

Freescale Semiconductor Document Number: QORIQDPAAWP
White Paper Rev. 0, 06/2012

© Freescale Semiconductor, Inc., 2012. All rights reserved.

QorIQ DPAA Primer for Software
Architecture

by Freescale Semiconductor, Inc.

Austin, TX

Multicore processing, or multiple execution

thread processing, introduces unique

considerations to the architecture of networking

systems, including processor load

balancing/utilization, flow order maintenance,

and efficient cache utilization. This white paper

reviews the key features, functions, and

properties enabled by the QorIQ DPAA (Data

Path Acceleration Architecture) hardware and

demonstrates how to best architect software to

leverage the DPAA hardware.

By exploring how the DPAA is configured and

leveraged in a particular application, the user

can determine which elements and features to

use. This streamlines the software development

stage of implementation by allowing

programmers to focus their technical

understanding on the elements and features that

are implemented in the system under

development, thereby reducing the overall

DPAA learning curve required to implement the

application.

Contents

1 Benefits of the DPAA ... 2
2 General architectural considerations 2
3 Understanding the DPAA ... 8
4 Application mapping example 31
5 Revision history .. 38

 QorIQ DPAA Primer for Software Architecture, Rev. 0

2 Freescale Semiconductor

1 Benefits of the DPAA

Architecting a networking application with a multicore processor presents challenges (such as workload

balance and maintaining flow order), which are not present in a single core design. Without hardware

assistance, the software must implement techniques that are inefficient and cumbersome, reducing the

performance benefit of multiple cores. To address workload balance and flow order challenges, the

DPAA determines and separates ingress flows then manages the temporary, permanent, or semi-

permanent flow-to-core affinity. The DPAA also provides a work priority scheme, which ensures

ingress critical flows are addressed properly and frees software from the need to implement a queuing

mechanism on egress. As the hardware determines which core will process which packet, performance

is boosted by direct cache warming/stashing as well as by providing biasing for core-to-flow affinity,

which ensures that flow-specific data structures can remain in the core’s cache.

By understanding how the DPAA is leveraged in a particular design, the system architect can map out

the application to meet the performance goals and to utilize the DPAA features to leverage any legacy

application software that may exist. Once this application map is defined, the architect can focus on

more specific details of the implementation.

2 General architectural considerations

2.1 Multicore design considerations

As the need for processing capability has grown, the only practical way to increase the performance on a

single silicon part is to increase the number of general purpose processing cores (CPUs). However,

many legacy designs run on a single processor; introducing multiple processors into the system creates

special considerations, especially for a networking application.

Most networking applications are split between data and control plane tasks. In general, control plane

tasks manage the system within the broad network of equipment. While the control plane may process

control packets between systems, the control plane process is not involved in the bulk processing of the

data traffic. This task is left to the data plane processing task or program.

The general flow of the data plane program is to receive data traffic (in general, packets or frames),

process or transform the data in some way and then send the packets to the next hop or device in the

network. In many cases, the processing of the traffic depends on the type of traffic. In addition, the

traffic usually exists in terms of a flow, a stream of traffic where the packets are related. A simple

example could be a connection between two clients that, at the packet level, is defined by the source and

destination IP address. Typically, multiple flows are interleaved on a single interface port; the number

of flows per port depends on the interface bandwidth as well as on the bandwidth and type of flows

involved.

 QorIQ DPAA Primer for Software Architecture, Rev. 0

Freescale Semiconductor 3

2.2 Parse/classification software offload

The DPAA provides intelligence within the IO subsection of the SoC (system-on-chip) to split traffic

into user-defined queues. One benefit is that the intelligence used to divide the traffic can be leveraged

at a system level.

In addition to sorting and separating the traffic, the DPAA can append useful processing information

into the stream; offloading the need for the software to perform these functions (see the following two

figures).

Note that the DPAA is not intended to replace significant packet processing or to perform extensive

classification tasks. However, some applications may benefit from the streamlining that results from the

parse/classify/distribute function within the DPAA. The ability to identify and separate flow traffic is

fundamental to how the DPAA solves other multicore application issues.

Figure 1. Generic multiprotocol processing

 QorIQ DPAA Primer for Software Architecture, Rev. 0

4 Freescale Semiconductor

Figure 2. Hardware-sorted protocol flow

2.3 Flow order considerations

In most networking applications, individual traffic flows through the system require that the egress

packets remain in the order in which they are received. In a single processor core system, this

requirement is easy to implement. As long as the data plane software follows a run-to-completion

model on a per-packet basis, the egress order will match the ingress packet order. However, if multiple

processors are implemented in a true symmetrical multicore processing (SMP) model in the system, the

egress packet flow may be out of order with respect to the ingress flow. This may be caused when

multiple cores simultaneously process packets from the same flow.

 QorIQ DPAA Primer for Software Architecture, Rev. 0

Freescale Semiconductor 5

Even if the code flow is identical, factors such as cache hits/misses, DRAM page hits/misses, interrupts,

control plane and OS tasks can cause some variability in the processing path, allowing egress packets to

“pass” within the same flow, as shown in this figure.

Figure 3. Multicore flow reordering

For some applications, it is acceptable to reorder the flows from ingress to egress. However, most

applications require that order is maintained. When no hardware is available to assist with this ordering,

the software must maintain flow order. Typically, this requires additional code to determine the

sequence of the packet currently being processed, as well as a reference to a data structure that maintains

order information for each flow in the system. Because multiple processors need to access and update

this state information, access to this structure must be carefully controlled, typically by using a lock

mechanism that can be expensive with regard to program cycles and processing flow (see Figure 4). One

of goals of the DPAA architecture is to provide the system designer with hardware to assist with packet

ordering issues.

 QorIQ DPAA Primer for Software Architecture, Rev. 0

6 Freescale Semiconductor

Figure 4. Implementing order in software

2.4 Managing flow-to-core affinity

In a multicore networking system, if the hardware configuration always allows a specific core to process

a specific flow then the binding of the flow to the core is described as providing flow affinity. If a

specific flow is always processed by a specific processor core then for that flow the system acts like a

single core system. In this case, flow order is preserved because there is a single thread of operation

processing the flow; with a run-to-completion model, there is no opportunity for egress packets to be

reordered with respect to ingress packets.

Another benefit of a specific flow being affined to a core is that the cache local to that core (L1 and

possibly L2, depending on the specific core type) is less likely to miss when processing the packets

because the core’s data cache will not fetch flow state information for flows to which it is not affined.

Also, because multiple processing entities have no need to access the same individual flow state

information, the system need not lock the access to the individual flow state data. The DPAA offers

several options to define and manage flow-to-core affinity.

 QorIQ DPAA Primer for Software Architecture, Rev. 0

Freescale Semiconductor 7

Figure 5. Managing flow-to-core affinity

Many networking applications require intensive, repetitive algorithms to be performed on large portions

of the data stream(s). While software in the processor cores could perform these algorithms, specific

hardware offload engines often better address specific algorithms. Cryptographic and pattern matching

accelerators are examples of this in the QorIQ family. These accelerators act as standalone hardware

elements that are fed blocks or streams of data, perform the required processing, and then provide the

output in a separate (or perhaps overwritten) data block within the system. The performance boost is

significant for tasks that can be done by these hardware accelerators as compared to a software

implementation.

 QorIQ DPAA Primer for Software Architecture, Rev. 0

8 Freescale Semiconductor

In DPAA-equipped SoCs, these offload engines exist as peers to the cores and IO elements, and they use

the same queuing mechanism to obtain and transfer data. The details of the specific processing

performed by these offload engines is beyond the scope of this document; however, it is important to

determine which of these engines will be leveraged in the specific application. The DPAA can then be

properly defined to implement the most efficient configuration/definition of the DPAA elements.

3 Understanding the DPAA

3.1 DPAA goals

The following provides a brief overview of the DPAA elements in order to contextualize the application

mapping activities. For more details on the DPAA architecture, see the QorIQ Data Path Acceleration

Architecture (DPAA) Reference Manual.

The primary goals of the DPAA are as follows:

 To provide intelligence within the IO portion of the SoC.

 To route and manage the processing work associated with traffic flows.

 To simplify the ordering and load balance concerns associated with multicore processing.

The DPAA achieves these goals by inspecting and separating ingress traffic into Frame Queues (FQs).

In general, the intent is to define a flow or set of flows as the traffic in a particular FQ. The FQs are

associated to a specific core or set of cores via a channel. Within the channel definition, the FQs can be

prioritized among each other using the Work Queue (WQ) mechanism. The egress flow is similar to the

ingress flow. The processors place traffic on a specific FQ, which is associated to a particular physical

port via a channel. The same priority scheme using WQs exists on egress, allowing higher priority

traffic to pass lower priority traffic on egress without software intervention.

3.2 DPAA elements

3.2.1 FMan overview

The FMan inspects traffic, splits it into FQs on ingress, and sends traffic from the FQs to the interface

on egress. On ingress traffic, the FMan is configured to determine the traffic split required by the PCD

(Parse, Classify, Distribute) function. This allows the user to decide how he wants to define his traffic:

typically, by flows or classes of traffic. The PCD can be configured to route all traffic on one port to a

single queue or with a higher level of complexity where large numbers of queues are defined and

managed. The PCD can identify traffic based on the specific content of the incoming packets (usually

within the header) or packet reception rates (policing).

The parse function is used to identify which fields within the data frame determine the traffic split. The

fields used may be defined by industry standards, or the user may employ a programmable soft parse

feature to accommodate proprietary field (typically header) definition(s). The results of the parse

function may be used directly to determine the frame queue; or, the contents of the fields selected by the

 QorIQ DPAA Primer for Software Architecture, Rev. 0

Freescale Semiconductor 9

parse function may be used as a key to select the frame queue. The parse function employs a

programmed mask to allow the use of selected fields.

The resultant key from the parse function may be used to assign traffic to a specific queue based on a

specific exact match definition of fields in the header. Alternatively, a range of queues can be defined

either by using the resultant key directly (if there are a small number of bits in the key) or by performing

a hash of the key to use a large number of bits in the flow identifier and create a manageable number of

queues.

The FMan also provides a policer function, which is rate-based and allows the user to mark or drop a

specific frame that exceeds a traffic threshold. The policing is based on a two-rate, three-color marking

algorithm (RFC2698). The sustained and peak rates as well as the burst sizes are user-configurable.

Figure 6. Ingress FMan flow

The figure above shows the FMan splitting ingress traffic on an external port into a number of queues.

However, the FMan works in a similar way on egress: it receives traffic from FQs then transmits the

traffic on the designated external port. Alternatively, the FMan can be used to process flows internally

via the offline port mechanism: traffic is dequeued (from some other element in the system), processed,

then enqueued onto a frame queue processing further within the system.

On ingress traffic, the FMan generates an internal context (IC) data block, which it uses as it performs

the PCD function. Optionally, some or all of this information may be added into the frames as they are

passed along for further processing. For egress or offline processing, the IC data can be passed with

each frame to be processed. This data is mostly the result of the PCD actions and includes the results of

the parser, which may be useful for the application software. See the QorIQ DPAA Reference Manual

for details on the contents of the IC data block.

 QorIQ DPAA Primer for Software Architecture, Rev. 0

10 Freescale Semiconductor

This figure shows the FMan egress flow.

Figure 7. FMan egress flow

This figure shows the FMan offline flow.

Figure 8. FMan offline flow

3.2.2 QMan overview

The QMan links the FQs to producers and consumers (of data traffic) within the SoC. The

producers/consumers are either FMAN, acceleration blocks, or CPU cores. All the producers/consumers

have one channel, each of which is referred to as a dedicated channel. Additionally, there are a number

 QorIQ DPAA Primer for Software Architecture, Rev. 0

Freescale Semiconductor 11

of pool channels available to allow multiple cores (not FMAN or accelerators) to service the same

channel. Note that there are channels for each external FMan port, the number of which depends on the

SoC, as well as the internal offline ports.

Figure 9. DPAA channel types

Each channel provides for eight levels of priority, each of which has its own work queue (WQ). The

two highest level WQs are strict priority: traffic from WQ0 must be drained before any other traffic

flows; then traffic from WQ1 and then traffic from the other six WQs is allowed to pass. The last six

WQs are grouped together in two groups of three, which are configurable in a weighted round robin

fashion. Most applications do not need to use all priority levels. When multiple FQs are assigned to the

same WQ, QMan implements a credit-based scheme to determine which FQ is scheduled (providing

frames to be processed) and how many frames (actually the credit is defined by the number of bytes in

the frames) it can dequeue before QMan switches the scheduling to the next FQ on the WQ. If a higher

priority WQ becomes active (that is, one of the FQs in the higher priority WQ receives a frame to

become non-empty) then the dequeue from the lower priority FQ is suspended until the higher priority

frames are dequeued. After the higher priority FQ is serviced, when the lower priority FQ restarts

servicing, it does so with the remaining credit it had before being pre-empted by the higher priority FQ.

When the DPAA elements of the SoC are initialized, the FQs are associated with WQs, allowing the

traffic to be steered to the desired core (dedicated connect channel), set of cores (pool channel), FMAN,

or accelerator, using a defined priority.

 QorIQ DPAA Primer for Software Architecture, Rev. 0

12 Freescale Semiconductor

Figure 10. Prioritizing work

3.2.2.1 Portals

A single portal exists for each non-core DPAA producer/consumer (FMAN, SEC, and PME). This is a

data structure internal to the SoC that passes data directly to/from the consumer’s direct connect

channel.

Software portals are associated with the processor cores and are, effectively, data structures that the

cores use to pass (enqueue) packets to or receive (dequeue) packets from the channels associated with

that portal (core). Each SoC has at least as many software portals as there are cores. Software portals

are the interface through which the DPAA provides the data processing workload for a single thread of

execution.

 QorIQ DPAA Primer for Software Architecture, Rev. 0

Freescale Semiconductor 13

The portal structure consists of the following:

 The Dequeue Response Ring (DQRR) determines the next packet to be processed.

 The Enqueue Command Ring (EQCR) sends packets from the core to the other elements.

 The Message Ring (MR) notifies the core of the action (for example, attempted dequeue rejected,

and so on).

 The Management command and response control registers

Figure 11. Processor core portal

On ingress, the DQRR acts as a small buffer of incoming packets to a particular core. When a section of

software performs a get packet type operation, it gets the packet from a pointer provided as an entry in

the DQRR for the specific core running that software. Note that the DQRR consolidates all potential

channels that may be feeding frames to a particular core. There are up to 16 entries in each DQRR.

Each DQRR entry contains:

 a pointer to the packet to be processed,

 an identifier of the frame queue from which the packet originated,

 a sequence number (when configured),

 and additional FMan-determined data (when configured).

When configured for push mode, QMan attempts to fill the DQRR from all the potential incoming

channels. When configured in pull mode, QMan only adds one DQRR entry when it is told to by the

requesting core. Pull mode may be useful in cases where the traffic flows must be very tightly

controlled; however, push mode is normally considered the preferred mode for most applications.

 QorIQ DPAA Primer for Software Architecture, Rev. 0

14 Freescale Semiconductor

Figure 12. Ingress channel to portal options

The DQRRs are tightly coupled to a processor core. The DPAA implements a feature that allows the

DQRR mechanism to pre-allocate, or stash, the L1 and/or L2 cache with data related to the packet to be

processed by that core. The intent is to have the data required for packet processing in the cache before

the processor runs the “get packet” routine, thereby reducing the overall time spent processing a

particular packet.

The following is data that may be warmed into the caches:

 The DQRR entry

 The packet or portion of the packet for a single buffer packet

 The scatter gather list for a multi-buffer packet

 Additional data added by FMAN

 FQ context (A and B)

The FQ context is a user-defined space in memory that contains data associated with the FQ (per flow)

to be processed. The intent is to place in this data area the state information required when processing a

 QorIQ DPAA Primer for Software Architecture, Rev. 0

Freescale Semiconductor 15

packet for this flow. The FQ context is part of the FQ definition, which is performed when the FQ is

initialized.

The cache warming feature is enabled by configuring the capability and some definition of the FQs and

QMan at system initialization time. This can provide a significant performance boost and requires little

to no change in the processing flow. When defining the system architecture, it is highly recommended

that the user enable this feature and consider how to maximize its impact.

Figure 13. Cache warming options

In addition to getting packet information from the DQRR, the software also manages the DQRR by

indicating which DQRR entry it will consume next. This is how the QMan determines when the DQRR

(portal) is ready to process more frames. Two basic options are provided. In the first option, the

software can update the ring pointer after one or several entries have been consumed. By waiting to

indicate the consumption of multiple frames, the performance impact of the write doing this is

minimized. The second option is to use the discrete consumption acknowledgment (DCA) mode. This

 QorIQ DPAA Primer for Software Architecture, Rev. 0

16 Freescale Semiconductor

mode allows the consumption indication to be directly associated with a frame enqueue operation from

the portal (that is, after the frame has been processed and is on the way to the egress queue). This

tracking of the DQRR Ring Pointer CI (Consumer Index) helps implement frame ordering by ensuring

that QMan does not dequeue a frame from the same FQ (or flow) to a different core until the processing

is completed.

3.2.2.2 Queue schedule options

The primary communication path between QMan and the processor cores is the portal memory structure.

QMan uses this interface to schedule the frames to be processed on a per-core basis. For a dedicated

channel, the process is straightforward: the QMan places an entry in the DQRR for the portal (processor)

of the dedicated channel and dequeues the frame from an FQ to the portal. To do this, QMan

determines, based on the priority scheme (previously described) for the channel, which frame should be

processed next and then adds an entry to the DQRR for the portal associated with the channel.

When configured for push mode, once the portal requests QMan to provide frames for processing,

QMan provides frames until halted. When the DQRR is full and more frames are destined for the portal,

QMan waits for an empty slot to become available in the DQRR and then adds more entries (frames to

be processed) as slots become available.

When configured for pull mode, the QMan only adds entries to the DQRR at the direct request of the

portal (software request). The command to the QMan that determines if a push or pull mode is

implemented and tells QMan to provide either one or from one to three (up to three if there are that

many frames to be dequeued) frames at a time. This is a tradeoff of smaller granularity (for one frame

only) versus memory access consolidation (if the up to three frames option is selected).

When the system is configured to use pool channels, a portal may get frames from more than one

channel and a channel may provide frames (work) to more than one portal (core). QMan dequeues

frames using the same mechanism described above (updating DQRR) and QMan also provides for some

specific scheduling options to account for the pool channel case in which multiple cores may process the

same channel.

3.2.2.2.1 Default scheduling

The default scheduling is to have an FQ send frames to the same core for as long as that FQ is active.

An FQ is active until it uses up its allocated credit or becomes empty. After an FQ uses its credit, it is

rescheduled again, until it is empty. For its schedule opportunity, the FQ is active and all frames

dequeued during the opportunity go to the same core. After the credit is consumed, QMan reactivates

that FQ but may assign the flow processing to a different core. This provides for a sticky affinity during

the period of the schedule opportunity. The schedule opportunity is managed by the amount of credit

assigned to the FQ.

NOTE

A larger credit assigned to an FQ provides for a stickier core affinity, but

this makes the processing work granularity larger and may affect load

balancing.

 QorIQ DPAA Primer for Software Architecture, Rev. 0

Freescale Semiconductor 17

Figure 14. Default scheduling

3.2.2.2.2 Hold active scheduling

With the hold active option, when the QMan assigns an FQ to a particular core, that FQ is affined to that

core until it is empty. Even after the FQ’s credit is consumed, when it is rescheduled with the next

schedule opportunity, the frames go to the same core for processing. This effectively makes the flow-to-

core affinity stickier than the default case, ensuring the same flow is processed by the same core for as

long as there are frames queued up for processing. Because the flow-to-core affinity is not hard-wired

as in the dedicated channel case, the software may still need to account for potential order issues.

However, because of flow-to-core biasing, the flow state data is more likely to remain in L1 or L2

cache, increasing hit rates and thus improving processing performance. Because of the specific QMan

implementation, only four FQs may be in held active state at a given time.

 QorIQ DPAA Primer for Software Architecture, Rev. 0

18 Freescale Semiconductor

Figure 15. Hold active scheduling

3.2.2.2.3 Avoid blocking scheduling

QMan can also be scheduled in the avoid blocking mode, which is mutually exclusive to hold active. In

this mode, QMan schedules frames for an FQ to any available core in the pool channel. For example, if

the credit allows for three frames to be dequeued, the first frame may go to core 1. But, when that

dequeue fills core 1’s DQRR, QMan finds the next available DQRR entry in any core in the pool. With

avoid blocking mode there is no biasing of the flow to core affinity. This mode is useful if a particular

flow either has no specific order requirements or the anticipated processing required for a single flow is

expected to consume more than one core’s worth of processing capability.

Alternatively, software can bypass QMan scheduling and directly control the dequeue of frame

descriptors from the FQ. This mode is implemented by placing the FQ in parked state. This allows

software to determine precisely which flow will be processed (by the core running the software).

However, it requires software to manage the scheduling, which can add overhead and impact

performance.

 QorIQ DPAA Primer for Software Architecture, Rev. 0

Freescale Semiconductor 19

Figure 16. Avoid blocking scheduling

3.2.2.3 Order definition/ restoration

The QMan provides a mechanism to strictly enforce ordering. Each FQ may be defined to participate in

the process of an order definition point and/or an order restoration point. On ingress, an order definition

point provides for a 14 bit sequence number assigned to each frame (incremented per frame) in a FQ in

the order in which they were received on the interface. The sequence number is placed in the DQRR

entry for the frame when it is dequeued to a portal. This allows software to efficiently determine which

packet it is currently processing in the sequence without the need to access a shared (between cores) data

structure. On egress, an order restoration point delays placing a frame onto the FQ until the expected

next sequence number is encountered. From the software standpoint, once it has determined the relative

sequence of a packet, it can enqueue it and resume other processing in a fire-and-forget manner.

NOTE

The order definition points and order restoration points are not dependent

on each other; it is possible to have one without the other depending on

application requirements. To effectively use these mechanisms, the packet

software must be aware of the sequence tagging.

 QorIQ DPAA Primer for Software Architecture, Rev. 0

20 Freescale Semiconductor

Figure 17. Order definition/restoration

As processors enqueue packets for egress, it is possible that they may skip a sequence number because

of the nature of the protocol being processed. To handle this situation, each FQ that participates in the

order restoration service maintains its own Next Expected Sequence Number (NESN). When the

difference between the sequence number of the next expected and the most recently received sequence

number exceeds the configurable ORP threshold, QMan gives up on the missing frame(s) and

 QorIQ DPAA Primer for Software Architecture, Rev. 0

Freescale Semiconductor 21

autonomously advances the NESN to bring the skew within threshold. This causes any deferred

enqueus that are currently held in the ORP link list to become unblocked and immediately enqueue them

to their destination FQ. If the “skipped” frame arrives after this, the ORP can be configured to reject or

immediately enqueu the late arriving frame.

3.2.3 BMan overview

The BMan block manages the data buffers in memory. Processing cores, FMan, SEC and PME all may

get a buffer directly from the BMan without additional software intervention. These elements are also

responsible for releasing the buffers back to the pool when the buffer is no longer in use. Typically, the

FMan directly acquires a buffer from the BMan on ingress. When the traffic is terminated in the system,

the core generally releases the buffer. When the traffic is received, processed, and then transmitted, the

same buffer may be used throughout the process. In this case, the FMan may be configured to release

the buffer automatically, when the transmit completes.

The BMan also supports single or multi-buffer frames. Single buffer frames generally require the

adequately defined (or allocated) buffer size to contain the largest data frame and minimize system

overhead. Multi-buffer frames potentially allow better memory utilization, but the entity passed

between the producers/consumers is a scatter-gather table (that then points to the buffers within the

frame) rather than the pointer to the entire frame, which adds an extra processing requirement to the

processing element.

The software defines pools of buffers when the system is initialized. The BMan unit itself manages the

pointers to the buffers provided by the software and can be configured to interrupt the software when it

reaches a condition where the number of free buffers is depleted (so that software may provide more

buffers as needed).

3.3 Using the DPAA to handle order

The DPAA helps address packet order issues that may occur as a result of running an application in a

multiple processor environment. And there are several ways to leverage the DPAA to handle flow order

in a system. The order preservation technique maps flows such that a specific flow always executes on a

specific processor core. For this case, the individual flow will not have multiple execution threads and

the system will run much like a single core system. This option generally requires less impact to legacy,

single-core software but may not effectively utilize all the processing cores in the system because it

requires using a dedicated channel to the processors. The FMan PCD can be configured to either

directly match a flow to a core or to use the hashing to provide traffic spreading that offers a permanent

flow-to-core affinity.

If the application must use pool channels to balance the processing load then the software must be more

involved in the ordering. The software can make use of the order restoration point function in QMan,

which requires the software to manage a sequence number for frames enqueued on egress.

Alternatively, the software can be implemented to maintain order by biasing the stickiness of flow

affinity with default or hold active scheduling; lock contention and cache misses can be biased to

increase performance.

 QorIQ DPAA Primer for Software Architecture, Rev. 0

22 Freescale Semiconductor

If there are no order requirements then load balancing can be achieved by associating the non-ordered

traffic to a pool of cores.

NOTE

All of these techniques may be implemented simultaneously on the same

SoC; as long as the flow definition is precise enough to split the traffic

types, it is simply a matter of proper defining the FQs and associating

them to the proper channels in the system.

3.3.1 Using the exact match flow definition to preserve order

The simplest technique for preserving order is to route the ingress traffic of an individual flow to a

particular core. For the particular flow in question, the system appears as a legacy, single-core

programming model and, therefore, has minimal impact on the structure of the software. In this case,

the flow definition determines the core affinity of a flow.

 QorIQ DPAA Primer for Software Architecture, Rev. 0

Freescale Semiconductor 23

Figure 18. Direct flow-to-core mapping (order preserved)

This technique is completely deterministic: the DPAA forces specific flows to a specific processor, so it

may be easier to determine the performance assuming the ingress flows are completely understood and

well defined. Notice that a particular processor core may become overloaded with traffic while another

sits idle for increasingly random flow traffic rates.

To implement this sort of scheme, the FMan must be configured to exactly match fields in the traffic

stream. This approach can only be used for a limited number of total flows before the FMan’s internal

resources are consumed.

In general, this sort of hard-wired approach should be reserved for either critical out-of-band traffic or

for systems with a small number of flows that can benefit from the highly deterministic nature of the

processing.

 QorIQ DPAA Primer for Software Architecture, Rev. 0

24 Freescale Semiconductor

3.3.2 Using hashing to distribute flows across cores

The FMan can be configured to extract data from a field or fields within the data frame, build a key from

that, and then hash the resultant key into a smaller number. This is a useful technique to handle a larger

number of flows while ensuring that a particular flow is always associated with a particular core. An

example is to define a flow as an IPv4 source + IPv4 destination address. Both fields together

constitute 64 bits, so there are 2
64

 possible combinations for the flow in that definition. The FMan then

uses a hash algorithm to compress this into a manageable number of bits. Note that, because the hash

algorithm is consistent, packets from a particular flow always go to the same FQ. By utilizing this

technique, the flows can be spread in a pseudo-random, consistent (per flow) manner to a smaller

number of FQs. For example, hashing the 64 bits down to 2 bits spreads the flows among four queues.

Then these queues can be assigned to four separate cores by using a dedicated channel; effectively, this

appears as a single-core implementation to any specific flow.

This spreading technique works best with a large number of possible flows to allow the hash algorithm

to evenly spread the traffic between the FQs. In the example below, when the system is only expected

to have eight flows at a given time, there is a good chance the hash will not assign exactly two flows per

FQ to evenly distribute the flows between the four cores shown. However, when the number of flows

handled is in the hundreds, the odds are good that the hash will evenly spread the flows for processing.

 QorIQ DPAA Primer for Software Architecture, Rev. 0

Freescale Semiconductor 25

Figure 19. Simple flow distribution via hash (order preserved)

To optimize cache warming, the total number of hash buckets can be increased with flow-to-core

affinity maintained. When the number of hash values is larger than the number of expected flows at a

given time, it is likely though not guaranteed that each FQ will contain a single flow. For most

applications, the penalty of a hash collision is two or more flows within a single FQ. In the case of

multiple flows within a single FQ, the cache warming and temporary core affinity benefits are reduced

unless the flow order is maintained per flow.

Note that there are 24 bits architected for the FQ ID, so there may be as many as 16 million FQs in the

system. Although this total may be impractical, this does allow for the user to define more FQs than

expected flows in order to reduce the likelihood of a hash collision; it also allows flexibility in assigning

FQID’s in some meaningful manner. It is also possible to hash some fields in the data frame and

concatenate other parse results, possibly allowing a defined one-to-one flow to FQ implementation

without hash collisions.

 QorIQ DPAA Primer for Software Architecture, Rev. 0

26 Freescale Semiconductor

Figure 20. Using hash to assign one flow per FQ (order preserved and cache stashing effective)

3.3.3 Pool channel considerations

So far, the techniques discussed in this white paper have involved assigning specific flows to the same

core to ensure that the same core always processes the same flow or set of flows, thereby preserving

flow order. However, depending on the nature of the flows being processed (that is, variable frame

sizes, difficulty efficiently spreading due to the nature of the flow contents, and so on), this may not

effectively balance the processing load among the cores. Alternatively, a user may employ a pool

channel approach where multiple cores may pool together to service a specific set of flows. This

alternative approach allows potentially better processing balance, but increases the likelihood that

packets may be processed out of order allowing egress packets to pass ingress packets. When the

application does not require flows to be processed in order, the pool channel approach allows the easiest

method for balancing the processing load. When a pool channel is used and order is required, the

 QorIQ DPAA Primer for Software Architecture, Rev. 0

Freescale Semiconductor 27

software must maintain order. The hardware order preservation may be used by the software to

implement order without requiring locked access to shared state information. When the system uses a

software lock to handle order then the default scheduling and hold active scheduling tends to minimize

lock contention.

Figure 21. Using pool channel to balance processing

3.3.4 Order preservation using hold active scheduling and DCA mode

As shown in the examples above, order is preserved as long as two or more cores never process frames

from the same flow at the same time. This can also be accomplished by using hold active scheduling

along with discrete consumption acknowledgment (DCA) mode associated with the DQRR. Although

flow affinity may change for an FQ with hold active scheduling when the FQ is emptied, if the new

 QorIQ DPAA Primer for Software Architecture, Rev. 0

28 Freescale Semiconductor

work (from frames received after the FQ is emptied) is held off until all previous work completes, then

the flow will not be processed by multiple cores simultaneously, thereby preserving order.

When the FQ is emptied, QMan places the FQ in hold suspended state, which means that no further

work for that FQ is enqueued to any core until all previously enqueued work is completed. Because

DCA mode effectively holds off the consumption notification (from the core to QMan) until the

resultant processed frame is enqueued for egress, this implies processing is completely finished for any

frames in flight to the core. After all the in-flight frames have been processed, QMan reschedules the

FQ to the appropriate core.

NOTE

After the FQ is empty and when in hold active mode, the affinity is not

likely to change. This is because the indication of “completeness” from

the core currently processing the flow frees up some DQRR slots that

could be used by QMan when it restarts enqueuing work for the flow. The

possibility of the flow-to-core affinity changing when the FQ empties is

only discussed as a worst case possibility with regards to order

preservation.

 QorIQ DPAA Primer for Software Architecture, Rev. 0

Freescale Semiconductor 29

Figure 22. Hold active to held suspended mode

 QorIQ DPAA Primer for Software Architecture, Rev. 0

30 Freescale Semiconductor

Figure 23. Held suspended to hold active mode

3.4 Congestion management

From an overall system perspective, there are multiple potential overflow conditions to consider. The

maximum number of frames active in the system (the number of frames in flight) is determined by the

amount of memory allocated to the Packed Frame Queue Descriptors (PQFD’s). Each PQFD is 64 bytes

and can identify up to three frames, so the total number of frames that can be identified by the PQFDs is

equal to the amount of memory allocated for PQFD space divided by 64 bytes (per entry) multiplied by

three (frames per entry).

A pool of buffers may deplete in BMan. This depends on how many buffers have been assigned by

software for BMan. BMan may raise an interrupt to request more buffers when in a depleted state for a

given pool; the software can manage the congestion state of the buffer pools in this manner.

 QorIQ DPAA Primer for Software Architecture, Rev. 0

Freescale Semiconductor 31

In addition to these high-level system mechanisms, congestion management may also be identified

specific to the FQs. A number of FQs can be grouped together to form a congestion group (up to 256

congestion groups per system for most DPAA SoCs). These FQs need not be on the same channel. The

system may be configured to indicate congestion either by consider the aggregate number of bytes

within the FQ’s in the congestion group or by the aggregate number of frames within the congestion

group. The frame count option is useful when attempting to manage the number of buffers in a buffer

pool as they are used by a particular core or group of cores. The byte count is useful to manage the

amount of system memory used by a particular core or group of cores.

When the total number of frames/bytes within the frames in the congestion group exceeds the set

threshold, subsequent enqueues to any of the FQs in the group are rejected; in general, the frame is

dropped. For the congestion group mechanism, the decision to reject is defined by a programmed

weighted random early discard (WRED) algorithm programmed when the congestion group is defined.

In addition, a specific FQ can be set to a particular maximum allowable depth (in bytes); after the

threshold is reached enqueue attempts will be rejected. This is a maximum threshold: there is no

WRED algorithm for this mechanism. Note that, when the FQ threshold is not set, a specific FQ may

fill until some other mechanism (because it’s part of a congestion group or system PQFD depletion or

BMAN depletion) prevents the FQ from getting frames. Typically, FQs within a congestion group are

expected to have a maximum threshold set for each FQ in the group to ensure a single queue does not

get stuck and unfairly consume the congestion group. Note that, when an FQ does not have a queue

depth set and/or is not a part of a congestion group, the FQ has no maximum depth. It would be possible

for a single queue to have all the frames in the system, until the PQFD space or the buffer pool is

exhausted.

4 Application mapping example

4.1 Processor core assignment

The first step in application mapping is to determine how much processing capability is required for

tasks that may be partitioned separately. For example, consider a typical networking application with a

set of distinct control and data plane functionality. Assigning two cores to perform control plane tasks

and six cores to perform data plane tasks may be a reasonable partition in an eight-core device. When

initially identifying the SoC required for the application, along with the number of cores and frequencies

required, the designer makes some performance assumptions based on previous designs and/or

applicable benchmark data.

4.2 Define flows

Next, define what flows will be in the system. Key considerations for flow definition include the

following:

 Total number of flows expected at a given time within the system

 Desired flow-to-core affinity, ingress flow destination

 QorIQ DPAA Primer for Software Architecture, Rev. 0

32 Freescale Semiconductor

 Processor load balancing

 Frame sizes (may be fixed or variable)

 Order preservation requirement

 Traffic priority relative to the flows

 Expected bandwidth requirement of specific flows or class of flows

 Desired congestion handling

NOTE

Most systems have multiple classes of flows and may have different

specific mapping within the same SOC.

Figure 24. Example application with three traffic classes

In the figure above, two cores are dedicated to processing control plane traffic, four cores are assigned to

process general data traffic and special time critical traffic is split between two other cores. In this case,

assume the traffic characteristics in the following table. With this system-level definition, the designer

can determine which flows are in the system and how to define the FQs needed.

 QorIQ DPAA Primer for Software Architecture, Rev. 0

Freescale Semiconductor 33

Table 1. Traffic characteristics

Characteristic Definition

Control plane traffic Terminated in the system and any particular packet sent has no dependency on

previous or subsequent packets (no order requirement).

 May occur on ports 1, 2 or 3.

 Ingress control plane traffic on port three is higher priority than the other ports.

 Any ICMP packet on ports 1, 2 or 3 is considered control plane traffic.

 Control plane traffic makes up a small portion of the overall port bandwidth.

General data plane traffic

 May occur on ports 1, 2 or 3 and is expected to comprise the bulk of the traffic on these

ports.

 The function performed is done on flows and egress packets must match the order of

ingress packets.

 A flow is identified by the IP source address.

 The system can expect up to 50 flows at a time.

 All flows have the same priority and a lower priority than any control plane traffic.

 It is expected that software will not always be able to keep up with this traffic and the

system should drop packets after some amount of packets are within the system.

Pseudo real-time traffic

 A high amount of determinism is required by the function.

 This traffic only occurs on port 4 and port 5 and is identified by a proprietary field in the

header; any traffic on these ports without the proper value in this field is dropped.

 All valid ingress traffic on port 4 is to be processed by core 7, ingress traffic on port 5

processed by core 8.

 There are only two flows, one from port 4 to port 5 and one from port 5 to port 4, egress

order must match ingress order.

 The traffic on these flows are the highest priority.

4.3 Identify ingress and egress frame queues (FQs)

For many applications, because the ingress flow has more implications for processing, it is easier to

consider ingress flows first. In the example above, the control plane and pseudo real-time traffic FQ

definitions are fairly straightforward. For the control plane ingress, one FQ for lower priority traffic on

ports 1 and 2 and one for the higher priority traffic would work. Note that two ports can share the same

queue on ingress when it does not matter for which core the traffic is destined. For ingress pseudo real-

time traffic, there is one FQ on port 4 and one FQ on port 5.

The general data plane ingress traffic is more complicated. Multiple options exist which maintain the

required ordering for this traffic. While this traffic would certainly benefit from some of the control

features of the QMan (cache warming, and so on), it is best to have one FQ per flow. Per the example,

the flow is identified by the IP source (32-bits), which consists of too many bits to directly use as the

FQID. The hash algorithm can be used to reduce the 32-bits to a smaller number; in this case, six bits

would generate 64 queues, which is more than the anticipated maximum flows at a given time.

However, this is not significantly more than maximum flow expected, so more FQs can be defined to

reduce hash collisions. Note that, in this case, a hash collision implies that two flows are assigned to the

same FQ. As the ingress FQs fill directly from the port, the packet order is still maintained when there

 QorIQ DPAA Primer for Software Architecture, Rev. 0

34 Freescale Semiconductor

is a collision (two flows into one FQ). However, having two flows in the same FQ tends to minimize

the impact of cache warming. There may be other possibilities to refine the definition of flows to ensure

a one-to-one mapping of flows to FQs (for example, concatenating other fields in the frame) but for this

example assume that an 8 bit hash (256 FQs) minimizes the likelihood of two flows in the FQ to an

acceptable level.

Consider the case in which, on ingress, there is traffic that does not match any of the intended flow

definitions. The design can handle these by placing unidentifiable packets into a separate garbage FQ or

by simply having the FMan discard the packets.

On egress control traffic, because the traffic may go out on three different ports, three FQs are required.

For the egress pseudo real-time traffic, there is one queue for each port as well.

For the egress data plane traffic, there are multiple options. When the flows are pinned to a specific

core, it might be possible to simply have one queue per port. In this case, the cores would effectively be

maintaining order. However, for this example, assume that the system uses the order definition/order

restoration mechanism previously described. In this case, the system needs to define an FQ for each

egress flow. Note that, since software is managing this, there is no need for any sort of hash algorithm

to spread the traffic; the cores will enqueue to the FQ associated with the flow. When there are no more

than 50 flows in the system at one time, and number of egress flows per port is unknown, the system

could define 50 FQs for each port when the DPAA is initialized.

4.4 Define PCD configuration for ingress FQs

This step involves defining how the FMan splits the incoming port traffic into the FQs. In general, this

is accomplished using the PCD (Parse, Classify, Distribute) function and results in specific traffic

assigned to a specific FQID. Fields in the incoming packet may be used to identify and split the traffic

as required. For this key optimization case, the user must determine the correct field. The example is as

follows:

 For the ingress control traffic, the ICMP protocol identifier is the selector or key. If the traffic is

from ports 1 or 2 then that traffic goes to one FQID. If it is from port 3, the traffic goes to a

different FQID because this needs to be separated and given a higher priority than the other two

ports.

 For the ingress data plane traffic, the IP source field is used to determine the FQID. The PCD is

then configured to hash the IP source to 8 bits, which will generate 256 possible FQs. Note that

this is the same, regardless of whether the packet came from ports 1, 2, or 3.

 For the ingress pseudo real-time traffic, the PCD is configured to check for the proprietary

identifier. If there is a match then the traffic goes to an FQID based on the ingress port. If there

is no match then the incoming packet is discarded. Also, the soft parser needs to be

configured/programmed to locate the proprietary identifier.

Note that the FQID number itself can be anything (within the 24 bits to define the FQ). To maintain

meaning, use a numbering scheme to help identify the type of traffic. For the example, define the

following ingress FQIDs:

 High priority control: FQID 0x100

 QorIQ DPAA Primer for Software Architecture, Rev. 0

Freescale Semiconductor 35

 Low priority control: FQID 0x200

 General data plane: FQID 0x1000 – 0x10FF

 Pseudo real-time traffic: FQID 0x2000 (port 4), FQID 0x2100 (port 5)

The specifics for configuring the PCDs are described in the DPAA Reference Manual and in the

Software Developer Kit (SDK) used to develop the software.

4.5 Define ingress FQ/WQ/channel configuration

For each class of traffic in the system, the FQs must be defined together with both the channel and the

WQ to which they are associated. The channel association affines to a specific processor core while the

WQ determines priority. Consider the following by class of traffic:

 The control traffic goes to a pool of two cores with priority given to traffic on port 3.

 The general data plane traffic goes to a pool of 4 cores.

 The pseudo real-time traffic goes to two separate cores as a dedicated channel.

Note that, when the FQ is defined, in addition to the channel association, other parameters may be

configured. In the application example, the FQs from 1000 to 10FF are all assigned to the same

congestion group; this is done when the FQ is initialized. Also, for these FQs it is desirable to limit the

individual FQ length; this would also be configured when the FQ is initialized.

Because the example application is going to use order definition/order restoration mode, this setting

needs to be configured for each FQ in the general data plane traffic (FQID 0x1000-0x10FF). Note that

order is not required for the control plane traffic and that order is preserved in the pseudo real-time

traffic because the ingress traffic flows are mapped to specific cores.

QMan configuration considerations include the congestion management and pool channel scheduling. A

congestion group must be defined as part of QMan initialization. (Note that the FQ initialization is

where the FQ is bound to a congestion group.) This is where the total number of frames and the discard

policy of the congestion group are defined. Also, consider the QMan scheduling for pool channels. In

this case, the default of temporarily attaching an FQ to a core until the FQ is empty will likely work best.

This tends to keep the caches current, especially for the general data plane traffic on cores 3-6.

 QorIQ DPAA Primer for Software Architecture, Rev. 0

36 Freescale Semiconductor

Figure 25. Ingress application map

4.6 Define egress FQ/WQ/channel configuration

For egress, the packets still flow through the system using the DPAA, but the considerations are

somewhat different. Note that each external port has its own dedicated channel; therefore, to send traffic

out of a specific port, the cores enqueue a frame to an FQ associated with the dedicated channel for that

port. Depending on the priority level required, the FQ is associated with a specific work queue.

For the example, the egress configuration is as follows:

 For control plane traffic, there needs to be separate queues for each port this traffic may use.

These FQs must be assigned to a WQ that is higher in priority then the WQ used for the data

 QorIQ DPAA Primer for Software Architecture, Rev. 0

Freescale Semiconductor 37

plane traffic. The example shown includes a strict priority (over the data plane traffic) for ports

1 and 2 with the possibility of WRED with the data plane traffic on port 3.

 Because the example assumes that the order restoration facility in the FQs will be utilized, there

must be one egress FQ for each flow. The initial system assumptions are for up to 50 flows of

this type; however, the division by port is unknown, the FQs can be assigned so that there are at

least 50 for each port. Note that FQs can be added when the flow is discovered or they can be

defined at system initialization time.

 For the pseudo real-time traffic, per the initial assumptions, core 7 sends traffic out of port 4 and

core 8 sends traffic out of port 5. As the flows are per core, the order is preserved because of this

mapping. These are assigned to WQ2, which allows definition for even higher priority traffic (to

WQ1) or lower priority traffic for future definition on these ports.

As stated before, the FQIDs can be whatever the user desires and should be selected to help keep track

of what type of traffic the FQ’s are associated. For this example:

 Control traffic for ports 1, 2, 3 are FQID 300, 400, 500 respectively.

 Data plane traffic for ports 1, 2, 3 are FQID 3000-303F, 4000-403F, and 5000-503F respectively,

this provides for 64 FQ’s per port on egress.

 The pseudo real-time traffic uses FQID 6000 for port 4 and 7000 for port 5.

Because this application makes use of the order restoration feature, an order restoration point must be

defined for each data plane traffic flow. Also, congestion management on the FQs may be desirable.

Consider that the data plane traffic may come in on multiple ports but may potentially be consolidated

such that is egresses out a single port. In this case, more traffic may be attempted to be enqueued to a

port than the port interface rate may allow, which may cause congestion. To manage this possibility,

three congestion groups can be defined each containing all the FQs on each of the three ports that may

have the control plus data plane traffic. As previously discussed, it may be desirable to set the length of

the individual FQs to further manage this potential congestion.

 QorIQ DPAA Primer for Software Architecture, Rev. 0

38 Freescale Semiconductor

Figure 26. Egress application map

5 Revision history

This table provides a revision history for this white paper.

Table 2. Revision history

Rev. number Date Substantive change

0 05/2012 Initial release

Document Number: QORIQDPAAWP

Rev. 0

06/2012

How to Reach Us:

Home Page:

freescale.com

Web Support:

freescale.com/support

Information in this document is provided solely to enable system and software implementers to use
implementers to use Freescale products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale
makes no warranty, representation, or guarantee regarding the suitability of its products for any particular
purpose, nor does Freescale assume any liability arising out of the application or use of any product or
circuit, and specifically disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may vary over time. All
operating parameters, including “typicals,” must be validated for each customer application by customer’s
technical experts. Freescale does not convey any license under its patent rights nor the rights of others.
Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the
following address: http://www.reg.net/v2/webservices/Freescale/Docs/TermsandConditions.htm.

Freescale, the Freescale logo, and QorIQ are trademarks of Freescale Semiconductor, Inc. Reg. U.S.
Pat. & Tm. Off. CoreNet is a trademark of Freescale Semiconductor, Inc. All other product or service
names are the property of their respective owners. The Power Architecture and Power.org word marks
and the Power and Power.org logos and related marks are trademarks and service marks licensed by
Power.org.

© Freescale Semiconductor, Inc. 2012. All rights reserved.

	1 Benefits of the DPAA
	2 General architectural considerations
	2.1 Multicore design considerations
	2.2 Parse/classification software offload
	2.3 Flow order considerations
	2.4 Managing flow-to-core affinity

	3 Understanding the DPAA
	3.1 DPAA goals

	4 Application mapping example
	4.1 Processor core assignment
	4.2 Define flows

	5 Revision history

