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Multicore processing, or multiple execution 

thread processing, introduces unique 

considerations to the architecture of networking 

systems, including processor load 

balancing/utilization, flow order maintenance, 

and efficient cache utilization. This white paper 

reviews the key features, functions, and 

properties enabled by the QorIQ DPAA (Data 

Path Acceleration Architecture) hardware and 

demonstrates how to best architect software to 

leverage the DPAA hardware.   

By exploring how the DPAA is configured and 

leveraged in a particular application, the user 

can determine which elements and features to 

use.  This streamlines the software development 

stage of implementation by allowing 

programmers to focus their technical 

understanding on the elements and features that 

are implemented in the system under 

development, thereby reducing the overall 

DPAA learning curve required to implement the 

application.
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1 Benefits of the DPAA 

Architecting a networking application with a multicore processor presents challenges (such as workload 

balance and maintaining flow order), which are not present in a single core design.  Without hardware 

assistance, the software must implement techniques that are inefficient and cumbersome, reducing the 

performance benefit of multiple cores.  To address workload balance and flow order challenges, the 

DPAA determines and separates ingress flows then manages the temporary, permanent, or semi-

permanent flow-to-core affinity.  The DPAA also provides a work priority scheme, which ensures 

ingress critical flows are addressed properly and frees software from the need to implement a queuing 

mechanism on egress.  As the hardware determines which core will process which packet, performance 

is boosted by direct cache warming/stashing as well as by providing biasing for core-to-flow affinity, 

which ensures that flow-specific data structures can remain in the core’s cache. 

By understanding how the DPAA is leveraged in a particular design, the system architect can map out 

the application to meet the performance goals and to utilize the DPAA features to leverage any legacy 

application software that may exist.  Once this application map is defined, the architect can focus on 

more specific details of the implementation. 

2 General architectural considerations 

2.1 Multicore design considerations 

As the need for processing capability has grown, the only practical way to increase the performance on a 

single silicon part is to increase the number of general purpose processing cores (CPUs).  However, 

many legacy designs run on a single processor; introducing multiple processors into the system creates 

special considerations, especially for a networking application. 

Most networking applications are split between data and control plane tasks.  In general, control plane 

tasks manage the system within the broad network of equipment.  While the control plane may process 

control packets between systems, the control plane process is not involved in the bulk processing of the 

data traffic. This task is left to the data plane processing task or program. 

The general flow of the data plane program is to receive data traffic (in general, packets or frames), 

process or transform the data in some way and then send the packets to the next hop or device in the 

network.  In many cases, the processing of the traffic depends on the type of traffic.  In addition, the 

traffic usually exists in terms of a flow, a stream of traffic where the packets are related.  A simple 

example could be a connection between two clients that, at the packet level, is defined by the source and 

destination IP address.  Typically, multiple flows are interleaved on a single interface port; the number 

of flows per port depends on the interface bandwidth as well as on the bandwidth and type of flows 

involved.   
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2.2 Parse/classification software offload 

The DPAA provides intelligence within the IO subsection of the SoC (system-on-chip) to split traffic 

into user-defined queues.  One benefit is that the intelligence used to divide the traffic can be leveraged 

at a system level.   

In addition to sorting and separating the traffic, the DPAA can append useful processing information 

into the stream; offloading the need for the software to perform these functions (see the following two 

figures). 

Note that the DPAA is not intended to replace significant packet processing or to perform extensive 

classification tasks.  However, some applications may benefit from the streamlining that results from the 

parse/classify/distribute function within the DPAA.  The ability to identify and separate flow traffic is 

fundamental to how the DPAA solves other multicore application issues. 

 

Figure 1. Generic multiprotocol processing 
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Figure 2. Hardware-sorted protocol flow 

2.3 Flow order considerations 

In most networking applications, individual traffic flows through the system require that the egress 

packets remain in the order in which they are received.  In a single processor core system, this 

requirement is easy to implement.  As long as the data plane software follows a run-to-completion 

model on a per-packet basis, the egress order will match the ingress packet order.  However, if multiple 

processors are implemented in a true symmetrical multicore processing (SMP) model in the system, the 

egress packet flow may be out of order with respect to the ingress flow.  This may be caused when 

multiple cores simultaneously process packets from the same flow.   
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Even if the code flow is identical, factors such as cache hits/misses, DRAM page hits/misses, interrupts, 

control plane and OS tasks can cause some variability in the processing path, allowing egress packets to 

“pass” within the same flow, as shown in this figure. 

 

Figure 3. Multicore flow reordering 

For some applications, it is acceptable to reorder the flows from ingress to egress.  However, most 

applications require that order is maintained.  When no hardware is available to assist with this ordering, 

the software must maintain flow order.  Typically, this requires additional code to determine the 

sequence of the packet currently being processed, as well as a reference to a data structure that maintains 

order information for each flow in the system.  Because multiple processors need to access and update 

this state information, access to this structure must be carefully controlled, typically by using a lock 

mechanism that can be expensive with regard to program cycles and processing flow (see Figure 4). One 

of goals of the DPAA architecture is to provide the system designer with hardware to assist with packet 

ordering issues. 
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Figure 4. Implementing order in software 

2.4 Managing flow-to-core affinity 

In a multicore networking system, if the hardware configuration always allows a specific core to process 

a specific flow then the binding of the flow to the core is described as providing flow affinity.  If a 

specific flow is always processed by a specific processor core then for that flow the system acts like a 

single core system.  In this case, flow order is preserved because there is a single thread of operation 

processing the flow; with a run-to-completion model, there is no opportunity for egress packets to be 

reordered with respect to ingress packets.   

Another benefit of a specific flow being affined to a core is that the cache local to that core (L1 and 

possibly L2, depending on the specific core type) is less likely to miss when processing the packets 

because the core’s data cache will not fetch flow state information for flows to which it is not affined.  

Also, because multiple processing entities have no need to access the same individual flow state 

information, the system need not lock the access to the individual flow state data.  The DPAA offers 

several options to define and manage flow-to-core affinity. 
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Figure 5. Managing flow-to-core affinity 

Many networking applications require intensive, repetitive algorithms to be performed on large portions 

of the data stream(s).  While software in the processor cores could perform these algorithms, specific 

hardware offload engines often better address specific algorithms.  Cryptographic and pattern matching 

accelerators are examples of this in the QorIQ family.  These accelerators act as standalone hardware 

elements that are fed blocks or streams of data, perform the required processing, and then provide the 

output in a separate (or perhaps overwritten) data block within the system.  The performance boost is 

significant for tasks that can be done by these hardware accelerators as compared to a software 

implementation. 
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In DPAA-equipped SoCs, these offload engines exist as peers to the cores and IO elements, and they use 

the same queuing mechanism to obtain and transfer data.  The details of the specific processing 

performed by these offload engines is beyond the scope of this document; however, it is important to 

determine which of these engines will be leveraged in the specific application.  The DPAA can then be 

properly defined to implement the most efficient configuration/definition of the DPAA elements. 

3 Understanding the DPAA 

3.1 DPAA goals 

The following provides a brief overview of the DPAA elements in order to contextualize the application 

mapping activities.  For more details on the DPAA architecture, see the QorIQ Data Path Acceleration 

Architecture (DPAA) Reference Manual.   

The primary goals of the DPAA are as follows: 

 To provide intelligence within the IO portion of the SoC.  

 To route and manage the processing work associated with traffic flows.  

 To simplify the ordering and load balance concerns associated with multicore processing.   

The DPAA achieves these goals by inspecting and separating ingress traffic into Frame Queues (FQs).  

In general, the intent is to define a flow or set of flows as the traffic in a particular FQ.  The FQs are 

associated to a specific core or set of cores via a channel.  Within the channel definition, the FQs can be 

prioritized among each other using the Work Queue (WQ) mechanism.  The egress flow is similar to the 

ingress flow.  The processors place traffic on a specific FQ, which is associated to a particular physical 

port via a channel.  The same priority scheme using WQs exists on egress, allowing higher priority 

traffic to pass lower priority traffic on egress without software intervention. 

3.2 DPAA elements 

3.2.1 FMan overview 

The FMan inspects traffic, splits it into FQs on ingress, and sends traffic from the FQs to the interface 

on egress.  On ingress traffic, the FMan is configured to determine the traffic split required by the PCD 

(Parse, Classify, Distribute) function.  This allows the user to decide how he wants to define his traffic: 

typically, by flows or classes of traffic.  The PCD can be configured to route all traffic on one port to a 

single queue or with a higher level of complexity where large numbers of queues are defined and 

managed.  The PCD can identify traffic based on the specific content of the incoming packets (usually 

within the header) or packet reception rates (policing). 

The parse function is used to identify which fields within the data frame determine the traffic split.  The 

fields used may be defined by industry standards, or the user may employ a programmable soft parse 

feature to accommodate proprietary field (typically header) definition(s).  The results of the parse 

function may be used directly to determine the frame queue; or, the contents of the fields selected by the 
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parse function may be used as a key to select the frame queue.  The parse function employs a 

programmed mask to allow the use of selected fields.  

The resultant key from the parse function may be used to assign traffic to a specific queue based on a 

specific exact match definition of fields in the header.  Alternatively, a range of queues can be defined 

either by using the resultant key directly (if there are a small number of bits in the key) or by performing 

a hash of the key to use a large number of bits in the flow identifier and create a manageable number of 

queues. 

The FMan also provides a policer function, which is rate-based and allows the user to mark or drop a 

specific frame that exceeds a traffic threshold.  The policing is based on a two-rate, three-color marking 

algorithm (RFC2698). The sustained and peak rates as well as the burst sizes are user-configurable. 

 

Figure 6. Ingress FMan flow 

The figure above shows the FMan splitting ingress traffic on an external port into a number of queues.  

However, the FMan works in a similar way on egress: it receives traffic from FQs then transmits the 

traffic on the designated external port.  Alternatively, the FMan can be used to process flows internally 

via the offline port mechanism: traffic is dequeued (from some other element in the system), processed, 

then enqueued onto a frame queue processing further within the system. 

On ingress traffic, the FMan generates an internal context (IC) data block, which it uses as it performs 

the PCD function.  Optionally, some or all of this information may be added into the frames as they are 

passed along for further processing.  For egress or offline processing, the IC data can be passed with 

each frame to be processed.  This data is mostly the result of the PCD actions and includes the results of 

the parser, which may be useful for the application software.  See the QorIQ DPAA Reference Manual 

for details on the contents of the IC data block. 
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This figure shows the FMan egress flow. 

 

Figure 7. FMan egress flow 

This figure shows the FMan offline flow. 

 

Figure 8. FMan offline flow 

3.2.2 QMan overview 

The QMan links the FQs to producers and consumers (of data traffic) within the SoC.  The 

producers/consumers are either FMAN, acceleration blocks, or CPU cores.  All the producers/consumers  

have one channel, each of which is referred to as a dedicated channel.  Additionally, there are a number 
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of pool channels available to allow multiple cores (not FMAN or accelerators) to service the same 

channel.  Note that there are channels for each external FMan port, the number of which depends on the 

SoC, as well as the internal offline ports. 

 

Figure 9. DPAA channel types 

Each channel provides for eight levels of priority, each of which has its own work queue (WQ).  The 

two highest level WQs are strict priority: traffic from WQ0 must be drained before any other traffic 

flows; then traffic from WQ1 and then traffic from the other six WQs is allowed to pass.  The last six 

WQs are grouped together in two groups of three, which are configurable in a weighted round robin 

fashion.  Most applications do not need to use all priority levels.  When multiple FQs are assigned to the 

same WQ, QMan implements a credit-based scheme to determine which FQ is scheduled (providing 

frames to be processed) and how many frames (actually the credit is defined by the number of bytes in 

the frames) it can dequeue before QMan switches the scheduling to the next FQ on the WQ.  If a higher 

priority WQ becomes active (that is, one of the FQs in the higher priority WQ receives a frame to 

become non-empty) then the dequeue from the lower priority FQ is suspended until the higher priority 

frames are dequeued.  After the higher priority FQ is serviced, when the lower priority FQ restarts 

servicing, it does so with the remaining credit it had before being pre-empted by the higher priority FQ. 

When the DPAA elements of the SoC are initialized, the FQs are associated with WQs, allowing the 

traffic to be steered to the desired core (dedicated connect channel), set of cores (pool channel), FMAN, 

or accelerator, using a defined priority. 
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Figure 10. Prioritizing work 

3.2.2.1 Portals 

A single portal exists for each non-core DPAA producer/consumer (FMAN, SEC, and PME).  This is a 

data structure internal to the SoC that passes data directly to/from the consumer’s direct connect 

channel.   

Software portals are associated with the processor cores and are, effectively, data structures that the 

cores use to pass (enqueue) packets to or receive (dequeue) packets from the channels associated with 

that portal (core).  Each SoC has at least as many software portals as there are cores.  Software portals 

are the interface through which the DPAA provides the data processing workload for a single thread of 

execution. 
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The portal structure consists of the following: 

 The Dequeue Response Ring (DQRR) determines the next packet to be processed.  

 The Enqueue Command Ring (EQCR) sends packets from the core to the other elements.  

 The Message Ring (MR) notifies the core of the action (for example, attempted dequeue rejected, 

and so on).  

 The Management command and response control registers 

 

Figure 11. Processor core portal 

On ingress, the DQRR acts as a small buffer of incoming packets to a particular core.  When a section of 

software performs a get packet type operation, it gets the packet from a pointer provided as an entry in 

the DQRR for the specific core running that software.  Note that the DQRR consolidates all potential 

channels that may be feeding frames to a particular core.  There are up to 16 entries in each DQRR.  

Each DQRR entry contains: 

 a pointer to the packet to be processed,  

 an identifier of the frame queue from which the packet originated,  

 a sequence number (when configured),  

 and additional FMan-determined data (when configured). 

When configured for push mode, QMan attempts to fill the DQRR from all the potential incoming 

channels.  When configured in pull mode, QMan only adds one DQRR entry when it is told to by the 

requesting core.  Pull mode may be useful in cases where the traffic flows must be very tightly 

controlled; however, push mode is normally considered the preferred mode for most applications. 
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Figure 12. Ingress channel to portal options 

The DQRRs are tightly coupled to a processor core.  The DPAA implements a feature that allows the 

DQRR mechanism to pre-allocate, or stash, the L1 and/or L2 cache with data related to the packet to be 

processed by that core.  The intent is to have the data required for packet processing in the cache before 

the processor runs the “get packet” routine, thereby reducing the overall time spent processing a 

particular packet.   

The following is data that may be warmed into the caches: 

 The DQRR entry 

 The packet or portion of the packet for a single buffer packet 

 The scatter gather list for a multi-buffer packet 

 Additional data added by FMAN 

 FQ context (A and B) 

The FQ context is a user-defined space in memory that contains data associated with the FQ (per flow) 

to be processed.  The intent is to place in this data area the state information required when processing a 
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packet for this flow.  The FQ context is part of the FQ definition, which is performed when the FQ is 

initialized.   

The cache warming feature is enabled by configuring the capability and some definition of the FQs and 

QMan at system initialization time.  This can provide a significant performance boost and requires little 

to no change in the processing flow.  When defining the system architecture, it is highly recommended 

that the user enable this feature and consider how to maximize its impact.  

 

Figure 13. Cache warming options 

In addition to getting packet information from the DQRR, the software also manages the DQRR by 

indicating which DQRR entry it will consume next.  This is how the QMan determines when the DQRR 

(portal) is ready to process more frames.  Two basic options are provided.  In the first option, the 

software can update the ring pointer after one or several entries have been consumed.  By waiting to 

indicate the consumption of multiple frames, the performance impact of the write doing this is 

minimized.  The second option is to use the discrete consumption acknowledgment (DCA) mode.  This 
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mode allows the consumption indication to be directly associated with a frame enqueue operation from 

the portal (that is, after the frame has been processed and is on the way to the egress queue).  This 

tracking of the DQRR Ring Pointer CI (Consumer Index) helps implement frame ordering by ensuring 

that QMan does not dequeue a frame from the same FQ (or flow) to a different core until the processing 

is completed. 

3.2.2.2 Queue schedule options 

The primary communication path between QMan and the processor cores is the portal memory structure.  

QMan uses this interface to schedule the frames to be processed on a per-core basis.  For a dedicated 

channel, the process is straightforward: the QMan places an entry in the DQRR for the portal (processor) 

of the dedicated channel and dequeues the frame from an FQ to the portal.  To do this, QMan 

determines, based on the priority scheme (previously described) for the channel, which frame should be 

processed next and then adds an entry to the DQRR for the portal associated with the channel.   

When configured for push mode, once the portal requests QMan to provide frames for processing, 

QMan provides frames until halted.  When the DQRR is full and more frames are destined for the portal, 

QMan waits for an empty slot to become available in the DQRR and then adds more entries (frames to 

be processed) as slots become available.   

When configured for pull mode, the QMan only adds entries to the DQRR at the direct request of the 

portal (software request).  The command to the QMan that determines if a push or pull mode is 

implemented and tells QMan to provide either one or from one to three (up to three if there are that 

many frames to be dequeued) frames at a time.  This is a tradeoff of smaller granularity (for one frame 

only) versus memory access consolidation (if the up to three frames option is selected). 

When the system is configured to use pool channels, a portal may get frames from more than one 

channel and a channel may provide frames (work) to more than one portal (core).  QMan dequeues 

frames using the same mechanism described above (updating DQRR) and QMan also provides for some 

specific scheduling options to account for the pool channel case in which multiple cores may process the 

same channel.   

3.2.2.2.1 Default scheduling 

The default scheduling is to have an FQ send frames to the same core for as long as that FQ is active.  

An FQ is active until it uses up its allocated credit or becomes empty.  After an FQ uses its credit, it is 

rescheduled again, until it is empty.  For its schedule opportunity, the FQ is active and all frames 

dequeued during the opportunity go to the same core.  After the credit is consumed, QMan reactivates 

that FQ but may assign the flow processing to a different core.  This provides for a sticky affinity during 

the period of the schedule opportunity.  The schedule opportunity is managed by the amount of credit 

assigned to the FQ.   

NOTE 

A larger credit assigned to an FQ provides for a stickier core affinity, but 

this makes the processing work granularity larger and may affect load 

balancing. 
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Figure 14. Default scheduling 

3.2.2.2.2 Hold active scheduling 

With the hold active option, when the QMan assigns an FQ to a particular core, that FQ is affined to that 

core until it is empty.  Even after the FQ’s credit is consumed, when it is rescheduled with the next 

schedule opportunity, the frames go to the same core for processing.  This effectively makes the flow-to-

core affinity stickier than the default case, ensuring the same flow is processed by the same core for as 

long as there are frames queued up for processing.  Because the flow-to-core affinity is not hard-wired 

as in the dedicated channel case, the software may still need to account for potential order issues. 

However, because of flow-to-core biasing, the flow state data is more likely to remain in L1 or L2 

cache, increasing hit rates and thus improving processing performance.  Because of the specific QMan 

implementation, only four FQs may be in held active state at a given time. 
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Figure 15. Hold active scheduling 

3.2.2.2.3 Avoid blocking scheduling 

QMan can also be scheduled in the avoid blocking mode, which is mutually exclusive to hold active.  In 

this mode, QMan schedules frames for an FQ to any available core in the pool channel.  For example, if 

the credit allows for three frames to be dequeued, the first frame may go to core 1.  But, when that 

dequeue fills core 1’s DQRR, QMan finds the next available DQRR entry in any core in the pool.  With 

avoid blocking mode there is no biasing of the flow to core affinity.  This mode is useful if a particular 

flow either has no specific order requirements or the anticipated processing required for a single flow is 

expected to consume more than one core’s worth of processing capability. 

Alternatively, software can bypass QMan scheduling and directly control the dequeue of frame 

descriptors from the FQ.  This mode is implemented by placing the FQ in parked state.  This allows 

software to determine precisely which flow will be processed (by the core running the software). 

However, it requires software to manage the scheduling, which can add overhead and impact 

performance. 
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Figure 16. Avoid blocking scheduling 

3.2.2.3 Order definition/ restoration 

The QMan provides a mechanism to strictly enforce ordering.  Each FQ may be defined to participate in 

the process of an order definition point and/or an order restoration point.  On ingress, an order definition 

point provides for a 14 bit sequence number assigned to each frame (incremented per frame) in a FQ in 

the order in which they were received on the interface.  The sequence number is placed in the DQRR 

entry for the frame when it is dequeued to a portal.  This allows software to efficiently determine which 

packet it is currently processing in the sequence without the need to access a shared (between cores) data 

structure.  On egress, an order restoration point delays placing a frame onto the FQ until the expected 

next sequence number is encountered.  From the software standpoint, once it has determined the relative 

sequence of a packet, it can enqueue it and resume other processing in a fire-and-forget manner.   

NOTE 

The order definition points and order restoration points are not dependent 

on each other; it is possible to have one without the other depending on 

application requirements.  To effectively use these mechanisms, the packet 

software must be aware of the sequence tagging. 
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Figure 17. Order definition/restoration 

As processors enqueue packets for egress, it is possible that they may skip a sequence number because 

of the nature of the protocol being processed.  To handle this situation, each FQ that participates in the 

order restoration service maintains its own Next Expected Sequence Number (NESN).  When the 

difference between the sequence number of the next expected and the most recently received sequence 

number exceeds the configurable ORP threshold, QMan gives up on the missing frame(s) and 



 

 QorIQ DPAA Primer for Software Architecture, Rev. 0 

Freescale Semiconductor  21 

 

autonomously advances the NESN to bring the skew within threshold.  This causes any deferred 

enqueus that are currently held in the ORP link list to become unblocked and immediately enqueue them 

to their destination FQ.  If the “skipped” frame arrives after this, the ORP can be configured to reject or 

immediately enqueu the late arriving frame. 

3.2.3 BMan overview 

The BMan block manages the data buffers in memory.  Processing cores, FMan, SEC and PME all may 

get a buffer directly from the BMan without additional software intervention.  These elements are also 

responsible for releasing the buffers back to the pool when the buffer is no longer in use.  Typically, the 

FMan directly acquires a buffer from the BMan on ingress.  When the traffic is terminated in the system, 

the core generally releases the buffer.  When the traffic is received, processed, and then transmitted, the 

same buffer may be used throughout the process.  In this case, the FMan may be configured to release 

the buffer automatically, when the transmit completes.   

The BMan also supports single or multi-buffer frames.  Single buffer frames generally require the 

adequately defined (or allocated) buffer size to contain the largest data frame and minimize system 

overhead.  Multi-buffer frames potentially allow better memory utilization, but the entity passed 

between the producers/consumers is a scatter-gather table (that then points to the buffers within the 

frame) rather than the pointer to the entire frame, which adds an extra processing requirement to the 

processing element. 

The software defines pools of buffers when the system is initialized.  The BMan unit itself manages the 

pointers to the buffers provided by the software and can be configured to interrupt the software when it 

reaches a condition where the number of free buffers is depleted (so that software may provide more 

buffers as needed). 

3.3 Using the DPAA to handle order 

The DPAA helps address packet order issues that may occur as a result of running an application in a 

multiple processor environment.  And there are several ways to leverage the DPAA to handle flow order 

in a system.  The order preservation technique maps flows such that a specific flow always executes on a 

specific processor core.  For this case, the individual flow will not have multiple execution threads and 

the system will run much like a single core system.  This option generally requires less impact to legacy, 

single-core software but may not effectively utilize all the processing cores in the system because it 

requires using a dedicated channel to the processors.  The FMan PCD can be configured to either 

directly match a flow to a core or to use the hashing to provide traffic spreading that offers a permanent 

flow-to-core affinity. 

If the application must use pool channels to balance the processing load then the software must be more 

involved in the ordering.  The software can make use of the order restoration point function in QMan, 

which requires the software to manage a sequence number for frames enqueued on egress.  

Alternatively, the software can be implemented to maintain order by biasing the stickiness of flow 

affinity with default or hold active scheduling; lock contention and cache misses can be biased to 

increase performance. 



 

 QorIQ DPAA Primer for Software Architecture, Rev. 0  

22  Freescale Semiconductor 

 

If there are no order requirements then load balancing can be achieved by associating the non-ordered 

traffic to a pool of cores. 

NOTE 

All of these techniques may be implemented simultaneously on the same 

SoC; as long as the flow definition is precise enough to split the traffic 

types, it is simply a matter of proper defining the FQs and associating 

them to the proper channels in the system. 

3.3.1 Using the exact match flow definition to preserve order 

The simplest technique for preserving order is to route the ingress traffic of an individual flow to a 

particular core.  For the particular flow in question, the system appears as a legacy, single-core 

programming model and, therefore, has minimal impact on the structure of the software.  In this case, 

the flow definition determines the core affinity of a flow. 
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Figure 18. Direct flow-to-core mapping (order preserved) 

This technique is completely deterministic: the DPAA forces specific flows to a specific processor, so it 

may be easier to determine the performance assuming the ingress flows are completely understood and 

well defined.  Notice that a particular processor core may become overloaded with traffic while another 

sits idle for increasingly random flow traffic rates.   

To implement this sort of scheme, the FMan must be configured to exactly match fields in the traffic 

stream.  This approach can only be used for a limited number of total flows before the FMan’s internal 

resources are consumed.   

In general, this sort of hard-wired approach should be reserved for either critical out-of-band traffic or 

for systems with a small number of flows that can benefit from the highly deterministic nature of the 

processing. 
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3.3.2 Using hashing to distribute flows across cores 

The FMan can be configured to extract data from a field or fields within the data frame, build a key from 

that, and then hash the resultant key into a smaller number.  This is a useful technique to handle a larger 

number of flows while ensuring that a particular flow is always associated with a particular core.  An 

example is to define a flow as an IPv4 source + IPv4 destination address.   Both fields together 

constitute 64 bits, so there are 2
64

 possible combinations for the flow in that definition.  The FMan then 

uses a hash algorithm to compress this into a manageable number of bits.  Note that, because the hash 

algorithm is consistent, packets from a particular flow always go to the same FQ.  By utilizing this 

technique, the flows can be spread in a pseudo-random, consistent (per flow) manner to a smaller 

number of FQs.  For example, hashing the 64 bits down to 2 bits spreads the flows among four queues.  

Then these queues can be assigned to four separate cores by using a dedicated channel; effectively, this 

appears as a single-core implementation to any specific flow.   

This spreading technique works best with a large number of possible flows to allow the hash algorithm 

to evenly spread the traffic between the FQs.  In the example below, when the system is only expected 

to have eight flows at a given time, there is a good chance the hash will not assign exactly two flows per 

FQ to evenly distribute the flows between the four cores shown.  However, when the number of flows 

handled is in the hundreds, the odds are good that the hash will evenly spread the flows for processing. 
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Figure 19. Simple flow distribution via hash (order preserved) 

To optimize cache warming, the total number of hash buckets can be increased with flow-to-core 

affinity maintained.  When the number of hash values is larger than the number of expected flows at a 

given time, it is likely though not guaranteed that each FQ will contain a single flow.  For most 

applications, the penalty of a hash collision is two or more flows within a single FQ.  In the case of 

multiple flows within a single FQ, the cache warming and temporary core affinity benefits are reduced 

unless the flow order is maintained per flow.   

Note that there are 24 bits architected for the FQ ID, so there may be as many as 16 million FQs in the 

system.  Although this total may be impractical, this does allow for the user to define more FQs than 

expected flows in order to reduce the likelihood of a hash collision; it also allows flexibility in assigning 

FQID’s in some meaningful manner.  It is also possible to hash some fields in the data frame and 

concatenate other parse results, possibly allowing a defined one-to-one flow to FQ implementation 

without hash collisions. 
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Figure 20. Using hash to assign one flow per FQ (order preserved and cache stashing effective) 

3.3.3 Pool channel considerations 

So far, the techniques discussed in this white paper have involved assigning specific flows to the same 

core to ensure that the same core always processes the same flow or set of flows, thereby preserving 

flow order.  However, depending on the nature of the flows being processed (that is, variable frame 

sizes, difficulty efficiently spreading due to the nature of the flow contents, and so on), this may not 

effectively balance the processing load among the cores.  Alternatively, a user may employ a pool 

channel approach where multiple cores may pool together to service a specific set of flows.  This 

alternative approach allows potentially better processing balance, but increases the likelihood that 

packets may be processed out of order allowing egress packets to pass ingress packets.  When the 

application does not require flows to be processed in order, the pool channel approach allows the easiest 

method for balancing the processing load.  When a pool channel is used and order is required, the 
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software must maintain order.  The hardware order preservation may be used by the software to 

implement order without requiring locked access to shared state information.  When the system uses a 

software lock to handle order then the default scheduling and hold active scheduling tends to minimize 

lock contention. 

 

Figure 21. Using pool channel to balance processing 

3.3.4 Order preservation using hold active scheduling and DCA mode 

As shown in the examples above, order is preserved as long as two or more cores never process frames 

from the same flow at the same time.  This can also be accomplished by using hold active scheduling 

along with discrete consumption acknowledgment (DCA) mode associated with the DQRR.  Although 

flow affinity may change for an FQ with hold active scheduling when the FQ is emptied, if the new 
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work (from frames received after the FQ is emptied) is held off until all previous work completes, then 

the flow will not be processed by multiple cores simultaneously, thereby preserving order.   

When the FQ is emptied, QMan places the FQ in hold suspended state, which means that no further 

work for that FQ is enqueued to any core until all previously enqueued work is completed.  Because 

DCA mode effectively holds off the consumption notification (from the core to QMan) until the 

resultant processed frame is enqueued for egress, this implies processing is completely finished for any 

frames in flight to the core.  After all the in-flight frames have been processed, QMan reschedules the 

FQ to the appropriate core. 

NOTE 

After the FQ is empty and when in hold active mode, the affinity is not 

likely to change.  This is because the indication of “completeness” from 

the core currently processing the flow frees up some DQRR slots that 

could be used by QMan when it restarts enqueuing work for the flow.  The 

possibility of the flow-to-core affinity changing when the FQ empties is 

only discussed as a worst case possibility with regards to order 

preservation. 
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Figure 22. Hold active to held suspended mode 
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Figure 23. Held suspended to hold active mode 

3.4 Congestion management 

From an overall system perspective, there are multiple potential overflow conditions to consider.  The 

maximum number of frames active in the system (the number of frames in flight) is determined by the 

amount of memory allocated to the Packed Frame Queue Descriptors (PQFD’s).  Each PQFD is 64 bytes 

and can identify up to three frames, so the total number of frames that can be identified by the PQFDs is 

equal to the amount of memory allocated for PQFD space divided by 64 bytes (per entry) multiplied by 

three (frames per entry).   

A pool of buffers may deplete in BMan. This depends on how many buffers have been assigned by 

software for BMan.  BMan may raise an interrupt to request more buffers when in a depleted state for a 

given pool; the software can manage the congestion state of the buffer pools in this manner. 
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In addition to these high-level system mechanisms, congestion management may also be identified 

specific to the FQs.  A number of FQs can be grouped together to form a congestion group (up to 256 

congestion groups per system for most DPAA SoCs).  These FQs need not be on the same channel.  The 

system may be configured to indicate congestion either by consider the aggregate number of bytes 

within the FQ’s in the congestion group or by the aggregate number of frames within the congestion 

group.  The frame count option is useful when attempting to manage the number of buffers in a buffer 

pool as they are used by a particular core or group of cores.  The byte count is useful to manage the 

amount of system memory used by a particular core or group of cores.   

When the total number of frames/bytes within the frames in the congestion group exceeds the set 

threshold, subsequent enqueues to any of the FQs in the group are rejected; in general, the frame is 

dropped.  For the congestion group mechanism, the decision to reject is defined by a programmed 

weighted random early discard (WRED) algorithm programmed when the congestion group is defined.   

In addition, a specific FQ can be set to a particular maximum allowable depth (in bytes); after the 

threshold is reached enqueue attempts will be rejected.   This is a maximum threshold: there is no 

WRED algorithm for this mechanism.  Note that, when the FQ threshold is not set, a specific FQ may 

fill until some other mechanism (because it’s part of a congestion group or system PQFD depletion or 

BMAN depletion) prevents the FQ from getting frames.  Typically, FQs within a congestion group are 

expected to have a maximum threshold set for each FQ in the group to ensure a single queue does not 

get stuck and unfairly consume the congestion group.  Note that, when an FQ does not have a queue 

depth set and/or is not a part of a congestion group, the FQ has no maximum depth.  It would be possible 

for a single queue to have all the frames in the system, until the PQFD space or the buffer pool is 

exhausted. 

4 Application mapping example 

4.1 Processor core assignment 

The first step in application mapping is to determine how much processing capability is required for 

tasks that may be partitioned separately.  For example, consider a typical networking application with a 

set of distinct control and data plane functionality.  Assigning two cores to perform control plane tasks 

and six cores to perform data plane tasks may be a reasonable partition in an eight-core device.  When 

initially identifying the SoC required for the application, along with the number of cores and frequencies 

required, the designer makes some performance assumptions based on previous designs and/or 

applicable benchmark data. 

4.2 Define flows 

Next, define what flows will be in the system.  Key considerations for flow definition include the 

following: 

 Total number of flows expected at a given time within the system 

 Desired flow-to-core affinity, ingress flow destination 
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 Processor load balancing 

 Frame sizes (may be fixed or variable) 

 Order preservation requirement 

 Traffic priority relative to the flows 

 Expected bandwidth requirement of specific flows or class of flows 

 Desired congestion handling 

NOTE 

Most systems have multiple classes of flows and may have different 

specific mapping within the same SOC.    

 

Figure 24. Example application with three traffic classes 

In the figure above, two cores are dedicated to processing control plane traffic, four cores are assigned to 

process general data traffic and special time critical traffic is split between two other cores.  In this case, 

assume the traffic characteristics in the following table. With this system-level definition, the designer 

can determine which flows are in the system and how to define the FQs needed. 
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Table 1. Traffic characteristics 

Characteristic Definition 

Control plane traffic  Terminated in the system and any particular packet sent has no dependency on 

previous or subsequent packets (no order requirement).   

 May occur on ports 1, 2 or 3. 

 Ingress control plane traffic on port three is higher priority than the other ports. 

 Any ICMP packet on ports 1, 2 or 3 is considered control plane traffic. 

 Control plane traffic makes up a small portion of the overall port bandwidth. 

General data plane traffic 

 

 May occur on ports 1, 2 or 3 and is expected to comprise the bulk of the traffic on these 

ports. 

 The function performed is done on flows and egress packets must match the order of 

ingress packets. 

 A flow is identified by the IP source address. 

 The system can expect up to 50 flows at a time. 

 All flows have the same priority and a lower priority than any control plane traffic. 

 It is expected that software will not always be able to keep up with this traffic and the 

system should drop packets after some amount of packets are within the system. 

Pseudo real-time traffic  

 

 A high amount of determinism is required by the function. 

 This traffic only occurs on port 4 and port 5 and is identified by a proprietary field in the 

header; any traffic on these ports without the proper value in this field is dropped. 

 All valid ingress traffic on port 4 is to be processed by core 7, ingress traffic on port 5 

processed by core 8. 

 There are only two flows, one from port 4 to port 5 and one from port 5 to port 4, egress 

order must match ingress order. 

 The traffic on these flows are the highest priority. 

 

4.3 Identify ingress and egress frame queues (FQs) 

For many applications, because the ingress flow has more implications for processing, it is easier to 

consider ingress flows first.  In the example above, the control plane and pseudo real-time traffic FQ 

definitions are fairly straightforward.  For the control plane ingress, one FQ for lower priority traffic on 

ports 1 and 2 and one for the higher priority traffic would work.  Note that two ports can share the same 

queue on ingress when it does not matter for which core the traffic is destined.  For ingress pseudo real-

time traffic, there is one FQ on port 4 and one FQ on port 5. 

The general data plane ingress traffic is more complicated.  Multiple options exist which maintain the 

required ordering for this traffic.  While this traffic would certainly benefit from some of the control 

features of the QMan (cache warming, and so on), it is best to have one FQ per flow.  Per the example, 

the flow is identified by the IP source (32-bits), which consists of too many bits to directly use as the 

FQID.  The hash algorithm can be used to reduce the 32-bits to a smaller number; in this case, six bits 

would generate 64 queues, which is more than the anticipated maximum flows at a given time.  

However, this is not significantly more than maximum flow expected, so more FQs can be defined to 

reduce hash collisions.  Note that, in this case, a hash collision implies that two flows are assigned to the 

same FQ.  As the ingress FQs fill directly from the port, the packet order is still maintained when there 
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is a collision (two flows into one FQ).  However, having two flows in the same FQ tends to minimize 

the impact of cache warming.  There may be other possibilities to refine the definition of flows to ensure 

a one-to-one mapping of flows to FQs (for example, concatenating other fields in the frame) but for this 

example assume that an 8 bit hash (256 FQs) minimizes the likelihood of two flows in the FQ to an 

acceptable level. 

Consider the case in which, on ingress, there is traffic that does not match any of the intended flow 

definitions.  The design can handle these by placing unidentifiable packets into a separate garbage FQ or 

by simply having the FMan discard the packets. 

On egress control traffic, because the traffic may go out on three different ports, three FQs are required.  

For the egress pseudo real-time traffic, there is one queue for each port as well.   

For the egress data plane traffic, there are multiple options.  When the flows are pinned to a specific 

core, it might be possible to simply have one queue per port.  In this case, the cores would effectively be 

maintaining order.  However, for this example, assume that the system uses the order definition/order 

restoration mechanism previously described.  In this case, the system needs to define an FQ for each 

egress flow.  Note that, since software is managing this, there is no need for any sort of hash algorithm 

to spread the traffic; the cores will enqueue to the FQ associated with the flow.  When there are no more 

than 50 flows in the system at one time, and number of egress flows per port is unknown, the system 

could define 50 FQs for each port when the DPAA is initialized. 

4.4 Define PCD configuration for ingress FQs 

This step involves defining how the FMan splits the incoming port traffic into the FQs.  In general, this 

is accomplished using the PCD (Parse, Classify, Distribute) function and results in specific traffic 

assigned to a specific FQID.  Fields in the incoming packet may be used to identify and split the traffic 

as required.  For this key optimization case, the user must determine the correct field. The example is as 

follows: 

 For the ingress control traffic, the ICMP protocol identifier is the selector or key.  If the traffic is 

from ports 1 or 2 then that traffic goes to one FQID.  If it is from port 3, the traffic goes to a 

different FQID because this needs to be separated and given a higher priority than the other two 

ports. 

 For the ingress data plane traffic, the IP source field is used to determine the FQID.  The PCD is 

then configured to hash the IP source to 8 bits, which will generate 256 possible FQs.  Note that 

this is the same, regardless of whether the packet came from ports 1, 2, or 3. 

 For the ingress pseudo real-time traffic, the PCD is configured to check for the proprietary 

identifier.  If there is a match then the traffic goes to an FQID based on the ingress port.   If there 

is no match then the incoming packet is discarded.   Also, the soft parser needs to be 

configured/programmed to locate the proprietary identifier. 

Note that the FQID number itself can be anything (within the 24 bits to define the FQ).  To maintain 

meaning, use a numbering scheme to help identify the type of traffic.  For the example, define the 

following ingress FQIDs: 

 High priority control: FQID 0x100 
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 Low priority control: FQID 0x200 

 General data plane: FQID 0x1000 – 0x10FF 

 Pseudo real-time traffic: FQID 0x2000 (port 4), FQID 0x2100 (port 5) 

The specifics for configuring the PCDs are described in the DPAA Reference Manual and in the 

Software Developer Kit (SDK) used to develop the software. 

4.5 Define ingress FQ/WQ/channel configuration 

For each class of traffic in the system, the FQs must be defined together with both the channel and the 

WQ to which they are associated. The channel association affines to a specific processor core while the 

WQ determines priority.  Consider the following by class of traffic:  

 The control traffic goes to a pool of two cores with priority given to traffic on port 3. 

 The general data plane traffic goes to a pool of 4 cores.   

 The pseudo real-time traffic goes to two separate cores as a dedicated channel. 

Note that, when the FQ is defined, in addition to the channel association, other parameters may be 

configured.  In the application example, the FQs from 1000 to 10FF are all assigned to the same 

congestion group; this is done when the FQ is initialized.  Also, for these FQs it is desirable to limit the 

individual FQ length; this would also be configured when the FQ is initialized.   

Because the example application is going to use order definition/order restoration mode, this setting 

needs to be configured for each FQ in the general data plane traffic (FQID 0x1000-0x10FF).  Note that 

order is not required for the control plane traffic and that order is preserved in the pseudo real-time 

traffic because the ingress traffic flows are mapped to specific cores. 

QMan configuration considerations include the congestion management and pool channel scheduling.  A 

congestion group must be defined as part of QMan initialization.  (Note that the FQ initialization is 

where the FQ is bound to a congestion group.)  This is where the total number of frames and the discard 

policy of the congestion group are defined.  Also, consider the QMan scheduling for pool channels.   In 

this case, the default of temporarily attaching an FQ to a core until the FQ is empty will likely work best. 

This tends to keep the caches current, especially for the general data plane traffic on cores 3-6. 



 

 QorIQ DPAA Primer for Software Architecture, Rev. 0  

36  Freescale Semiconductor 

 

 

Figure 25. Ingress application map 

4.6 Define egress FQ/WQ/channel configuration 

For egress, the packets still flow through the system using the DPAA, but the considerations are 

somewhat different.  Note that each external port has its own dedicated channel; therefore, to send traffic 

out of a specific port, the cores enqueue a frame to an FQ associated with the dedicated channel for that 

port.  Depending on the priority level required, the FQ is associated with a specific work queue.   

For the example, the egress configuration is as follows: 

 For control plane traffic, there needs to be separate queues for each port this traffic may use.  

These FQs must be assigned to a WQ that is higher in priority then the WQ used for the data 
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plane traffic.  The example shown includes a strict priority (over the data plane traffic) for ports 

1 and 2 with the possibility of WRED with the data plane traffic on port 3. 

 Because the example assumes that the order restoration facility in the FQs will be utilized, there 

must be one egress FQ for each flow.  The initial system assumptions are for up to 50 flows of 

this type; however, the division by port is unknown, the FQs can be assigned so that there are at 

least 50 for each port.  Note that FQs can be added when the flow is discovered or they can be 

defined at system initialization time.   

 For the pseudo real-time traffic, per the initial assumptions, core 7 sends traffic out of port 4 and 

core 8 sends traffic out of port 5.  As the flows are per core, the order is preserved because of this 

mapping.  These are assigned to WQ2, which allows definition for even higher priority traffic (to 

WQ1) or lower priority traffic for future definition on these ports. 

As stated before, the FQIDs can be whatever the user desires and should be selected to help keep track 

of what type of traffic the FQ’s are associated.  For this example: 

 Control traffic for ports 1, 2, 3 are FQID 300, 400, 500 respectively. 

 Data plane traffic for ports 1, 2, 3 are FQID 3000-303F, 4000-403F, and 5000-503F respectively, 

this provides for 64 FQ’s per port on egress. 

 The pseudo real-time traffic uses FQID 6000 for port 4 and 7000 for port 5. 

Because this application makes use of the order restoration feature, an order restoration point must be 

defined for each data plane traffic flow.  Also, congestion management on the FQs may be desirable.  

Consider that the data plane traffic may come in on multiple ports but may potentially be consolidated 

such that is egresses out a single port.   In this case, more traffic may be attempted to be enqueued to a 

port than the port interface rate may allow, which may cause congestion.  To manage this possibility, 

three congestion groups can be defined each containing all the FQs on each of the three ports that may 

have the control plus data plane traffic.  As previously discussed, it may be desirable to set the length of 

the individual FQs to further manage this potential congestion. 
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Figure 26. Egress application map 

5 Revision history 
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Table 2. Revision history 
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