
 
 
 
 

 
 
 

JN516x/7x AES Coprocessor API 
Reference Manual 

 
 
 

JN-RM-2013 

Revision 2.0 

31-Jan-2017 

 
 
 

  



   JN516x/7x AES Coprocessor API 
Reference Manual 

 

2 © NXP Laboratories UK 2017 JN-RM-2013 v2.0 

Contents 
Preface 3 

Organisation 3 
Conventions 3 
Acronyms and Abbreviations 3 
Support Resources 3 
Trademarks 3 

1 Introduction to the AES Coprocessor API 4 
1.1 Basic Mechanism of API 4 
1.2 Categories of API Functions 4 

2 AES Block Cipher Mode Functions 5 
bACI_ECBencodeStripe 6 
bAES_CCMstar 7 
vACI_OptimisedCCMstar 9 
bACI_CCMstar 11 

3 AES Coprocessor Low-level Functions 13 
vACI_WriteKey 14 
vACI_CmdWaitBusy 15 
bACI_isBusy 16 

4 Structures 17 
4.1 tsReg128 17 
4.2 tuAES_Block 17 

 

 



JN516x/7x AES Coprocessor API 
Reference Manual  

   
 

JN-RM-2013 v2.0 © NXP Laboratories UK 2017 3 

Preface 
This manual describes the Application Programming Interface (API) to the AES 
Coprocessor on the NXP JN516x and JN517x wireless microcontrollers.  API 
functions are described that can be used to set up, control and respond to events 
generated by the AES block. 

It is assumed that the reader has knowledge of the AES encryption algorithm. 

Organisation 
This manual consists of four chapters, as follows: 

• Chapter 1 introduces the AES Coprocessor API. 

• Chapter 2 describes the AES Block Cipher Mode functions – a set of high-
level functions that can be used to perform encryption/decryption on the 
AES Coprocessor. 

• Chapter 3 describes the AES Coprocessor low-level functions. 

• Chapter 4 details the structures used by the AES Coprocessor API.   

Conventions 
Files, folders, functions and parameter types are represented in bold type. 

Function parameters are represented in italics type. 

Code fragments are represented in the Courier typeface. 

Acronyms and Abbreviations 
ACL Access Control List 

AES Advanced Encryption Standard 

API  Application Programming Interface 

CCM Counter with CBC-MAC 

ECB Electronic Code Book 

PIB PAN Information Base 

Support Resources 
To access online support resources for the JN516x and JN517x devices, visit the 
Wireless Connectivity area of the NXP web site: 

www.nxp.com/products/interface-and-connectivity/wireless-connectivity 

Trademarks 
All trademarks are the property of their respective owners. 

http://www.nxp.com/products/interface-and-connectivity/wireless-connectivity


   JN516x/7x AES Coprocessor API 
Reference Manual 

 

4 © NXP Laboratories UK 2017 JN-RM-2013 v2.0 

1 Introduction to the AES Coprocessor API 
The AES Coprocessor API provides a thin layer above the registers used to 
control the security engine of the JN516x and JN517x wireless microcontrollers – 
the AES Coprocessor. The API allows several register accesses to be 
encapsulated into one function call, making this on-chip peripheral easier to use, 
without a detailed knowledge of its operation. 

The functions provided by the AES Coprocessor API are defined in the header 
file AHI_AES.h. 

1.1 Basic Mechanism of API 
The AES Coprocessor API facilitates hardware acceleration for encoding and 
decoding data blocks for use by applications or by higher stack layers such as 
ZigBee. This encryption/decryption is additional to IEEE 802.15.4 security, which 
is performed during frame transmission and reception under the control of the 
IEEE 802.15.4 stack using the same on-chip hardware accelerator. 

By using hardware acceleration, it is possible to greatly increase security encode 
and decode performance. The API provides a mechanism for an application to 
pass in blocks of data for encoding or decoding, and for the resulting data to be 
placed in a second memory block.  It is possible for both blocks to be at the 
same location, for improved memory use. 

The security information required includes a 128-bit key, security level and any 
data that is used to initialise the security engine but which is not part of the 
encoded data.  The security engine is operated independently of the stack 
security, and hence does not use the ACL entries in the PIB. 

1.2 Categories of API Functions 
The AES Coprocessor API contains two types of function:  

• AES Block Cipher Mode functions: These functions fully configure the 
AES Coprocessor into a specified AES Cipher mode. You simply provide 
the configuration data, and the API will configure the Coprocessor and 
return a result. These functions are described in Chapter 2. 

• AES Coprocessor low-level functions: The API also includes a number 
of functions that provide low-level access to the AES Coprocessor 
registers. These functions are described in Chapter 3.   

 Note: The AES Coprocessor function calls are blocking,  
i.e. they only return when the encode or decode operation has 
completed. 

 Note: The low-level functions, described in Chapter 3, should 
not normally be needed. The high-level functions, described 
in Chapter 2, should provide sufficient access to the AES 
Coprocessor for most users. 



JN516x/7x AES Coprocessor API 
Reference Manual  

   
 

JN-RM-2013 v2.0 © NXP Laboratories UK 2017 5 

2 AES Block Cipher Mode Functions  
This chapter details the AES Block Cipher Mode functions which provide high-
level interaction with the AES Coprocessor. 

The functions are listed below along with their page references. 

Function Page 
bACI_ECBencodeStripe 6 
bAES_CCMstar 7 
vACI_OptimisedCCMstar 9 
bACI_CCMstar 11 
 

 Important: For JN517x devices, there is an endian 
consideration when mapping data into the tsReg128 and 
tuAES_Block structures used in these functions. If data is 
written directly into the structure then the called function will 
work as expected. If the data is being transferred from 
elsewhere using memcpy then the data needs to be endian-
corrected for each element of the structure before the function 
is called. 

 Note: For details of the tsReg128 and tuAES_Block 
structures, refer to Chapter 4. 



   JN516x/7x AES Coprocessor API 
Reference Manual 

 

6 © NXP Laboratories UK 2017 JN-RM-2013 v2.0 

bACI_ECBencodeStripe 
 

PUBLIC bool_t bACI_ECBencodeStripe( 
  tsReg128 *psKeyData,  
  bool_t bLoadKey,  
  tsReg128 *psInputData,  
  tsReg128 *psOutputData); 

Description 
This function performs AES ECB encryption on a single 128-bit stripe, using 
the AES Coprocessor. The function returns when the encode has completed. 
The API imposes no buffer alignment requirements on the user. It is the 
responsibility of the user to generate any zero-padding needed for input data 
with lengths that are not a multiple of 128 bits. 
For JN517x devices, refer to the note about endianness on page 5. 

Parameters 
*psKeyData Pre-allocated pointer to structure containing 128-bit key 

data 
bLoadKey Specifies whether a new key is to be loaded (TRUE for 

new key, FALSE otherwise) 
*psInputData Pre-allocated pointer to structure of input data 
*psOutputData Pre-allocated pointer to structure of output data 

Returns 
TRUE – The function has completed successfully.  
FALSE – The function has not completed. The AES Coprocessor is busy or 
there has been an input parameter error. 



JN516x/7x AES Coprocessor API 
Reference Manual  

   
 

JN-RM-2013 v2.0 © NXP Laboratories UK 2017 7 

bAES_CCMstar 
 

PUBLIC bool_t bAES_CCMstar( 
 tsReg128 *psKeyData,  
 bool_t bLoadKey,  
 uint8 u8AESmode,  
 uint8 u8M,  
 uint8 u8alength,  
 int8 u8mlength,  
 tsReg128 *psNonce,  
 uint8 *pau8authenticationData,  
 uint8 *pau8inputData,   
 uint8 *pau8outputData,  
 uint8 *pau8checksumData,  
 bool_t *pbChecksumVerify); 

Description 
This function performs CCM* AES encryption/decryption with checksum 
generation/verification, using the AES Coprocessor. It is a software 
implementation of the AES CCM* hardware.   
Note that: 
 In encode mode (CCM), the function will return a checksum in the 

au8checksumData buffer upon completion.  

 In decode mode (CCM_D), the function expects the checksum to be the last M 
bytes of the au8inputData buffer, and so mlength = (data length + M) bytes. 

The function returns when the encryption/decryption has completed or there 
has been an input parameter error or the AES Coprocessor is busy.  
The API imposes no buffer alignment requirements on the user, and also 
generates any stripe zero-padding needed for input data (on data lengths that 
are not a multiple of 128 bits). 
For JN517x devices, refer to the note about endianness on page 5.  

Parameters 
*psKeyData  Pre-allocated pointer to structure containing 128-bit 

key data 
bLoadKey  Specifies whether a new key is to be loaded (TRUE 

for new key, FALSE otherwise) 
u8AESmode  Required CCM* mode of operation of the AES 

Coprocessor. The supported modes are: 
  IEEE CTR (XCV_REG_AES_SET_MODE_CTR)     
  CCM Encode (XCV_REG_AES_SET_MODE_CCM) 
   CCM Decode (XCV_REG_AES_SET_MODE_CCM_D) 
u8M  Required number of checksum bytes. Supported 

values are 0, 2, 4, 8, 16 and 32 
u8alength Length of authentication data, in bytes 
u8mlength Length of input data, in bytes 
*psNonce  Pre-allocated pointer to structure containing 128-bit 

nonce data 
*pau8authenticationData  Pre-allocated pointer to byte array of authentication 

data 



   JN516x/7x AES Coprocessor API 
Reference Manual 

 

8 © NXP Laboratories UK 2017 JN-RM-2013 v2.0 

*pau8inputData  Pre-allocated pointer to byte array of input data 
*pau8outputData  Pre-allocated pointer to byte array of output data 
*pau8checksumData  Pre-allocated pointer to byte array of checksum 

data. In CCM decode mode (CCM_D), this value 
can be NULL 

*pbChecksumVerify  Pre-allocated pointer to boolean which in CCM 
decode mode (CCM_D) stores the result of the 
checksum verification operation. Can be NULL in 
other modes (CCM and CTR) 

Returns 
TRUE – The function has completed successfully.  
FALSE – The function has not completed. The AES Coprocessor is busy or 
there has been an input parameter error. 



JN516x/7x AES Coprocessor API 
Reference Manual  

   
 

JN-RM-2013 v2.0 © NXP Laboratories UK 2017 9 

vACI_OptimisedCCMstar 
 

PUBLIC void vACI_OptimisedCCMstar( 
 bool_t bEncrypt,  
 uint8 u8M,  
 uint8 u8alength,  
 int8 u8mlength,  
 tuAES_Block *psNonce,  
 uint8 *pau8authenticationData,  
 uint8 *pau8Data,   
 uint8 *pau8checksumData,  
 bool_t *pbChecksumVerify); 

Description 
This function performs CCM* AES encryption/decryption, like the function 
bAES_CCMstar(), but is optimised for speed and memory.  

The function assumes that the input and output buffers are word-aligned. It 
also assumes that the encryption/decryption key has already been loaded. 
The first byte of the nonce is used to carry the CCM* flags data and should be 
left unpopulated by the calling function (this is different from 
bAES_CCMstar()).   
Note that: 
 In encode mode (CCM), the function will return a checksum in the 

au8checksumData buffer upon completion.  

 In decode mode (CCM_D), the function expects the checksum to be the last M 
bytes of the au8inputData buffer, and so mlength = (data length + M) bytes. 

The function returns when the encryption/decryption has completed or the 
AES Coprocessor is busy or there has been an input parameter error.  
For JN517x devices, refer to the note about endianness on page 5.  

Parameters 
bEncrypt  Specifies whether encryption or decryption is 

required (TRUE - encryption, FALSE - decryption) 
u8M  Required number of checksum bytes. Supported 

values are 0, 2, 4, 8, 16 and 32 
u8alength Length of authentication data, in bytes 
u8mlength Length of input data, in bytes 
*psNonce  Pre-allocated pointer to structure containing 128-bit 

nonce data 
*pau8authenticationData  Pre-allocated pointer to byte array of authentication 

data (must be word-aligned) 
*pau8Data  Pre-allocated pointer to byte array for input and 

output data (must be word-aligned) 
*pau8checksumData  Pre-allocated pointer to byte array of checksum 

data (must be word-aligned). In CCM decode mode 
(CCM_D), this value can be NULL 

*pbChecksumVerify  Pre-allocated pointer to boolean which in CCM 
decode mode (CCM_D) stores the result of the 
checksum verification operation. Can be NULL in 
other modes (CCM and CTR) 



   JN516x/7x AES Coprocessor API 
Reference Manual 

 

10 © NXP Laboratories UK 2017 JN-RM-2013 v2.0 

Returns 
None 



JN516x/7x AES Coprocessor API 
Reference Manual  

   
 

JN-RM-2013 v2.0 © NXP Laboratories UK 2017 11 

bACI_CCMstar 
 

PUBLIC bool_t bACI_CCMstar( 
 tuAES_Block *psKeyData,  
 bool_t bLoadKey,  
 uint8 u8AESmode,  
 uint8 u8M,  
 uint8 u8alength,  
 int8 u8mlength,  
 tuAES_Block *psNonce,  
 uint8 *pau8authenticationData,  
 uint8 *pau8inputData,   
 uint8 *pau8outputData,  
 uint8 *pau8checksumData,  
 bool_t *pbChecksumVerify); 

Description 
This function replicates the AES CCM* hardware functionality that was found 
on earlier JN51xx wireless microcontrollers (pre-JN516x) and is provided for 
backward compatibility. It performs CCM* AES encryption/decryption with 
checksum generation/verification, using the AES Coprocessor. It can perform 
any operation in the CCM and CCM* encryption suites.   
Note that: 
 In encode mode (CCM), the function will return a checksum in the 

au8checksumData buffer upon completion.  

 In decode mode (CCM_D), the function expects the checksum to be the last M 
bytes of the au8inputData buffer, and so mlength = (data length + M) bytes. 

The function returns when the encode has completed or the AES 
Coprocessor is busy or there has been an input parameter error.  
The API imposes no buffer alignment requirements on the user, and also 
generates any stripe zero-padding needed for input data (on data lengths that 
are not a multiple of 128 bits). 
For JN517x devices, refer to the note about endianness on page 5. 

Parameters 
*psKeyData  Pre-allocated pointer to structure containing 128-bit 

key data 
bLoadKey  Specifies whether a new key is to be loaded (TRUE 

for new key, FALSE otherwise) 
u8AESmode  Required CCM* mode of operation of the AES 

Coprocessor. The supported modes are: 
  IEEE CTR (XCV_REG_AES_SET_MODE_CTR)     
  CCM Encode (XCV_REG_AES_SET_MODE_CCM) 
   CCM Decode (XCV_REG_AES_SET_MODE_CCM_D) 
u8M  Required number of checksum bytes. Supported 

values are 0, 2, 4, 8, 16 and 32 
u8alength Length of authentication data, in bytes 
u8mlength Length of input data, in bytes 
*psNonce  Pre-allocated pointer to structure containing 128-bit 

nonce data 



   JN516x/7x AES Coprocessor API 
Reference Manual 

 

12 © NXP Laboratories UK 2017 JN-RM-2013 v2.0 

*pau8authenticationData  Pre-allocated pointer to byte array of authentication 
data 

*pau8inputData  Pre-allocated pointer to byte array of input data 
*pau8outputData  Pre-allocated pointer to byte array of output data 
*pau8checksumData  Pre-allocated pointer to byte array of checksum 

data. In CCM decode mode (CCM_D), this value 
can be NULL 

*pbChecksumVerify  Pre-allocated pointer to boolean which in CCM 
decode mode (CCM_D) stores the result of the 
checksum verification operation. Can be NULL in 
other modes (CCM and CTR) 

Returns 
TRUE – The function has completed successfully.  
FALSE – The function has not completed. The AES Coprocessor is busy or 
there has been an input parameter error. 

 

 

 

 



JN516x/7x AES Coprocessor API 
Reference Manual  

   
 

JN-RM-2013 v2.0 © NXP Laboratories UK 2017 13 

3 AES Coprocessor Low-level Functions  
This chapter details the low-level functions of the AES Coprocessor API. These 
functions allow direct access to the registers of the AES Coprocessor on the 
JN516x/7x wireless microcontroller. 

 Note: The low-level functions, described in this chapter, 
should not normally be needed. The high-level functions, 
described in Chapter 2, should provide sufficient access to 
the AES Coprocessor for most users. 

The functions are listed below along with their page references. 

Function Page 
vACI_WriteKey 14 
vACI_CmdWaitBusy 15 
bACI_isBusy 16 



   JN516x/7x AES Coprocessor API 
Reference Manual 

 

14 © NXP Laboratories UK 2017 JN-RM-2013 v2.0 

vACI_WriteKey 
 

PUBLIC void vACI_WriteKey(tsReg128 *psKeyData); 

Description 
This function loads the 128-bit AES key into the AES Coprocessor core. 

Parameters 
psKeyData Pre-allocated pointer to structure containing 128-bit key 

data 

Returns 
None 



JN516x/7x AES Coprocessor API 
Reference Manual  

   
 

JN-RM-2013 v2.0 © NXP Laboratories UK 2017 15 

vACI_CmdWaitBusy 
 

PUBLIC void vACI_CmdWaitBusy(void); 

Description 
This function is a blocking function that is used to wait for the AES 
Coprocessor to complete execution of the current command. 

Parameters 
None 

Returns 
None 



   JN516x/7x AES Coprocessor API 
Reference Manual 

 

16 © NXP Laboratories UK 2017 JN-RM-2013 v2.0 

bACI_isBusy 
 

PUBLIC bool_t bACI_isBusy(void); 

Description 
This function is used to determine whether the AES Coprocessor is busy 
processing a command from the API or the underlying hardware. 

Parameters 
None 

Returns 
TRUE – The Coprocessor is busy  
FALSE – The Coprocessor is not busy and may accept a command from API 



JN516x/7x AES Coprocessor API 
Reference Manual  

   
 

JN-RM-2013 v2.0 © NXP Laboratories UK 2017 17 

4 Structures 
The AES Coprocessor API uses the structures described below. 

 Important: For JN517x devices, there is an endian 
consideration when mapping data into the tsReg128 and 
tuAES_Block structures described below. If data is written 
directly into the structure then the data can be used ‘as is’. If 
the data is being transferred from elsewhere using memcpy 
then the data needs to be endian-corrected for each element 
of the structure before it is used. 

4.1 tsReg128 
This is a 128-bit data and configuration data structure: 

typedef struct 
{ 
   uint32 u32register0; 
   uint32 u32register1; 
   uint32 u32register2; 
   uint32 u32register3; 
} tsReg128; 
 

where: 

• u32register0 contains the top 32 bits of the 128-bit data stripe 

• u32register1 contains the next-to-top 32 bits of the data stripe 

• u32register2 contains the next-to-bottom 32 bits of the data stripe 

• u32register3 contains the bottom 32 bits of the data stripe 

4.2 tuAES_Block 
This is a security block definition structure: 

typedef union 
{ 
    uint8    au8[AES_BLOCK_SIZE]; 
    uint32   au32[AES_BLOCK_SIZE / 4]; 
} tuAES_Block; 
 

where: 

• au8[] is an array containing the AES data block as bytes  

• au32[] is an array containing the AES data block as 32-bit words 

 

 

 



   JN516x/7x AES Coprocessor API 
Reference Manual 

 

18 © NXP Laboratories UK 2017 JN-RM-2013 v2.0 

 

 

  



JN516x/7x AES Coprocessor API 
Reference Manual  

   
 

JN-RM-2013 v2.0 © NXP Laboratories UK 2017 19 

Revision History 
Version Date Description 

1.0 30-Mar-2006 First release 

1.1 18-Sep-2006 Put in new template and re-worked 

1.2 20-Sep-2006 Streamlined API description 

1.3 06-Dec-2007 Added JN5139 and changed header filename 

2.0 31-Jan-2017 Updated for the JN516x and JN517x families of devices, and incorporated 
relevant low-level functions (previously documented in JN-RM-2028) 

 



   JN516x/7x AES Coprocessor API 
Reference Manual 

 

20 © NXP Laboratories UK 2017 JN-RM-2013 v2.0 

Important Notice 
Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, 
NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy 
or completeness of such information and shall have no liability for the consequences of use of such information. 
NXP Semiconductors takes no responsibility for the content in this document if provided by an information source 
outside of NXP Semiconductors. 

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential 
damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the 
removal or replacement of any products or rework charges) whether or not such damages are based on tort 
(including negligence), warranty, breach of contract or any other legal theory. 

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ 
aggregate and cumulative liability towards customer for the products described herein shall be limited in 
accordance with the Terms and conditions of commercial sale of NXP Semiconductors. 

Right to make changes — NXP Semiconductors reserves the right to make changes to information published 
in this document, including without limitation specifications and product descriptions, at any time and without 
notice. This document supersedes and replaces all information supplied prior to the publication hereof. 

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable 
for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or 
malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death 
or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for 
inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such 
inclusion and/or use is at the customer’s own risk. 

Applications — Applications that are described herein for any of these products are for illustrative purposes 
only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the 
specified use without further testing or modification. 

Customers are responsible for the design and operation of their applications and products using NXP 
Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or 
customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors 
product is suitable and fit for the customer’s applications and products planned, as well as for the planned 
application and use of customer’s third party customer(s). Customers should provide appropriate design and 
operating safeguards to minimize the risks associated with their applications and products. 

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is 
based on any weakness or default in the customer’s applications or products, or the application or use by 
customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s 
applications and products using NXP Semiconductors products in order to avoid a default of the applications 
and the products or of the application or use by customer’s third party customer(s). NXP does not accept any 
liability in this respect. 

Export control — This document as well as the item(s) described herein may be subject to export control 
regulations. Export might require a prior authorization from competent authorities. 

 

 

 

 

 

 

 

 

 

 

 

 NXP Semiconductors 
 

For the contact details of your local NXP office or distributor, refer to: 

 

 www.nxp.com  

 

http://www.nxp.com/

	Preface
	Organisation
	Conventions
	Acronyms and Abbreviations
	Support Resources
	Trademarks

	1 Introduction to the AES Coprocessor API
	1.1 Basic Mechanism of API
	1.2 Categories of API Functions

	2 AES Block Cipher Mode Functions 
	bACI_ECBencodeStripe
	bAES_CCMstar
	vACI_OptimisedCCMstar
	bACI_CCMstar

	3 AES Coprocessor Low-level Functions 
	vACI_WriteKey
	vACI_CmdWaitBusy
	bACI_isBusy

	4 Structures
	4.1 tsReg128
	4.2 tuAES_Block


