9) (this bit is read-only on the e300c2 core)

24

CE

Critical interrupt enable

0 Critical interrupts disabled

1 Critical interrupts enabled; critical interrupt and rfci instruction enabled.

The critical interrupt is an asynchronous implementation-specific interrupt. The critical = interrupt vector offset
is 0XO0AO00. The Return From Critical Interrupt (rfci) instruction is implemented to return from these interrupts.
Also, CSRR0 and CSRR1, are used to save and restore the processor state for critical interrupts.

25

Interrupt prefix. Specifies whether an interrupt vector offset is prepended with Fs or Os. In the following
description, nnnnn is the offset of the interrupt. See Table 5-2.

0 Interrupts are vectored to the physical address 0x000n_nnnn

1 Interrupts are vectored to the physical address OxFFFn_nnnn

26

Instruction address translation

0 Instruction address translation is disabled
1 Instruction address translation is enabled
See Chapter 6, “Memory Management.”

27

DR

Data address translation

0 Data address translation is disabled

1 Data address translation is enabled
See Chapter 6, “Memory Management.”

28-29

Reserved. Full function. Bit 29 reserved on e300c1 and €300c2 only.

29

PMM

Performance monitor mark bit (€300c3 and €300c¢4 only). System software can set PMM when a marked
process is running to enable statistics to be gathered only during the execution of the marked process.
MSRI[PR] and MSR[PMM] together define a state that the processor (supervisor or user) and the process
(marked or unmarked) may be in at any time. If this state matches an individual state specified in the PMLCan,
the state for which monitoring is enabled, counting is enabled.

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 5-13

Interrupts and Exceptions

Table 5-8. MSR Bit Settings (continued)

Bits | Name Description

30 Rl | Recoverable interrupt (for system reset and machine check interrupts)
0 Interrupt is not recoverable
1 Interrupt is recoverable

31 LE |Little-endian mode enable

0 The processor runs in big-endian mode

1 The processor runs in little-endian mode. For the e300 core, see Section 3.1.2, “Endian Modes and Byte
Ordering,” for a definition of the core operating in true little-endian mode.

The | EEE floating-point exception mode bits (FEO and FE1) together define whether floating-point
exceptions are handled precisely, imprecisely, or if they are taken at al. The possible settings and default
conditions for the e300 core are shown in Table 5-9. For further details, see Chapter 6, “Interrupts,” in the
Programming Environments Manual.

Table 5-9. IEEE Floating-Point Exception Mode Bits

FEO FE1 Mode
0 0 Floating-point exceptions disabled
0 1 Floating-point imprecise nonrecoverable’
1 0 |Floating-point imprecise recoverable
1 1 Floating-point precise mode

' Not implemented in the e300 core.

MSR bits are guaranteed to be written to SRR1 when the first instruction of the interrupt handler is
encountered.

5.2.2 Enabling and Disabling Exceptions and Interrupts

When an exception condition exists that may cause an interrupt to be generated, it must be determined
whether the interrupt is enabled for that condition as follows:

» |EEE floating-point enabled exceptions (which can generate aprogram interrupt) areignored when
both MSR[FEQ] and MSR[FEL1] are cleared. If either of these bits are set, all IEEE-enabled
floating-point exceptions are taken and cause a program interrupt.

* Asynchronous, maskable interrupts (that is, the external, system management, and decrementer
interrupts) are enabled by setting the MSR[EE] bit. When MSR[EE] = 0, recognition of these
interrupt conditions is delayed. MSR[EE] is cleared automatically when an interrupt is taken, to
delay recognition of conditions causing those interrupts.

» A machine check interrupt can occur only if the machine check enable bit, MSR[ME], is set. If
MSR[ME] is cleared, the processor goes directly into checkstop state when a machine check
exception condition occurs. Individual machine check exceptions can be enabled and disabled
through bitsin the HIDO register, as described in Table 2-5.

* The e300 core enablesthe critical interrupt with the MSR[CE] bit.

» System reset interrupts cannot be masked.

e300 Power Architecture Core Family Reference Manual, Rev. 4

5-14 Freescale Semiconductor

5.2.3

Interrupts and Exceptions

Steps for Interrupt Processing

After it isdetermined that the interrupt can be taken (by confirming that any instruction-caused interrupts
occurring earlier in the instruction stream have been handled, and by confirming that the interrupt is
enabled for the exception condition), the processor does the following:

1.

w

The machine status save/restore register O (SRRO) isloaded with an instruction address that
depends on the type of interrupt. Seethe individual interrupt description for details about how this
register is used for specific interrupts.

SRR1[1-4, 10-15] are loaded with information specific to the interrupt type.

SRR1[5-9, 16-31] are loaded with a copy of the corresponding bits of the M SR.

The MSR is set as described in Table 5-8. The new values take effect beginning with the fetching
of thefirst instruction of the interrupt-handler routine located at the interrupt vector address.

Note that MSR[IR] and MSR[DR] are cleared for all interrupt types; therefore, addresstrandation
isdisabled for both instruction fetches and data accesses beginning with the first instruction of the
interrupt-handler routine.

Instruction fetch and execution resumes, using the new M SR value, at alocation specific to the
interrupt type. The location is determined by adding the interrupt's vector (see Table 5-2) to the
base address determined by MSR[IP]. If IPis cleared, interrupts are vectored to the physical
address 0x000n_nnnn. If IP is set, interrupts are vectored to the physical address OxFFFn_nnnn.
For amachine check interrupt that occurs when MSR[ME] = 0 (machine check interrupts are
disabled), the processor enters the checkstop state (the machine stops executing instructions). See
Section 5.5.2, “Machine Check Interrupt (0x00200).”

Note that the same steps occur when a critical interrupt occurs (and is enabled) for the e300 core, except
that CSRRO is set instead of SRRO and CSRR1 is set instead of SRR1.

5.2.4

Setting MSR[RI]

The operating system should handle MSR[RI] asfollows:

In the machine check and system reset interrupts—If SRR1[RI] is cleared, the interrupt is not
recoverable. If it is set, the interrupt is recoverable with respect to the processor.

In each interrupt handler—When enough state information has been saved that amachine check or
system reset interrupt can reconstruct the previous state, set MSR[RI].

In each interrupt handler—Clear MSR[RI], set the SRRO and SRR1 (or CSRR0 and CSRR1)
registers appropriately, and then execute rfi (or rfci).

Note that the RI bit being set indicates that, with respect to the processor, enough processor state
dataisvalid for the processor to continue, but it does not guarantee that the interrupted process can
resume.

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 5-15

Interrupts and Exceptions

5.2.5 Returning from an Interrupt with rfi

The Return From Interrupt (rfi) instruction performs context synchronization by allowing previously
issued instructions to complete before returning to the interrupted process. In general, execution of therfi
instruction ensures the following:

» All previous instructions have compl eted to a point where they can no longer cause an interrupt.

* Previous instructions complete execution in the context (privilege, protection, and address
translation) under which they were issued.

» Therfi instruction copies SRR1 bits back into the MSR.
» Theinstructions following this instruction execute in the context established by this instruction.

For a complete description of context synchronization, refer to Chapter 6, “Interrupts,” in the
Programming Environments Manual.

5.2.6 Returning from an Interrupt with rfci

The Return From Critical Interrupt (rfci) isae300 core-only supervisor level instruction that performs
context synchronization by allowing previoudly issued instructions to compl ete before returning to the
interrupted process. Therfci instruction performs the same functionsasr fi, except that it uses CSRRO and
CSRR1 to restore the processor state. Thus, execution of the rfci instruction ensures the following:

* CSRR10, 5-9, 16-31] are placed into the corresponding bits of the MSR. If the new MSR value
does not enable any pending interrupts, the next instruction isfetched from the address defined by
CSRRO[0-29] || ObQO.

* |If the new MSR value enables one or more pending interrupts, the interrupt associated with the
highest priority pending interrupt is generated. In this case, the interrupt processing mechanism
placesin SRRO the address of theinstruction which would have executed next had theinterrupt not
occurred.

5.3 Process Switching

The operating system should execute one of the following when processes are switched:

» The syncinstruction, which ordersthe effects of instruction execution. All instructions previousy
initiated appear to have completed before the sync instruction completes, and no subsequent
instructions appear to beinitiated until the sync instruction compl etes. For an example showing the
use of a sync instruction, see Chapter 2, “ Register Set,” of the Programming Environments
Manual.

* Theisyncinstruction, which waits for all previousinstructions to complete and then discards any
fetched instructions, causing subsequent instructionsto befetched (or refetched) from memory and
to execute in the context (privilege, trandation, protection, etc.) established by the previous
instructions.

* The stwcx. instruction, to clear any outstanding reservations, which ensures that an lwar x
instruction in the old process is not paired with an stwcx. instruction in the new process.

The operating system should set the MSR[RI] bit as described in Section 5.2.4, “ Setting MSR[RI].”

e300 Power Architecture Core Family Reference Manual, Rev. 4

5-16 Freescale Semiconductor

Interrupts and Exceptions

5.4 Interrupt Latencies

Latencies for taking various interrupts depend on the state of the machine when the exception conditions
occur. This latency may be as short as one cycle, in which case an interrupt is signaled in the cycle
following the appearance of the exception condition. The latencies are as follows:

» Hard reset and machine check—In most cases, a hard reset or machine check interrupt will have a
single-cycle latency. A two- to three-cycle delay may occur only when a predicted instruction is
next to complete, and the branch guess that forced this instruction to be predicted was resolved to
be incorrect.

» Soft reset—The latency of a soft reset interrupt is affected by recoverability. The timeto reach a
recoverable state may depend on the time needed to complete or except an instruction at the point
of completion, the time needed to drain the completed store queue (see Section 7.1, “ Terminol ogy
and Conventions,” for the definition), and the time waiting for a correct empty state so that avalid
MSRJ[IP] may besaved. For lower-priority externally-generated interrupts, adelay may beincurred
waiting for another interrupt generated while reaching arecoverable state to be serviced.

Further delays are possible for other types of interrupts depending on the number and type of instructions
that must be completed before those interrupts may be serviced. See Section 5.1.2, “ Summary of
Front-End Interrupt Handling,” to determine possible maximum latencies for different interrupts.

5.5 Interrupt Definitions

Table 5-10 shows al the types of interrupts that can occur with the e300 core and the M SR bit settings
when the processor transitions to supervisor mode. The state of these bits prior to the interrupt istypically
stored in SRR1 (or CSRR1 for critical interrupts on the e300 core). Note that MSR[CE] is cleared for the
system reset, machine check, and critical interrupts.

Table 5-10. MSR Setting Due to Interrupt

MSR Bit
Interrupt Type

POW | TGPR | ILE | EE | PR | FP |ME | FEO | SE | BE |FE1|CE' | IP | IR |DR| Rl | LE
System reset 0 0 — 1 0 0 0| — 0 0 0 0 10| 0| 0]|ILE
Machine check 0 0 — | 0| 0] O 0 0 0 0 0 —| 0] 0] 0 |ILE
DSI 0 0 — | 0| 0] O0]|— 0 0 0 0 — |—]| 0| 0| O0]ILE
ISI 0 0 — | 0| 0] O0]|— 0 0 0 0 — |—]| 0| 0| O0]ILE
External 0 0 — | 0| 0] O0]|— 0 0 0 0 — |—]| 0| 0| O0]ILE
Alignment 0 0 — | 0| 0] O0]|— 0 0 0 0 — |—]| 0| 0| O0]ILE
Program 0 0 — | 0| 0] O0]|— 0 0 0 0 — |—| 0| 0| O0]ILE
Floating-point 0 0 — 1 0 0 0| — 0 0 0 0 — | —| 0| 0| O0]ILE
unavailable
Decrementer 0 0 — | 0 0 0| — 0 0 0 0 — |—1| 0] 0| O0|IE
Critical Interrupt 0 0 — 1 0 0 0| — 0 0 0 0 0O |—| 0| 0] O0|ILE
System call 0 0 — | 0| 0] O0]|— 0 0 0 0 — |—]| 0| 0| O0]ILE
Trace 0 0 — | 0| 0] O0]|— 0 0 0 0 — |—]| 0| 0| O0]ILE

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 5-17

Interrupts and Exceptions

Table 5-10. MSR Setting Due to Interrupt (continued)

MSR Bit
Interrupt Type
POW | TGPR | ILE | EE |PR | FP | ME | FEO | SE | BE |FE1|CE' | IP | IR |DR| RI | LE

ITLB miss 0 1 — 10| 0] O0|— 0 0 0 0 — | — | 0] 0] 0|ILE
DTLB miss on load 0 1 — 10 0 0| — 0 0 0 0 — | — | 0] 0] 0|ILE
DTLB miss on store 0 1 — 0 0 0| — 0 0 0 0 — | — | 0] 0] 0|ILE
Instruction address 0 0 — 0 0 0| — 0 0 0 0 — | — 1|1 0] 0] 0|ILE
breakpoint
System management 0 0 — 1 0 0 0| — 0 0 0 0 — |—| 0| 0| O0]ILE
interrupt
Note:
0 Bit is cleared.
1 Bit is set.

ILE Bitis copied from the ILE bit in the MSR.
— Bitis not altered.
Reserved bits are read as if written as 0.

1 e300 core only.

5.5.1 Reset Interrupts (0x00100)

The system reset interrupt is a nonmaskable, asynchronous interrupt signaled to the e300 core either
through the assertion of the reset signals (sreset or hreset). The assertion of the soft reset signal, sreset,
causes the system reset interrupt to be taken and the physical base address of the handler is determined by
the MSR[IP] bit.

The assertion of the hard reset signal, hreset, causes the system reset interrupt to be taken.

Notethat there are some byte ordering precautions necessary when coming out of reset in big-endian mode
and switching to little-endian mode. The following sections describe the differences between a hard and
soft reset and the byte ordering implications for reset interrupt handling.

5.5.1.1 Hard Reset and Power-On Reset

Asdescribed in Section 5.1.2, “ Summary of Front-End Interrupt Handling,” the hard reset interrupt isa
nonrecoverable, nonmaskabl e asynchronousinterrupt. When hreset isasserted or at power-on reset (POR),
the e300 coreimmediately branchesto the address determined by the state of themsrip signal, as described
in Table 5-11, without attempting to reach a recoverable state.

Table 5-11. Hard Reset MSR Value and Interrupt Vector

, Fetch Instructions from Handler
mstip MSR[0-31] at System Reset Vector
Asserted 0x0000_0040 (MSRJ[IP] = 1) OxFFFO0_0100
Negated 0x0000_0000 (MSRJIP] = 0) 0x0000_0100

e300 Power Architecture Core Family Reference Manual, Rev. 4

5-18 Freescale Semiconductor

Interrupts and Exceptions

A hard reset has the highest priority of any interrupt, and is always nonrecoverable. Table 5-12 shows the
state of the machine just before it fetches the first instruction of the system reset handler after a hard reset.

Table 5-12. Settings Caused by Hard Reset

Register Setting Register Setting
GPRs Unknown PVR See Table 2-2
FPRs Unknown HIDO 0000_0000
FPSCR 00000000 HID1 0000_0000
CR All 0s HID2 0000_0000 or 0800_0000
SRs Unknown DMISS and IMISS | All Os
MSR 0000_0040 or 0000_0000 or DCMP and ICMP All Os
0001_0041 or 0001_0001
XER 0000_0000 RPA All 0s
TBU 0000_0000 IABR All 0s
TBL 0000_0000 DSISR 0000_0000
LR 0000_0000 DAR 0000_0000
CTR 0000_0000 DEC FFFF_FFFF
SDR1 0000_0000 HASH1 0000_0000
SRRO (and CSRRO0) 0000_0000 HASH2 0000_0000
SRR1 (and CSRR1) 0000_0000 TLBs Unknown
SPRGs 0000_0000 Cache All cache blocks invalidated
Tag directory All Os. (However, LRU bits are BATs Unknown
initialized so each side of the
cache has a unique LRU value.)

The hreset signal can be asserted for the following reasons:
e System power-on reset
» System reset from a panel switch

Thefollowing is aso true after a hard reset operation:

» External checkstops are enabled
» The on-chip test interface has given control of the 1/Os to the rest of the chip for functional use

» Because thereset interrupt has data and instruction transation disabled (MSR[DR] and MSR[IR]
both cleared), the chip operatesin real addressing mode as described in Section 6.2, “Redl
Addressing Mode.”

5.5.1.2 Soft Reset

Asdescribed in Section 5.1.2, “ Summary of Front-End Interrupt Handling,” the soft reset interrupt isa
type of system reset interrupt that i srecoverable, nonmaskabl e, and asynchronous. When sreset isasserted,
the processor attempts to reach a recoverable state by allowing the next instruction to either complete or

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 5-19

Interrupts and Exceptions

cause an interrupt, blocking the completion of subsequent instructions, and allowing the completed store
gueue to drain (see Section 7.1, “Terminology and Conventions,” for the definition).

Unlike a hard reset, no registers or latches are initialized; however, the instruction cacheis disabled
(HIDO[ICE] = 0). After sreset is recognized as asserted, the processor begins fetching instructions from
the system reset routine at offset 0x0100. When a soft reset occurs, registersare set asshown in Table 5-13.
A soft reset is recoverable provided that attaining the recoverabl e state does not cause a machine check
interrupt. Thisinterrupt caseisthird in priority, following hard reset and machine check.

When asoft reset occurs, registers are set as shown in Table 5-13 in addition to the clearing of HIDO[I CE].
Table 5-13. Soft Reset Interrupt—Register Settings

Register Setting Description

SRRO | Set to the effective address of the instruction that the processor would have attempted to complete next if no
interrupt conditions were present.

SRR1 |0-15 Cleared
16-31 Loaded from MSR[16-31]. Note that if the processor state is corrupted to the extent that execution cannot
be reliably restarted, SRR1[30] is cleared.

MSR |POW 0 FP 0 FE1 0 RI 0
TGPR 0 ME — CE 0 LE Settovalue of ILE
ILE — FEO 0 P —
EE 0 SE 0 R 0
PR 0 BE 0 DR 0

5.5.1.3 Byte Ordering Considerations

All interrupt routines are executed in the endian mode determined by the setting of the MSR[ILE],
MSR[LE], and HID2[LET] bits (see Table 1-6 for endian mode indication) when the interrupt is taken. A
gpecial case isthe system reset interrupt for both hard and soft reset for the e300 core. When thetle signal
is negated at the time hreset is negated, the system interrupt handler of the device enters into big-endian
mode. If MSR[ILE], MSR[LE], and HID2[LET] are subsequently set (during or after the reset routine has
completed), a subsequent soft reset causes the system reset interrupt handler to be entered in true
little-endian mode, potentially resulting inillegal instruction execution (if the beginning of the handler is
written assuming big-endian code). Note that the reverse occurs for true little-endian mode.

The following assembly language code highlights register settings necessary when in big-endian mode
coming out of hard reset and subsequently changing the processor state to true little-endian mode and
setting the MSR[ILE], MSR[LE], and HID2[LET] bits. The first eight instructions of the system reset
interrupt handler iswritten in big-endian format, in order to facilitate the mode switch. Therest of the reset
handler iswritten in true little-endian format for the remaining supervisor or OS code. This reset code
assumes that caching is not enabled out of reset. Due to the complexities involved with keeping the
memory system coherent, it is strongly recommended not to change endinaness at any other time once it
is determined at hard reset.

.orig OxFFFO0 0100 # default IP vector
Begin HRESET handler with Big-Endian Mode

XOr r2,r2,r2 initialize register

bidela rl,rl,rl # initialize register

oris r2,r2,0x0800 # set bit in r2 for HID2[4]LET
mtspr HID2,r2 # load HID2 setting LET bit

e300 Power Architecture Core Family Reference Manual, Rev. 4

5-20 Freescale Semiconductor

Interrupts and Exceptions

oris rl,rl,0x0001 # set bit in rl for MSR[15]ILE

ori rl,rl,0x0001 # set bit in rl for MSR[31]LE

mtmsr rl # load MSR setting ILE and LE bits
isync # wait for all instructions to complete

End Big-Endian mode, True Little-Endian enabled
modify the 8 Big-Endian instructions into valid True Little-Endian instructions
True Little-Endian Mode

mtspr SRR1,rl # load the Machine State with LE enabled
XOr r0,r0,xr0 # initialize register

oris r0,r0,0x0001 # set Starting address at b’0001 0000
mtspr SRRO, r0 # load the next instruction address

whatever instructions the supervisor/0OS wants.

rfi # return from HRESET_ interrupt routine

End HRESET handler in True Little-Endian Mode

See Section 3.1.2, “Endian Modes and Byte Ordering,” for more information on the endian modes of the
€300 core.

5.5.2 Machine Check Interrupt (0x00200)

The e300 core conditionally initiates a machine check interrupt after detecting the assertion of the tea or
mep signals on the coherent system bus (CSB) (assuming the machine check is enabled with

MSR[ME] = 1). The assertion of one of these signals indicates that a bus error occurred and the system
terminates the current transaction. One clock cycle after the signal is asserted, the databus signals go to
the high-impedance state; however, data entering the GPR or the cache is not invalidated. Note that if
HIDO[EMCP] is cleared, the core ignores the assertion of the mcp signal but continues to monitor the tea
signal.

A machine check interrupt also occurs when an address or data parity error is detected on the bus and the
address or data parity error is enabled in HIDO. See Section 2.2.1, “Hardware |mplementation Register O
(HIDO),” for more information.

Note that the e300 core makes no attempt to force recoverability on a machine check; however, it does
guarantee that the machine check interrupt is always taken immediately upon request, with anonpredicted
address saved in SRRO, regardless of the current machine state. Because pending storesin the store queue
(see Figure 7-6) are not cancel ed when amachine check interrupt occurs, two consecutive stores that result
in the assertion of tea can cause the processor to checkstop. To prevent a checkstop in this case, async
instruction must be placed between two stores that can result in assertion of tea.

Software can use the machine check interrupt handler in arecoverable mode to probe memory. For this
case, async, load, sync instruction sequence is used. If the load access results in a system error (for
example, the assertion of tea), the processor can handle thisin arecoverable state. If the sync instruction
IS not used, a second access to the same address as the first load could cause the processor to enter the
checkstop state.

If the MSR[ME] bit is set, the interrupt is recognized and handled; otherwise, the e300 core attempts to
enter an internal checkstop. Note that the resulting machine check interrupt has priority over any interrupts
caused by the instruction that generated the bus operation.

e300 Power Architecture Core Family Reference Manual, Rev. 4

Freescale Semiconductor 5-21

Interrupts and Exceptions

Machine check interrupts are only enabled when MSR[ME] = 1, thisis described in Section 5.5.2.1,
“Machine Check Interrupt Enabled (MSR[ME] = 1).” If MSR[ME] = 0 and a machine check occurs, the
processor enters the checkstop state; thisis described in Section 5.5.2.2, “ Checkstop State

(MSR[ME] =0).”

5.5.2.1 Machine Check Interrupt Enabled (MSR[ME] = 1)

When a machine check interrupt is taken, registers are updated as shown in Table 5-14.

When amachine check interrupt is taken, instruction execution for the handler begins at offset 0x00200
from the physical base address indicated by MSRJ[IP].
In order to return to the main program, the interrupt handler should do the following:

1. SRRO and SRR1 should be given the values to be used by the rfi instruction

2. Executerfi

Table 5-14. Machine Check Interrupt—Register Settings

Register Setting Description

SRRO Set to the address of the next instruction that would have been completed in the interrupted instruction stream.
Neither this instruction nor any others beyond it will have been completed. All preceding instructions will have
been completed.

SRR1 0-9 Cleared

10 Instruction cache parity error caused interrupt

11 Data cache parity error caused interrupt

12 'mep—Machine check signal caused interrupt

13 tea—Transfer error acknowledge signal caused interrupt

14 dpe—Data parity error condition (and signal assertion) caused interrupt

15 ape—Address parity error condition (and signal assertion) caused interrupt

16—29Loaded from MSR[16-29]

30 O forinstruction cache parity error, data cache parity e