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Version 1 ColdFire® White Paper
1 Introduction 
The microcontroller landscape is changing...

The bit boundaries that have traditionally defined 
MCU-based solutions are blurring as application 
performance in the 8-bit world is pushing migration 
upward at the same time reduced cost in the 32-bit 
segment is enabling increased access for these 
more-capable devices. Consider the following 
introductory statement from a recent Microprocessor 
Report article:

“Although Microprocessor Report focuses on higher-end 
CPUs whose microarchitectures continue to evolve, 
there’s an interesting battle raging among 
microcontroller vendors. The semiconductor companies 
that make 32-bit MCUs—such as Atmel, Freescale, Oki, 
Philips, STMicroelectronics, and others—are fighting 
over the growing number of customers whose 8- and 
16-bit CPUs are hitting a performance limit.
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Often overlooked by the microprocessor cognoscenti, the MCU market is enormous: more than $12 billion 
in 2005. Of this, more than $10 billion consisted of 8- and 16-bit devices. However, the relative size and 
power consumption of 32-bit MCUs have dropped dramatically in recent years, so 32-bit vendors are 
vigorously attempting to lure system designers away from the smaller devices.” [“Freely Scaling from 8 
to 32 Bits,” J. Scott Gardner, Microprocessor Report, May 1, 2006]

The Freescale Controller Continuum outlines a roadmap that will provide pin-for-pin compatible 8-bit and 
32-bit devices that share peripherals and a common set of tools.

Demand for increased performance and functionality continues to push designs up the microcontroller 
food chain. For 8-bit veterans, Freescale plans expansion at the high-end of the 8-bit portfolio with 
enhanced peripherals and expanded memory options.

Freescale is continuing to make the transition to 32-bit easier through entry-level ColdFire 
microcontrollers with connectivity and security features for cost-sensitive applications. Freescale plans to 
roll out pin-for-pin compatible devices that will allow 8-bit designs to easily upgrade to 32-bit performance 
while maintaining the same peripheral interfaces during 2007.

Additionally, Freescale plans continued enhancements to its award-winning CodeWarrior™ Development 
Studio with automatic code generation, which enables first-time users to create working projects in as few 
as seven clicks. Freescale is also defining a unified hardware development platform that will provide 
common board and cable interfaces across architectures. See Figure 1.

F

Figure 1. Freescale’s Controller Continuum

Critical to the controller continuum and the creation of the industry’s first 8/32-bit compatible architectures 
is the Version 1 ColdFire core. As shown in Figure 2, the V1 ColdFire core can be viewed as the missing 
link bridging the continuum, providing 32-bit performance with 8-bit ease of use with devices that are 
peripheral set and pin compatible with their 8-bit “little brothers”.
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Figure 2. V1 ColdFire: Controller Continuum Missing Link

With the V1 ColdFire core providing the link between the 8- and 32-bit worlds, migration to 32-bits is 
greatly simplified as shown in Figure 3.

Figure 3. Migration to 32-bit: As Easy As 1-2-3

The remainder of this document provides technical details on the V1 ColdFire core and platform, covering 
its instruction set architecture and debug architecture as well as information on the processor and platform 
microarchitecture.
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Overview
1.1 Overview
In the creation of the V1 ColdFire core as the missing link in Freescale’s Controller Continuum, the 
following principles guided the development:

• The design followed strict priorities when making core architecture and implementation trade-offs
— Minimal size
— Minimal power dissipation
— Maximum performance

• The peripheral set and pin compatibility with S08 devices had significant impacts on both the core 
and debug architectural definitions

• A simplified realization of the V2 ColdFire core pipeline was viewed as the appropriate 
microarchitecture foundation upon which to build the V1 core

1.1.1 Instruction Set Architecture

To begin, consider the peripheral set compatibility with S08 devices. Since most of the slave devices are 
8-bit peripherals, support for Revision C of the ColdFire instruction set architecture (ISA_C) was 
specified. ISA_C is the most current ColdFire definition and, in particular, includes a number of 
instructions added as part of the incremental changes to ISA_B and ISA_C that improve the handling of 
8- and 16-bit data values.

The original definition of the ColdFire Instruction Set Architecture (ISA_A) was derived from M68K 
Family opcodes based on extensive analysis of embedded application code. The ISA was optimized for 
code compiled from high-level languages where the dominant operand size was the 32-bit int type. This 
approach minimized processor complexity and cost, while providing excellent performance for compiled 
applications.

After the initial ColdFire compilers were created, developers noted there were certain ISA additions that 
would enhance both code density as well as overall performance. Additionally, as users implemented 
ColdFire-based designs into a wide range of embedded systems, they noted certain frequently-used 
instruction sequences that could be improved by the creation of new instructions.

The original ISA definition minimized the support for instructions referencing byte- and word-sized 
operands compared to the M68K family. Full support for the move byte (MOVE.B) and move word 
(MOVE.W) instructions was provided, but the only other opcodes supporting these data types were clear 
(CLR) and test (TST). Based on the input from compiler writers and users, the ColdFire ISA has been 
improved with the ISA_B and ISA_C extensions. These expanded ISA definitions have improved 
performance and code density in three areas:

1. Enhanced support for byte and word-sized operands through added move and compare operations
2. Enhanced support for position-independent code
3. Improved support for certain types of bit manipulation operators

Accordingly, the ISA specification for the V1 ColdFire core is defined as ISA_C since code size and 
performance associated with byte- and word-sized references to the S08 peripheral set is such an important 
Version 1 ColdFire White Paper, Rev. 0
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Overview
factor. For the specifics of the ISA_C definition, see Chapter 3 of the ColdFire Programmer’s Reference 
Manual, especially the instruction set cross-reference presented in Table 3-16.

It should also be noted that careful consideration and study was given to the possibility of supporting a 
reduced user programming model for the V1 core. In particular, a proposal to reduce the number of 
general-purpose registers (Rn) from 16 to 8 was given serious consideration. In this proposal, the number 
of address (An) and data (Dn) registers was halved, so that the V1 core would only support the {D0, D1, 
D6, D7} and {A0, A1, A6, A7} registers. This proposal was driven by the fact that the register file is the 
largest single structure in the core and a sizable reduction in this function could have an interesting impact 
on the overall core size. However, in the final analysis it was decided that code compatibility across the 
entire ColdFire family and the ability to reuse the existing development tools (compilers, debuggers, etc.) 
was more important than the gate savings achievable through this program-visible redefinition of the 
register set.

1.1.2 Pin Compatibility with HCS08 Devices

Next, consider the impact of pin compatibility with HCS08 devices. This requirement has significant 
ramifications on the ColdFire debug architecture, primarily in two distinct areas.

The “classic” Version 2 ColdFire debug architecture specifies a 12-pin interface: 3 pins for the serial 
background debug mode (BDM) communication channel (clock, data-in, data-out), 1 pin for a breakpoint 
function, and 8 pins associated with the processor status (PST) and debug data (DDATA) outputs that 
provide real-time instruction (and optional data) trace capabilities. In contrast, the HCS08 family of 
devices support all their debug functionality via a single-pin BDM interface. As expected, this reduced 
interface significantly affects the V1 debug definition. In particular, a single-pin BDM interface for the V1 
core means:

• The traditional 3-pin full-duplex BDM serial communication protocol is replaced with the HCS08 
single-pin protocol. The classic ColdFire BDM mechanism is based on 17-bit full-duplex packet 
protocol. For V1, the HCS08 protocol is fully adopted where all BDM communications utilize a 
basic 8-bit data packet over a single package pin (BKGD). 

• The reduced debug package pin count also requires that the classic ColdFire program and data trace 
capabilities be completely redefined for the V1 core. The resulting implementation retains the basic 
notions of encoded processor status and captured debug data but introduces the notion of PST 
compression and recording the resulting stream of PST/DDATA values in an on-chip trace buffer. 
Once recorded in the debug module’s trace buffer, the contents can be accessed as BDM-visible 
registers so the data can be post-processed to provide the needed trace information. Support for the 
WDDATA instruction, which allows the application code to write directly to the DDATA port, is 
retained as this provides a simple hardware “printf” capability.

Overall, this approach is significant since it enables a common development environment where the same 
tools (including the USB cables from the development system to the microcontroller) can be used for both 
HCS08 or V1 ColdFire devices.
Version 1 ColdFire White Paper, Rev. 0
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1.1.3 Core Pipeline Organization

As previously noted, the pipeline organization and structure from the V2 core is significantly leveraged 
for the V1 implementation. The resulting V1 ColdFire processor core pipeline features two independent, 
decoupled pipeline structures with a unified bus interface to maximize performance while minimizing core 
size to strip out cost.

The instruction fetch pipeline (IFP) is a 2-stage pipeline for pre-fetching instructions. The pre-fetched 
instruction stream is then gated into the 2-stage operand execution pipeline (OEP), which decodes the 
instruction, fetches the required operands and then executes the required function. Since the IFP and OEP 
pipelines are decoupled by an instruction buffer which serves as a FIFO queue, the IFP is able to pre-fetch 
instructions in advance of their actual use by the OEP, thereby minimizing time stalled waiting for 
instructions.

The instruction fetch pipeline consists of two stages with an optional instruction buffer stage:
–Instruction Address Generation IAG Cycle
–Instruction Fetch Cycle IC Cycle
–Instruction Buffer IB Cycle

When the instruction buffer is empty, opcodes are loaded directly from the IC cycle into the operand 
execution pipeline. If the buffer is not empty, the IFP stores the contents of the fetch cycle in the FIFO 
queue until it is required by the OEP. In the Version 1 implementation, the instruction buffer contains three 
32-bit longwords of storage.

The operand execution pipeline is implemented in a two-stage pipeline featuring a traditional RISC 
datapath with a dual-read-ported register file (RGF) feeding an arithmetic/logic unit. In this design, the 
pipeline stages have multiple functions:

–Decode & Select/Operand Cycle DSOC Cycle
–Address Generation/Execute Cycle AGEX Cycle

In an effort to minimize gate cost, the address path is reduced from 32 to 24 bits, sufficient for a 16-Mbyte 
memory map for the V1 devices. Additionally, the V1 core includes design parameters to easily 
include/exclude various “execute engines” associated with specific instructions. These optional execute 
engines include an integer divider (DIV), {E}MAC multiply-accumulate engines, and a cryptographic 
acceleration unit (CAU). 

The V1 OEP extends a pipeline optimization associated with 32-bit move (load) instructions to also apply 
to 8- and 16-bit moves, including the move-with-zero-fill and move-with-sign-extension instructions. The 
result is improved 2-cycle performance on this very important class of load instructions:

move.b <mem>y,Dx // byte load
mvs.b <mem>y,Dx // byte load with sign-extension
mvz.b <mem>y,Dx // byte load with zero-fill
move.w <mem>y,Rx // word load
mvs.w <mem>y,Dx // word load with sign-extension
mvz.w <mem>y,Dx // word load with zero-fill
move.l <mem>y,Rx // long word
Version 1 ColdFire White Paper, Rev. 0
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Overview
where the source operand is memory, defined by the effective address <mem>y, and the destination is one 
of the general-purpose registers (Dx is a data register, Rx is either a data or address register). The 
TST.sz <mem>y instructions also have this same 2-cycle execution time.

The resulting high-level block diagram of the V1 ColdFire core and the low-cost platform is shown in 
Figure 4. In this diagram, the following platform modules are included:

• V1 ColdFire CPU with optional execute engines plus the background debug controller (BDC) and 
debug module

• Local bus controller
• Platform flash memory controller
• Platform RAM memory controller
• Platform-to-peripheral bus controller
• Rapid GPIO (RGPIO) controller

The two platform memory controllers connect to off-platform memory arrays and each supports a wide 
range of storage capacities. The RGPIO controller connects to chip-level I/O pads and provides high-speed 
general purpose input/output functionality, since this module is connected to the core’s high-speed 
platform bus. The peripheral bus bridge provides two functions. First, it converts the platform’s system bus 
protocol into the simpler protocol for the slave peripheral modules. Second, it serves as the clock domain 
boundary, separating the core platform’s high-speed domain from the slower peripheral domain. The 
peripheral bridge supports any n:1 clock ratio, where n = 1,2,3, ... ; for most device implementations, the 
core platform-to-peripheral speed ratio is fixed at 2:1.

Finally, as shown in Figure 4, the simplest CF1 low-cost platform includes a single bus master, the V1 
core. It should also be noted that the low-cost core platform has been constructed to support a second bus 
mastering device for future SoC definitions. In particular, future V1 devices with other bus master devices 
with built-in DMA functionality are planned.

In addition to these platform modules, there is an interrupt controller (INTC) which is an off-platform slave 
module. Because its functionality is important to the core’s operation, the features of the INTC are also 
detailed in this document.
Version 1 ColdFire White Paper, Rev. 0
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Figure 4. CF1 Low-Cost Platform (cf1_lcp) Block Diagram
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Features
1.2 Features
The Version 1 ColdFire core and platform include the following features:

• Version 1 ColdFire processor core
— Variable-length RISC architecture and implementation
— Supports Revision C of the ColdFire Instruction Set Architecture
— Supports the standard ColdFire user programming model with 16 general-purpose, 32-bit data 

and address registers
— Simplified supervisor programming model supporting a supervisor stack pointer, vector base 

register, and CPU configuration register
— Support for optional execute engines including integer divider, multiply-accumulate units 

(MAC, EMAC) and cryptography acceleration unit (CAU)
— Programmable response upon detection of certain illegal opcodes and illegal addresses 

(processor exception or system reset)
— Implementation contains 24-bit address and 32-bit data paths
— Up to 50 MHz core frequency in a low-voltage, low-power 0.25-micron process technology
— 0.85 Dhrystone 2.1 MIPS per MHz performance when executing from flash, 1.05 DMIPS when 

executing from RAM
— Aggressive clock gating for reducing power dissipation

• Version 1 ColdFire debug support
— Classic ColdFire Debug B+ functionality mapped into the single-pin BDM interface
— Capture of compressed processor status and debug data into on-chip trace buffer provides 

program (and optional slave bus data) trace capabilities
— On-chip trace buffer provides programmable start/stop recording conditions plus support for 

continuous or PC-profiling modes
— Real time debug support, with 6 hardware breakpoints (four PC, one address, and one data) that 

can be configured into a 1- or 2-level trigger with a programmable response (processor halt or 
interrupt)

— Debug resources are accessible via single-pin BDM interface or the privileged WDEBUG 
instruction from the core

• Platform memories
— Low-power 2-cycle flash memory for text and read-only data storage

– Flash controller implements address speculation features to reduce effective access time
— Single-cycle RAM on platform’s internal high-speed bus

– Write buffer supports zero wait-state response, but does require a dummy write to push 
contents into RAM before entering any low-power mode

• High-speed GPIO
— Up to 16 bits of rapid GPIO connected to platform’s bus for high-speed bit-banging
— Single-cycle accesses with ColdFire core
— Set, clear, toggle registers allow manipulation using simple store instructions
Version 1 ColdFire White Paper, Rev. 0
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Modes of Operation
• Peripheral Bridge
— Converts from platform’s system bus to external bus for off-platform slave devices

– Provides a standardized connection scheme for off-platform peripherals
– Support for byte- and word-sized accesses to peripheral space

— Programmable control for buffered writes for improved system performance
— Provides clock domain boundary from high-speed core platform to slower speed slave domain

– Support for n:1 platform:peripheral speed ratio, where n = 1,2,3, ... (typically fixed at 2:1 
speed ratio)

• Interrupt Controller
— Peripheral-mapped off-platform slave module

– 64 byte space located at top end of memory: 0xFF_FFC0–0xFF_FFFF
– Programming model accessed via peripheral space
– Encoded interrupt level and vector sent directly to processor core

— Initial support of 30 peripheral I/O interrupt requests plus 7 software interrupt requests
— Fixed association between interrupt request source and level + priority

– 30 I/O requests assigned across seven available levels and nine priorities per level
– Exactly matches S08 interrupt request priorities
– Up to two requests can be re-mapped to the highest non-maskable level + priority

— Unique vector number for each interrupt source
– Default defined as: CF_Vector_# = S08_Vector_# + 62

— Support for service routine interrupt acknowledge (IACK) read cycles for improved system 
performance

— Combinatorial path provides wake-up signal from low-power sleep modes

1.3 Modes of Operation
The ColdFire Family programming model consists of two register groups, corresponding to the processor 
privilege level: user and supervisor. Applications executing in the user mode use only the programming 
model registers in the user group. System software executing in the supervisor mode can access all 
registers and use the control registers in the supervisor group to perform supervisory functions.

In addition, the V1 core supports the standard ColdFire definition of operating modes, where the processor 
can be running, stopped, or halted. The processor operating mode status is visible to the external world via 
the single-pin BDM interface by accessing one of the debug module’s configuration/status registers. In 
particular, ColdFire cores source two bits which define the operating mode, both as output signals as well 
as program-visible status. These bits are cpu_is_stopped and cpu_is_halted and the operating mode is 
defined as:
Version 1 ColdFire White Paper, Rev. 0
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2 Memory Map and Register Definition
This section defines the standardized V1 system memory map and provides an overview of the processor 
and debug module programming models.

2.1 Memory Map
The definition of the system memory map is an important consideration as the platform’s local bus 
controller must be able to quickly route requests to the appropriate slave destination. As the V1 core (or 
other masters) generate platform bus requests, the local bus controller must be able to very quickly identify 
the targeted slave so that the request can be properly evaluated and routed to the appropriate device. The 
net result is the address steering mechanism must be very simple and very fast, since any incremental delay 
in this function adds directly to the critical timing paths of the core platform design.

Each bus mastering module includes a connection to the input side of the local bus controller for initiating 
platform bus transactions. As shown in Figure 4, the core platform includes a number of local controllers 
as well as a bridge controller to the standardized peripheral bus. The slave interface is typically used to 
access the program-visible registers of the off-platform peripherals.

The platform bus is a 2-stage pipelined protocol, where the bus master drives the address and attribute 
signals during the first stage (the address phase) and the bus slave responds with data and termination 
signals in the second stage (the data phase). A single data-phase termination signal is negated to insert 
wait-states into the slave response, and effectively stall both stages of the bus pipeline. Conversely, the 
peripheral bus is a simple non-pipelined protocol, where address, attributes, data and termination signals 
are all valid within a machine cycle.

Recall the memory space defined by the V1 core uses a 24-bit address, providing support for a 16-MByte 
definition. The resulting Version 1 ColdFire core system memory map is shown in Table 2.

Table 1. ColdFire Core Operating Mode Definition

Core Mode cpu_is_stopped cpu_is_halted

Running 0 0

Stopped 1 0

Halted 0 1

Table 2. V1 ColdFire System Memory Map

Address Range  Destination Slave Slave Region Size

0x00_0000 – 0x7F_FFFF Platform flash 8 Mbytes

0x80_0000 – 0xBF_FFFF Platform RAM 4 Mbytes

0xC0_0000 – 0xDF_FFFF Platform modules, e.g., RGPIO 2 Mbytes

0xE0_0000 – 0xFF_7FFF Reserved 2 Mbytes – 32 Kbytes

0xFF_8000 – 0xFF_FFFF Off-platform Peripheral Modules 32 Kbytes
Version 1 ColdFire White Paper, Rev. 0
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Since the physical memory space is often considerably smaller than the allocated space, the actual memory 
space begins at the lower (starting) address, and creates memory holes in the 16 Mbyte definition. For 
example, a 128 Kbyte flash resides at address range 0x00_0000–0x01_FFFF and an 8 Kbyte RAM resides 
at 0x80_0000–0x80_1FFF. In general, attempted accesses to memory holes generate error terminations 
and the bus cycle is aborted.

The allowable access types to the different regions in the system memory map also vary. See Table 3.

Bus cycles which attempt to access a region with an unsupported reference size are terminated with an 
error.
The use of certain operand addressing modes by the V1 core was also considered during the definition of 
the system memory map. Specifically, it is suggested that the short-A5-relative addressing mode 
{addressing register indirect with a 16-bit signed displacement: d16(A5)} be used for data accesses to the 
RAM. This can often be enabled with a small data area compiler option. It is also suggested that the use 
of the 16-bit absolute short addressing mode (XXX.W) be used for peripheral accesses. With both 
suggestions utilized, the resulting code image produces best code density and highest performance.

2.2 Register Descriptions
The following sections describe the V1 ColdFire processor core registers in the user and supervisor 
programming models. The appropriate programming model is selected based on the privilege level (user 
mode or supervisor mode) of the processor as defined by the S bit of the status register (SR).

The user programming model is the same as the M68000 family microprocessors, consisting of the 
following registers:

• 16 general-purpose 32-bit registers (D0–D7, A0–A7)
• 32-bit program counter (PC)
• 8-bit condition code register (CCR)

The supervisor programming model is intended to be used only by system control software to implement 
restricted operating system functions, I/O control, and memory management. All accesses that affect the 
control features of ColdFire processors are in the supervisor programming model, which consists of 
registers available in user mode as well as the following control registers:

• 16-bit status register (SR)
• 32-bit supervisor stack pointer (SSP)
• 32-bit vector base register (VBR)

Table 3. Supported Access Types by Region

Base 
Address

Region
Read Write

Byte Word Long Byte Word Long

0x00_0000 Flash x x x — — x

0x80_0000 RAM x x x x x x

0xC0_0000 RGPIO x x x x x x

0xFF_8000 Peripherals x x — x x —
Version 1 ColdFire White Paper, Rev. 0
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• 32-bit CPU configuration register (CPUCR)

Table 4 provides a summary of the V1 CPU programming model, including the BDM command to access 
each register.

2.2.1 Data Registers (D0–D7)

Registers D0–D7 are used as data registers for bit (1-bit), byte (8-bit), word (16-bit) and longword (32-bit) 
operations; they can also be used as index registers.

NOTE
Registers D0 and D1 contain hardware configuration details after reset. See 
Section 4.3.14, “Reset Exception,” for more details.

Table 4. Version 1 ColdFire CPU Programming Model

BDM 
Command1 Register

Width
(bits)

Access Reset Value
Written with

MOVEC2 Section/Page

Supervisor/User Registers

Read: 0x60
Write: 0x40

Data Register 0 (D0) 32 R/W 0xCF1*_**29 No 2.2.1/-13

Read: 0x61
Write: 0x41

Data Register 1 (D1) 32 R/W 0x010*0_10*0 No 2.2.1/-13

Read: 0x6{2–7}
Write: 0x4{2–7}

Data Register 2–7 (D2–D7) 32 R/W Undefined No 2.2.1/-13

Read: 0x6{8–E}
Write: 0x4{8–E}

Address Register 0–6 (A0–A6) 32 R/W Undefined No 2.2.2/-14

Read: 0x6F
Write: 0x4F

Supervisor/User A7 Stack Pointer (A7) 32 R/W Undefined No 2.2.3/-14

Read: 0xEF
Write: 0xCF

Program Counter (PC) 32 R/W Contents of 
memory @
0x00_0004

No 2.2.4/-15

Read: 0xEE
Write: 0xCE

Condition Code Register (CCR) 8 R/W Undefined No 2.2.5/-15

Supervisor Registers

Read: 0xEE
Write: 0xCE

Status Register (SR) 16 R/W 0x27-- No 2.2.6/-16

Read: 0xE0
Write: 0xC0

User/Supervisor A7 Stack Pointer 
(OTHER_A7)

32 R/W Contents of 
memory @
0x00_0000

No 2.2.3/-14

Read: 0xE1
Write: 0xC1

Vector Base Register (VBR) 32 W 0x0000_0000 Yes;
Rc = 0x801

2.2.7/-17

Read: 0xE2
Write: 0xC2

CPU Configuration Register (CPUCR) 32 W 0x0000_0000 Yes;
Rc = 0x802

2.2.8/-17

1 The values listed in this column represent the 8-bit BDM command code used when accessing core registers via the1-pin 
port. For more information see Section 5.2, “Background Debug Mode (BDM).”

2 If the given register is written using the MOVEC instruction, the 12-bit control register address (Rc) is also specified.
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2.2.2 Address Registers (A0–A6)

These registers can be used as software stack pointers, index registers, or base address registers; they can 
also be used for word and longword operations.

Figure 5. Address Registers (A0–A6)

2.2.3 Supervisor/User Stack Pointers (A7 and OTHER_A7)

The ColdFire architecture supports two independent stack pointer (A7) registers—the supervisor stack 
pointer (SSP) and the user stack pointer (USP). The hardware implementation of these two 
programmable-visible 32-bit registers does not identify one as the SSP and the other as the USP. Instead, 
the hardware uses one 32-bit register as the active A7 and the other as OTHER_A7. Thus, the register 
contents are a function of the processor operation mode, as shown in the following:
if SR[S] = 1

then A7 = Supervisor Stack Pointer
OTHER_A7 = User Stack Pointer

else A7 = User Stack Pointer
OTHER_A7 = Supervisor Stack Pointer

The BDM programming model supports direct reads and writes to A7 and OTHER_A7. It is the 
responsibility of the external development system to determine, based on the setting of SR[S], the mapping 
of A7 and OTHER_A7 to the two program-visible definitions (SSP and USP).

To support the dual stack pointers, the following two supervisor instructions are included in the ColdFire 
instruction set architecture to load/store the USP:

move.l Ay, USP; move to USP
move.l USP, Ax; move from USP

BDM:
 
0x60 + n (read), 0x40 + n (write), n = 0-7 (Dn)

Access: User read/write
BDM read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Data

W

Reset
(D2-D7)

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Reset
(D0-D1)

See Section 4.3.14, “Reset Exception”

BDM:
 
0x68 + n (read), 0x48 + n (write), n = 0–6 (An)

Access: User read/write
BDM read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Address

W

Reset – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
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These instructions are described in the ColdFire Family Programmer’s Reference Manual.

NOTE
The USP must be initialized using the move.l Ay,USP instruction before any 
entry into user mode. The SSP is loaded during reset exception processing 
with the contents of location 0x00_0000.

Figure 6. Stack Pointer Registers (A7 and OTHER_A7)

2.2.4 Program Counter (PC)

The PC contains the address of the currently executing instruction. During instruction execution and 
exception processing, the processor automatically increments the contents of the PC or places a new value 
in the PC, as appropriate. The PC is used as a base address for PC-relative operand addressing. 

Figure 7. Program Counter Register (PC)

The PC is initially loaded during reset exception processing with the contents of location 0x00_0004.

2.2.5 Condition Code Register (CCR)

The CCR is the LSB of the processor status register (SR). Bits 4–0 act as indicator flags for results 
generated by processor operations. The extend bit (X) is also used as an input operand during 
multiprecision arithmetic computations. The CCR register must be explicitly loaded after reset and before 
any compare (CMP), Bcc, or Scc instructions are executed.

BDM: 0x6F (read A7), 0x4F (write A7)
0xE0 (read OTHER_A7), 0xC0 (write OTHER_A7)

Access: A7: User read/write
OTHER_A7: Supervisor read/write

BDM read/write
BDM read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Address

W

Reset – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

BDM: 0xEF (read), 0xCF (write)
Access: User read/write

BDM read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Instruction Address

W

Reset – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
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2.2.6 Status Register (SR)

The SR stores the processor status and includes the CCR, the interrupt priority mask, and other control 
bits. In supervisor mode, software can access the entire SR. In user mode, only the lower 8 bits are 
accessible (CCR). The control bits indicate these states for the processor: trace mode (T bit), supervisor or 
user mode (S bit), and master or interrupt state (M bit). All defined bits in the SR have read/write access 
when in supervisor mode. The SR register (actually the CCR) must be explicitly loaded after reset and 
before any compare (CMP), Bcc, or Scc instructions are executed.

BDM: 0xEE (SR read), 0xCE (SR write)
Access: User read/write

BDM read/write

7 6 5 4 3 2 1 0

R 0 0 0
X N Z V C

W

Reset: 0 0 0 — — — — —

Table 5. CCR Field Descriptions

Field Description

7–5 Reserved, should be cleared.

4
X

Extend condition code bit. Set to the value of the C-bit for arithmetic operations; otherwise not affected or set to a 
specified result.

3
N

Negative condition code bit. Set if the most significant bit of the result is set; otherwise cleared.

2
Z

Zero condition code bit. Set if the result equals zero; otherwise cleared.

1
V

Overflow condition code bit. Set if an arithmetic overflow occurs implying that the result cannot be represented in the 
operand size; otherwise cleared.

0
C

Carry condition code bit. Set if a carry out of the operand msb occurs for an addition, or if a borrow occurs in a 
subtraction; otherwise cleared

BDM: 0xee (read), 0xce (write)
Access: Supervisor read/write

BDM read/write

System Byte Condition Code Register (CCR)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
T

0
S M

0
I

0 0 0
X N Z V C

W

Reset 0 0 1 0 0 1 1 1 0 0 0 — — — — —
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2.2.7 Vector Base Register (VBR)

The VBR contains the base address of the exception vector table in memory. To access the vector table, 
the displacement of an exception vector is added to the value in VBR. The lower 20 bits of the VBR are 
not implemented by any ColdFire processors; they are assumed to be zero, forcing the table to be aligned 
on a 1-MByte boundary. In addition, since the V1 ColdFire core supports a 16 Mbyte address space, the 
upper byte of the VBR is also forced to zero. The VBR can be used to relocate the exception vector table 
from its default position in the flash memory (address 0x00_0000) to the base of the RAM (address 
0x80_0000) if needed.

Figure 8. Vector Base Register (VBR)

2.2.8 CPU Configuration Register (CPUCR)

The CPUCR provides supervisor mode configurability of specific core functionality. Certain hardware 
features can be enabled/disabled individually based on the state of the CPUCR.

Table 6. SR Field Descriptions

Field Description

15
T

Trace enable. When set, the processor performs a trace exception after every instruction.

14 Reserved, should be cleared.

13
S

Supervisor/user state. 
0 User mode
1 Supervisor mode

12
M

Master/interrupt state. This bit is cleared by an interrupt exception, and can be set by software during execution of 
the RTE or move-to-SR instructions.

11 Reserved, should be cleared.

10–8
I

Interrupt level mask. Defines the current interrupt level. Interrupt requests are inhibited for all priority levels less than 
or equal to the current level, except the edge-sensitive level 7 request, which cannot be masked.

7–0
CCR

Refer to Section 2.2.5, “Condition Code Register (CCR).”

Rc[11:0]:
BDM:

0x801 (VBR)
0xE1 (read), 0xC1 (write)

Access: Supervisor write
BDM read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 Base 
Address

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Figure 9. CPU Configuration Register (CPUCR)

3 Instruction Set Architecture (ISA_C)
The original ColdFire instruction set architecture (ISA) was derived from the M68000-family opcodes 
based on extensive analysis of embedded application code. After the initial ColdFire compilers were 
created, developers identified ISA additions that would enhance both code density and overall 
performance. Additionally, as users implemented ColdFire-based designs into a wide range of embedded 

Rc[11:0]:
BDM:

0x802 (CPUCR)
0xE2 (read), 0xC2 (write)

Access: Supervisor write
BDM read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ARD IRD IAE

0
BWD

0
FSD

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7. CPUCR Field Descriptions

Field Description

31
ARD

Address-related reset disable. Used to disable the generation of a reset event in response to a processor exception 
caused by an address error, a bus error, an RTE format error or a fault-on-fault halt condition.
0 The detection of these types of exception conditions or the fault-on-fault halt condition generate a reset event.
1 No reset is generated in response to these exception conditions.

30
IRD

Instruction-related reset disable. Used to disable the generation of a reset event in response to a processor exception 
caused by the attempted execution of an illegal instruction (except for the ILLEGAL opcode), illegal line A, illegal 
line F instructions, or a privilege violation.
0 The detection of these types of exception conditions generate a reset event.
1 No reset is generated in response to these exception conditions.

29
IAE

Interrupt acknowledge (IACK) enable. Forces the processor to generate an IACK read cycle from the interrupt 
controller during exception processing to retrieve the vector number of the interrupt request being acknowledged. The 
processor’s execution time for an interrupt exception is slightly improved when this bit is cleared.
0 The processor uses the vector number provided by the interrupt controller at the time the request is signaled.
1 IACK read cycle from the interrupt controller is generated.

28 Reserved, should be cleared.

27
BWD

Buffered peripheral bus write disable.
0 Peripheral bus writes are buffered and the platform bus cycle is terminated immediately and does not wait for the 

peripheral bus termination status.
1 Disables the buffering of peripheral bus writes and does not terminate the platform bus cycle until a registered 

version of the peripheral bus termination is received.
Note: If buffered writes are enabled (BWD = 0), any peripheral bus error status is lost.

26 Reserved, should be cleared.

25
FSD

Flash speculation disabled. Disables certain performance-enhancing features related to address speculation in the 
platform flash memory controller.
0 The platform flash controller tries to speculate on read accesses to improve processor performance by minimizing 
the exposed flash memory access time. Recall the basic flash access time is two processor cycles.
1 Certain flash address speculation is disabled.

24–0 Reserved, should be cleared.
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systems, they identified frequently used instruction sequences that could be improved by the creation of 
new instructions. This observation was especially prevalent in development environments that made use 
of substantial amounts of assembly language code.

Table 8 summarizes the instructions added to revision ISA_A to form revision ISA_C. For more details 
see the ColdFire Family Programmer’s Reference Manual.

4 Exception Processing Overview
Exception processing for ColdFire processors is streamlined for performance. The ColdFire processors 
differ from the M68K family in that they include:

• A simplified exception vector table
• Reduced relocation capabilities using the vector base register 
• A single exception stack frame format
• Use of separate system stack pointers for user and supervisor modes

Table 8. Instruction Enhancements over Revision ISA_A

Instruction Description

BITREV The contents of the destination data register are bit-reversed; that is, new Dn[31] = old Dn[0], 
new Dn[30] = old Dn[1], ..., new Dn[0] = old Dn[31].

BYTEREV The contents of the destination data register are byte-reversed; that is, new Dn[31:24] = old 
Dn[7:0], ..., new Dn[7:0] = old Dn[31:24].

FF1 The data register, Dn, is scanned, beginning from the most-significant bit (Dn[31]) and ending 
with the least-significant bit (Dn[0]), searching for the first set bit. The data register is then 
loaded with the offset count from bit 31 where the first set bit appears.

INTOUCH Loads blocks of instructions to be locked in the instruction cache.

MOV3Q.L Moves 3-bit immediate data to the destination location.

Move from USP
Move to USP

Loads and stores user stack pointer

MVS.{B,W} Sign-extends the source operand and moves it to the destination register.

MVZ.{B,W} Zero-fills the source operand and moves it to the destination register.

SATS.L Performs a saturation operation for signed arithmetic and updates the destination register 
depending on CCR[V] and bit 31 of the register.

TAS.B Performs an indivisible read-modify-write cycle to test and set the addressed memory byte.

Bcc.L Branch conditionally, longword

BSR.L Branch to sub-routine, longword

CMP.{B,W} Compare, byte and word

CMPA.W Compare address, longword

CMPI.{B,W} Compare immediate, byte and word

MOVEI Move immediate, byte and word to Ax with displacement
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All ColdFire processors use an instruction restart exception model. Exception processing includes all 
actions from the detection of the fault condition to the initiation of fetch for the first handler instruction. 
Exception processing is comprised of four major steps.

1. The processor makes an internal copy of the SR and then enters supervisor mode by setting the S 
bit and disabling trace mode by clearing the T bit. The occurrence of an interrupt exception also 
forces the M bit to be cleared and the interrupt priority mask to be set to the level of the current 
interrupt request.

2. The processor determines the exception vector number. For all faults except interrupts, the 
processor performs this calculation based on the exception type. For interrupts, the processor 
performs an interrupt-acknowledge (IACK) bus cycle to obtain the vector number from the 
interrupt controller if CPUCR[IAE] = 1. The IACK cycle is mapped to special locations within the 
interrupt controller’s address space with the interrupt level encoded in the address. If CPUCR[IAE] 
= 0, then the processor uses the vector number supplied by the interrupt controller at the time the 
request was signaled for improved performance.

3. The processor saves the current context by creating an exception stack frame on the system stack. 
As a result, the exception stack frame is created at a 0-modulo-4 address on top of the system stack 
pointed to by the supervisor stack pointer (SSP). As shown in Figure 10, the processor uses a 
simplified fixed-length stack frame for all exceptions. The exception type determines whether the 
program counter placed in the exception stack frame defines the location of the faulting instruction 
(fault) or the address of the next instruction to be executed (next).

4. The processor calculates the address of the first instruction of the exception handler. By definition, 
the exception vector table is aligned on a 1 Mbyte boundary. This instruction address is generated 
by fetching an exception vector from the table located at the address defined in the vector base 
register. The index into the exception table is calculated as (4 × vector number). Once the exception 
vector has been fetched, the contents of the vector determine the address of the first instruction of 
the desired handler. After the instruction fetch for the first opcode of the handler has been initiated, 
exception processing terminates and normal instruction processing continues in the handler.

All ColdFire processors support a 1024-byte vector table aligned on any 1 Mbyte address boundary (see 
Table 9). For the CF1 core, the only practical locations for the vector table are based at 0x00_0000 in the 
flash or 0x80_0000 in the RAM. The table contains 256 exception vectors; the first 64 are defined by 
Freescale and the remaining 192 are user-defined interrupt vectors. For the V1 ColdFire core, the table is 
partially populated with the first 64 reserved for internal processor exceptions, while vectors 64-102 are 
reserved for the peripheral I/O requests and the 7 software interrupts. The IRQ assignments are 
device-specific as they depend on the exact set of peripherals for any given device.

Table 9. V1 ColdFire Exception Vector Assignments

Vector
Number(s)

Vector
Offset (Hex)

Stacked
Program
Counter

Assignment

0 0x000 — Initial supervisor stack pointer

1 0x004 — Initial program counter

2 0x008 Fault Access error

3 0x00C Fault Address error
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All ColdFire processors inhibit interrupt sampling during the first instruction of all exception handlers. 
This allows any handler to effectively disable interrupts, if necessary, by raising the interrupt mask level 
contained in the status register. In addition, the V1 instruction set architecture (ISA_C) includes an 
instruction (STLDSR) that stores the current interrupt mask level and loads a value into the SR. This 
instruction is specifically intended for use as the first instruction of an interrupt service routine that 
services multiple interrupt requests with different interrupt levels. For more details, see the ColdFire 
Family Programmer’s Reference Manual.

4 0x010 Fault Illegal instruction

5 0x014 Fault Divide by zero

6–7 0x018–0x01C — Reserved

8 0x020 Fault Privilege violation

9 0x024 Next Trace

10 0x028 Fault Unimplemented line-a opcode

11 0x02C Fault Unimplemented line-f opcode

12 0x030 Next Debug interrupt

13 0x034 — Reserved

14 0x038 Fault Format error

15–23 0x03C–0x05C — Reserved

24 0x060 Next Spurious interrupt

25–31 0x064–0x07C — Reserved

32–47 0x080–0x0BC Next Trap # 0-15 instructions

48–63 0x0C0–0x0FC — Reserved

64–95 0x100–0x17c Next Reserved for Peripheral IRQs

96 0x180 Next Level 7 Software Interrupt

97 0x184 Next Level 6 Software Interrupt

98 0x188 Next Level 5 Software Interrupt

99 0x18c Next Level 4Software Interrupt

100 0x190 Next Level 3 Software Interrupt

101 0x194 Next Level 2 Software Interrupt

102 0x198 Next Level 1Software Interrupt

103–255 0x19c–0x3FC — Reserved; unused for V1

1 “Fault” refers to the PC of the instruction that caused the exception; “Next” refers to the 
PC of the next instruction that follows the instruction that caused the fault.

Table 9. V1 ColdFire Exception Vector Assignments (continued)

Vector
Number(s)

Vector
Offset (Hex)

Stacked
Program
Counter

Assignment
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4.1 Exception Stack Frame Definition
The exception stack frame is shown in Figure 10. The first longword of the exception stack frame contains 
the 16-bit format/vector word (F/V) and the 16-bit status register, and the second longword contains the 
32-bit program counter address.

Figure 10. Exception Stack Frame Form

The 16-bit format/vector word contains 3 unique fields:
• A 4-bit format field at the top of the system stack is always written with a value of 4, 5, 6, or 7 by 

the processor indicating a two-longword frame format. See Table 10.

• There is a 4-bit fault status field, FS[3:0], at the top of the system stack. This field is defined for 
access and address errors only and written as zeros for all other types of exceptions. See Table 11.

• The 8-bit vector number, vector[7:0], defines the exception type and is calculated by the processor 
for all internal faults and represents the value supplied by the interrupt controller in the case of an 
interrupt. Refer to Table 9.

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SSP → Format FS[3:2] Vector FS[1:0] Status Register

+ 0x4 Program Counter

Table 10. Format Field Encodings

Original SSP @ Time 
of Exception, Bits 1:0

SSP @ 1st Instruction 
of Handler

Format Field

00 Original SSP - 8 0100

01 Original SSP - 9 0101

10 Original SSP - 10 0110

11 Original SSP - 11 0111

Table 11. Fault Status Encodings

FS[3:0] Definition

00xx Reserved

0100 Error on instruction fetch

0101 Reserved

011- Reserved

1000 Error on operand write

1001 Attempted write to write-protected space

101- Reserved

1100 Error on operand read

1101 Reserved

111x Reserved
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4.2 S08 and ColdFire Exception Processing Comparison
This section presents a brief summary comparing the exception processing differences between the S08 
and ColdFire processor families.

The notion of a software IACK refers to the ability to query the interrupt controller near the end of an 
interrupt service routine (after the current interrupt request has been cleared) to determine if there are any 
pending (but currently masked) interrupt requests. If the response to the software IACK’s byte operand 
read is non-zero, then the service routine uses the value as the vector number of the highest pending 
interrupt request and passes control to the appropriate new handler. This process avoids the overhead of a 
context restore and RTE instruction execution followed immediately by another interrupt exception and 
context save. In system environments with high rates of interrupt activity, this mechanism can improve 
overall performance noticeably.

Emulation of the S08’s 1-level IRQ processing can easily be handled by software convention within the 
ColdFire interrupt service routines. For this type of operation, only two of the seven interrupt levels are 
used:

• SR[I] = 0 indicates interrupts are enabled
• SR[I] = 7 indicates interrupts are disabled

Recall that ColdFire treats true level 7 interrupts as edge-sensitive, non-maskable requests. Typically, only 
the IRQ input pin and a low-voltage detect are assigned as level 7 requests. All the remaining interrupt 
requests (levels 1-6) are masked when SR[I] = 7. In any case, all ColdFire processors guarantee that the 
first instruction of any exception handler is executed before interrupt sampling resumes. By making the 
first instruction of the ISR either a store/load status register (STLDSR #0x2700) or a move-to-SR 
(MOVE.W #2700,SR) instruction, interrupts can be safely disabled until the service routine is exited with an 
RTE instruction that lowers the SR[I] back to level 0.

Table 12. Exception Processing Comparison

Attribute S08 V1 ColdFire

Exception Vector Table 32, 2-byte entries, fixed location at upper end 
of memory

103, 4-byte entries, located at lower end of 
memory at reset, relocatable with the VBR

More on Vectors 2 for CPU + 30 for IRQs, reset at upper 
address

64 for CPU + 39 for IRQs, reset at lowest 
address

Exception Stack Frame 5-byte frame: CCR, A, X, PC 8-byte frame: F/V, SR, PC; General-purpose 
registers (An, Dn) must be saved/restored by 
the ISR

Interrupt Levels 1 = f(CCR[I]) 7= f(SR[I]) with automatic hardware support 
for nesting

Non-Maskable IRQ Support No Yes with level 7 interrupts

Core-enforced IRQ Sensitivity No Level 7 is edge sensitive, else level sensitive

INTC Vectoring Fixed priorities and vector assignments Fixed priorities and vector assignments, plus 
any 2 IRQs can be remapped as the highest 
priority level 6 requests

Software IACK No Yes

Exit Instruction from ISR RTI RTE
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4.3 Processor Exceptions

4.3.1 Access Error Exception

The default operation of the V1 ColdFire processor is the generation of an illegal address reset event if an 
access error (also known as a bus error) is detected. If CPUCR[ARD] = 1, then the reset is disabled and a 
processor exception is generated as detailed below.

The exact processor response to an access error depends on the type of memory reference being performed. 
For an instruction fetch, the processor postpones the error reporting until the faulted reference is needed 
by an instruction for execution. Therefore, faults that occur during instruction prefetches that are then 
followed by a change of instruction flow do not generate an exception. When the processor attempts to 
execute an instruction with a faulted opword and/or extension words, the access error is signaled and the 
instruction aborted. For this type of exception, the programming model has not been altered by the 
instruction generating the access error.

If the access error occurs on an operand read, the processor immediately aborts the current instruction’s 
execution and initiates exception processing. In this situation, any address register updates attributable to 
the auto-addressing modes, {for example, (An)+,-(An)}, have already been performed, so the 
programming model contains the updated An value. In addition, if an access error occurs during the 
execution of a MOVEM instruction loading from memory, any registers already updated before the fault 
occurs contain the operands from memory.

The V1 ColdFire processor uses an imprecise reporting mechanism for access errors on operand writes. 
Because the actual write cycle may be decoupled from the processor’s issuing of the operation, the 
signaling of an access error appears to be decoupled from the instruction that generated the write. 
Accordingly, the PC contained in the exception stack frame merely represents the location in the program 
when the access error was signaled. All programming model updates associated with the write instruction 
are completed. The NOP instruction can collect access errors for writes. This instruction delays its 
execution until all previous operations, including all pending write operations, are complete. If any 
previous write terminates with an access error, it is guaranteed to be reported on the NOP instruction.

4.3.2 Address Error Exception

The default operation of the V1 ColdFire processor is the generation of an illegal address reset event if an 
address error is detected. If CPUCR[ARD] = 1, then the reset is disabled and a processor exception is 
generated as detailed below.

Any attempted execution transferring control to an odd instruction address (that is, if bit 0 of the target 
address is set) results in an address error exception.

Any attempted use of a word-sized index register (Xn.w) or a scale factor of eight on an indexed effective 
addressing mode generates an address error, as does an attempted execution of a full-format indexed 
addressing mode which is defined by bit 8 of extension word 1 being set.

If an address error occurs on an RTS instruction, the Version 1 ColdFire processor overwrites the faulting 
return PC with the address error stack frame.
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4.3.3 Illegal Instruction Exception

The default operation of the V1 ColdFire processor is the generation of an illegal opcode reset event if an 
illegal instruction is detected. If CPUCR[IRD] = 1, then the reset is disabled and a processor exception is 
generated as detailed below. There is one special case involving the ILLEGAL opcode (0x4afc); attempted 
execution of this instruction always generates an illegal instruction exception, regardless of the state of the 
CPUCR[IRD] bit.

Recall the ColdFire variable-length instruction set architecture supports three instruction sizes: 16, 32, or 
48 bits. The first instruction word is known as the operation word (or opword), while the optional words 
are known as extension word 1 and extension word 2. The opword is further subdivided into three sections: 
the upper four bits segment the entire ISA into 16 instruction lines, the next 6 bits define the operation 
mode (opmode), and the low-order 6 bits define the effective address. See Figure 11. The opword line 
definition is shown in Table 13.

Figure 11. ColdFire Instruction Operation Word (Opword) Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Line OpMode Effective Address

Mode Register

Table 13. ColdFire Opword Line Definition

Opword[15:12],
Line

Instruction Class

0x0 Bit manipulation, Arithmetic and Logical Immediate

0x1 Move Byte

0x2 Move Long

0x3 Move Word

0x4 Miscellaneous

0x5 Add (ADDQ) and Subtract Quick (SUBQ), Set according to Condition Codes (Scc)

0x6 PC-relative change-of-flow instructions
Conditional (Bcc) and unconditional (BRA) branches, subroutine calls (BSR)

0x7 Move Quick (MOVEQ), Move with sign extension (MVS) and zero fill (MVZ)

0x8 Logical OR (OR)

0x9 Subtract (SUB), Subtract Extended (SUBX)

0xA {E}MAC, Move 3-bit Quick (MOV3Q)

0xB Compare (CMP), Exclusive-OR (EOR)

0xC Logical AND (AND), Multiply Word (MUL)

0xD Add (ADD), Add Extended (ADDX)

0xE Arithmetic and logical shifts (ASL, ASR, LSL, LSR)

0xF Floating-point Instructions, Cache Push (CPUSHL), Write DDATA (WDDATA), Write Debug (WDEBUG)
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In the original M68K ISA definition, lines A and F were effectively reserved for user-defined operations 
(line A) and co-processor instructions (line F). Accordingly, there are two unique exception vectors 
associated with illegal opwords in these two lines.

Any attempted execution of an illegal 16-bit opcode (except for line-A and line-F opcodes) generates an 
illegal instruction exception (vector 4). Additionally, any attempted execution of any illegal line-A or 
line-F opcode generates their unique exception types, vector numbers 10 and 11, respectively. ColdFire 
cores do not provide illegal instruction detection on the extension words on any instruction, including 
MOVEC.

The V1 ColdFire processor also detects two special cases involving illegal instruction conditions: 
1. If execution of the STOP instruction is attempted and neither low-power stop nor wait modes are 

enabled, then the processor signals an illegal instruction. 
2. If execution of the HALT instruction is attempted and BDM is not enabled (XCSR[ENBDM] = 0), 

then the processor signals an illegal instruction.

In both cases, the processor response is then dependent on the state of CPUCR[IRD]—either a reset event 
or a processor exception.

4.3.4 Divide-By-Zero

If the optional integer divide execute engine is present, an attempt to divide by zero causes an exception 
(vector 5, offset = 0x014).

4.3.5 Privilege Violation

The default operation of the V1 ColdFire processor is the generation of an illegal opcode reset event if a 
privilege violation is detected. If CPUCR[IRD] = 1, then the reset is disabled and a processor exception is 
generated as detailed below. 

The attempted execution of a supervisor mode instruction while in user mode generates a privilege 
violation exception. See the ColdFire Programmer’s Reference Manual for a list of supervisor-mode 
instructions.

4.3.6 Trace Exception

To aid in program development, all ColdFire processors provide an instruction-by-instruction tracing 
capability. While in trace mode, indicated by setting of the SR[T] bit, the completion of an instruction 
execution (for all but the STOP instruction) signals a trace exception. This functionality allows a debugger 
to monitor program execution.

The STOP instruction has the following effects:
1. The instruction before the STOP executes and then generates a trace exception. In the exception 

stack frame, the PC points to the STOP opcode.
2. When the trace handler is exited, the STOP instruction is executed, loading the SR with the 

immediate operand from the instruction.
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3. The processor then generates a trace exception. The PC in the exception stack frame points to the 
instruction after the STOP, and the SR reflects the value loaded in the previous step.

If the processor is not in trace mode and executes a STOP instruction where the immediate operand sets 
SR[T], hardware loads the SR and generates a trace exception. The PC in the exception stack frame points 
to the instruction after the STOP, and the SR reflects the value loaded in step 2. 

Because ColdFire processors do not support any hardware stacking of multiple exceptions, it is the 
responsibility of the operating system to check for trace mode after processing other exception types. As 
an example, consider the execution of a TRAP instruction while in trace mode. The processor will initiate 
the TRAP exception and then pass control to the corresponding handler. If the system requires that a trace 
exception be processed, it is the responsibility of the TRAP exception handler to check for this condition 
(SR[T] in the exception stack frame set) and pass control to the trace handler before returning from the 
original exception.

4.3.7 Unimplemented Line-A Opcode

The default operation of the V1 ColdFire processor is the generation of an illegal opcode reset event if an 
unimplemented line-A opcode is detected. If CPUCR[IRD] = 1, then the reset is disabled and a processor 
exception is generated as detailed below. 

A line-A opcode is defined when bits 15-12 of the opword are 0b1010. This exception is generated by the 
attempted execution of an undefined line-A opcode.

4.3.8 Unimplemented Line-F Opcode

The default operation of the V1 ColdFire processor is the generation of an illegal opcode reset event if an 
unimplemented line-F opcode is detected. If CPUCR[IRD] = 1, then the reset is disabled and a processor 
exception is generated as detailed below. 

A line-F opcode is defined when bits 15-12 of the opword are 0b1111. This exception is generated when 
attempting to execute an undefined line-F opcode.

4.3.9 Debug Interrupt

This special type of program interrupt is generated in response to a hardware breakpoint register trigger. 
The processor does not generate an IACK cycle, but rather calculates the vector number internally (vector 
number 12). Additionally, SR[M,I] are unaffected by this interrupt.

4.3.10 RTE and Format Error Exception

The default operation of the V1 ColdFire processor is the generation of an “illegal address” reset event if 
an RTE format error is detected. If CPUCR[ARD] = 1, then the reset is disabled and a processor exception 
is generated as detailed below.

When an RTE instruction is executed, the processor first examines the 4-bit format field to validate the 
frame type. For a ColdFire core, any attempted RTE execution where the format is not equal to {4,5,6,7} 
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generates a format error. The exception stack frame for the format error is created without disturbing the 
original RTE frame and the stacked PC pointing to the RTE instruction.

The selection of the format value provides some limited debug support for porting code from M68K 
applications. On M68K family processors, the SR was located at the top of the stack. On those processors, 
bit 30 of the longword addressed by the system stack pointer is typically zero. Thus, if an RTE is attempted 
using this ‘old’ format, it generates a format error on a ColdFire processor.

If the format field defines a valid type, the processor: (1) reloads the SR operand, (2) fetches the second 
longword operand, (3) adjusts the stack pointer by adding the format value to the auto-incremented address 
after the fetch of the first longword, and then (4) transfers control to the instruction address defined by the 
second longword operand within the stack frame.

4.3.11 TRAP Instruction Exception

The TRAP #n instructions always force an exception as part of their execution and are useful for 
implementing system calls. The trap instructions may be used to change from user to supervisor mode.

This set of 16 instructions provides a similar but expanded functionality compared to the S08’s SWI 
(software interrupt) instruction. These instructions and their functionality should not be confused with the 
software-scheduled interrupt requests, which are handled like normal I/O interrupt requests by the 
interrupt controller. The processing of the software-scheduled IRQs can be masked, based on the interrupt 
priority level defined by the SR[I] field.

4.3.12 Interrupt Exception

Interrupt exception processing includes interrupt recognition and the calculation of the appropriate vector, 
retrieved from the interrupt controller either using an IACK cycle or using the previously-supplied vector 
number, under control of CPUCR[IAE]. The SR[M] bit is cleared and SR[I] is set to the interrupt level 
being processed. See Section 1.2, “Features” for an overview of the interrupt controller. All ColdFire 
processors sample for interrupts once during each instruction’s execution, during the first cycle of 
execution in the OEP unless specifically noted otherwise.

The details on IRQ and vector assignments are device-specific.

4.3.13 Fault-on-Fault Halt

The default operation of the V1 ColdFire processor is the generation of an illegal address reset event if a 
fault-on-fault halt condition is detected. If CPUCR[ARD] = 1, then the reset is disabled and the processor 
is halted as detailed below.

If a ColdFire processor encounters any type of fault during the exception processing of another fault, the 
processor immediately halts execution with the catastrophic fault-on-fault condition. A reset is required to 
force the processor to exit this halted state.
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4.3.14 Reset Exception

There are multiple events that can generate a reset signal to the processor. Asserting a reset input signal 
(RESET), setting of a BDM “force_reset” control bit, detecting of certain illegal address or opcode 
conditions, all force the processor to initiate a reset exception. The reset exception has the highest priority 
of any exception; it provides for system initialization and recovery from catastrophic failure. Reset also 
aborts any processing in progress when the reset input is recognized. Processing cannot be recovered.

The reset exception places the processor in the supervisor mode by setting the SR[S] bit and disables 
tracing by clearing the SR[T] bit. This exception also clears the SR[M] bit and sets the processor’s SR[I] 
field to the highest level (level 7, 0b111). Next, the VBR is initialized to zero (0x0000_0000). The control 
registers specifying the CPU configuration are also cleared.

The processor initiates the reset exception processing by performing two longword read bus cycles. The 
first longword at address 0 is loaded into the supervisor stack pointer and the second longword at address 
4 is loaded into the program counter. After the initial instruction is fetched from memory, program 
execution begins at the address in the PC. If an access error or address error occurs before the first 
instruction is executed, the processor enters the fault-on-fault halted state.

ColdFire processors load hardware configuration information into the D0 and D1 general-purpose 
registers after system reset. The hardware configuration information is loaded immediately after the 
reset-in signal is negated. This allows an emulator to read out the contents of these registers via BDM to 
determine the hardware configuration before instruction execution begins, if desired.

Information loaded into D0 defines the processor hardware configuration as shown in Figure 12.

Figure 12. D0 Hardware Configuration Info

BDM:
 
0x60 (D0 read)

Access: User read-only
BDM read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R PF VER REV

W

Reset 1 1 0 0 1 1 1 1 0 0 0 1 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R MAC DIV EMAC FPU MMU CAU 0 0 ISA DEBUG

W

Reset * * * 0 0 * 0 0 0 0 1 0 1 0 0 1
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Table 14. D0 Hardware Configuration Info Field Description

Field Description

31–24
PF

Processor family. This field is fixed to a hex value of 0xCF indicating a ColdFire core is present.

23–20
VER

ColdFire core version number. Defines the hardware microarchitecture version of the ColdFire core.
0001 V1 ColdFire core (This is the value used for this device)
0010 V2 ColdFire core
0011 V3 ColdFire core 
0100 V4 ColdFire core 
0101 V5 ColdFire core
Else Reserved for future use.

19–16
REV

Processor revision number. The default is 0b0000.

15
MAC

MAC present.This bit signals if the optional multiply-accumulate (MAC) execution engine is present in the processor 
core.
0 MAC execute engine not present in core. 
1 MAC execute engine is present in core. 
The reset state depends on CPU hardware configuration.

14
DIV

Divide present. This bit signals if the hardware divider (DIV) is present in the processor core. Certain CF1 core 
implementations do not include hardware support for integer divide operations.
0 Divide execute engine not present in core.
1 Divide execute engine is present in core.
The reset state depends on the CPU hardware configuration.

13
EMAC

EMAC present. This bit signals if the optional enhanced multiply-accumulate (EMAC) execution engine is present in 
the processor core.
0 EMAC execute engine not present in core. 
1 EMAC execute engine is present in core.
The reset state depends on the CPU hardware configuration.

12
FPU

FPU present. This bit signals if the optional floating-point (FPU) execution engine is present in the processor core.
0 FPU execute engine not present in core. (This is the value used for this device)
1 FPU execute engine is present in core. 

11
MMU

MMU present. This bit signals if the optional virtual memory management unit (MMU) is present in the processor core.
0 MMU execute engine not present in core. (This is the value used for this device)
1 MMU execute engine is present in core. 
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Information loaded into D1 defines the platform memory hardware configuration as shown in the Table 15 
below.

Figure 13. D1 Hardware Configuration Info

10
CAU

Cryptographic acceleration unit present. This bit signals if the optional cryptographic acceleration unit (CAU) is present 
in the processor core.
0 CAU coprocessor engine not present in core.
1 CAU coprocessor engine is present in core. 
The reset state depends on the CPU hardware configuration.

9–8 Reserved.

7–4
ISA

ISA revision. This 4-bit field defines the instruction set architecture (ISA) revision level implemented in the ColdFire 
processor core.
0000 ISA_A
0001 ISA_B
0010 ISA_C (This is the value used for this device)
1000 ISA_A+ 
Else Reserved

3–0
DEBUG

Debug module revision number. This 4-bit field defines the revision level of the debug module implemented in the 
ColdFire processor core.
0000 DEBUG_A
0001 DEBUG_B
0010 DEBUG_C
0011 DEBUG_D
0100 DEBUG_E
1001 DEBUG_B+ (This is the value used for this device)
1011 DEBUG_D+ 
Else Reserved

BDM 0x61 (D1 read)
Access: User read-only

BDM read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 1 0 0 0 0 FLASHSZ 0 0 0 0

W

Reset 0 0 0 1 0 0 0 0 * * * * 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 1 0 0 0 0 RAMSZ 0 0 0 0

W

Reset 0 0 0 1 0 0 0 0 * * * * 0 0 0 0

Table 14. D0 Hardware Configuration Info Field Description (continued)

Field Description
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5 Debug Overview
As previously discussed, the V1 core implements Revision B+ of the ColdFire debug architecture using a 
single-pin BDM interface with enhanced capabilities related to program (and optional data) trace. The 
baseline DEBUG_B+ functionality is detailed in any number of V2 ColdFire device reference manuals; 
see Chapter 31 of the MCF52235RM as an example. This document is available at:

http://www.freescale.com/files/32bit/doc/ref_manual/MCF52235RM.pdf

5.1 Debug Register Descriptions
In addition to the BDM commands that provide access to the processor’s registers and memory, the debug 
module contains 27 registers to support the required functionality. Most of these registers (all except the 
PST/DDATA trace buffer) are also accessible from the processor’s supervisor programming model by 
executing the WDEBUG instruction (write only). Thus, the breakpoint hardware in the debug module can 
be written by the external development system using the debug serial interface or by the operating system 
running on the processor core. Software is responsible for guaranteeing that accesses to these resources 
are serialized and logically consistent. Hardware provides a locking mechanism in the CSR to allow the 
external development system to disable any attempted writes by the processor to the breakpoint registers 

Table 15. D1 Hardware Configuration Information Field Description

Field Description

31–24 Reserved

23–20
FLASHSZ

Flash size.
0000-0101 No flash
0110 16 Kbytes
0111 32 Kbytes
1000  64 Kbytes
1001 128 Kbytes
1010 256 Kbytes
1011 512 Kbytes
Else Reserved for future use.
The reset state depends on the size of the attached memory.

19–8 Reserved

7–4
RAMSZ

RAM size.
0000 No SRAM
0001 512 bytes
0010  1 Kbytes
0011  2 Kbytes
0100  4 Kbytes
0101  8 Kbytes
0110  16 Kbytes 
0111  32 Kbytes 
1000  64 Kbytes 
1001 128 Kbytes
Else Reserved for future use
The reset state depends on the size of the attached memory.

3-0 Reserved
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(CSR[IPW] = 1). BDM commands must not be issued if the ColdFire processor is using the WDEBUG 
instruction to access debug module registers, or the resulting behavior is undefined.

These registers, shown in Table 16, are treated as 32-bit quantities, regardless of the number of 
implemented bits. These registers are also accessed through the BDM port by the commands, READ_DREG 
and WRITE_DREG, described in Section 5.2.4, “BDM Command Set.” These commands contain a DRc 
field that specifies the register, as shown in Table 16.

Table 16. Debug Control Register Memory Map

DRc Register
Width
(bits)

Access Reset Value Section/Page

0x00 Configuration/Status Register (CSR) 32  Note1 0x0090_0000 See 
MCF52235RM, 

Chapter 31

0x01 Extended Configuration/Status Register (XCSR)2 32  Note1 0x0000_0000 To be supplied

0x02 Hyper-extended Configuration/Status Register 
(XXCSR)2

32  Note1 0x0000_0000 To be supplied

0x05 BDM Address Attribute Register (BAAR) 323  Note1 0x05 See 
MCF52235RM, 

Chapter 31

0x06 Address Attribute Trigger Register (AATR) 323  Note1 0x0005 See 
MCF52235RM, 

Chapter 31

0x07 Trigger Definition Register (TDR) 32  Note1 0x0000_0000 See 
MCF52235RM, 

Chapter 31

0x08 PC Breakpoint Register 0 (PBR0) 32  Note1 Undefined See 
MCF52235RM, 

Chapter 31

0x09 PC Breakpoint Mask Register (PBMR) 32  Note1 Undefined See 
MCF52235RM, 

Chapter 31

0x0C Address High Breakpoint Register (ABHR) 32  Note1 Undefined See 
MCF52235RM, 

Chapter 31

0x0D Address Low Breakpoint Register (ABLR) 32  Note1 Undefined See 
MCF52235RM, 

Chapter 31

0x0E Data Breakpoint Register (DBR) 32  Note1 Undefined See 
MCF52235RM, 

Chapter 31

0x0F Data Breakpoint Mask Register (DBMR) 32  Note1 Undefined See 
MCF52235RM, 

Chapter 31

0x18 PC Breakpoint Register 1 (PBR1) 32  Note1 Undefined See 
MCF52235RM, 

Chapter 31
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NOTES
Debug control registers can be written by the BDM or the CPU through the 
WDEBUG instruction. These control registers are write-only from the 
programming model and they can be written through the BDM port using 
the WRITE_DREG command. In addition, the three configuration/status 
registers (CSR, XCSR, XXCSR) can be read through the BDM port using 
the READ_DREG command.

The most significant bytes of the XCSR and XXCSR registers support 
special control functions and are only writeable via BDM using the 
WRITE_XCSR_BYTE and WRITE_XXCSR_BYTE serial commands. These two 
debug control registers can be read from BDM using the READ_DREG 
commands.

Each debug register is accessed as a 32-bit register; reserved fields are not 
used (don’t care).

5.2 Background Debug Mode (BDM)
The V1 ColdFire core supports the classic BDM functionality using the S08’s single-pin interface. The 
traditional 3-pin full-duplex ColdFire BDM serial communication protocol based on 17-bit data packets is 
replaced with the HCS08 protocol where all communications are based on an 8-bit data packet using a 

0x1A PC Breakpoint Register 2 (PBR2) 32  Note1 Undefined See 
MCF52235RM, 

Chapter 31

0x1B PC Breakpoint Register 3 (PBR3) 32  Note1 Undefined See 
MCF52235RM, 

Chapter 31

0x20 PST Trace Buffer 0 (PSTB0) 32 BDM Undefined To be supplied

0x21 PST Trace Buffer 1 (PSTB1) 32 BDM Undefined To be supplied

0x22 PST Trace Buffer 2 (PSTB2) 32 BDM Undefined To be supplied

0x23 PST Trace Buffer 3 (PSTB3) 32 BDM Undefined To be supplied

0x24 PST Trace Buffer 4 (PSTB4) 32 BDM Undefined To be supplied

0x25 PST Trace Buffer 5 (PSTB5) 32 BDM Undefined To be supplied

0x26 PST Trace Buffer 6 (PSTB6) 32 BDM Undefined To be supplied

0x27 PST Trace Buffer 7 (PSTB7) 32 BDM Undefined To be supplied

0x28 PST Trace Buffer 8 (PSTB8) 32 BDM Undefined To be supplied

0x29 PST Trace Buffer 9 (PSTB9) 32 BDM Undefined To be supplied

0x2A PST Trace Buffer 10 (PSTB10) 32 BDM Undefined To be supplied

0x2B PST Trace Buffer 11 (PSTB11) 32 BDM Undefined To be supplied

Table 16. Debug Control Register Memory Map (continued)

DRc Register
Width
(bits)

Access Reset Value Section/Page
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single package pin (BKGD). Subsequent paragraphs in this section provide details on the BKGD pin, the 
background debug serial interface controller (BDC), a standard 6-pin BDM connector, and the BDM 
command set.

5.2.1 BKGD Pin Description

BKGD is the single-wire background debug interface pin. The primary function of this pin is for 
bidirectional serial communication of active background (halt) mode commands and data. During reset, 
this pin is used to select between starting in active background mode or starting the user’s application 
program. This pin is also used to request a timed sync response pulse to allow a host development tool to 
determine the correct clock frequency for background debug serial communications.

BDC serial communications use a custom serial protocol first introduced on the M68HC12 Family of 
microcontrollers and later used in the M68HCS08 family. This protocol assumes the external controller 
(the host) knows the communication clock rate that is determined by the target BDC clock rate. All 
communication is initiated and controlled by the host that drives a high-to-low edge to signal the beginning 
of each bit time. Commands and data are sent most significant bit (msb) first. For a detailed description of 
the communications protocol, refer to Section 5.2.3, “BDM Communication Details.”

If a host is attempting to communicate with a target MCU that has an unknown BDC clock rate, a SYNC 
command may be sent to the target MCU to request a timed synchronization response signal from which 
the host can determine the correct communication speed.

BKGD is a pseudo-open-drain pin and there is an on-chip pullup so no external pullup resistor is required. 
Unlike typical open-drain pins, the external RC time constant on this pin, which is influenced by external 
capacitance, plays almost no role in signal rise time. The custom protocol provides for brief, actively 
driven speed-up pulses to force rapid rise times on this pin without risking harmful drive level conflicts. 
Refer to Section 5.2.3, “BDM Communication Details,” for more detail.

When no debugger pod is connected to the standard 6-pin BDM interface connector (Section 5.2.2, 
“Standard BDM Connector”), the internal pullup on BKGD chooses normal operating mode. When a 
development system is connected, it can pull both BKGD and RESET low, release RESET to select active 
background mode rather than normal operating mode, then release BKGD. It is not necessary to reset the 
target MCU to communicate with it through the background debug interface. There is also a mechanism 
to generate a reset event in response to the programming of a special BDM control bit.

5.2.2 Standard BDM Connector

Typically, a relatively simple interface pod is used to translate commands from a host computer into 
commands for the custom serial interface to the single-wire background debug system. Depending on the 
development tool vendor, this interface pod may use a standard RS-232 serial port, a parallel printer port, 
or some other type of communications such as a universal serial bus (USB) to communicate between the 
host PC and the pod. The pod typically connects to the target system with ground, the BKGD pin, RESET, 
and sometimes VDD. An open-drain connection to reset allows the host to force a target system reset, 
which is useful to regain control of a lost target system or to control startup of a target system before the 
on-chip nonvolatile memory has been programmed. Sometimes VDD can be used to allow the pod to use 
power from the target system to avoid the need for a separate power supply. However, if the pod is powered 
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separately, it can be connected to a running target system without forcing a target system reset or otherwise 
disturbing the running application program.

Figure 14. BDM Tool Connector

5.2.3 BDM Communication Details

The BDC serial interface requires the external host controller to generate a falling edge on the BKGD pin 
to indicate the start of each bit time. The external controller provides this falling edge whether data is 
transmitted or received.

BKGD is a pseudo-open-drain pin that can be driven either by an external controller or by the MCU. Data 
is transferred msb first at 16 BDC clock cycles per bit (nominal speed). The interface times out if 512 BDC 
clock cycles occur between falling edges from the host. Any BDC command that was in progress when 
this time-out occurs is aborted without affecting the memory or operating mode of the target MCU system.

The custom serial protocol requires the debug pod to know the target BDC communication clock speed. 
The clock switch (CLKSW) control bit in the XCSR[31:24] control register allows the user to select the 
BDC clock source. The BDC clock source can either be the peripheral bus or the alternate BDC clock 
source. 

The BKGD pin can receive a high or low level or transmit a high or low level. The following diagrams 
show timing for each of these cases. Interface timing is synchronous to clocks in the target BDC, but 
asynchronous to the external host. The internal BDC clock signal is shown for reference in counting 
cycles.

Figure 15 shows an external host transmitting a logic 1 or 0 to the BKGD pin of a target CF1 MCU. The 
host is asynchronous to the target so there is a 0-to-1 cycle delay from the host-generated falling edge to 
where the target perceives the beginning of the bit time. Ten target BDC clock cycles later, the target senses 
the bit level on the BKGD pin. Typically, the host actively drives the pseudo-open-drain BKGD pin during 
host-to-target transmissions to speed up rising edges. Because the target does not drive the BKGD pin 
during the host-to-target transmission period, there is no need to treat the line as an open-drain signal 
during this period.

BKGD
No Connect
No Connect

1
3
5

GND
RESET
VDD

2
4
6
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Figure 15. BDC Host-to-Target Serial Bit Timing

Figure 16 shows the host receiving a logic 1 from the target CF1 MCU. Because the host is asynchronous 
to the target MCU, there is a 0-to-1 cycle delay from the host-generated falling edge on BKGD to the 
perceived start of the bit time in the target MCU. The host holds the BKGD pin low long enough for the 
target to recognize it (at least two target BDC cycles). The host must release the low drive before the target 
MCU drives a brief active-high speedup pulse seven cycles after the perceived start of the bit time. The 
host should sample the bit level about 10 cycles after it started the bit time.

Figure 16. BDC Target-to-Host Serial Bit Timing (Logic 1)

Figure 17 shows the host receiving a logic 0 from the target CF1 MCU. Because the host is asynchronous 
to the target MCU, there is a 0-to-1 cycle delay from the host-generated falling edge on BKGD to the start 
of the bit time as perceived by the target MCU. The host initiates the bit time, but the target CF1 finishes 
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it. Because the target wants the host to receive a logic 0, it drives the BKGD pin low for 13 BDC clock 
cycles, then briefly drives it high to speed up the rising edge. The host samples the bit level about 10 cycles 
after starting the bit time.

Figure 17. BDM Target-to-Host Serial Bit Timing (Logic 0)

5.2.4 BDM Command Set

The V1 BDM command set is based on transmission of one or more 8-bit data packets for each operation. 
Each operation begins with a host-to-target transmission of an 8-bit command code packet. The command 
code definition broadly classifies the operations into three categories as shown in Figure 18.
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Figure 18. BDM Command Code Encodings

Miscellaneous Commands

7 6 5 4 3 2 1 0

W 0 0 R/W 0 MSCMD

R/W Optional Command Extension Byte (Data)

Memory Commands

7 6 5 4 3 2 1 0

W 0 0 R/W 1 SZ MCMD

W if addr,
R/W if data

Command Extension Bytes (Address, Data)

Register Commands

7 6 5 4 3 2 1 0

W CRG R/W CRN

R/W Command Extension Bytes (Data)

Table 17. BDM Command Code Field Descriptions

Field Description

5
R/W

Read/Write. 
0 The command is performing a write operation. 
1 The command is performing a read operation.

3–0
MSCMD

Miscellaneous command. Defines the miscellaneous command to be performed.
0000 No operation
0001 Display the CPU’s program counter (PC) and optionally capture it in the PST trace buffer
0010 Enable the BDM acknowledge communication mode
0011 Disable the BDM acknowledge communication mode
0100 Force a CPU halt (background)
1000 Resume CPU execution (go)
1101 Read/write of the debug XCSR most significant byte
1110 Read/write of the debug XXCSR most significant byte
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Table 18 presents a BDM command summary. The commands are presented in alphabetical order, based 
on their mnemonics, except for the special SYNC command which is presented first.

Command Structure Nomenclature

This nomenclature is used in Table 18 to describe the structure of the BDM commands.
Commands begin with an 8-bit hexadecimal command code in the host-to-target direction (most 
significant bit first)

/  = separates parts of the command
d = delay 16 target BDC clock cycles
ad24 = 24-bit memory address in the host-to-target direction
rd8 = 8 bits of read data in the target-to-host direction
rd16 = 16 bits of read data in the target-to-host direction
rd32 = 32 bits of read data in the target-to-host direction
rd.sz = read data, size defined by sz, in the target-to-host direction
wd8 = 8 bits of write data in the host-to-target direction
wd16 = 16 bits of write data in the host-to-target direction
wd32 = 32 bits of write data in the host-to-target direction
wd.sz = write data, size defined by sz, in the host-to-target direction

3–2
SZ

Memory operand size. Defines the size of the memory reference.
00 8-bit byte
01 16-bit word
10 32-bit long

1–0
MCMD

Memory command. Defines the type of the memory reference to be performed.
00 Simple write if R/W = 0; simple read if R/W = 1
01 Write + status if R/W = 0; read + status if R/W = 1
10 Fill if R/W = 0; dump if R/W = 1
11 Fill + status if R/W = 0; dump + status if R/W = 1

7–6
CRG

Core register group. Defines the core register group to be referenced.
01 CPU’s general-purpose registers (An, Dn)
10 DBG’s control registers
11 CPU’s control registers (PC, SR, VBR, CPUCR, ...)

4–0
CRN

Core register number. Defines the specific core register (its number) to be referenced.

where all other CRN values are reserved

Table 17. BDM Command Code Field Descriptions (continued)

Field Description

CRG CRN Register

01
0x00–0x07 D0–7

0x08–0x0F A0–7

10 DRc[4:0] as described in Table 16

11

0x00 OTHER_A7

0x01 VBR

0x02 CPUCR

0x0E SR

0x0F PC
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Background Debug Mode (BDM)
ss = the contents of XCSR[31:24] in the target-to-host direction (STATUS)
sz = memory operand size (0b00 = byte, 0b01 = word, 0b10 = long)
crn = core register number

Table 18. BDM Command Summary

Command
Mnemonic

CPU 
State1

Command
Structure

Description

SYNC parallel n/a22 Request a timed reference pulse to determine 
the target BDC communication speed

ACK_DISABLE parallel 0x03/d Disable the communication handshake. This 
command does not issue an ACK pulse.

ACK_ENABLE parallel 0x02/d Enable the communication handshake. Issues an 
ACK pulse after the command is executed.

BACKGROUND parallel 0x04/d Halt the CPU if ENBDM = 1, else ignore.

DUMP_MEM.sz steal (0x32+4 x sz)/d/rd.sz Dump (read) memory based on operand size 
(sz). Used with READ_MEM to dump large 
blocks of memory. An initial READ_MEM is 
executed to set up the starting address of the 
block and to retrieve the first result. A 
DUMP_MEM command retrieves subsequent 
operands.

DUMP_MEM.sz_WS steal (0x33+4 x sz)/d/ss/rd.sz Dump (read) memory based on operand size (sz) 
and report status. Used with READ_MEM{_WS} 
to dump large blocks of memory. An initial 
READ_MEM{_WS} is executed to set up the 
starting address of the block and to retrieve the 
first result. A DUMP_MEM{_WS} command 
retrieves subsequent operands.

FILL_MEM.sz steal (0x12+4 x sz)/d/wd.sz Fill (write) memory based on operand size (sz). 
Used with WRITE_MEM to fill large blocks of 
memory. An initial WRITE_MEM is executed to 
set up the starting address of the block and to 
write the first operand. A FILL_MEM command 
writes subsequent operands.

FILL_MEM.sz_WS steal (0x13+4 x sz)/d/wd.sz/ss Fill (write) memory based on operand size (sz) 
and report status. Used with WRITE_MEM{_WS} 
to fill large blocks of memory. An initial 
WRITE_MEM{_WS} is executed to set up the 
starting address of the block and to write the first 
operand. A FILL_MEM{_WS} command writes 
subsequent operands.

GO halted 0x08/d Resume the CPU’s execution

NOP parallel 0x00/d No operation

READ_CREG halted, 
stopped

(0xe0+crn)/d/rd32 Read one of the CPU’s control registers

READ_DREG halted, 
stopped

(0xa0+crn)/d/rd32 Read one of the debug module’s control registers

READ_MEM.sz steal (0x30+4 x sz)/ad24/d/rd.sz Read the appropriately-sized (sz) memory value 
from the location specified by the 24-bit address
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Unassigned command opcodes are reserved by Freescale. All unused command formats within any 
revision level perform no operation and return the illegal command response.

More detailed descriptions of the individual BDM commands will be provided in future documentation.

5.3 Processor Status (PST)/Debug Data (DDATA) and Trace Support
The classic ColdFire debug architecture supports real-time trace via the PST/DDATA output signals. For 
this functionality, the following apply:

READ_MEM.sz_WS steal (0x31+4 x sz)/ad24/d/ss/rd.sz Read the appropriately-sized (sz) memory value 
from the location specified by the 24-bit address 
and report status

READ_PSTB parallel (0x50+crn)/d/rd32 Read the requested longword location from the 
PST trace buffer

READ_Rn halted, 
stopped

(0x60+crn)/d/rd32 Read the requested general-purpose register 
(An, Dn) from the CPU

READ_XCSR_BYTE parallel 0x2d/rd8 Read the most significant byte of the debug 
module’s XCSR

READ_XXCSR_BYTE parallel 0x2e/rd8 Read the most significant byte of the debug 
module’s XXCSR

SYNC_PC steal 0x01/d Display the CPU’s current PC and optionally 
capture it in the PST trace buffer

WRITE_CREG halted, 
stopped

(0xc0+crn)/wd32/d Write one of the CPU’s control registers

WRITE_DREG halted, 
stopped

(0x80+crn)/wd32/d Write one of the debug module’s control registers

WRITE_MEM.sz steal (0x10+4 x sz)/ad24/wd.sz/d Write the appropriately-sized (sz) memory value 
to the location specified by the 24-bit address

WRITE_MEM.sz_WS steal (0x11+4 x sz)/ad24/wd.sz/d/ss Write the appropriately-sized (sz) memory value 
to the location specified by the 24-bit address 
and report status

WRITE_Rn halted, 
stopped

(0x40+crn)/wd32/d Write the requested general-purpose register 
(An, Dn) of the CPU

WRITE_XCSR_BYTE parallel 0x0d/wd8 Write the most significant byte of the debug 
module’s XCSR

WRITE_XXCSR_BYTE parallel 0x0e/wd8 Write the most significant byte of the debug 
module’s XXCSR

1 General command effect and/or requirements on CPU operation:
- Halted, Stopped: The CPU must be halted or stopped to perform this command.
- Steal: Command generates bus cycles that can be interleaved with CPU activity.
- Parallel: Command is executed in parallel with CPU activity.

2 The SYNC command is a special operation which does not have a command code.

Table 18. BDM Command Summary (continued)

Command
Mnemonic

CPU 
State1

Command
Structure

Description
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• One (or more) PST value is generated for each executed instruction
• Branch target instruction address information is displayed on all non-PC-relative change-of-flow 

instructions, where the user selects a programmable number of bytes of target address
— Displayed information includes PST marker plus target instruction address as DDATA
— Captured address creates the appropriate number of DDATA entries, each with 4 bits of address

• Optional data trace capabilities are provided for accesses mapped to the slave peripheral bus
— Displayed information includes PST marker plus captured operand value as DDATA
— Captured operand creates the appropriate number of DDATA entries, each with 4 bits of data

The resulting PST/DDATA output stream, in conjunction with the application program memory image, 
provides an instruction-by-instruction dynamic trace of the execution path.

For the V1 ColdFire core, the availability of only a single pin for debug requires that support for trace 
functionality be completely redefined. The V1 solution provides an on-chip PST/DDATA trace buffer 
(known simply as the PSTB) to record the stream of PST and DDATA values.

Even with the application of an PST trace buffer, there remain problems associated with the PST 
bandwidth and associated fill rate of the buffer. Given that there is >1 PST entry per instruction, the PSTB 
would fill very rapidly without some type of data compression. Luckily, the PST compression technology 
was previously developed and included as part of the V5 ColdFire core. 

Consider the following example to illustrate the PST compression algorithm. Most sequential instructions 
generate a single PST = 1 value. Without compression, the execution of ten sequential instructions 
generates a stream of ten PST = 1 values. With PST compression, the reporting of any PST = 1 value is 
delayed so that consecutive PST = 1 values can be accumulated. When a PST ≠ 1 value is reported, or the 
maximum accumulation count reached, or a debug data value captured, then a single accumulated PST 
value is generated. Returning to the example with compression enabled, the execution of ten sequential 
instructions generates a single PST value indicating ten sequential instructions have been executed.

This technique has proven to be very effective at significantly reducing the average PST entries per 
instruction and PST entries per machine cycle. The application of this compression technique makes the 
application of an useful PST trace buffer for the V1 ColdFire core realizable. The resulting 5-bit PST 
definitions are shown in Table 19.

Table 19. V1 Processor Status Encodings

PST[4:0] Definition

0x00 Continue execution. Many instructions execute in one processor cycle. If an instruction requires more 
processor clock cycles, subsequent clock cycles are indicated by driving PST with this encoding. 

0x01 Begin execution of one instruction. For most instructions, this encoding signals the first processor clock 
cycle of an instruction’s execution. Certain change-of-flow opcodes, plus the PULSE and WDDATA 
instructions, generate different encodings.

0x02 Reserved

0x03 Entry into user-mode. Signaled after execution of the instruction that caused the ColdFire processor to 
enter user mode.
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0x04 Begin execution of PULSE and WDDATA instructions. PULSE defines triggers or markers for debug 
and/or performance analysis. WDDATA lets the core write any operand (byte, word, or longword) 
directly to the DDATA port, independent of debug module configuration. When WDDATA is executed, a 
value of 0x04 is signaled on the PST port, followed by the appropriate marker, and then the data transfer 
on the DDATA port. The number of captured data bytes depends on the WDDATA operand size.

0x05 Begin execution of taken branch or SYNC_PC BDM command. For some opcodes, a branch target 
address may be displayed on DDATA depending on the CSR settings. CSR also controls the number of 
address bytes displayed, indicated by the PST marker value preceding the DDATA nibble that begins 
the data output. This encoding also indicates that the SYNC_PC command has been processed.

0x06 Reserved

0x07 Begin execution of return from exception (RTE) instruction.

0x08–0x0B Indicates the number of data bytes to be displayed as DDATA on subsequent processor clock cycles. 
This marker value is driven as the PST one processor clock cycle before the data is displayed on 
DDATA. The capturing of peripheral bus data references is controlled by CSR[DDC].
0x08 Begin 1-byte data transfer on DDATA
0x09 Begin 2-byte data transfer on DDATA
0x0A Reserved
0x0B Begin 4-byte data transfer on DDATA

0x0C–0x0F Indicates the number of address bytes to be displayed as DDATA on subsequent processor clock 
cycles. This marker value is driven as the PST one processor clock cycle before the address is 
displayed on DDATA. The capturing of branch target addresses is controlled by CSR[BTB].
0x0C Reserved
0x0D Begin 2-byte address transfer on DDATA (Displayed address is shifted right 1: ADDR[17:1])
0x0E Begin 3-byte address transfer on DDATA (Displayed address is shifted right 1: ADDR[24:1])
0x0F Reserved

0x10–0x11 Reserved

0x12 Completed execution of 2 sequential instructions

0x13 Completed execution of 3 sequential instructions

0x14 Completed execution of 4 sequential instructions

0x15 Completed execution of 5 sequential instructions

0x16 Completed execution of 6 sequential instructions

0x17 Completed execution of 7 sequential instructions

0x18 Completed execution of 8 sequential instructions

0x19 Completed execution of 9 sequential instructions

0x1A Completed execution of 10 sequential instructions

0x1B This value signals there has been a change in the breakpoint trigger state machine. It appears as a 
single marker for each state change.

Table 19. V1 Processor Status Encodings (continued)

PST[4:0] Definition
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As PST and DDATA values are captured and loaded in the trace buffer, each entry is 6 bits in size so that 
the type of the entry can easily be determined when post-processing the PSTB. See Figure 19.

Figure 19. V1 PST/DDATA Trace Buffer Entry Format

5.3.1 PST/DDATA Example and the PST Trace Buffer (PSTB)

In this section, an example showing the behavior of the PST/DDATA functionality is detailed. Consider 
the following interrupt service routine that counts the interrupt, then negates the IRQ, performs a software 
IACK and then exits. This example is presented here since it exercises a considerable set of the 
PST/DDATA capabilities.

_isr:
01074: 46fc 2700        mov.w   &0x2700,%sr        # disable interrupts
01078: 2f08             mov.l   %a0,-(%sp)         # save a0
0107a: 2f00             mov.l   %d0,-(%sp)         # save d0
0107c: 302f 0008        mov.w   (8,%sp),%d0        # load format/vector word
01080: e488             lsr.l   &2,%d0             # align vector number
01082: 0280 0000 00ff   andi.l  &0xff,%d0          # isolate vector number
01088: 207c 0080 1400   mov.l   &int_count,%a0     # base of interrupt counters
                      
                      _isr_entry1:
0108e: 52b0 0c00        addq.l  &1,(0,%a0,%d0.l*4) # count the interrupt
01092: 11c0 a021        mov.b   %d0,IGCR0+1.w      # negate the irq
01096: 1038 a020        mov.b   IGCR0.w,%d0        # force the write to complete
0109a: 4e71             nop                        # synchronize the pipelines
0109c: 71b8 ffe0        mvz.b   SWIACK.w,%d0       # software iack: pending irq?
010a0: 0c80 0000 0041   cmpi.l  %d0,&0x41          # level 7 or none pending?

0x1C Exception processing. This value signals the processor has encountered an exception condition. 
Although this is a multi-cycle mode, there are only two PST = 0x1C values recorded before the mode 
value is suppressed.

0x1D Reserved

0x1E Processor is stopped. This value signals the processor has executed a STOP instruction. Although this 
is a multi-cycle mode since the ColdFire processor remains stopped until an interrupt or reset occurs, 
there are only two PST = 0x1E values recorded before the mode value is suppressed.

0x1F Processor is halted. This value signals the processor has been halted. Although this is a multi-cycle 
mode since the ColdFire processor remains halted until a BDM go command is received or reset 
occurs, there are only two PST = 0x1F values recorded before the mode value is suppressed.

5 4 3 2 1 0

PSTB[PST] 0 PST[4:0]

Data
PSTB[DDATA]

1 R/W Data[3:0]

Address
PSTB[DDATA]

1 0 Address[3:0]

Reset: — — — — — —

Table 19. V1 Processor Status Encodings (continued)

PST[4:0] Definition
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010a6: 6f08             ble.b   _isr_exit          # yes, then exit
010a8: 52b9 0080 145c   addq.l  &1,swiack_count    # increment the swiack count
010ae: 60de             bra.b   _isr_entry1        # continue at entry1
                      
                      _isr_exit:
010b0: 201f             mov.l   (%sp)+,%d0         # restore d0
010b2: 205f             mov.l   (%sp)+,%a0         # restore a0
010b4: 4e73             rte                        # exit

This ISR executes mostly as straight-line code: there is a single conditional branch @ PC = 0x10A6, which 
is taken in this example. The following description includes the PST and DDATA values generated as this 
code snippet executes. In this example, the CSR setting enables the display of 2-byte branch addresses and 
both peripheral bus read and write operands are being traced. The sequence begins with an interrupt 
exception:
interrupt exception occurs @ pc = 5432 while in user mode
                                                   # pst   = 1c, 1c, 05, 0d
                                                   # ddata = 2a, 23, 28, 20
                                                   #         trg_addr = 083a << 1
                                                   #         trg_addr = 1074
                      _isr:
01074: 46fc 2700        mov.w   &0x2700,%sr        # pst   = 01
01078: 2f08             mov.l   %a0,-(%sp)         # pst   = 01
0107a: 2f00             mov.l   %d0,-(%sp)         # pst   = 01
0107c: 302f 0008        mov.w   (8,%sp),%d0        # pst   = 01
01080: e488             lsr.l   &2,%d0             # pst   = 01
01082: 0280 0000 00ff   andi.l  &0xff,%d0          # pst   = 01
01088: 207c 0080 1400   mov.l   &int_count,%a0     # pst   = 01
0108e: 52b0 0c00        addq.l  &1,(0,%a0,%d0.l*4) # pst   = 01
01092: 11c0 a021        mov.b   %d0,IGCR0+1.w      # pst   = 01, 08
                                                   # ddata = 30, 30
                                                   #         wdata.b = 0x00
01096: 1038 a020        mov.b   IGCR0.w,%d0        # pst   = 01, 08
                                                   # ddata = 28, 21
                                                   #         rdata.b = 0x18
0109a: 4e71             nop                        # pst   = 01
0109c: 71b8 ffe0        mvz.b   SWIACK.w,%d0       # pst   = 01, 08
                                                   # ddata = 20, 20
                                                   #         rdata.b = 0x00
010a0: 0c80 0000 0041   cmpi.l  %d0,&0x41          # pst   = 01
010a6: 6f08             ble.b   _isr_exit          # pst   = 05 (taken branch)
010b0: 201f             mov.l   (%sp)+,%d0         # pst   = 01
010b2: 205f             mov.l   (%sp)+,%a0         # pst   = 01
010b4: 4e73             rte                        # pst   = 07, 03, 05, 0d
                                                   # ddata = 29, 21, 2a, 22
                                                   #trg_addr = 2a19 << 1
                                                   #trg_addr = 5432

As the PSTs are compressed, the resulting stream of 6-bit hexadecimal entries is loaded into consecutive 
locations in the PST trace buffer:
PSTB[*] = 1c, 1c, 05, 0d, // interrupt exception

2a, 23, 28, 20, // branch target addr = 1074
19, 08, 30, 30, // 9 sequential insts, write byte
01, 08, 28, 21, // 1 sequential inst, read byte
12, 08, 20, 20, // 2 sequential insts, read byte
01, 05, 12, // 1 + taken_branch + 2 sequential
07, 03, 05, 0d, // rte, entry into user mode
Version 1 ColdFire White Paper, Rev. 0

Freescale Semiconductor46



Processor Status (PST)/Debug Data (DDATA) and Trace Support
29, 21, 2a, 22 // branch target addr = 5432

Architectural studies on the compression algorithm were used to determine an appropriate size for the PST 
trace buffer. Using a suite of ten MCU benchmarks, a 64-entry PSTB was found to capture an average 
‘window of time’ of 520 processor cycles with program trace using 2-byte addresses enabled.

5.3.2 PST/DDATA Definition for ISA_C

This section specifies the ColdFire processor and debug module’s generation of the processor status (PST) 
and debug data (DDATA) output on an instruction basis. In general, the PST/DDATA output for an 
instruction is defined as follows:

PST = 0x01, {PST = [0x0{89B}], DDATA= operand}

where the {...} definition is optional operand information defined by the setting of the CSR.

The CSR provides capabilities to display peripheral bus operands based on reference type (read, write, or 
both). A PST value (0x08, 0x09, or 0x0B) identifies the size and presence of valid data to follow on the 
DDATA output (one, two, or four bytes). Additionally, for certain change-of-flow branch instructions, the 
CSR[BTB] bit provides the capability to display the target instruction address on the DDATA output (two 
or three bytes) using a PST value of (0x0D or 0x0E). 

5.3.2.1 User Instruction Set

Table 20 shows the PST/DDATA specification for user-mode instructions. Rn represents any {Dn, An} 
register. In this definition, the ‘y’ suffix generally denotes the source, and ‘x’ denotes the destination 
operand. For a given instruction, the optional operand data is displayed only for those effective addresses 
referencing memory. The ‘DD’ nomenclature refers to the DDATA outputs.

Table 20. PST/DDATA Specification for User-Mode Instructions

Instruction Operand Syntax PST/DDATA

add.l <ea>y,Rx PST = 0x01, {PST = 0x0B, DD = source operand}

add.l Dy,<ea>x PST = 0x01, {PST = 0x0B, DD = source}, {PST = 0x0B, DD = destination}

addi.l #imm,Dx PST = 0x01

addq.l #imm,<ea>x PST = 0x01, {PST = 0x0B, DD = source}, {PST = 0x0B, DD = destination}

addx.l Dy,Dx PST = 0x01

and.l <ea>y,Dx PST = 0x01, {PST = 0x0B, DD = source operand}

and.l Dy,<ea>x PST = 0x01, {PST = 0x0B, DD = source}, {PST = 0x0B, DD = destination}

andi.l #imm,Dx PST = 0x01

asl.l {Dy,#imm},Dx PST = 0x01

asr.l {Dy,#imm},Dx PST = 0x01

bcc.{b,w,l} if taken, then PST = 0x05, else PST = 0x01

bchg #imm,<ea>x PST = 0x01, {PST = 0x08, DD = source}, {PST = 0x08, DD = destination}

bchg Dy,<ea>x PST = 0x01, {PST = 0x08, DD = source}, {PST = 0x08, DD = destination}

bclr #imm,<ea>x PST = 0x01, {PST = 0x08, DD = source}, {PST = 0x08, DD = destination}
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bclr Dy,<ea>x PST = 0x01, {PST = 0x08, DD = source}, {PST = 0x08, DD = destination}

bitrev.l Dx PST = 0x01

bra.{b,w,l} PST = 0x05

bset #imm,<ea>x PST = 0x01, {PST = 0x08, DD = source}, {PST = 0x08, DD = destination}

bset Dy,<ea>x PST = 0x01, {PST = 0x08, DD = source}, {PST = 0x08, DD = destination}

bsr.{b,w,l} PST = 0x05, {PST = 0x0B, DD = destination operand}

btst #imm,<ea>x PST = 0x01, {PST = 0x08, DD = source operand}

btst Dy,<ea>x PST = 0x01, {PST = 0x08, DD = source operand}

byterev.l Dx PST = 0x01

clr.b <ea>x PST = 0x01, {PST = 0x08, DD = destination operand}

clr.l <ea>x PST = 0x01, {PST = 0x0B, DD = destination operand}

clr.w <ea>x PST = 0x01, {PST = 0x09, DD = destination operand}

cmp.b <ea>y,Rx PST = 0x01, {PST = 0x08, DD = source operand}

cmp.l <ea>y,Rx PST = 0x01, {PST = 0x0B, DD = source operand}

cmp.w <ea>y,Rx PST = 0x01, {PST = 0x09, DD = source operand}

cmpi.b #imm,Dx PST = 0x01

cmpi.l #imm,Dx PST = 0x01

cmpi.w #imm,Dx PST = 0x01

divs.l <ea>y,Dx PST = 0x01, {PST = 0x0B, DD = source operand}

divs.w <ea>y,Dx PST = 0x01, {PST = 0x09, DD = source operand}

divu.l <ea>y,Dx PST = 0x01, {PST = 0x0B, DD = source operand}

divu.w <ea>y,Dx PST = 0x01, {PST = 0x09, DD = source operand}

eor.l Dy,<ea>x PST = 0x01, {PST = 0x0B, DD = source}, {PST = 0x0B, DD = destination}

eori.l #imm,Dx PST = 0x01

ext.l Dx PST = 0x01

ext.w Dx PST = 0x01

extb.l Dx PST = 0x01

ff1.l Dx PST = 0x01

illegal PST = 0x013

jmp <ea>x PST = 0x05, {PST = [0x0{DE}], DD = target address} 1

jsr <ea>x PST = 0x05, {PST = [0x0{DE}], DD = target address}, 
{PST = 0xB , DD = destination operand}1 

lea <ea>y,Ax PST = 0x01

link.w Ay,#imm PST = 0x01, {PST = 0x0B, DD = destination operand}

lsl.l {Dy,#imm},Dx PST = 0x01

Table 20. PST/DDATA Specification for User-Mode Instructions (continued)

Instruction Operand Syntax PST/DDATA
Version 1 ColdFire White Paper, Rev. 0

Freescale Semiconductor48



Processor Status (PST)/Debug Data (DDATA) and Trace Support
lsr.l {Dy,#imm},Dx PST = 0x01

mov3q.l <ea>y,Rx PST = 0x01, {PST = 0x0B, DD = source operand}

move.b <ea>y,<ea>x PST = 0x01, {PST = 0x08, DD = source}, {PST = 0x08, DD = destination}

move.l <ea>y,<ea>x PST = 0x01, {PST = 0x0B, DD = source}, {PST = 0x0B, DD = destination}

move.w <ea>y,<ea>x PST = 0x01, {PST = 0x09, DD = source}, {PST = 0x09, DD = destination}

move.w CCR,Dx PST = 0x01

move.w {Dy,#imm},CCR PST = 0x01

movem.l #list,<ea>x PST = 0x01, {PST = 0x0B, DD = destination},... 2

movem.l <ea>y,#list PST = 0x01, {PST = 0x0B, DD = source},... 2

moveq #imm,Dx PST = 0x01

muls.l <ea>y,Dx PST = 0x01, {PST = 0x0B, DD = source operand}

muls.w <ea>y,Dx PST = 0x01, {PST = 0x09, DD = source operand}

mulu.l <ea>y,Dx PST = 0x01, {PST = 0x0B, DD = source operand}

mulu.w <ea>y,Dx PST = 0x01, {PST = 0x09, DD = source operand}

mvs.b <ea>y,Dx PST = 0x01, {PST = 0x08, DD = source operand}

mvs.w <ea>y,Dx PST = 0x01, {PST = 0x09, DD = source operand}

mvz.b <ea>y,Dx PST = 0x01, {PST = 0x08, DD = source operand}

mvz.w <ea>y,Dx PST = 0x01, {PST = 0x09, DD = source operand}

neg.l Dx PST = 0x01

negx.l Dx PST = 0x01

nop PST = 0x01

not.l Dx PST = 0x01

or.l <ea>y,Dx PST = 0x01, {PST = 0x0B, DD = source operand}

or.l Dy,<ea>x PST = 0x01, {PST = 0x0B, DD = source}, {PST = 0x0B, DD = destination}

ori.l #imm,Dx PST = 0x01

pea <ea>y PST = 0x01, {PST = 0x0B, DD = destination operand}

pulse PST = 0x04

rems.l <ea>y,Dx:Dw PST = 0x01, {PST = 0x0B, DD = source operand}

remu.l <ea>y,Dx:Dw PST = 0x01, {PST = 0x0B, DD = source operand}

rts PST = 0x01, {PST = 0x0B, DD = source operand}, 
PST = 0x05, {PST = [0x0{DE}], DD = target address}

sats Dx PST = 0x01

scc Dx PST = 0x01

sub.l <ea>y,Rx PST = 0x01, {PST = 0x0B, DD = source operand}

sub.l Dy,<ea>x PST = 0x01, {PST = 0x0B, DD = source}, {PST = 0x0B, DD = destination}

Table 20. PST/DDATA Specification for User-Mode Instructions (continued)

Instruction Operand Syntax PST/DDATA
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Exception Processing  PST = 0x1C, 0x1C,
{PST = 0x0B, DD = destination}, // stack frame
{PST = 0x0B, DD = destination}, // stack frame
{PST = 0x0B, DD = source}, // vector read
 PST = 0x05,{PST = [0x0{DE}], DD = target} // handler PC

The PST/DDATA specification for the reset exception is shown below:
Exception Processing  PST = 0x1C, 0x1C,

 PST = 0x05,{PST = [0x0{DE}], DD = target} // handler PC

The initial references at address 0 and 4 are never captured nor displayed, because these accesses are 
treated as instruction fetches. For all types of exception processing, the PST = 0x1C value is driven for two 
trace buffer entries.

Table 21 shows the PST/DDATA specification for multiply-accumulate instructions.

subi.l #imm,Dx PST = 0x01

subq.l #imm,<ea>x PST = 0x01, {PST = 0x0B, DD = source}, {PST = 0x0B, DD = destination}

subx.l Dy,Dx PST = 0x01

swap Dx PST = 0x01

tas <ea>x PST = 0x01, {PST = 0x08, DD = source}, {PST = 0x08, DD = destination}

trap #imm PST = 0x013

trapf PST = 0x01

tst.b <ea>x PST = 0x01, {PST = 0x08, DD = source operand}

tst.l <ea>x PST = 0x01, {PST = 0x0B, DD = source operand}

tst.w <ea>x PST = 0x01, {PST = 0x09, DD = source operand}

unlk Ax PST = 0x01, {PST = 0x0B, DD = destination operand}

wddata.b <ea>y PST = 0x04, {PST = 0x08, DD = source operand

wddata.l <ea>y PST = 0x04, {PST = 0x0B, DD = source operand

wddata.w <ea>y PST = 0x04, {PST = 0x09, DD = source operand

1 For JMP and JSR instructions, the optional target instruction address is displayed only for those effective address 
fields defining variant addressing modes. This includes the following <ea>x values: (An), (d16,An), (d8,An,Xi), 
(d8,PC,Xi).

2 For move multiple instructions (MOVEM), the processor automatically generates line-sized transfers if the operand 
address reaches a 0-modulo-16 boundary and there are four or more registers to be transferred. For these line-sized 
transfers, the operand data is never captured nor displayed, regardless of the CSR value. 
The automatic line-sized burst transfers are provided to maximize performance during these sequential memory 
access operations.

3 During normal exception processing, the PST output is driven to a 0x1C indicating the exception processing state. 
The exception stack write operands, as well as the vector read and target address of the exception handler may also 
be displayed.

Table 20. PST/DDATA Specification for User-Mode Instructions (continued)

Instruction Operand Syntax PST/DDATA
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5.3.2.2 Supervisor Instruction Set

The supervisor instruction set has complete access to the user mode instructions plus the opcodes shown 
below. The PST/DDATA specification for these opcodes is shown in Table 22.

Table 21. PST/DDATA Specification for {E}MAC Instructions

Instruction Operand Syntax PST/DDATA

mac.l Ry,Rx,Accx PST = 0x01

mac.l RyRx,<ea>,Rw,Accx PST = 0x01, {PST = 0x0B, DD = source operand}

mac.w Ry,Rx,Accx PST = 0x01

mac.w Ry,Rx,<ea>,Rw,Accx PST = 0x01, {PST = 0x0B, DD = source operand}

move.l <ea>y,Accx PST = 0x01

move.l Accy,Accx PST = 0x01

move.l <ea>y,MACR PST = 0x01

move.l <ea>y,MASK PST = 0x01

move.l <ea>y,Accext01 PST = 0x01

move.l <ea>y,Accext23 PST = 0x01

move.l Accy,Rx PST = 0x01

move.l MACSR,CCR PST = 0x01

move.l MACSR,Rx PST = 0x01

move.l MASK,Rx PST = 0x01 

move.l Accext01,Rx PST = 0x01

move.l Accext23,Rx PST = 0x01

msac.l Ry,Rx,Accx PST = 0x01

msac.l Ry,Rx,<ea>,Rw,Accx PST = 0x01, {PST = 0x0B, DD = source operand}

msac.w Ry,Rx,Accx PST = 0x01

msac.w Ry,Rx,<ea>,Rw,Accx PST = 0x01, {PST = 0x0B, DD = source operand}

Table 22. PST/DDATA Specification for Supervisor-Mode Instructions

Instruction Operand Syntax PST/DDATA

halt PST = 0x01, 
PST = 0x1F

move.w SR,Dx PST = 0x01

move.l USP,Ax PST = 0x01

move.w {Dy,#imm},SR PST = 0x01, {PST = 0x3}

move.w Ay,USP PST = 0x01

movec Ry,Rc PST = 0x01
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The move-to-SR, STLDSR, and RTE instructions include an optional PST = 0x3 value, indicating an entry 
into user mode.

Similar to the exception processing mode, the stopped state (PST = 0x1E) and the halted state 
(PST = 0x1F) display this status for two cycles while the ColdFire processor is in the given mode.

6 V1 ColdFire Core Hardware Details
This section includes details on the V1 ColdFire core’s microarchitecture including pipeline organization 
and instruction execution times. Additionally, information of measured code density and performance is 
presented.

6.1 Core Microarchitecture
Recall the V1 core’s pipeline structure was first discussed in Section 1.1.3, “Core Pipeline Organization” 
including the V1 platform block diagram shown in Figure 4. This section provides additional details on 
the core’s hardware organization.

6.1.1 Core Pipeline Structure

A spatial pipeline diagram of the CF1 CPU is shown in Figure 20. The hardware structure of the operand 
execution pipeline is a two-stage pipeline featuring a traditional RISC datapath with a dual-read-ported 
register file (RGF) feeding an arithmetic/logic unit. In the spatial processor block diagram, the ALU/BSM 
structure represents the ALU (arithmetic/logic unit) and the BSM which provides the barrel shifter and a 
‘miscellaneous’ execute engine. Recall in the V1 design, the two OEP pipeline stages have multiple 
functions:

- Decode & Select/Operand Cycle DSOC Cycle
- Address Generation/Execute Cycle AGEX Cycle

The pipeline stages for the IFP and OEP are shown at the far right in the diagram.

rte PST = 0x07, {PST = 0x0B, DD = source operand}, {PST = 3}, PST =0x0B, 
DD =source operand}, 
PST = 0x05, {[PST = 0x0{DE}], DD = target address}

stldsr.w #imm PST = 0x01, {PST = 0xA, DD = destination operand, PST = 0x3}

stop #imm PST = 0x01, 
PST = 0x1E

wdebug <ea>y PST = 0x01, {PST = 0x0B, DD = source, PST = 0x0B, DD = source}

Table 22. PST/DDATA Specification for Supervisor-Mode Instructions (continued)

Instruction Operand Syntax PST/DDATA
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Figure 20. CF1 CPU Spatial Pipeline Diagram

As shown in Figure 4 and Figure 20, the CF1 CPU’s operand execution pipeline (OEP) stages map directly 
onto the 2-stage pipelined platform bus. This structure allows the processor access to the platform memory 
modules for single-cycle pipelined reads and writes with a zero wait-state (as viewed in the system bus 
data phase stage) response. Consider the following mapping of pipeline stages of the processor’s OEP and 
the platform’s system bus as shown in Table 23 and the timing diagram of Figure 21.
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Core Microarchitecture
Figure 21. CF1 CPU & Platform System Bus Timing Diagram

The timing diagram shows a 2-instruction sequence accessing the platform RAM as it executes in the 
CPU’s OEP: a 32-bit load operation (mov.l <ram>y,Rx) followed by a 32-bit store operation (mov.l 
Ry,<ram>x). The load instruction reads from the platform RAM and the store instruction writes to this 
memory. For this sequence, the 32-bit load operation is a 2-cycle instruction and the store operation is a 
single-cycle instruction. The timing diagram shows the instructions progressing through the two stages of 
the operand execution pipeline (DSOC and AGEX stages) as well as the processor’s internal 
‘execute_result’ bus and a virtual ‘data_available’ pipeline stage for store operations. Additionally, a 
subset of the platform bus signals are shown. Recall the platform bus implements a two-stage pipelined 
protocol with an address phase followed by a data phase. The following table associates the two 
instructions where their relative location in the processor’s pipeline and the platform bus in the timing 
diagram.

Table 23. CF1 CPU Pipeline Stage Mapping

Reference 
Type

CF1 CPU 
Pipeline Stage

System Bus
Pipeline Stage

inst fetch 1st Stage = IAG 1st Stage = platform address phase

2nd Stage = IC 2nd Stage = platform data phase

read 1st Stage = AGEX 1st Stage = platform address phase

2nd Stage = DSOC 2nd Stage = platform data phase

write 1st Stage = AGEX 1st Stage = platform address phase

2nd Stage = DA 2nd Stage = platform data phase

1 2 3 4 5 6

mov.l <ram>y,Rx mov.l Ry,<ram>x

mov.l <ram>y,Rx

next

nextmov.l Ry,<ram>xmov.l <ram>y,Rx

next+1

ram_read

c(ram_read)

ram_write

c(ram_write)

p_hwdata=Ry

er=ram_read

Core Clock

OEP DSOC

OEP AGEX

OEP Execute Result

OEP Data Available

Platform Address Phase

Platform Read/Write Data

Platform Data In Ready
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The instruction fetch pipeline prefetches instructions from platform memories using a 2-stage structure. 
For sequential prefetches, the next instruction address is generated by adding 4 to the last prefetch address. 
This function is performed during the IAG stage, and the resulting prefetch address gated onto the 
platform’s bus (if there are no pending operand memory accesses which are assigned a higher priority). 
Once the prefetch address is driven onto the platform bus, the instruction fetch cycle accesses the 
appropriate memory and returns the instruction read data back to the IFP during the next cycle (IC stage). 
If the accessed data is not present in a platform memory or not immediately available, or an external access 
cycle is required, the IFP is stalled in the IC stage until the referenced data is available. As the prefetch 
data arrives in the IFP, it can be loaded into the FIFO instruction buffer, or gated directly into the operand 
execution pipeline. 

The V1 design uses a simple static conditional branch prediction algorithm (forward assumed as not-taken, 
backward assumed as taken), and all change-of-flow operations are calculated by the OEP and the target 
instruction addresses fed back to the IFP. Two separate target address calculations are performed: one in 
the DSOC stage for conditional branches and another, the main ALU for operand generation in the AGEX 
stage, for all other change-of-flow instructions.

The IFP and OEP are decoupled by the FIFO instruction buffer, allowing instruction prefetching to occur 
with the available platform bus bandwidth not used for operand memory accesses. For the V1 design, the 
instruction buffer contains three 32-bit locations.

The following table presents the V1 execution times for the most-heavily used instruction types. For a 
complete listing of the instruction execution times, see Section 6.1.2, “Core Instruction Execution Times.”

Table 24. CF1Core & Platform Bus Stage Association

Cycle
CPU_OEP

DSOC Stage
CPU_OEP

AGEX Stage
CPU_OEP

Virtual Data Available
Platform 

Address Phase
Platform Data 

Phase

2 1st cycle:
mov.l <ram>y,Rx

3 2nd cycle: 
mov.l <ram>y,Rx

1st cycle:
mov.l <ram>y,Rx

RAM read

4 1st cycle: 
mov.l Ry,<mem>x

2nd cycle:
mov.l <ram>y,Rx

RAM read

5 next inst 1st cycle:
mov.l Ry,<ram>x

RAM write

6 next+1 inst next inst 1st cycle:
mov.l Ry,<ram>x

RAM write

Table 25. V1 Instruction Execution Times

Instruction Mnemonic Operation 
V1

Execution Time

<op> Ry,Rx register-to-register 1

mov.{b,w,l} <mem>y,Rx 8,16,32-bit load 2

mvs.{b,w} <mem>y,Rx 8,16-bit load with sign extension 2

mvz.{b,w} <mem>y,Rx 8,16-bit load with zero fill 2
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Consider the operation of the OEP for three basic classes of non-branch instructions:
Register-to-Register op Ry,Rx
Embedded-Load op <mem>y,Rx
Register-to-Memory (Store) move Ry,<mem>x

For this discussion, a simplified OEP block diagram is utilized.

For simple register-to-register instructions, the first stage of the OEP performs the instruction decode and 
fetching of the required register operands (OC) from the dual-ported register file, while the actual 
instruction execution is performed in the second stage (EX) in one of the “execute engines” (e.g., ALU, 
barrel shifter, divider, {E}MAC}. There are no operand memory accesses associated with this class of 
instructions, and the execution time typically is a single machine cycle. See Figure 22.

mov.* Ry,<mem>x store 1

mov.l <mem>y,<mem>x memory-to-memory 2

<op> <mem>y,Rx embedded-load 3

<op> Ry,<mem>x read-modify-write 3

bsr, jsr  <label> subroutine call 3

rts subroutine return 5

bra <label> branch always 2

bcc <label>
    (forward, not taken)

    (forward, taken)
    (backward, not taken)

    (backward, taken)

conditional branch
1
3
3
2

Table 25. V1 Instruction Execution Times (continued)

Instruction Mnemonic Operation 
V1

Execution Time
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Figure 22. V1 OEP Register-to-Register Instructions

For memory-to-register (embedded-load) instructions, the instruction is effectively staged through the 
OEP twice with a basic execution time of three cycles. First, the instruction is decoded and the components 
of the operand address (base register from the RGF and displacement) are selected (DS). Second, the 
operand effective address is generated using the ALU execute engine (AG). Third, the memory read 
operand is fetched from the platform bus, while any required register operand is simultaneously fetched 
(OC) from the RGF. Finally, in the fourth cycle, the instruction is executed (EX). The following example 
in Figure 24 shows an effective address of the form <ea>y = (d16,Ay), i.e., a 16-bit signed displacement 
added to a base register Ay. Recall the heavily-used load and load with sign extension or zero fill 
instructions are optimized to support a 2-cycle execution time.

Operand Execution Pipeline

DSOC AGEX

Opword

Extension 1

Extension 2

Read Data

Address

Write

RGF

Data

Rx

Ry

new Rx
Version 1 ColdFire White Paper, Rev. 0

Freescale Semiconductor 57



Core Microarchitecture
Figure 23. V1 OEP Register-to-Register Instructions (Part 1)

Figure 24. V1 OEP Embedded-Load Instructions (Part 2)
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For register-to-memory (store) operations, the stage functions (DS/OC, AG/EX) are effectively performed 
simultaneously allowing single-cycle execution. See Figure 25 where again the effective address is of the 
form <ea>x = (d16,Ax), i.e., a 16-bit signed displacement added to a base register Ax.

For read-modify-write instructions, the pipeline effectively combines an embedded-load with a store 
operation for a three-cycle execution time.

Figure 25. V2 OEP Register-to-Memory Instructions

6.1.2 Core Instruction Execution Times

This section presents processor instruction execution times in terms of processor core clock cycles. The 
number of operand references for each instruction is enclosed in parentheses following the number of 
processor clock cycles. Each timing entry is presented as C(R/W) where:

• C is the number of processor clock cycles, including all applicable operand fetches and writes, and 
all internal core cycles required to complete the instruction execution.

• R/W is the number of operand reads (R) and writes (W) required by the instruction. An operation 
performing a read-modify-write function is denoted as (1/1).

This section includes the assumptions concerning the timing values and the execution time details.
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6.1.2.1 Timing Assumptions

For the timing data presented in this section, the following assumptions apply:
1. The OEP is loaded with the opword and all required extension words at the beginning of each 

instruction execution. This implies that the OEP does not wait for the IFP to supply opwords and/or 
extension words.
The OEP does not experience any sequence-related pipeline stalls. The most common example of 
this type of stall involves consecutive store operations, excluding the MOVEM instruction. For all 
STORE operations (except MOVEM), certain hardware resources within the processor are marked 
as busy for two clock cycles after the final decode and select/operand fetch cycle (DSOC) of the 
store instruction. If a subsequent STORE instruction is encountered within this 2-cycle window, it 
is stalled until the resource again becomes available. Thus, the maximum pipeline stall involving 
consecutive STORE operations is 2 cycles. The MOVEM instruction uses a different set of 
resources and this stall does not apply.

2. The OEP completes all memory accesses without any stall conditions caused by the memory itself. 
Thus, the timing details provided in this section assume that an infinite zero-wait state memory is 
attached to the processor core.

3. All operand data accesses are aligned on the same byte boundary as the operand size, i.e., 16-bit 
operands aligned on 0-modulo-2 addresses, 32-bit operands aligned on 0-modulo-4 addresses.
The processor core decomposes misaligned operand references into a series of aligned accesses as 
shown in Table 26.

6.1.2.2 MOVE Instruction Execution Times

Table 27 lists execution times for MOVE.{B,W} instructions; Table 28 lists timings for MOVE.L; 
Table 29 lists the timings for miscellaneous move instructions.

NOTE
For all tables in this section, the execution time of any instruction using the 
PC-relative effective addressing modes is the same for the comparable 
An-relative mode.

Table 26. Misaligned Operand References

address[1:0] Size Bus Operations
Additional 

C(R/W)

01 or 11 Word Byte, Byte 2(1/0) if read
1(0/1) if write

01 or 11 Long Byte, Word, Byte 3(2/0) if read
2(0/2) if write

10 Long Word, Word 2(1/0) if read
1(0/1) if write

ET with {<ea> = (d16,PC)} equals ET with {<ea> = (d16,An)} 

ET with {<ea> = (d8,PC,Xi*SF)} equals ET with {<ea> = (d8,An,Xi*SF)}
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The nomenclature “xxx.wl” refers to both forms of absolute addressing, 
xxx.w and xxx.l.

Table 27. MOVE Byte and Word Execution Times

Source
Destination 

Rx (Ax) (Ax)+ -(Ax) (d16,Ax) (d8,Ax,Xi*SF) xxx.wl

Dy 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)

Ay 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)

(Ay) 2(1/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1)) 3(1/1)

(Ay)+ 2(1/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1)) 3(1/1)

-(Ay) 2(1/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1)) 3(1/1)

(d16,Ay) 2(1/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) — —

(d8,Ay,Xi*SF) 3(1/0) 4(1/1) 4(1/1) 4(1/1) — — —

xxx.w 2(1/0) 3(1/1) 3(1/1) 3(1/1) — — —

xxx.l 2(1/0) 3(1/1) 3(1/1) 3(1/1) — — —

(d16,PC) 2(1/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) — —

(d8,PC,Xi*SF) 3(1/0) 4(1/1) 4(1/1) 4(1/1)) — — —

#xxx 1(0/0) 3(0/1) 3(0/1) 3(0/1) 1(0/1) — —

Table 28. MOVE Long Execution Times

Source
Destination

Rx (Ax) (Ax)+ -(Ax) (d16,Ax) (d8,Ax,Xi*SF) xxx.wl

Dy 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)

Ay 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)

(Ay) 2(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)

(Ay)+ 2(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)

-(Ay) 2(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)

(d16,Ay) 2(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) — —

(d8,Ay,Xi*SF) 3(1/0) 3(1/1) 3(1/1) 3(1/1) — — —

xxx.w 2(1/0) 2(1/1) 2(1/1) 2(1/1) — — —

xxx.l 2(1/0) 2(1/1) 2(1/1) 2(1/1) — — —

(d16,PC) 2(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) — —

(d8,PC,Xi*SF) 3(1/0) 3(1/1) 3(1/1) 3(1/1) — — —

#xxx 1(0/0) 2(0/1) 2(0/1) 2(0/1) — — —
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6.1.2.3 Standard One Operand Instruction Execution Times

Table 29. Miscellaneous MOVE Execution Times

Opcode <ea>
Effective Address

Rn (An) (An)+ -(An) (d16,An) (d8,An,Xi*SF) xxx.wl #<xxx>

moveq.l #imm,Dx — — — — — — — 1(0/0)

mov3q #imm,<ea>x 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) —

mvs <ea>y,Dx 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1) 1(0/0)

mvz <ea>y,Dx 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1) 1(0/0)

Table 30. One Operand Instruction Execution Times

Opcode <EA>
Effective Address

Rn (An) (An)+ -(An) (d16,An) (d8,An,Xn*SF) xxx.wl #xxx

bitrev Dx 1(0/0) — — — — — — —

byterev Dx 1(0/0) — — — — — — —

clr.b <ea> 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) —

clr.w <ea> 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) —

clr.l <ea> 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) —

ext.w Dx 1(0/0) — — — — — — —

ext.l Dx 1(0/0) — — — — — — —

extb.l Dx 1(0/0) — — — — — — —

ff1 Dx 1(0/0) — — — — — — —

neg.l Dx 1(0/0) — — — — — — —

negx.l Dx 1(0/0) — — — — — — —

not.l Dx 1(0/0) — — — — — — —

sats.l Dx 1(0/0) — — — — — — —

scc Dx 1(0/0) — — — — — — —

swap Dx 1(0/0) — — — — — — —

tas.b <ea> — 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) —

tst.b <ea> 1(0/0) 2(1/0) 2(1/0) 2(1/0) 2(1/0) 3(1/0) 2(1/0) 1(0/0)

tst.w <ea> 1(0/0) 2(1/0) 2(1/0) 2(1/0) 2(1/0) 3(1/0) 2(1/0) 1(0/0)

tst.l <ea> 1(0/0) 2(1/0) 2(1/0) 2(1/0) 2(1/0) 3(1/0) 2(1/0) 1(0/0)
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6.1.2.4 Standard Two Operand Instruction Execution Times

Table 31. Two Operand Instruction Execution Times

Opcode <EA>

Effective Address

Rn (An) (An)+ -(An)
(d16,An)
(d16,PC)

(d8,An,Xn*SF)
(d8,PC,Xn*SF)

xxx.wl #xxx

add.l <ea>,Rx 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)

add.l Dy,<ea> — 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) —

addi.l #imm,Dx 1(0/0) — — — — — — —

addq.l #imm,<ea> 1(0/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) —

addx.l Dy,Dx 1(0/0) — — — — — — —

and.l <ea>,Rx 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)

and.l Dy,<ea> — 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) —

andi.l #imm,Dx 1(0/0) — — — — — — —

asl.l <ea>,Dx 1(0/0) — — — — — — 1(0/0)

asr.l <ea>,Dx 1(0/0) — — — — — — 1(0/0)

bchg Dy,<ea> 2(0/0) 4(1/1) 4(1/1) 4(1/1) 4(1/1) 5(1/1) 4(1/1) —

bchg #imm,<ea> 2(0/0) 4(1/1) 4(1/1) 4(1/1) 4(1/1) — — —

bclr Dy,<ea> 2(0/0) 4(1/1) 4(1/1) 4(1/1) 4(1/1) 5(1/1) 4(1/1) —

bclr #imm,<ea> 2(0/0) 4(1/1) 4(1/1) 4(1/1) 4(1/1) — — —

bset Dy,<ea> 2(0/0) 4(1/1) 4(1/1) 4(1/1) 4(1/1) 5(1/1) 4(1/1) —

bset #imm,<ea> 2(0/0) 4(1/1) 4(1/1) 4(1/1) 4(1/1) — — —

btst Dy,<ea> 2(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) —

btst #imm,<ea> 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) — — —

cmp.b <ea>,Rx 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)

cmp.w <ea>,Rx 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)

cmp.l <ea>,Rx 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)

cmpi.b #imm,Dx 1(0/0) — — — — — — —

cmpi.w #imm,Dx 1(0/0) — — — — — — —

cmpi.l #imm,Dx 1(0/0) — — — — — — —

divs.w <ea>,Dx 20(0/0) 23(1/0) 23(1/0) 23(1/0) 23(1/0) 24(1/0) 23(1/0) 20(0/0)

divu.w <ea>,Dx 20(0/0) 23(1/0) 23(1/0) 23(1/0) 23(1/0) 24(1/0) 23(1/0) 20(0/0)

divs.l <ea>,Dx ≤35(0/0) ≤38(1/0) ≤38(1/0) ≤38(1/0) ≤38(1/0) — — —

divu.l <ea>,Dx ≤35(0/0) ≤38(1/0) ≤38(1/0) ≤38(1/0) ≤38(1/0) — — —

eor.l Dy,<ea> 1(0/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) —

eori.l #imm,Dx 1(0/0) — — — — — — —

lea <ea>,Ax — 1(0/0) — — 1(0/0) 2(0/0) 1(0/0) —
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6.1.2.5 Miscellaneous Instruction Execution Times

lsl.l <ea>,Dx 1(0/0) — — — — — — 1(0/0)

lsr.l <ea>,Dx 1(0/0) — — — — — — 1(0/0)

or.l <ea>,Rx 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)

or.l Dy,<ea> — 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) —

ori.l #imm,Dx 1(0/0) — — — — — — —

rems.l <ea>,Dx ≤35(0/0) ≤38(1/0) ≤38(1/0) ≤38(1/0) ≤38(1/0) — — —

remu.l <ea>,Dx ≤35(0/0) ≤38(1/0) ≤38(1/0) ≤38(1/0) ≤38(1/0) — — —

sub.l <ea>,Rx 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)

sub.l Dy,<ea> — 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) —

subi.l #imm,Dx 1(0/0) — — — — — — —

subq.l #imm,<ea> 1(0/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) —

subx.l Dy,Dx 1(0/0) — — — — — — —

Table 32. Miscellaneous Instruction Execution Times

Opcode <EA>
Effective Address

Rn (An) (An)+ -(An) (d16,An) (d8,An,Xn*SF) xxx.wl #xxx

link.w Ay,#imm 2(0/1) — — — — — — —

move.l Ay,USP 3(0/0) — — — — — — —

move.l USP,Ax 3(0/0) — — — — — — —

move.w CCR,Dx 1(0/0) — — — — — — —

move.w <ea>,CCR 1(0/0) — — — — — — 1(0/0)

move.w SR,Dx 1(0/0) — — — — — — —

move.w <ea>,SR 7(0/0) — — — — — — 7(0/0) 2

movec Ry,Rc 9(0/1) — — — — — — —

movem.l <ea>,&list — 1+n(n/0) — — 1+n(n/0) — — —

movem.l &list,<ea> — 1+n(0/n) — — 1+n(0/n) — — —

nop 3(0/0) — — — — — — —

pea <ea> — 2(0/1) — — 2(0/1) 4 3(0/1) 5 2(0/1) —

pulse 1(0/0) — — — — — — —

stldsr #imm — — — — — — — 5(0/1)

stop #imm — — — — — — — 3(0/0) 3

Table 31. Two Operand Instruction Execution Times (continued)

Opcode <EA>

Effective Address

Rn (An) (An)+ -(An)
(d16,An)
(d16,PC)

(d8,An,Xn*SF)
(d8,PC,Xn*SF)

xxx.wl #xxx
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6.1.2.6 Branch Instruction Execution Times

6.2 Power Dissipation
Power analysis work for the V1 core and platform is currently underway and results will be supplied at a 
later date. It should be noted that there are multiple dimensions to address power dissipation. These 
include:

• Capabilities of the underlying process technology, like the use of a low-voltage, low-power 
technology

trap #imm — — — — — — — 15(1/2)

tpf 1(0/0) — — — — — — —

tpf.w 1(0/0) — — — — — — —

tpf.l 1(0/0) — — — — — — —

unlk Ax 2(1/0) — — — — — — —

wddata <ea> — 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) —

wdebug <ea> — 5(2/0) — — 5(2/0) — — —

1n is the number of registers moved by the MOVEM opcode.
2If a MOVE.W #imm,SR instruction is executed and imm[13] = 1, the execution time is 1(0/0).
3The execution time for STOP is the time required until the processor begins sampling continuously for interrupts.
4PEA execution times are the same for (d16,PC).
5 PEA execution times are the same for (d8,PC,Xn*SF).

Table 33. General Branch Instruction Execution Times

Opcode <EA>

Effective Address

Rn (An) (An)+ -(An)
(d16,An)
(d16,PC)

(d8,An,Xi*SF)
(d8,PC,Xi*SF)

xxx.wl #xxx

bra — — — — 2(0/1) — — —

bsr — — — — 3(0/1) — — —

jmp <ea> — 3(0/0) — — 3(0/0) 4(0/0) 3(0/0) —

jsr <ea> — 3(0/1) — — 3(0/1) 4(0/1) 3(0/1) —

rte — — 10(2/0) — — — — —

Table 34. Bcc Instruction Execution Times

Opcode
Forward
Taken

Forward
Not Taken

Backward
Taken

Backward
Not Taken

bcc 3(0/0) 1(0/0) 2(0/0) 3(0/0) 

Table 32. Miscellaneous Instruction Execution Times (continued)

Opcode <EA>
Effective Address

Rn (An) (An)+ -(An) (d16,An) (d8,An,Xn*SF) xxx.wl #xxx
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• Implementation of multiple low-power stop and wait modes at the chip level, typically including 
clock and power management techniques

• Aggressive clock gating throughout the design

6.3 Code Density and Performance

6.3.1 Code Density

In this section, preliminary results from a code density study is presented. For this initial work, seven ‘toy’ 
benchmarks were compiled for both S08 and ColdFire targets. The benchmarks were compiled with three 
different structures:

1. In one form, the variables were typed simply as int. For the S08, this translates into a 16-bit 
variable, while it is a 32-bit value for the ColdFire compilers. This is labelled as ‘int vs. int’ in the 
data tables.

2. In the second form, the variables were specifically typed as short, which are 16-bit variables for 
both architectures. This is labelled as ‘short vs. short’ in the tables.

3. In the third form, the variables were specifically types as char, which are 8-bit variables for both 
architectures. This is labelled as ‘char vs. char’ in the tables.

Multiple compilers were studied. For the S08, CodeWarrior V5.1 was used exclusively, while three 
ColdFire compilers were studied. These are simply labelled as compilers “CFx, CFy, CFz”. In addition, 
the ColdFire compilers targeted both ISA_A (the original instruction set architecture) and ISA_C, the ISA 
implemented in the V1 core. Note the ColdFire compiler “x” only supported the ISA_A target.

A summary of the relative code sizes is presented in Table 35 and Table 36. For this table, the smaller the 
number, the smaller the code size and the better the code density. The S08 ‘int vs. int’ data is used as the 
reference throughout this analysis.

The final row is the geometric mean across all seven benchmarks.

Table 35. S08 vs. ColdFire (ISA_C) Code Size

Benchmark
int vs. int short vs. short char vs. char

S08 CFx CFy CFz S08 CFx CFy CFz S08 CFx CFy CFz

ISA Target S08 ISA_A ISA_C ISA_C S08 ISA_A ISA_C ISA_C S08 ISA_A ISA_C ISA_C

bit 1.00 1.11 0.89 0.92 1.00 1.21 0.97 0.95 0.67 1.37 0.92 0.95

crc 1.00 0.33 0.35 0.36 1.00 0.43 0.50 0.42 0.38 0.57 0.45 0.47

init 1.00 0.77 0.58 0.73 1.00 0.85 0.54 0.92 0.84 0.71 0.51 0.63

max 1.00 0.56 0.48 0.56 1.00 0.78 0.48 0.63 1.12 0.77 0.54 0.85

rotate 1.00 0.90 0.59 0.80 1.00 0.98 0.59 0.82 0.86 0.91 0.64 0.79

search 1.00 0.73 0.64 0.61 1.00 0.97 0.64 0.79 0.97 0.58 0.55 0.68

sort 1.00 0.65 0.51 0.63 1.00 0.71 0.55 0.68 0.44 1.02 0.59 0.82

GMEAN 1.00 0.68 0.56 0.63 1.00 0.81 0.59 0.72 0.71 0.81 0.58 0.72
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There are a number of observations shown in this data:
• The S08 compiler produces its smallest code image when the variables are specifically typed as 

char. This is likely a function of both the compiler and the underlying instruction set architecture.
• The ColdFire compilers produce their best code when the variables are typed as int, as expected. 

Additionally, the differences between ISA_A and ISA_C are minimal for the int code base.
• For ColdFire, the short and char code bases have varying degrees of optimization compared to the 

int code. Compiler y produces the densest code image for the short and char code, followed by 
compiler z and finally compiler x. For the ISA_C target, the relative differences between the three 
code bases for compiler y are relatively small.

• As expected, the ISA_C target for compilers y and z shows more improvement for the short and 
char code bases, based on the instructions added in this revision.

• In general for this benchmark set, the ColdFire compilers with the ISA_C target produce code 
considerably more dense than the S08, especially for the int base and to a lesser extent, the short 
and char code bases.

The code density studies are continuing with additional benchmarks and application code. Results will be 
reported in subsequent document revisions.

6.3.2 Performance

In this section, initial performance results for the V1 ColdFire core are presented.

See Appendix A, “ColdFire Performance Analysis Overview,” for an overview of the ColdFire 
performance methodology.

For the initial analysis, the Dhrystone 2.1 benchmark was used. Four software targets were studied, along 
with two V1 core memory configurations.

Table 36. S08 vs. ColdFire (ISA_A) Code Size

Benchmark
int vs. int short vs. short char vs. char

S08 CFx CFy CFz S08 CFx CFy CFz S08 CFx CFy CFz

ISA Target S08 ISA_A ISA_A ISA_A S08 ISA_A ISA_A ISA_A S08 ISA_A ISA_A ISA_A

bit 1.00 1.11 0.92 0.97 1.00 1.21 0.97 1.11 0.67 1.37 0.95 0.92

crc 1.00 0.33 0.37 0.39 1.00 0.43 0.48 0.57 0.38 0.57 0.49 0.54

init 1.00 0.77 0.58 0.73 1.00 0.85 0.58 1.08 0.84 0.71 0.76 0.89

max 1.00 0.56 0.51 0.56 1.00 0.78 0.63 0.81 1.12 0.77 0.69 0.92

rotate 1.00 0.90 0.59 0.84 1.00 0.98 0.71 0.82 0.86 0.91 0.91 0.88

search 1.00 0.73 0.64 0.61 1.00 0.97 0.85 0.91 0.97 0.58 0.76 0.88

sort 1.00 0.65 0.51 0.63 1.00 0.71 0.63 0.80 0.44 1.02 0.67 0.88

GMEAN 1.00 0.68 0.57 0.65 1.00 0.81 0.68 0.85 0.71 0.81 0.73 0.83
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The measured V1 ColdFire Dhrystone 2.1 metrics are presented in Table 38. The benchmark is configured 
to execute its inner loop ten times.

The reported HCS08 Dhrystone 2.1 performance is 0.0876 DMIPS 2.1 per MHz. Therefore, the measured 
V1 performance levels (isa_c_no_div, isa_c) represent a 8.5–12.0x performance improvement for a 
constant frequency relative to the S08.

For the text = pflash configuration, the effect of disabling the flash speculation was also measured. This 
configuration is defined by setting CPUCR[FSD] = 1. For this benchmark, disabling the flash speculation 
decreases Dhrystone 2.1 performance by 12–13%.

Table 37. Dhrystone 2.1 Configurations

Configuration
Name

Description

Software

isa_a Compiled with ISA_A target

isa_a_no_div Compiled with ISA_A target but divide instructions are emulated via function calls

isa_c Compiled with ISA_C target

isa_c_no_div Compiled with ISA_C target but divide instructions are emulated via function calls

Hardware

text = pflash Executable object file has text in flash, data in RAM

text = pram Executable object file has text in RAM, data in RAM

Table 38. V1 ColdFire Core Dhrystone 2.1 Performance Metrics

Configuration
Text Size
[bytes]

Dynamic Insts
[executed insts]

Eff CPI
[cycle per inst]

DMIPS 2.1 
per MHz

text = pflash

isa_a 1252 3316 2.53 0.83

isa_a_no_div 1530 3846 2.47 0.73

isa_c 1202 3105 2.65 0.85

isa_c_no_div 1482 3635 2.57 0.74

text = pram

isa_a 1252 3316 2.10 1.01

isa_a_no_div 1530 3846 2.02 0.90

isa_c 1202 3105 2.17 1.05

isa_c_no_div 1482 3635 2.07 0.93
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Appendix A  ColdFire Performance Analysis Overview

A.1 Average Instruction Time Methodology
Since this analysis is based on a quantitative approach, this section presents a brief overview of the 
processor core performance prediction methodology. 

The performance of a processor can be predicted using an Average Instruction Time Methodology. In its 
simplest form, this CPI (cycles per instruction) metric (or its reciprocal IPC - instructions per cycle) 
represents the number of machine cycles per instruction and is calculated for a single-issue architecture as: 

CPI [cycles/inst] = Summation {F(i) x ET(i)} Eqn. 1

IPC [inst/cycle] = 1/CPI Eqn. 2

where CPI is the average instruction time expressed in cycles/inst, IPC is the average performance 
expressed in inst/cycle, F(i) represents the fractional dynamic frequency of occurrence per instruction and 
ET(i) is the execution time for a given instruction i. By summing the product of relative frequency and 
execution time for each instruction type, the average instruction time for a processor executing any given 
instruction mix can be calculated. For this methodology, the cycles are always expressed in processor 
clocks. The resulting instruction per cycle metric is proportional to performance, so the smaller the CPI 
metric, the better the performance.

Consider the definition of a Base Average Instruction Time (BaseCPI). Let the BaseCPI represent the 
maximum performance of the processor strictly as a function of the instruction mix. Stated differently, this 
metric represents the processor’s performance assuming the rest of the system (i.e., caches, memory 
modules, etc.) is ideal. 

A more accurate equation for BaseCPI can be written as: 
BaseCPI [cycle/inst] = (Summation {F(i) x ET(i)} + Sequence-Related Pipeline Stalls)

where the summation product was previously defined and the Sequence-Related Pipeline Stalls includes 
all pipeline breaks caused by the instruction sequence itself. These stalls may include: 

• Wait cycles inserted in the pipeline when required instruction(s) are not available. 
• Pipeline breaks, or stalls, generated by hardware interlocks which are asserted to handle some type 

of resource conflict or limitation. 

By summing the product of the relative frequency of occurrence and execution time for each instruction 
type plus the sequence-related holds, the base average instruction time can be calculated.

The BaseCPI provides a parameter to quantify the performance of a given processor microarchitecture. To 
convert this value into a more realistic measure of predicted system performance, a series of degradation 
factors must be considered. Let the Effective Average Instruction Time (Effective CPI, or EffCPI) 
represent this more realistic measure of performance.

Recall the definition of BaseCPI assumed all system elements, except the processor, were ideal. By 
quantifying the degradation factors associated with these other system components, the Effective CPI can 
be calculated:
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EffCPI [inst/cycle] = (BaseCpi
+ Summation of Memory Subsystem Factors
+ Summation of System Factors)

For microcontroller configurations, the Memory Subsystem Factors typically include wait states 
associated with flash and/or SRAM access times, while the System Factors may include system bus 
arbitration delays, etc.

Given the Average Instruction Time methodology, there are a number of additional tools that have been 
developed to assist in this type of performance analysis. 

Specifically, there are a number of architectural models that can be utilized to analyze various factors 
within the CPI performance equations. These tools are typically high-level C-language models of certain 
functions within the design, driven with information output from an instruction set simulator (ISS), which 
is typically a C-language program defining the expected results of the execution of the ISA which is used 
in all the design verification work. By inputting an executable memory image file, this ISA simulator then 
“executes” the program on an instruction by instruction basis, updating all program-visible machine 
registers and memory as required. Most ISA simulators have been instrumented to optionally output 
information on instruction fetch, operand addresses, and program counter values. 

By executing the target application on the ISA simulator with the appropriate outputs enabled, a stream of 
data from the executing application can be input to one of the architectural models. This input data then 
provides the required stimulus to the architectural models. 

There are programs which gather detailed statistics about dynamic opcode usage. Recalling the BaseCPI 
equation, this program provides the F(i) factors associated with the various opcodes across different suites 
of embedded applications, and is useful in examining the runtime differences across applications for key 
performance factors, e.g., the relative frequency of branch instructions, etc.

In addition, there are other models used for Effective CPI analysis and the degradation factors associated 
with memory accesses. 

First, there is a cache model that is used to quantify numerous performance parameters for various cache 
sizes, associativity and organizations. This model uses the stream of reference addresses generated by the 
ISA simulator from a hardware trace as input, and models the behavior of caches of varying size and 
organizations. Second, there are often models to quantify the performance of the platform memories, for 
example, the flash memory with its page buffer implementation.

Finally, a third model provides information for memory address profiling. Using the stream of reference 
addresses as input, this model merely profiles the memory access patterns to identify critical functions 
and/or heavily-referenced operand locations. For certain types of microcontroller configurations, this 
profiling is essential to understanding the required amount of RAM and which variables to map into this 
space to maximize performance. 

Figure A-1 illustrates the methodology for predicting the Effective CPI.
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Figure A-1. Effective CPI/IPC Prediction Methodology

In certain applications, there may be an RTL model (or approximation) of the design that can be utilized 
to directly measure performance of the system under development. For the V1 ColdFire family, this is the 
performance estimation process used here. Given the Effective IPC definition, the resulting performance 
of a device, as measured in [1/seconds], can be calculated knowing three factors: IPC [inst/cycle], cycle 
time [sec/cycle] and the number of instructions executed (the dynamic path length): 

Eqn. 3

Finally, the relative performance between two systems X and Y can be calculated using the above 
performance equation. For devices executing the same code image at the same operating frequency, the 
Executed Insts and the CycleTime factors can be removed (since they are both 1.0) and the relative 
performance simply defined as:

Eqn. 4

This equation is used extensively in any relative performance study.

ISS

Pipeline
Models

HW Trace

Local Memory
ModelsProfile

Perf 1 sec⁄[ ] Effective IPC inst/cycle[ ]
Cycle Time sec/cycle[ ] Executed Insts inst[ ]×
--------------------------------------------------------------------------------------------------------------=

Performance X
Performance Y
------------------------------------ Effective IPC X inst/cycle[ ]

Effective IPC Y inst/cycle[ ]
--------------------------------------------------------------------=
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